linux/drivers/gpu/drm/i915/i915_irq.c
<<
>>
Prefs
   1/* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
   2 */
   3/*
   4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
   5 * All Rights Reserved.
   6 *
   7 * Permission is hereby granted, free of charge, to any person obtaining a
   8 * copy of this software and associated documentation files (the
   9 * "Software"), to deal in the Software without restriction, including
  10 * without limitation the rights to use, copy, modify, merge, publish,
  11 * distribute, sub license, and/or sell copies of the Software, and to
  12 * permit persons to whom the Software is furnished to do so, subject to
  13 * the following conditions:
  14 *
  15 * The above copyright notice and this permission notice (including the
  16 * next paragraph) shall be included in all copies or substantial portions
  17 * of the Software.
  18 *
  19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
  22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
  23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
  24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
  25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
  26 *
  27 */
  28
  29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  30
  31#include <linux/circ_buf.h>
  32#include <linux/cpuidle.h>
  33#include <linux/slab.h>
  34#include <linux/sysrq.h>
  35
  36#include <drm/drm_drv.h>
  37#include <drm/drm_irq.h>
  38#include <drm/i915_drm.h>
  39
  40#include "display/intel_fifo_underrun.h"
  41#include "display/intel_hotplug.h"
  42#include "display/intel_lpe_audio.h"
  43#include "display/intel_psr.h"
  44
  45#include "i915_drv.h"
  46#include "i915_irq.h"
  47#include "i915_trace.h"
  48#include "intel_drv.h"
  49#include "intel_pm.h"
  50
  51/**
  52 * DOC: interrupt handling
  53 *
  54 * These functions provide the basic support for enabling and disabling the
  55 * interrupt handling support. There's a lot more functionality in i915_irq.c
  56 * and related files, but that will be described in separate chapters.
  57 */
  58
  59static const u32 hpd_ilk[HPD_NUM_PINS] = {
  60        [HPD_PORT_A] = DE_DP_A_HOTPLUG,
  61};
  62
  63static const u32 hpd_ivb[HPD_NUM_PINS] = {
  64        [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
  65};
  66
  67static const u32 hpd_bdw[HPD_NUM_PINS] = {
  68        [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
  69};
  70
  71static const u32 hpd_ibx[HPD_NUM_PINS] = {
  72        [HPD_CRT] = SDE_CRT_HOTPLUG,
  73        [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
  74        [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
  75        [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
  76        [HPD_PORT_D] = SDE_PORTD_HOTPLUG
  77};
  78
  79static const u32 hpd_cpt[HPD_NUM_PINS] = {
  80        [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
  81        [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
  82        [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
  83        [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
  84        [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
  85};
  86
  87static const u32 hpd_spt[HPD_NUM_PINS] = {
  88        [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
  89        [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
  90        [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
  91        [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
  92        [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
  93};
  94
  95static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
  96        [HPD_CRT] = CRT_HOTPLUG_INT_EN,
  97        [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
  98        [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
  99        [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
 100        [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
 101        [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
 102};
 103
 104static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
 105        [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
 106        [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
 107        [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
 108        [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
 109        [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
 110        [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
 111};
 112
 113static const u32 hpd_status_i915[HPD_NUM_PINS] = {
 114        [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
 115        [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
 116        [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
 117        [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
 118        [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
 119        [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
 120};
 121
 122/* BXT hpd list */
 123static const u32 hpd_bxt[HPD_NUM_PINS] = {
 124        [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
 125        [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
 126        [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
 127};
 128
 129static const u32 hpd_gen11[HPD_NUM_PINS] = {
 130        [HPD_PORT_C] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG,
 131        [HPD_PORT_D] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG,
 132        [HPD_PORT_E] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG,
 133        [HPD_PORT_F] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG
 134};
 135
 136static const u32 hpd_icp[HPD_NUM_PINS] = {
 137        [HPD_PORT_A] = SDE_DDIA_HOTPLUG_ICP,
 138        [HPD_PORT_B] = SDE_DDIB_HOTPLUG_ICP,
 139        [HPD_PORT_C] = SDE_TC1_HOTPLUG_ICP,
 140        [HPD_PORT_D] = SDE_TC2_HOTPLUG_ICP,
 141        [HPD_PORT_E] = SDE_TC3_HOTPLUG_ICP,
 142        [HPD_PORT_F] = SDE_TC4_HOTPLUG_ICP
 143};
 144
 145static const u32 hpd_mcc[HPD_NUM_PINS] = {
 146        [HPD_PORT_A] = SDE_DDIA_HOTPLUG_ICP,
 147        [HPD_PORT_B] = SDE_DDIB_HOTPLUG_ICP,
 148        [HPD_PORT_C] = SDE_TC1_HOTPLUG_ICP
 149};
 150
 151static void gen3_irq_reset(struct intel_uncore *uncore, i915_reg_t imr,
 152                           i915_reg_t iir, i915_reg_t ier)
 153{
 154        intel_uncore_write(uncore, imr, 0xffffffff);
 155        intel_uncore_posting_read(uncore, imr);
 156
 157        intel_uncore_write(uncore, ier, 0);
 158
 159        /* IIR can theoretically queue up two events. Be paranoid. */
 160        intel_uncore_write(uncore, iir, 0xffffffff);
 161        intel_uncore_posting_read(uncore, iir);
 162        intel_uncore_write(uncore, iir, 0xffffffff);
 163        intel_uncore_posting_read(uncore, iir);
 164}
 165
 166static void gen2_irq_reset(struct intel_uncore *uncore)
 167{
 168        intel_uncore_write16(uncore, GEN2_IMR, 0xffff);
 169        intel_uncore_posting_read16(uncore, GEN2_IMR);
 170
 171        intel_uncore_write16(uncore, GEN2_IER, 0);
 172
 173        /* IIR can theoretically queue up two events. Be paranoid. */
 174        intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
 175        intel_uncore_posting_read16(uncore, GEN2_IIR);
 176        intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
 177        intel_uncore_posting_read16(uncore, GEN2_IIR);
 178}
 179
 180#define GEN8_IRQ_RESET_NDX(uncore, type, which) \
 181({ \
 182        unsigned int which_ = which; \
 183        gen3_irq_reset((uncore), GEN8_##type##_IMR(which_), \
 184                       GEN8_##type##_IIR(which_), GEN8_##type##_IER(which_)); \
 185})
 186
 187#define GEN3_IRQ_RESET(uncore, type) \
 188        gen3_irq_reset((uncore), type##IMR, type##IIR, type##IER)
 189
 190#define GEN2_IRQ_RESET(uncore) \
 191        gen2_irq_reset(uncore)
 192
 193/*
 194 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
 195 */
 196static void gen3_assert_iir_is_zero(struct intel_uncore *uncore, i915_reg_t reg)
 197{
 198        u32 val = intel_uncore_read(uncore, reg);
 199
 200        if (val == 0)
 201                return;
 202
 203        WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
 204             i915_mmio_reg_offset(reg), val);
 205        intel_uncore_write(uncore, reg, 0xffffffff);
 206        intel_uncore_posting_read(uncore, reg);
 207        intel_uncore_write(uncore, reg, 0xffffffff);
 208        intel_uncore_posting_read(uncore, reg);
 209}
 210
 211static void gen2_assert_iir_is_zero(struct intel_uncore *uncore)
 212{
 213        u16 val = intel_uncore_read16(uncore, GEN2_IIR);
 214
 215        if (val == 0)
 216                return;
 217
 218        WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
 219             i915_mmio_reg_offset(GEN2_IIR), val);
 220        intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
 221        intel_uncore_posting_read16(uncore, GEN2_IIR);
 222        intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
 223        intel_uncore_posting_read16(uncore, GEN2_IIR);
 224}
 225
 226static void gen3_irq_init(struct intel_uncore *uncore,
 227                          i915_reg_t imr, u32 imr_val,
 228                          i915_reg_t ier, u32 ier_val,
 229                          i915_reg_t iir)
 230{
 231        gen3_assert_iir_is_zero(uncore, iir);
 232
 233        intel_uncore_write(uncore, ier, ier_val);
 234        intel_uncore_write(uncore, imr, imr_val);
 235        intel_uncore_posting_read(uncore, imr);
 236}
 237
 238static void gen2_irq_init(struct intel_uncore *uncore,
 239                          u32 imr_val, u32 ier_val)
 240{
 241        gen2_assert_iir_is_zero(uncore);
 242
 243        intel_uncore_write16(uncore, GEN2_IER, ier_val);
 244        intel_uncore_write16(uncore, GEN2_IMR, imr_val);
 245        intel_uncore_posting_read16(uncore, GEN2_IMR);
 246}
 247
 248#define GEN8_IRQ_INIT_NDX(uncore, type, which, imr_val, ier_val) \
 249({ \
 250        unsigned int which_ = which; \
 251        gen3_irq_init((uncore), \
 252                      GEN8_##type##_IMR(which_), imr_val, \
 253                      GEN8_##type##_IER(which_), ier_val, \
 254                      GEN8_##type##_IIR(which_)); \
 255})
 256
 257#define GEN3_IRQ_INIT(uncore, type, imr_val, ier_val) \
 258        gen3_irq_init((uncore), \
 259                      type##IMR, imr_val, \
 260                      type##IER, ier_val, \
 261                      type##IIR)
 262
 263#define GEN2_IRQ_INIT(uncore, imr_val, ier_val) \
 264        gen2_irq_init((uncore), imr_val, ier_val)
 265
 266static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
 267static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
 268
 269/* For display hotplug interrupt */
 270static inline void
 271i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
 272                                     u32 mask,
 273                                     u32 bits)
 274{
 275        u32 val;
 276
 277        lockdep_assert_held(&dev_priv->irq_lock);
 278        WARN_ON(bits & ~mask);
 279
 280        val = I915_READ(PORT_HOTPLUG_EN);
 281        val &= ~mask;
 282        val |= bits;
 283        I915_WRITE(PORT_HOTPLUG_EN, val);
 284}
 285
 286/**
 287 * i915_hotplug_interrupt_update - update hotplug interrupt enable
 288 * @dev_priv: driver private
 289 * @mask: bits to update
 290 * @bits: bits to enable
 291 * NOTE: the HPD enable bits are modified both inside and outside
 292 * of an interrupt context. To avoid that read-modify-write cycles
 293 * interfer, these bits are protected by a spinlock. Since this
 294 * function is usually not called from a context where the lock is
 295 * held already, this function acquires the lock itself. A non-locking
 296 * version is also available.
 297 */
 298void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
 299                                   u32 mask,
 300                                   u32 bits)
 301{
 302        spin_lock_irq(&dev_priv->irq_lock);
 303        i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
 304        spin_unlock_irq(&dev_priv->irq_lock);
 305}
 306
 307static u32
 308gen11_gt_engine_identity(struct drm_i915_private * const i915,
 309                         const unsigned int bank, const unsigned int bit);
 310
 311static bool gen11_reset_one_iir(struct drm_i915_private * const i915,
 312                                const unsigned int bank,
 313                                const unsigned int bit)
 314{
 315        void __iomem * const regs = i915->uncore.regs;
 316        u32 dw;
 317
 318        lockdep_assert_held(&i915->irq_lock);
 319
 320        dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank));
 321        if (dw & BIT(bit)) {
 322                /*
 323                 * According to the BSpec, DW_IIR bits cannot be cleared without
 324                 * first servicing the Selector & Shared IIR registers.
 325                 */
 326                gen11_gt_engine_identity(i915, bank, bit);
 327
 328                /*
 329                 * We locked GT INT DW by reading it. If we want to (try
 330                 * to) recover from this succesfully, we need to clear
 331                 * our bit, otherwise we are locking the register for
 332                 * everybody.
 333                 */
 334                raw_reg_write(regs, GEN11_GT_INTR_DW(bank), BIT(bit));
 335
 336                return true;
 337        }
 338
 339        return false;
 340}
 341
 342/**
 343 * ilk_update_display_irq - update DEIMR
 344 * @dev_priv: driver private
 345 * @interrupt_mask: mask of interrupt bits to update
 346 * @enabled_irq_mask: mask of interrupt bits to enable
 347 */
 348void ilk_update_display_irq(struct drm_i915_private *dev_priv,
 349                            u32 interrupt_mask,
 350                            u32 enabled_irq_mask)
 351{
 352        u32 new_val;
 353
 354        lockdep_assert_held(&dev_priv->irq_lock);
 355
 356        WARN_ON(enabled_irq_mask & ~interrupt_mask);
 357
 358        if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 359                return;
 360
 361        new_val = dev_priv->irq_mask;
 362        new_val &= ~interrupt_mask;
 363        new_val |= (~enabled_irq_mask & interrupt_mask);
 364
 365        if (new_val != dev_priv->irq_mask) {
 366                dev_priv->irq_mask = new_val;
 367                I915_WRITE(DEIMR, dev_priv->irq_mask);
 368                POSTING_READ(DEIMR);
 369        }
 370}
 371
 372/**
 373 * ilk_update_gt_irq - update GTIMR
 374 * @dev_priv: driver private
 375 * @interrupt_mask: mask of interrupt bits to update
 376 * @enabled_irq_mask: mask of interrupt bits to enable
 377 */
 378static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
 379                              u32 interrupt_mask,
 380                              u32 enabled_irq_mask)
 381{
 382        lockdep_assert_held(&dev_priv->irq_lock);
 383
 384        WARN_ON(enabled_irq_mask & ~interrupt_mask);
 385
 386        if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 387                return;
 388
 389        dev_priv->gt_irq_mask &= ~interrupt_mask;
 390        dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
 391        I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
 392}
 393
 394void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, u32 mask)
 395{
 396        ilk_update_gt_irq(dev_priv, mask, mask);
 397        intel_uncore_posting_read_fw(&dev_priv->uncore, GTIMR);
 398}
 399
 400void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, u32 mask)
 401{
 402        ilk_update_gt_irq(dev_priv, mask, 0);
 403}
 404
 405static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
 406{
 407        WARN_ON_ONCE(INTEL_GEN(dev_priv) >= 11);
 408
 409        return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
 410}
 411
 412static void write_pm_imr(struct drm_i915_private *dev_priv)
 413{
 414        i915_reg_t reg;
 415        u32 mask = dev_priv->pm_imr;
 416
 417        if (INTEL_GEN(dev_priv) >= 11) {
 418                reg = GEN11_GPM_WGBOXPERF_INTR_MASK;
 419                /* pm is in upper half */
 420                mask = mask << 16;
 421        } else if (INTEL_GEN(dev_priv) >= 8) {
 422                reg = GEN8_GT_IMR(2);
 423        } else {
 424                reg = GEN6_PMIMR;
 425        }
 426
 427        I915_WRITE(reg, mask);
 428        POSTING_READ(reg);
 429}
 430
 431static void write_pm_ier(struct drm_i915_private *dev_priv)
 432{
 433        i915_reg_t reg;
 434        u32 mask = dev_priv->pm_ier;
 435
 436        if (INTEL_GEN(dev_priv) >= 11) {
 437                reg = GEN11_GPM_WGBOXPERF_INTR_ENABLE;
 438                /* pm is in upper half */
 439                mask = mask << 16;
 440        } else if (INTEL_GEN(dev_priv) >= 8) {
 441                reg = GEN8_GT_IER(2);
 442        } else {
 443                reg = GEN6_PMIER;
 444        }
 445
 446        I915_WRITE(reg, mask);
 447}
 448
 449/**
 450 * snb_update_pm_irq - update GEN6_PMIMR
 451 * @dev_priv: driver private
 452 * @interrupt_mask: mask of interrupt bits to update
 453 * @enabled_irq_mask: mask of interrupt bits to enable
 454 */
 455static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
 456                              u32 interrupt_mask,
 457                              u32 enabled_irq_mask)
 458{
 459        u32 new_val;
 460
 461        WARN_ON(enabled_irq_mask & ~interrupt_mask);
 462
 463        lockdep_assert_held(&dev_priv->irq_lock);
 464
 465        new_val = dev_priv->pm_imr;
 466        new_val &= ~interrupt_mask;
 467        new_val |= (~enabled_irq_mask & interrupt_mask);
 468
 469        if (new_val != dev_priv->pm_imr) {
 470                dev_priv->pm_imr = new_val;
 471                write_pm_imr(dev_priv);
 472        }
 473}
 474
 475void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
 476{
 477        if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 478                return;
 479
 480        snb_update_pm_irq(dev_priv, mask, mask);
 481}
 482
 483static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
 484{
 485        snb_update_pm_irq(dev_priv, mask, 0);
 486}
 487
 488void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
 489{
 490        if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 491                return;
 492
 493        __gen6_mask_pm_irq(dev_priv, mask);
 494}
 495
 496static void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask)
 497{
 498        i915_reg_t reg = gen6_pm_iir(dev_priv);
 499
 500        lockdep_assert_held(&dev_priv->irq_lock);
 501
 502        I915_WRITE(reg, reset_mask);
 503        I915_WRITE(reg, reset_mask);
 504        POSTING_READ(reg);
 505}
 506
 507static void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask)
 508{
 509        lockdep_assert_held(&dev_priv->irq_lock);
 510
 511        dev_priv->pm_ier |= enable_mask;
 512        write_pm_ier(dev_priv);
 513        gen6_unmask_pm_irq(dev_priv, enable_mask);
 514        /* unmask_pm_irq provides an implicit barrier (POSTING_READ) */
 515}
 516
 517static void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask)
 518{
 519        lockdep_assert_held(&dev_priv->irq_lock);
 520
 521        dev_priv->pm_ier &= ~disable_mask;
 522        __gen6_mask_pm_irq(dev_priv, disable_mask);
 523        write_pm_ier(dev_priv);
 524        /* though a barrier is missing here, but don't really need a one */
 525}
 526
 527void gen11_reset_rps_interrupts(struct drm_i915_private *dev_priv)
 528{
 529        spin_lock_irq(&dev_priv->irq_lock);
 530
 531        while (gen11_reset_one_iir(dev_priv, 0, GEN11_GTPM))
 532                ;
 533
 534        dev_priv->gt_pm.rps.pm_iir = 0;
 535
 536        spin_unlock_irq(&dev_priv->irq_lock);
 537}
 538
 539void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
 540{
 541        spin_lock_irq(&dev_priv->irq_lock);
 542        gen6_reset_pm_iir(dev_priv, GEN6_PM_RPS_EVENTS);
 543        dev_priv->gt_pm.rps.pm_iir = 0;
 544        spin_unlock_irq(&dev_priv->irq_lock);
 545}
 546
 547void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
 548{
 549        struct intel_rps *rps = &dev_priv->gt_pm.rps;
 550
 551        if (READ_ONCE(rps->interrupts_enabled))
 552                return;
 553
 554        spin_lock_irq(&dev_priv->irq_lock);
 555        WARN_ON_ONCE(rps->pm_iir);
 556
 557        if (INTEL_GEN(dev_priv) >= 11)
 558                WARN_ON_ONCE(gen11_reset_one_iir(dev_priv, 0, GEN11_GTPM));
 559        else
 560                WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
 561
 562        rps->interrupts_enabled = true;
 563        gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
 564
 565        spin_unlock_irq(&dev_priv->irq_lock);
 566}
 567
 568void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
 569{
 570        struct intel_rps *rps = &dev_priv->gt_pm.rps;
 571
 572        if (!READ_ONCE(rps->interrupts_enabled))
 573                return;
 574
 575        spin_lock_irq(&dev_priv->irq_lock);
 576        rps->interrupts_enabled = false;
 577
 578        I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
 579
 580        gen6_disable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
 581
 582        spin_unlock_irq(&dev_priv->irq_lock);
 583        synchronize_irq(dev_priv->drm.irq);
 584
 585        /* Now that we will not be generating any more work, flush any
 586         * outstanding tasks. As we are called on the RPS idle path,
 587         * we will reset the GPU to minimum frequencies, so the current
 588         * state of the worker can be discarded.
 589         */
 590        cancel_work_sync(&rps->work);
 591        if (INTEL_GEN(dev_priv) >= 11)
 592                gen11_reset_rps_interrupts(dev_priv);
 593        else
 594                gen6_reset_rps_interrupts(dev_priv);
 595}
 596
 597void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv)
 598{
 599        assert_rpm_wakelock_held(&dev_priv->runtime_pm);
 600
 601        spin_lock_irq(&dev_priv->irq_lock);
 602        gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events);
 603        spin_unlock_irq(&dev_priv->irq_lock);
 604}
 605
 606void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv)
 607{
 608        assert_rpm_wakelock_held(&dev_priv->runtime_pm);
 609
 610        spin_lock_irq(&dev_priv->irq_lock);
 611        if (!dev_priv->guc.interrupts.enabled) {
 612                WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) &
 613                                       dev_priv->pm_guc_events);
 614                dev_priv->guc.interrupts.enabled = true;
 615                gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events);
 616        }
 617        spin_unlock_irq(&dev_priv->irq_lock);
 618}
 619
 620void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv)
 621{
 622        assert_rpm_wakelock_held(&dev_priv->runtime_pm);
 623
 624        spin_lock_irq(&dev_priv->irq_lock);
 625        dev_priv->guc.interrupts.enabled = false;
 626
 627        gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events);
 628
 629        spin_unlock_irq(&dev_priv->irq_lock);
 630        synchronize_irq(dev_priv->drm.irq);
 631
 632        gen9_reset_guc_interrupts(dev_priv);
 633}
 634
 635void gen11_reset_guc_interrupts(struct drm_i915_private *i915)
 636{
 637        spin_lock_irq(&i915->irq_lock);
 638        gen11_reset_one_iir(i915, 0, GEN11_GUC);
 639        spin_unlock_irq(&i915->irq_lock);
 640}
 641
 642void gen11_enable_guc_interrupts(struct drm_i915_private *dev_priv)
 643{
 644        spin_lock_irq(&dev_priv->irq_lock);
 645        if (!dev_priv->guc.interrupts.enabled) {
 646                u32 events = REG_FIELD_PREP(ENGINE1_MASK,
 647                                            GEN11_GUC_INTR_GUC2HOST);
 648
 649                WARN_ON_ONCE(gen11_reset_one_iir(dev_priv, 0, GEN11_GUC));
 650                I915_WRITE(GEN11_GUC_SG_INTR_ENABLE, events);
 651                I915_WRITE(GEN11_GUC_SG_INTR_MASK, ~events);
 652                dev_priv->guc.interrupts.enabled = true;
 653        }
 654        spin_unlock_irq(&dev_priv->irq_lock);
 655}
 656
 657void gen11_disable_guc_interrupts(struct drm_i915_private *dev_priv)
 658{
 659        spin_lock_irq(&dev_priv->irq_lock);
 660        dev_priv->guc.interrupts.enabled = false;
 661
 662        I915_WRITE(GEN11_GUC_SG_INTR_MASK, ~0);
 663        I915_WRITE(GEN11_GUC_SG_INTR_ENABLE, 0);
 664
 665        spin_unlock_irq(&dev_priv->irq_lock);
 666        synchronize_irq(dev_priv->drm.irq);
 667
 668        gen11_reset_guc_interrupts(dev_priv);
 669}
 670
 671/**
 672 * bdw_update_port_irq - update DE port interrupt
 673 * @dev_priv: driver private
 674 * @interrupt_mask: mask of interrupt bits to update
 675 * @enabled_irq_mask: mask of interrupt bits to enable
 676 */
 677static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
 678                                u32 interrupt_mask,
 679                                u32 enabled_irq_mask)
 680{
 681        u32 new_val;
 682        u32 old_val;
 683
 684        lockdep_assert_held(&dev_priv->irq_lock);
 685
 686        WARN_ON(enabled_irq_mask & ~interrupt_mask);
 687
 688        if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 689                return;
 690
 691        old_val = I915_READ(GEN8_DE_PORT_IMR);
 692
 693        new_val = old_val;
 694        new_val &= ~interrupt_mask;
 695        new_val |= (~enabled_irq_mask & interrupt_mask);
 696
 697        if (new_val != old_val) {
 698                I915_WRITE(GEN8_DE_PORT_IMR, new_val);
 699                POSTING_READ(GEN8_DE_PORT_IMR);
 700        }
 701}
 702
 703/**
 704 * bdw_update_pipe_irq - update DE pipe interrupt
 705 * @dev_priv: driver private
 706 * @pipe: pipe whose interrupt to update
 707 * @interrupt_mask: mask of interrupt bits to update
 708 * @enabled_irq_mask: mask of interrupt bits to enable
 709 */
 710void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
 711                         enum pipe pipe,
 712                         u32 interrupt_mask,
 713                         u32 enabled_irq_mask)
 714{
 715        u32 new_val;
 716
 717        lockdep_assert_held(&dev_priv->irq_lock);
 718
 719        WARN_ON(enabled_irq_mask & ~interrupt_mask);
 720
 721        if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 722                return;
 723
 724        new_val = dev_priv->de_irq_mask[pipe];
 725        new_val &= ~interrupt_mask;
 726        new_val |= (~enabled_irq_mask & interrupt_mask);
 727
 728        if (new_val != dev_priv->de_irq_mask[pipe]) {
 729                dev_priv->de_irq_mask[pipe] = new_val;
 730                I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
 731                POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
 732        }
 733}
 734
 735/**
 736 * ibx_display_interrupt_update - update SDEIMR
 737 * @dev_priv: driver private
 738 * @interrupt_mask: mask of interrupt bits to update
 739 * @enabled_irq_mask: mask of interrupt bits to enable
 740 */
 741void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
 742                                  u32 interrupt_mask,
 743                                  u32 enabled_irq_mask)
 744{
 745        u32 sdeimr = I915_READ(SDEIMR);
 746        sdeimr &= ~interrupt_mask;
 747        sdeimr |= (~enabled_irq_mask & interrupt_mask);
 748
 749        WARN_ON(enabled_irq_mask & ~interrupt_mask);
 750
 751        lockdep_assert_held(&dev_priv->irq_lock);
 752
 753        if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 754                return;
 755
 756        I915_WRITE(SDEIMR, sdeimr);
 757        POSTING_READ(SDEIMR);
 758}
 759
 760u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
 761                              enum pipe pipe)
 762{
 763        u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
 764        u32 enable_mask = status_mask << 16;
 765
 766        lockdep_assert_held(&dev_priv->irq_lock);
 767
 768        if (INTEL_GEN(dev_priv) < 5)
 769                goto out;
 770
 771        /*
 772         * On pipe A we don't support the PSR interrupt yet,
 773         * on pipe B and C the same bit MBZ.
 774         */
 775        if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
 776                return 0;
 777        /*
 778         * On pipe B and C we don't support the PSR interrupt yet, on pipe
 779         * A the same bit is for perf counters which we don't use either.
 780         */
 781        if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
 782                return 0;
 783
 784        enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
 785                         SPRITE0_FLIP_DONE_INT_EN_VLV |
 786                         SPRITE1_FLIP_DONE_INT_EN_VLV);
 787        if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
 788                enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
 789        if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
 790                enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
 791
 792out:
 793        WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
 794                  status_mask & ~PIPESTAT_INT_STATUS_MASK,
 795                  "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
 796                  pipe_name(pipe), enable_mask, status_mask);
 797
 798        return enable_mask;
 799}
 800
 801void i915_enable_pipestat(struct drm_i915_private *dev_priv,
 802                          enum pipe pipe, u32 status_mask)
 803{
 804        i915_reg_t reg = PIPESTAT(pipe);
 805        u32 enable_mask;
 806
 807        WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
 808                  "pipe %c: status_mask=0x%x\n",
 809                  pipe_name(pipe), status_mask);
 810
 811        lockdep_assert_held(&dev_priv->irq_lock);
 812        WARN_ON(!intel_irqs_enabled(dev_priv));
 813
 814        if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
 815                return;
 816
 817        dev_priv->pipestat_irq_mask[pipe] |= status_mask;
 818        enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
 819
 820        I915_WRITE(reg, enable_mask | status_mask);
 821        POSTING_READ(reg);
 822}
 823
 824void i915_disable_pipestat(struct drm_i915_private *dev_priv,
 825                           enum pipe pipe, u32 status_mask)
 826{
 827        i915_reg_t reg = PIPESTAT(pipe);
 828        u32 enable_mask;
 829
 830        WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
 831                  "pipe %c: status_mask=0x%x\n",
 832                  pipe_name(pipe), status_mask);
 833
 834        lockdep_assert_held(&dev_priv->irq_lock);
 835        WARN_ON(!intel_irqs_enabled(dev_priv));
 836
 837        if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
 838                return;
 839
 840        dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
 841        enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
 842
 843        I915_WRITE(reg, enable_mask | status_mask);
 844        POSTING_READ(reg);
 845}
 846
 847static bool i915_has_asle(struct drm_i915_private *dev_priv)
 848{
 849        if (!dev_priv->opregion.asle)
 850                return false;
 851
 852        return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
 853}
 854
 855/**
 856 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
 857 * @dev_priv: i915 device private
 858 */
 859static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
 860{
 861        if (!i915_has_asle(dev_priv))
 862                return;
 863
 864        spin_lock_irq(&dev_priv->irq_lock);
 865
 866        i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
 867        if (INTEL_GEN(dev_priv) >= 4)
 868                i915_enable_pipestat(dev_priv, PIPE_A,
 869                                     PIPE_LEGACY_BLC_EVENT_STATUS);
 870
 871        spin_unlock_irq(&dev_priv->irq_lock);
 872}
 873
 874/*
 875 * This timing diagram depicts the video signal in and
 876 * around the vertical blanking period.
 877 *
 878 * Assumptions about the fictitious mode used in this example:
 879 *  vblank_start >= 3
 880 *  vsync_start = vblank_start + 1
 881 *  vsync_end = vblank_start + 2
 882 *  vtotal = vblank_start + 3
 883 *
 884 *           start of vblank:
 885 *           latch double buffered registers
 886 *           increment frame counter (ctg+)
 887 *           generate start of vblank interrupt (gen4+)
 888 *           |
 889 *           |          frame start:
 890 *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
 891 *           |          may be shifted forward 1-3 extra lines via PIPECONF
 892 *           |          |
 893 *           |          |  start of vsync:
 894 *           |          |  generate vsync interrupt
 895 *           |          |  |
 896 * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
 897 *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
 898 * ----va---> <-----------------vb--------------------> <--------va-------------
 899 *       |          |       <----vs----->                     |
 900 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
 901 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
 902 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
 903 *       |          |                                         |
 904 *       last visible pixel                                   first visible pixel
 905 *                  |                                         increment frame counter (gen3/4)
 906 *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
 907 *
 908 * x  = horizontal active
 909 * _  = horizontal blanking
 910 * hs = horizontal sync
 911 * va = vertical active
 912 * vb = vertical blanking
 913 * vs = vertical sync
 914 * vbs = vblank_start (number)
 915 *
 916 * Summary:
 917 * - most events happen at the start of horizontal sync
 918 * - frame start happens at the start of horizontal blank, 1-4 lines
 919 *   (depending on PIPECONF settings) after the start of vblank
 920 * - gen3/4 pixel and frame counter are synchronized with the start
 921 *   of horizontal active on the first line of vertical active
 922 */
 923
 924/* Called from drm generic code, passed a 'crtc', which
 925 * we use as a pipe index
 926 */
 927static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
 928{
 929        struct drm_i915_private *dev_priv = to_i915(dev);
 930        struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
 931        const struct drm_display_mode *mode = &vblank->hwmode;
 932        i915_reg_t high_frame, low_frame;
 933        u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
 934        unsigned long irqflags;
 935
 936        /*
 937         * On i965gm TV output the frame counter only works up to
 938         * the point when we enable the TV encoder. After that the
 939         * frame counter ceases to work and reads zero. We need a
 940         * vblank wait before enabling the TV encoder and so we
 941         * have to enable vblank interrupts while the frame counter
 942         * is still in a working state. However the core vblank code
 943         * does not like us returning non-zero frame counter values
 944         * when we've told it that we don't have a working frame
 945         * counter. Thus we must stop non-zero values leaking out.
 946         */
 947        if (!vblank->max_vblank_count)
 948                return 0;
 949
 950        htotal = mode->crtc_htotal;
 951        hsync_start = mode->crtc_hsync_start;
 952        vbl_start = mode->crtc_vblank_start;
 953        if (mode->flags & DRM_MODE_FLAG_INTERLACE)
 954                vbl_start = DIV_ROUND_UP(vbl_start, 2);
 955
 956        /* Convert to pixel count */
 957        vbl_start *= htotal;
 958
 959        /* Start of vblank event occurs at start of hsync */
 960        vbl_start -= htotal - hsync_start;
 961
 962        high_frame = PIPEFRAME(pipe);
 963        low_frame = PIPEFRAMEPIXEL(pipe);
 964
 965        spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
 966
 967        /*
 968         * High & low register fields aren't synchronized, so make sure
 969         * we get a low value that's stable across two reads of the high
 970         * register.
 971         */
 972        do {
 973                high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
 974                low   = I915_READ_FW(low_frame);
 975                high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
 976        } while (high1 != high2);
 977
 978        spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
 979
 980        high1 >>= PIPE_FRAME_HIGH_SHIFT;
 981        pixel = low & PIPE_PIXEL_MASK;
 982        low >>= PIPE_FRAME_LOW_SHIFT;
 983
 984        /*
 985         * The frame counter increments at beginning of active.
 986         * Cook up a vblank counter by also checking the pixel
 987         * counter against vblank start.
 988         */
 989        return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
 990}
 991
 992static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
 993{
 994        struct drm_i915_private *dev_priv = to_i915(dev);
 995
 996        return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
 997}
 998
 999/*
1000 * On certain encoders on certain platforms, pipe
1001 * scanline register will not work to get the scanline,
1002 * since the timings are driven from the PORT or issues
1003 * with scanline register updates.
1004 * This function will use Framestamp and current
1005 * timestamp registers to calculate the scanline.
1006 */
1007static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
1008{
1009        struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1010        struct drm_vblank_crtc *vblank =
1011                &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
1012        const struct drm_display_mode *mode = &vblank->hwmode;
1013        u32 vblank_start = mode->crtc_vblank_start;
1014        u32 vtotal = mode->crtc_vtotal;
1015        u32 htotal = mode->crtc_htotal;
1016        u32 clock = mode->crtc_clock;
1017        u32 scanline, scan_prev_time, scan_curr_time, scan_post_time;
1018
1019        /*
1020         * To avoid the race condition where we might cross into the
1021         * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
1022         * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
1023         * during the same frame.
1024         */
1025        do {
1026                /*
1027                 * This field provides read back of the display
1028                 * pipe frame time stamp. The time stamp value
1029                 * is sampled at every start of vertical blank.
1030                 */
1031                scan_prev_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
1032
1033                /*
1034                 * The TIMESTAMP_CTR register has the current
1035                 * time stamp value.
1036                 */
1037                scan_curr_time = I915_READ_FW(IVB_TIMESTAMP_CTR);
1038
1039                scan_post_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
1040        } while (scan_post_time != scan_prev_time);
1041
1042        scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
1043                                        clock), 1000 * htotal);
1044        scanline = min(scanline, vtotal - 1);
1045        scanline = (scanline + vblank_start) % vtotal;
1046
1047        return scanline;
1048}
1049
1050/* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
1051static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
1052{
1053        struct drm_device *dev = crtc->base.dev;
1054        struct drm_i915_private *dev_priv = to_i915(dev);
1055        const struct drm_display_mode *mode;
1056        struct drm_vblank_crtc *vblank;
1057        enum pipe pipe = crtc->pipe;
1058        int position, vtotal;
1059
1060        if (!crtc->active)
1061                return -1;
1062
1063        vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
1064        mode = &vblank->hwmode;
1065
1066        if (mode->private_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
1067                return __intel_get_crtc_scanline_from_timestamp(crtc);
1068
1069        vtotal = mode->crtc_vtotal;
1070        if (mode->flags & DRM_MODE_FLAG_INTERLACE)
1071                vtotal /= 2;
1072
1073        if (IS_GEN(dev_priv, 2))
1074                position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
1075        else
1076                position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
1077
1078        /*
1079         * On HSW, the DSL reg (0x70000) appears to return 0 if we
1080         * read it just before the start of vblank.  So try it again
1081         * so we don't accidentally end up spanning a vblank frame
1082         * increment, causing the pipe_update_end() code to squak at us.
1083         *
1084         * The nature of this problem means we can't simply check the ISR
1085         * bit and return the vblank start value; nor can we use the scanline
1086         * debug register in the transcoder as it appears to have the same
1087         * problem.  We may need to extend this to include other platforms,
1088         * but so far testing only shows the problem on HSW.
1089         */
1090        if (HAS_DDI(dev_priv) && !position) {
1091                int i, temp;
1092
1093                for (i = 0; i < 100; i++) {
1094                        udelay(1);
1095                        temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
1096                        if (temp != position) {
1097                                position = temp;
1098                                break;
1099                        }
1100                }
1101        }
1102
1103        /*
1104         * See update_scanline_offset() for the details on the
1105         * scanline_offset adjustment.
1106         */
1107        return (position + crtc->scanline_offset) % vtotal;
1108}
1109
1110static bool i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
1111                                     bool in_vblank_irq, int *vpos, int *hpos,
1112                                     ktime_t *stime, ktime_t *etime,
1113                                     const struct drm_display_mode *mode)
1114{
1115        struct drm_i915_private *dev_priv = to_i915(dev);
1116        struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
1117                                                                pipe);
1118        int position;
1119        int vbl_start, vbl_end, hsync_start, htotal, vtotal;
1120        unsigned long irqflags;
1121        bool use_scanline_counter = INTEL_GEN(dev_priv) >= 5 ||
1122                IS_G4X(dev_priv) || IS_GEN(dev_priv, 2) ||
1123                mode->private_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER;
1124
1125        if (WARN_ON(!mode->crtc_clock)) {
1126                DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
1127                                 "pipe %c\n", pipe_name(pipe));
1128                return false;
1129        }
1130
1131        htotal = mode->crtc_htotal;
1132        hsync_start = mode->crtc_hsync_start;
1133        vtotal = mode->crtc_vtotal;
1134        vbl_start = mode->crtc_vblank_start;
1135        vbl_end = mode->crtc_vblank_end;
1136
1137        if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
1138                vbl_start = DIV_ROUND_UP(vbl_start, 2);
1139                vbl_end /= 2;
1140                vtotal /= 2;
1141        }
1142
1143        /*
1144         * Lock uncore.lock, as we will do multiple timing critical raw
1145         * register reads, potentially with preemption disabled, so the
1146         * following code must not block on uncore.lock.
1147         */
1148        spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1149
1150        /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
1151
1152        /* Get optional system timestamp before query. */
1153        if (stime)
1154                *stime = ktime_get();
1155
1156        if (use_scanline_counter) {
1157                /* No obvious pixelcount register. Only query vertical
1158                 * scanout position from Display scan line register.
1159                 */
1160                position = __intel_get_crtc_scanline(intel_crtc);
1161        } else {
1162                /* Have access to pixelcount since start of frame.
1163                 * We can split this into vertical and horizontal
1164                 * scanout position.
1165                 */
1166                position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
1167
1168                /* convert to pixel counts */
1169                vbl_start *= htotal;
1170                vbl_end *= htotal;
1171                vtotal *= htotal;
1172
1173                /*
1174                 * In interlaced modes, the pixel counter counts all pixels,
1175                 * so one field will have htotal more pixels. In order to avoid
1176                 * the reported position from jumping backwards when the pixel
1177                 * counter is beyond the length of the shorter field, just
1178                 * clamp the position the length of the shorter field. This
1179                 * matches how the scanline counter based position works since
1180                 * the scanline counter doesn't count the two half lines.
1181                 */
1182                if (position >= vtotal)
1183                        position = vtotal - 1;
1184
1185                /*
1186                 * Start of vblank interrupt is triggered at start of hsync,
1187                 * just prior to the first active line of vblank. However we
1188                 * consider lines to start at the leading edge of horizontal
1189                 * active. So, should we get here before we've crossed into
1190                 * the horizontal active of the first line in vblank, we would
1191                 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
1192                 * always add htotal-hsync_start to the current pixel position.
1193                 */
1194                position = (position + htotal - hsync_start) % vtotal;
1195        }
1196
1197        /* Get optional system timestamp after query. */
1198        if (etime)
1199                *etime = ktime_get();
1200
1201        /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
1202
1203        spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1204
1205        /*
1206         * While in vblank, position will be negative
1207         * counting up towards 0 at vbl_end. And outside
1208         * vblank, position will be positive counting
1209         * up since vbl_end.
1210         */
1211        if (position >= vbl_start)
1212                position -= vbl_end;
1213        else
1214                position += vtotal - vbl_end;
1215
1216        if (use_scanline_counter) {
1217                *vpos = position;
1218                *hpos = 0;
1219        } else {
1220                *vpos = position / htotal;
1221                *hpos = position - (*vpos * htotal);
1222        }
1223
1224        return true;
1225}
1226
1227int intel_get_crtc_scanline(struct intel_crtc *crtc)
1228{
1229        struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1230        unsigned long irqflags;
1231        int position;
1232
1233        spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1234        position = __intel_get_crtc_scanline(crtc);
1235        spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1236
1237        return position;
1238}
1239
1240static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
1241{
1242        struct intel_uncore *uncore = &dev_priv->uncore;
1243        u32 busy_up, busy_down, max_avg, min_avg;
1244        u8 new_delay;
1245
1246        spin_lock(&mchdev_lock);
1247
1248        intel_uncore_write16(uncore,
1249                             MEMINTRSTS,
1250                             intel_uncore_read(uncore, MEMINTRSTS));
1251
1252        new_delay = dev_priv->ips.cur_delay;
1253
1254        intel_uncore_write16(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
1255        busy_up = intel_uncore_read(uncore, RCPREVBSYTUPAVG);
1256        busy_down = intel_uncore_read(uncore, RCPREVBSYTDNAVG);
1257        max_avg = intel_uncore_read(uncore, RCBMAXAVG);
1258        min_avg = intel_uncore_read(uncore, RCBMINAVG);
1259
1260        /* Handle RCS change request from hw */
1261        if (busy_up > max_avg) {
1262                if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1263                        new_delay = dev_priv->ips.cur_delay - 1;
1264                if (new_delay < dev_priv->ips.max_delay)
1265                        new_delay = dev_priv->ips.max_delay;
1266        } else if (busy_down < min_avg) {
1267                if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1268                        new_delay = dev_priv->ips.cur_delay + 1;
1269                if (new_delay > dev_priv->ips.min_delay)
1270                        new_delay = dev_priv->ips.min_delay;
1271        }
1272
1273        if (ironlake_set_drps(dev_priv, new_delay))
1274                dev_priv->ips.cur_delay = new_delay;
1275
1276        spin_unlock(&mchdev_lock);
1277
1278        return;
1279}
1280
1281static void vlv_c0_read(struct drm_i915_private *dev_priv,
1282                        struct intel_rps_ei *ei)
1283{
1284        ei->ktime = ktime_get_raw();
1285        ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1286        ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1287}
1288
1289void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1290{
1291        memset(&dev_priv->gt_pm.rps.ei, 0, sizeof(dev_priv->gt_pm.rps.ei));
1292}
1293
1294static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1295{
1296        struct intel_rps *rps = &dev_priv->gt_pm.rps;
1297        const struct intel_rps_ei *prev = &rps->ei;
1298        struct intel_rps_ei now;
1299        u32 events = 0;
1300
1301        if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1302                return 0;
1303
1304        vlv_c0_read(dev_priv, &now);
1305
1306        if (prev->ktime) {
1307                u64 time, c0;
1308                u32 render, media;
1309
1310                time = ktime_us_delta(now.ktime, prev->ktime);
1311
1312                time *= dev_priv->czclk_freq;
1313
1314                /* Workload can be split between render + media,
1315                 * e.g. SwapBuffers being blitted in X after being rendered in
1316                 * mesa. To account for this we need to combine both engines
1317                 * into our activity counter.
1318                 */
1319                render = now.render_c0 - prev->render_c0;
1320                media = now.media_c0 - prev->media_c0;
1321                c0 = max(render, media);
1322                c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1323
1324                if (c0 > time * rps->power.up_threshold)
1325                        events = GEN6_PM_RP_UP_THRESHOLD;
1326                else if (c0 < time * rps->power.down_threshold)
1327                        events = GEN6_PM_RP_DOWN_THRESHOLD;
1328        }
1329
1330        rps->ei = now;
1331        return events;
1332}
1333
1334static void gen6_pm_rps_work(struct work_struct *work)
1335{
1336        struct drm_i915_private *dev_priv =
1337                container_of(work, struct drm_i915_private, gt_pm.rps.work);
1338        struct intel_rps *rps = &dev_priv->gt_pm.rps;
1339        bool client_boost = false;
1340        int new_delay, adj, min, max;
1341        u32 pm_iir = 0;
1342
1343        spin_lock_irq(&dev_priv->irq_lock);
1344        if (rps->interrupts_enabled) {
1345                pm_iir = fetch_and_zero(&rps->pm_iir);
1346                client_boost = atomic_read(&rps->num_waiters);
1347        }
1348        spin_unlock_irq(&dev_priv->irq_lock);
1349
1350        /* Make sure we didn't queue anything we're not going to process. */
1351        WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1352        if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1353                goto out;
1354
1355        mutex_lock(&rps->lock);
1356
1357        pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1358
1359        adj = rps->last_adj;
1360        new_delay = rps->cur_freq;
1361        min = rps->min_freq_softlimit;
1362        max = rps->max_freq_softlimit;
1363        if (client_boost)
1364                max = rps->max_freq;
1365        if (client_boost && new_delay < rps->boost_freq) {
1366                new_delay = rps->boost_freq;
1367                adj = 0;
1368        } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1369                if (adj > 0)
1370                        adj *= 2;
1371                else /* CHV needs even encode values */
1372                        adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1373
1374                if (new_delay >= rps->max_freq_softlimit)
1375                        adj = 0;
1376        } else if (client_boost) {
1377                adj = 0;
1378        } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1379                if (rps->cur_freq > rps->efficient_freq)
1380                        new_delay = rps->efficient_freq;
1381                else if (rps->cur_freq > rps->min_freq_softlimit)
1382                        new_delay = rps->min_freq_softlimit;
1383                adj = 0;
1384        } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1385                if (adj < 0)
1386                        adj *= 2;
1387                else /* CHV needs even encode values */
1388                        adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1389
1390                if (new_delay <= rps->min_freq_softlimit)
1391                        adj = 0;
1392        } else { /* unknown event */
1393                adj = 0;
1394        }
1395
1396        rps->last_adj = adj;
1397
1398        /*
1399         * Limit deboosting and boosting to keep ourselves at the extremes
1400         * when in the respective power modes (i.e. slowly decrease frequencies
1401         * while in the HIGH_POWER zone and slowly increase frequencies while
1402         * in the LOW_POWER zone). On idle, we will hit the timeout and drop
1403         * to the next level quickly, and conversely if busy we expect to
1404         * hit a waitboost and rapidly switch into max power.
1405         */
1406        if ((adj < 0 && rps->power.mode == HIGH_POWER) ||
1407            (adj > 0 && rps->power.mode == LOW_POWER))
1408                rps->last_adj = 0;
1409
1410        /* sysfs frequency interfaces may have snuck in while servicing the
1411         * interrupt
1412         */
1413        new_delay += adj;
1414        new_delay = clamp_t(int, new_delay, min, max);
1415
1416        if (intel_set_rps(dev_priv, new_delay)) {
1417                DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n");
1418                rps->last_adj = 0;
1419        }
1420
1421        mutex_unlock(&rps->lock);
1422
1423out:
1424        /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1425        spin_lock_irq(&dev_priv->irq_lock);
1426        if (rps->interrupts_enabled)
1427                gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events);
1428        spin_unlock_irq(&dev_priv->irq_lock);
1429}
1430
1431
1432/**
1433 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1434 * occurred.
1435 * @work: workqueue struct
1436 *
1437 * Doesn't actually do anything except notify userspace. As a consequence of
1438 * this event, userspace should try to remap the bad rows since statistically
1439 * it is likely the same row is more likely to go bad again.
1440 */
1441static void ivybridge_parity_work(struct work_struct *work)
1442{
1443        struct drm_i915_private *dev_priv =
1444                container_of(work, typeof(*dev_priv), l3_parity.error_work);
1445        u32 error_status, row, bank, subbank;
1446        char *parity_event[6];
1447        u32 misccpctl;
1448        u8 slice = 0;
1449
1450        /* We must turn off DOP level clock gating to access the L3 registers.
1451         * In order to prevent a get/put style interface, acquire struct mutex
1452         * any time we access those registers.
1453         */
1454        mutex_lock(&dev_priv->drm.struct_mutex);
1455
1456        /* If we've screwed up tracking, just let the interrupt fire again */
1457        if (WARN_ON(!dev_priv->l3_parity.which_slice))
1458                goto out;
1459
1460        misccpctl = I915_READ(GEN7_MISCCPCTL);
1461        I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1462        POSTING_READ(GEN7_MISCCPCTL);
1463
1464        while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1465                i915_reg_t reg;
1466
1467                slice--;
1468                if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1469                        break;
1470
1471                dev_priv->l3_parity.which_slice &= ~(1<<slice);
1472
1473                reg = GEN7_L3CDERRST1(slice);
1474
1475                error_status = I915_READ(reg);
1476                row = GEN7_PARITY_ERROR_ROW(error_status);
1477                bank = GEN7_PARITY_ERROR_BANK(error_status);
1478                subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1479
1480                I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1481                POSTING_READ(reg);
1482
1483                parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1484                parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1485                parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1486                parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1487                parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1488                parity_event[5] = NULL;
1489
1490                kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1491                                   KOBJ_CHANGE, parity_event);
1492
1493                DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1494                          slice, row, bank, subbank);
1495
1496                kfree(parity_event[4]);
1497                kfree(parity_event[3]);
1498                kfree(parity_event[2]);
1499                kfree(parity_event[1]);
1500        }
1501
1502        I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1503
1504out:
1505        WARN_ON(dev_priv->l3_parity.which_slice);
1506        spin_lock_irq(&dev_priv->irq_lock);
1507        gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1508        spin_unlock_irq(&dev_priv->irq_lock);
1509
1510        mutex_unlock(&dev_priv->drm.struct_mutex);
1511}
1512
1513static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1514                                               u32 iir)
1515{
1516        if (!HAS_L3_DPF(dev_priv))
1517                return;
1518
1519        spin_lock(&dev_priv->irq_lock);
1520        gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1521        spin_unlock(&dev_priv->irq_lock);
1522
1523        iir &= GT_PARITY_ERROR(dev_priv);
1524        if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1525                dev_priv->l3_parity.which_slice |= 1 << 1;
1526
1527        if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1528                dev_priv->l3_parity.which_slice |= 1 << 0;
1529
1530        queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1531}
1532
1533static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1534                               u32 gt_iir)
1535{
1536        if (gt_iir & GT_RENDER_USER_INTERRUPT)
1537                intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]);
1538        if (gt_iir & ILK_BSD_USER_INTERRUPT)
1539                intel_engine_breadcrumbs_irq(dev_priv->engine[VCS0]);
1540}
1541
1542static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1543                               u32 gt_iir)
1544{
1545        if (gt_iir & GT_RENDER_USER_INTERRUPT)
1546                intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]);
1547        if (gt_iir & GT_BSD_USER_INTERRUPT)
1548                intel_engine_breadcrumbs_irq(dev_priv->engine[VCS0]);
1549        if (gt_iir & GT_BLT_USER_INTERRUPT)
1550                intel_engine_breadcrumbs_irq(dev_priv->engine[BCS0]);
1551
1552        if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1553                      GT_BSD_CS_ERROR_INTERRUPT |
1554                      GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1555                DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1556
1557        if (gt_iir & GT_PARITY_ERROR(dev_priv))
1558                ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1559}
1560
1561static void
1562gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir)
1563{
1564        bool tasklet = false;
1565
1566        if (iir & GT_CONTEXT_SWITCH_INTERRUPT)
1567                tasklet = true;
1568
1569        if (iir & GT_RENDER_USER_INTERRUPT) {
1570                intel_engine_breadcrumbs_irq(engine);
1571                tasklet |= intel_engine_needs_breadcrumb_tasklet(engine);
1572        }
1573
1574        if (tasklet)
1575                tasklet_hi_schedule(&engine->execlists.tasklet);
1576}
1577
1578static void gen8_gt_irq_ack(struct drm_i915_private *i915,
1579                            u32 master_ctl, u32 gt_iir[4])
1580{
1581        void __iomem * const regs = i915->uncore.regs;
1582
1583#define GEN8_GT_IRQS (GEN8_GT_RCS_IRQ | \
1584                      GEN8_GT_BCS_IRQ | \
1585                      GEN8_GT_VCS0_IRQ | \
1586                      GEN8_GT_VCS1_IRQ | \
1587                      GEN8_GT_VECS_IRQ | \
1588                      GEN8_GT_PM_IRQ | \
1589                      GEN8_GT_GUC_IRQ)
1590
1591        if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1592                gt_iir[0] = raw_reg_read(regs, GEN8_GT_IIR(0));
1593                if (likely(gt_iir[0]))
1594                        raw_reg_write(regs, GEN8_GT_IIR(0), gt_iir[0]);
1595        }
1596
1597        if (master_ctl & (GEN8_GT_VCS0_IRQ | GEN8_GT_VCS1_IRQ)) {
1598                gt_iir[1] = raw_reg_read(regs, GEN8_GT_IIR(1));
1599                if (likely(gt_iir[1]))
1600                        raw_reg_write(regs, GEN8_GT_IIR(1), gt_iir[1]);
1601        }
1602
1603        if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1604                gt_iir[2] = raw_reg_read(regs, GEN8_GT_IIR(2));
1605                if (likely(gt_iir[2]))
1606                        raw_reg_write(regs, GEN8_GT_IIR(2), gt_iir[2]);
1607        }
1608
1609        if (master_ctl & GEN8_GT_VECS_IRQ) {
1610                gt_iir[3] = raw_reg_read(regs, GEN8_GT_IIR(3));
1611                if (likely(gt_iir[3]))
1612                        raw_reg_write(regs, GEN8_GT_IIR(3), gt_iir[3]);
1613        }
1614}
1615
1616static void gen8_gt_irq_handler(struct drm_i915_private *i915,
1617                                u32 master_ctl, u32 gt_iir[4])
1618{
1619        if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1620                gen8_cs_irq_handler(i915->engine[RCS0],
1621                                    gt_iir[0] >> GEN8_RCS_IRQ_SHIFT);
1622                gen8_cs_irq_handler(i915->engine[BCS0],
1623                                    gt_iir[0] >> GEN8_BCS_IRQ_SHIFT);
1624        }
1625
1626        if (master_ctl & (GEN8_GT_VCS0_IRQ | GEN8_GT_VCS1_IRQ)) {
1627                gen8_cs_irq_handler(i915->engine[VCS0],
1628                                    gt_iir[1] >> GEN8_VCS0_IRQ_SHIFT);
1629                gen8_cs_irq_handler(i915->engine[VCS1],
1630                                    gt_iir[1] >> GEN8_VCS1_IRQ_SHIFT);
1631        }
1632
1633        if (master_ctl & GEN8_GT_VECS_IRQ) {
1634                gen8_cs_irq_handler(i915->engine[VECS0],
1635                                    gt_iir[3] >> GEN8_VECS_IRQ_SHIFT);
1636        }
1637
1638        if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1639                gen6_rps_irq_handler(i915, gt_iir[2]);
1640                gen9_guc_irq_handler(i915, gt_iir[2]);
1641        }
1642}
1643
1644static bool gen11_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1645{
1646        switch (pin) {
1647        case HPD_PORT_C:
1648                return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
1649        case HPD_PORT_D:
1650                return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
1651        case HPD_PORT_E:
1652                return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
1653        case HPD_PORT_F:
1654                return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
1655        default:
1656                return false;
1657        }
1658}
1659
1660static bool bxt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1661{
1662        switch (pin) {
1663        case HPD_PORT_A:
1664                return val & PORTA_HOTPLUG_LONG_DETECT;
1665        case HPD_PORT_B:
1666                return val & PORTB_HOTPLUG_LONG_DETECT;
1667        case HPD_PORT_C:
1668                return val & PORTC_HOTPLUG_LONG_DETECT;
1669        default:
1670                return false;
1671        }
1672}
1673
1674static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1675{
1676        switch (pin) {
1677        case HPD_PORT_A:
1678                return val & ICP_DDIA_HPD_LONG_DETECT;
1679        case HPD_PORT_B:
1680                return val & ICP_DDIB_HPD_LONG_DETECT;
1681        default:
1682                return false;
1683        }
1684}
1685
1686static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1687{
1688        switch (pin) {
1689        case HPD_PORT_C:
1690                return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
1691        case HPD_PORT_D:
1692                return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
1693        case HPD_PORT_E:
1694                return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
1695        case HPD_PORT_F:
1696                return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
1697        default:
1698                return false;
1699        }
1700}
1701
1702static bool spt_port_hotplug2_long_detect(enum hpd_pin pin, u32 val)
1703{
1704        switch (pin) {
1705        case HPD_PORT_E:
1706                return val & PORTE_HOTPLUG_LONG_DETECT;
1707        default:
1708                return false;
1709        }
1710}
1711
1712static bool spt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1713{
1714        switch (pin) {
1715        case HPD_PORT_A:
1716                return val & PORTA_HOTPLUG_LONG_DETECT;
1717        case HPD_PORT_B:
1718                return val & PORTB_HOTPLUG_LONG_DETECT;
1719        case HPD_PORT_C:
1720                return val & PORTC_HOTPLUG_LONG_DETECT;
1721        case HPD_PORT_D:
1722                return val & PORTD_HOTPLUG_LONG_DETECT;
1723        default:
1724                return false;
1725        }
1726}
1727
1728static bool ilk_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1729{
1730        switch (pin) {
1731        case HPD_PORT_A:
1732                return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1733        default:
1734                return false;
1735        }
1736}
1737
1738static bool pch_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1739{
1740        switch (pin) {
1741        case HPD_PORT_B:
1742                return val & PORTB_HOTPLUG_LONG_DETECT;
1743        case HPD_PORT_C:
1744                return val & PORTC_HOTPLUG_LONG_DETECT;
1745        case HPD_PORT_D:
1746                return val & PORTD_HOTPLUG_LONG_DETECT;
1747        default:
1748                return false;
1749        }
1750}
1751
1752static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1753{
1754        switch (pin) {
1755        case HPD_PORT_B:
1756                return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1757        case HPD_PORT_C:
1758                return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1759        case HPD_PORT_D:
1760                return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1761        default:
1762                return false;
1763        }
1764}
1765
1766/*
1767 * Get a bit mask of pins that have triggered, and which ones may be long.
1768 * This can be called multiple times with the same masks to accumulate
1769 * hotplug detection results from several registers.
1770 *
1771 * Note that the caller is expected to zero out the masks initially.
1772 */
1773static void intel_get_hpd_pins(struct drm_i915_private *dev_priv,
1774                               u32 *pin_mask, u32 *long_mask,
1775                               u32 hotplug_trigger, u32 dig_hotplug_reg,
1776                               const u32 hpd[HPD_NUM_PINS],
1777                               bool long_pulse_detect(enum hpd_pin pin, u32 val))
1778{
1779        enum hpd_pin pin;
1780
1781        for_each_hpd_pin(pin) {
1782                if ((hpd[pin] & hotplug_trigger) == 0)
1783                        continue;
1784
1785                *pin_mask |= BIT(pin);
1786
1787                if (long_pulse_detect(pin, dig_hotplug_reg))
1788                        *long_mask |= BIT(pin);
1789        }
1790
1791        DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n",
1792                         hotplug_trigger, dig_hotplug_reg, *pin_mask, *long_mask);
1793
1794}
1795
1796static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1797{
1798        wake_up_all(&dev_priv->gmbus_wait_queue);
1799}
1800
1801static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1802{
1803        wake_up_all(&dev_priv->gmbus_wait_queue);
1804}
1805
1806#if defined(CONFIG_DEBUG_FS)
1807static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1808                                         enum pipe pipe,
1809                                         u32 crc0, u32 crc1,
1810                                         u32 crc2, u32 crc3,
1811                                         u32 crc4)
1812{
1813        struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1814        struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1815        u32 crcs[5] = { crc0, crc1, crc2, crc3, crc4 };
1816
1817        trace_intel_pipe_crc(crtc, crcs);
1818
1819        spin_lock(&pipe_crc->lock);
1820        /*
1821         * For some not yet identified reason, the first CRC is
1822         * bonkers. So let's just wait for the next vblank and read
1823         * out the buggy result.
1824         *
1825         * On GEN8+ sometimes the second CRC is bonkers as well, so
1826         * don't trust that one either.
1827         */
1828        if (pipe_crc->skipped <= 0 ||
1829            (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
1830                pipe_crc->skipped++;
1831                spin_unlock(&pipe_crc->lock);
1832                return;
1833        }
1834        spin_unlock(&pipe_crc->lock);
1835
1836        drm_crtc_add_crc_entry(&crtc->base, true,
1837                                drm_crtc_accurate_vblank_count(&crtc->base),
1838                                crcs);
1839}
1840#else
1841static inline void
1842display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1843                             enum pipe pipe,
1844                             u32 crc0, u32 crc1,
1845                             u32 crc2, u32 crc3,
1846                             u32 crc4) {}
1847#endif
1848
1849
1850static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1851                                     enum pipe pipe)
1852{
1853        display_pipe_crc_irq_handler(dev_priv, pipe,
1854                                     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1855                                     0, 0, 0, 0);
1856}
1857
1858static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1859                                     enum pipe pipe)
1860{
1861        display_pipe_crc_irq_handler(dev_priv, pipe,
1862                                     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1863                                     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1864                                     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1865                                     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1866                                     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1867}
1868
1869static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1870                                      enum pipe pipe)
1871{
1872        u32 res1, res2;
1873
1874        if (INTEL_GEN(dev_priv) >= 3)
1875                res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1876        else
1877                res1 = 0;
1878
1879        if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1880                res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1881        else
1882                res2 = 0;
1883
1884        display_pipe_crc_irq_handler(dev_priv, pipe,
1885                                     I915_READ(PIPE_CRC_RES_RED(pipe)),
1886                                     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1887                                     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1888                                     res1, res2);
1889}
1890
1891/* The RPS events need forcewake, so we add them to a work queue and mask their
1892 * IMR bits until the work is done. Other interrupts can be processed without
1893 * the work queue. */
1894static void gen11_rps_irq_handler(struct drm_i915_private *i915, u32 pm_iir)
1895{
1896        struct intel_rps *rps = &i915->gt_pm.rps;
1897        const u32 events = i915->pm_rps_events & pm_iir;
1898
1899        lockdep_assert_held(&i915->irq_lock);
1900
1901        if (unlikely(!events))
1902                return;
1903
1904        gen6_mask_pm_irq(i915, events);
1905
1906        if (!rps->interrupts_enabled)
1907                return;
1908
1909        rps->pm_iir |= events;
1910        schedule_work(&rps->work);
1911}
1912
1913static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1914{
1915        struct intel_rps *rps = &dev_priv->gt_pm.rps;
1916
1917        if (pm_iir & dev_priv->pm_rps_events) {
1918                spin_lock(&dev_priv->irq_lock);
1919                gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1920                if (rps->interrupts_enabled) {
1921                        rps->pm_iir |= pm_iir & dev_priv->pm_rps_events;
1922                        schedule_work(&rps->work);
1923                }
1924                spin_unlock(&dev_priv->irq_lock);
1925        }
1926
1927        if (INTEL_GEN(dev_priv) >= 8)
1928                return;
1929
1930        if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1931                intel_engine_breadcrumbs_irq(dev_priv->engine[VECS0]);
1932
1933        if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1934                DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1935}
1936
1937static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir)
1938{
1939        if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT)
1940                intel_guc_to_host_event_handler(&dev_priv->guc);
1941}
1942
1943static void gen11_guc_irq_handler(struct drm_i915_private *i915, u16 iir)
1944{
1945        if (iir & GEN11_GUC_INTR_GUC2HOST)
1946                intel_guc_to_host_event_handler(&i915->guc);
1947}
1948
1949static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
1950{
1951        enum pipe pipe;
1952
1953        for_each_pipe(dev_priv, pipe) {
1954                I915_WRITE(PIPESTAT(pipe),
1955                           PIPESTAT_INT_STATUS_MASK |
1956                           PIPE_FIFO_UNDERRUN_STATUS);
1957
1958                dev_priv->pipestat_irq_mask[pipe] = 0;
1959        }
1960}
1961
1962static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1963                                  u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1964{
1965        int pipe;
1966
1967        spin_lock(&dev_priv->irq_lock);
1968
1969        if (!dev_priv->display_irqs_enabled) {
1970                spin_unlock(&dev_priv->irq_lock);
1971                return;
1972        }
1973
1974        for_each_pipe(dev_priv, pipe) {
1975                i915_reg_t reg;
1976                u32 status_mask, enable_mask, iir_bit = 0;
1977
1978                /*
1979                 * PIPESTAT bits get signalled even when the interrupt is
1980                 * disabled with the mask bits, and some of the status bits do
1981                 * not generate interrupts at all (like the underrun bit). Hence
1982                 * we need to be careful that we only handle what we want to
1983                 * handle.
1984                 */
1985
1986                /* fifo underruns are filterered in the underrun handler. */
1987                status_mask = PIPE_FIFO_UNDERRUN_STATUS;
1988
1989                switch (pipe) {
1990                case PIPE_A:
1991                        iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1992                        break;
1993                case PIPE_B:
1994                        iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1995                        break;
1996                case PIPE_C:
1997                        iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1998                        break;
1999                }
2000                if (iir & iir_bit)
2001                        status_mask |= dev_priv->pipestat_irq_mask[pipe];
2002
2003                if (!status_mask)
2004                        continue;
2005
2006                reg = PIPESTAT(pipe);
2007                pipe_stats[pipe] = I915_READ(reg) & status_mask;
2008                enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
2009
2010                /*
2011                 * Clear the PIPE*STAT regs before the IIR
2012                 *
2013                 * Toggle the enable bits to make sure we get an
2014                 * edge in the ISR pipe event bit if we don't clear
2015                 * all the enabled status bits. Otherwise the edge
2016                 * triggered IIR on i965/g4x wouldn't notice that
2017                 * an interrupt is still pending.
2018                 */
2019                if (pipe_stats[pipe]) {
2020                        I915_WRITE(reg, pipe_stats[pipe]);
2021                        I915_WRITE(reg, enable_mask);
2022                }
2023        }
2024        spin_unlock(&dev_priv->irq_lock);
2025}
2026
2027static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
2028                                      u16 iir, u32 pipe_stats[I915_MAX_PIPES])
2029{
2030        enum pipe pipe;
2031
2032        for_each_pipe(dev_priv, pipe) {
2033                if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
2034                        drm_handle_vblank(&dev_priv->drm, pipe);
2035
2036                if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
2037                        i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2038
2039                if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2040                        intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2041        }
2042}
2043
2044static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
2045                                      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
2046{
2047        bool blc_event = false;
2048        enum pipe pipe;
2049
2050        for_each_pipe(dev_priv, pipe) {
2051                if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
2052                        drm_handle_vblank(&dev_priv->drm, pipe);
2053
2054                if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
2055                        blc_event = true;
2056
2057                if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
2058                        i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2059
2060                if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2061                        intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2062        }
2063
2064        if (blc_event || (iir & I915_ASLE_INTERRUPT))
2065                intel_opregion_asle_intr(dev_priv);
2066}
2067
2068static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
2069                                      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
2070{
2071        bool blc_event = false;
2072        enum pipe pipe;
2073
2074        for_each_pipe(dev_priv, pipe) {
2075                if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
2076                        drm_handle_vblank(&dev_priv->drm, pipe);
2077
2078                if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
2079                        blc_event = true;
2080
2081                if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
2082                        i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2083
2084                if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2085                        intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2086        }
2087
2088        if (blc_event || (iir & I915_ASLE_INTERRUPT))
2089                intel_opregion_asle_intr(dev_priv);
2090
2091        if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
2092                gmbus_irq_handler(dev_priv);
2093}
2094
2095static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
2096                                            u32 pipe_stats[I915_MAX_PIPES])
2097{
2098        enum pipe pipe;
2099
2100        for_each_pipe(dev_priv, pipe) {
2101                if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
2102                        drm_handle_vblank(&dev_priv->drm, pipe);
2103
2104                if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
2105                        i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2106
2107                if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2108                        intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2109        }
2110
2111        if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
2112                gmbus_irq_handler(dev_priv);
2113}
2114
2115static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
2116{
2117        u32 hotplug_status = 0, hotplug_status_mask;
2118        int i;
2119
2120        if (IS_G4X(dev_priv) ||
2121            IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2122                hotplug_status_mask = HOTPLUG_INT_STATUS_G4X |
2123                        DP_AUX_CHANNEL_MASK_INT_STATUS_G4X;
2124        else
2125                hotplug_status_mask = HOTPLUG_INT_STATUS_I915;
2126
2127        /*
2128         * We absolutely have to clear all the pending interrupt
2129         * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port
2130         * interrupt bit won't have an edge, and the i965/g4x
2131         * edge triggered IIR will not notice that an interrupt
2132         * is still pending. We can't use PORT_HOTPLUG_EN to
2133         * guarantee the edge as the act of toggling the enable
2134         * bits can itself generate a new hotplug interrupt :(
2135         */
2136        for (i = 0; i < 10; i++) {
2137                u32 tmp = I915_READ(PORT_HOTPLUG_STAT) & hotplug_status_mask;
2138
2139                if (tmp == 0)
2140                        return hotplug_status;
2141
2142                hotplug_status |= tmp;
2143                I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2144        }
2145
2146        WARN_ONCE(1,
2147                  "PORT_HOTPLUG_STAT did not clear (0x%08x)\n",
2148                  I915_READ(PORT_HOTPLUG_STAT));
2149
2150        return hotplug_status;
2151}
2152
2153static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2154                                 u32 hotplug_status)
2155{
2156        u32 pin_mask = 0, long_mask = 0;
2157
2158        if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
2159            IS_CHERRYVIEW(dev_priv)) {
2160                u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
2161
2162                if (hotplug_trigger) {
2163                        intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2164                                           hotplug_trigger, hotplug_trigger,
2165                                           hpd_status_g4x,
2166                                           i9xx_port_hotplug_long_detect);
2167
2168                        intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2169                }
2170
2171                if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
2172                        dp_aux_irq_handler(dev_priv);
2173        } else {
2174                u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
2175
2176                if (hotplug_trigger) {
2177                        intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2178                                           hotplug_trigger, hotplug_trigger,
2179                                           hpd_status_i915,
2180                                           i9xx_port_hotplug_long_detect);
2181                        intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2182                }
2183        }
2184}
2185
2186static irqreturn_t valleyview_irq_handler(int irq, void *arg)
2187{
2188        struct drm_device *dev = arg;
2189        struct drm_i915_private *dev_priv = to_i915(dev);
2190        irqreturn_t ret = IRQ_NONE;
2191
2192        if (!intel_irqs_enabled(dev_priv))
2193                return IRQ_NONE;
2194
2195        /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2196        disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2197
2198        do {
2199                u32 iir, gt_iir, pm_iir;
2200                u32 pipe_stats[I915_MAX_PIPES] = {};
2201                u32 hotplug_status = 0;
2202                u32 ier = 0;
2203
2204                gt_iir = I915_READ(GTIIR);
2205                pm_iir = I915_READ(GEN6_PMIIR);
2206                iir = I915_READ(VLV_IIR);
2207
2208                if (gt_iir == 0 && pm_iir == 0 && iir == 0)
2209                        break;
2210
2211                ret = IRQ_HANDLED;
2212
2213                /*
2214                 * Theory on interrupt generation, based on empirical evidence:
2215                 *
2216                 * x = ((VLV_IIR & VLV_IER) ||
2217                 *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
2218                 *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
2219                 *
2220                 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2221                 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
2222                 * guarantee the CPU interrupt will be raised again even if we
2223                 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
2224                 * bits this time around.
2225                 */
2226                I915_WRITE(VLV_MASTER_IER, 0);
2227                ier = I915_READ(VLV_IER);
2228                I915_WRITE(VLV_IER, 0);
2229
2230                if (gt_iir)
2231                        I915_WRITE(GTIIR, gt_iir);
2232                if (pm_iir)
2233                        I915_WRITE(GEN6_PMIIR, pm_iir);
2234
2235                if (iir & I915_DISPLAY_PORT_INTERRUPT)
2236                        hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2237
2238                /* Call regardless, as some status bits might not be
2239                 * signalled in iir */
2240                i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2241
2242                if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2243                           I915_LPE_PIPE_B_INTERRUPT))
2244                        intel_lpe_audio_irq_handler(dev_priv);
2245
2246                /*
2247                 * VLV_IIR is single buffered, and reflects the level
2248                 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2249                 */
2250                if (iir)
2251                        I915_WRITE(VLV_IIR, iir);
2252
2253                I915_WRITE(VLV_IER, ier);
2254                I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
2255
2256                if (gt_iir)
2257                        snb_gt_irq_handler(dev_priv, gt_iir);
2258                if (pm_iir)
2259                        gen6_rps_irq_handler(dev_priv, pm_iir);
2260
2261                if (hotplug_status)
2262                        i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2263
2264                valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2265        } while (0);
2266
2267        enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2268
2269        return ret;
2270}
2271
2272static irqreturn_t cherryview_irq_handler(int irq, void *arg)
2273{
2274        struct drm_device *dev = arg;
2275        struct drm_i915_private *dev_priv = to_i915(dev);
2276        irqreturn_t ret = IRQ_NONE;
2277
2278        if (!intel_irqs_enabled(dev_priv))
2279                return IRQ_NONE;
2280
2281        /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2282        disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2283
2284        do {
2285                u32 master_ctl, iir;
2286                u32 pipe_stats[I915_MAX_PIPES] = {};
2287                u32 hotplug_status = 0;
2288                u32 gt_iir[4];
2289                u32 ier = 0;
2290
2291                master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
2292                iir = I915_READ(VLV_IIR);
2293
2294                if (master_ctl == 0 && iir == 0)
2295                        break;
2296
2297                ret = IRQ_HANDLED;
2298
2299                /*
2300                 * Theory on interrupt generation, based on empirical evidence:
2301                 *
2302                 * x = ((VLV_IIR & VLV_IER) ||
2303                 *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
2304                 *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
2305                 *
2306                 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2307                 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
2308                 * guarantee the CPU interrupt will be raised again even if we
2309                 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
2310                 * bits this time around.
2311                 */
2312                I915_WRITE(GEN8_MASTER_IRQ, 0);
2313                ier = I915_READ(VLV_IER);
2314                I915_WRITE(VLV_IER, 0);
2315
2316                gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2317
2318                if (iir & I915_DISPLAY_PORT_INTERRUPT)
2319                        hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2320
2321                /* Call regardless, as some status bits might not be
2322                 * signalled in iir */
2323                i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2324
2325                if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2326                           I915_LPE_PIPE_B_INTERRUPT |
2327                           I915_LPE_PIPE_C_INTERRUPT))
2328                        intel_lpe_audio_irq_handler(dev_priv);
2329
2330                /*
2331                 * VLV_IIR is single buffered, and reflects the level
2332                 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2333                 */
2334                if (iir)
2335                        I915_WRITE(VLV_IIR, iir);
2336
2337                I915_WRITE(VLV_IER, ier);
2338                I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2339
2340                gen8_gt_irq_handler(dev_priv, master_ctl, gt_iir);
2341
2342                if (hotplug_status)
2343                        i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2344
2345                valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2346        } while (0);
2347
2348        enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2349
2350        return ret;
2351}
2352
2353static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2354                                u32 hotplug_trigger,
2355                                const u32 hpd[HPD_NUM_PINS])
2356{
2357        u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2358
2359        /*
2360         * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
2361         * unless we touch the hotplug register, even if hotplug_trigger is
2362         * zero. Not acking leads to "The master control interrupt lied (SDE)!"
2363         * errors.
2364         */
2365        dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2366        if (!hotplug_trigger) {
2367                u32 mask = PORTA_HOTPLUG_STATUS_MASK |
2368                        PORTD_HOTPLUG_STATUS_MASK |
2369                        PORTC_HOTPLUG_STATUS_MASK |
2370                        PORTB_HOTPLUG_STATUS_MASK;
2371                dig_hotplug_reg &= ~mask;
2372        }
2373
2374        I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2375        if (!hotplug_trigger)
2376                return;
2377
2378        intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2379                           dig_hotplug_reg, hpd,
2380                           pch_port_hotplug_long_detect);
2381
2382        intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2383}
2384
2385static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2386{
2387        int pipe;
2388        u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2389
2390        ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
2391
2392        if (pch_iir & SDE_AUDIO_POWER_MASK) {
2393                int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2394                               SDE_AUDIO_POWER_SHIFT);
2395                DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2396                                 port_name(port));
2397        }
2398
2399        if (pch_iir & SDE_AUX_MASK)
2400                dp_aux_irq_handler(dev_priv);
2401
2402        if (pch_iir & SDE_GMBUS)
2403                gmbus_irq_handler(dev_priv);
2404
2405        if (pch_iir & SDE_AUDIO_HDCP_MASK)
2406                DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2407
2408        if (pch_iir & SDE_AUDIO_TRANS_MASK)
2409                DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2410
2411        if (pch_iir & SDE_POISON)
2412                DRM_ERROR("PCH poison interrupt\n");
2413
2414        if (pch_iir & SDE_FDI_MASK)
2415                for_each_pipe(dev_priv, pipe)
2416                        DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2417                                         pipe_name(pipe),
2418                                         I915_READ(FDI_RX_IIR(pipe)));
2419
2420        if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2421                DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2422
2423        if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2424                DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2425
2426        if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2427                intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
2428
2429        if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2430                intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
2431}
2432
2433static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2434{
2435        u32 err_int = I915_READ(GEN7_ERR_INT);
2436        enum pipe pipe;
2437
2438        if (err_int & ERR_INT_POISON)
2439                DRM_ERROR("Poison interrupt\n");
2440
2441        for_each_pipe(dev_priv, pipe) {
2442                if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2443                        intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2444
2445                if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2446                        if (IS_IVYBRIDGE(dev_priv))
2447                                ivb_pipe_crc_irq_handler(dev_priv, pipe);
2448                        else
2449                                hsw_pipe_crc_irq_handler(dev_priv, pipe);
2450                }
2451        }
2452
2453        I915_WRITE(GEN7_ERR_INT, err_int);
2454}
2455
2456static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2457{
2458        u32 serr_int = I915_READ(SERR_INT);
2459        enum pipe pipe;
2460
2461        if (serr_int & SERR_INT_POISON)
2462                DRM_ERROR("PCH poison interrupt\n");
2463
2464        for_each_pipe(dev_priv, pipe)
2465                if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
2466                        intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
2467
2468        I915_WRITE(SERR_INT, serr_int);
2469}
2470
2471static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2472{
2473        int pipe;
2474        u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2475
2476        ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2477
2478        if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2479                int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2480                               SDE_AUDIO_POWER_SHIFT_CPT);
2481                DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2482                                 port_name(port));
2483        }
2484
2485        if (pch_iir & SDE_AUX_MASK_CPT)
2486                dp_aux_irq_handler(dev_priv);
2487
2488        if (pch_iir & SDE_GMBUS_CPT)
2489                gmbus_irq_handler(dev_priv);
2490
2491        if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2492                DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2493
2494        if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2495                DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2496
2497        if (pch_iir & SDE_FDI_MASK_CPT)
2498                for_each_pipe(dev_priv, pipe)
2499                        DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2500                                         pipe_name(pipe),
2501                                         I915_READ(FDI_RX_IIR(pipe)));
2502
2503        if (pch_iir & SDE_ERROR_CPT)
2504                cpt_serr_int_handler(dev_priv);
2505}
2506
2507static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir,
2508                            const u32 *pins)
2509{
2510        u32 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP;
2511        u32 tc_hotplug_trigger = pch_iir & SDE_TC_MASK_ICP;
2512        u32 pin_mask = 0, long_mask = 0;
2513
2514        if (ddi_hotplug_trigger) {
2515                u32 dig_hotplug_reg;
2516
2517                dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI);
2518                I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg);
2519
2520                intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2521                                   ddi_hotplug_trigger,
2522                                   dig_hotplug_reg, pins,
2523                                   icp_ddi_port_hotplug_long_detect);
2524        }
2525
2526        if (tc_hotplug_trigger) {
2527                u32 dig_hotplug_reg;
2528
2529                dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC);
2530                I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg);
2531
2532                intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2533                                   tc_hotplug_trigger,
2534                                   dig_hotplug_reg, pins,
2535                                   icp_tc_port_hotplug_long_detect);
2536        }
2537
2538        if (pin_mask)
2539                intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2540
2541        if (pch_iir & SDE_GMBUS_ICP)
2542                gmbus_irq_handler(dev_priv);
2543}
2544
2545static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2546{
2547        u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2548                ~SDE_PORTE_HOTPLUG_SPT;
2549        u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2550        u32 pin_mask = 0, long_mask = 0;
2551
2552        if (hotplug_trigger) {
2553                u32 dig_hotplug_reg;
2554
2555                dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2556                I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2557
2558                intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2559                                   hotplug_trigger, dig_hotplug_reg, hpd_spt,
2560                                   spt_port_hotplug_long_detect);
2561        }
2562
2563        if (hotplug2_trigger) {
2564                u32 dig_hotplug_reg;
2565
2566                dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2567                I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2568
2569                intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2570                                   hotplug2_trigger, dig_hotplug_reg, hpd_spt,
2571                                   spt_port_hotplug2_long_detect);
2572        }
2573
2574        if (pin_mask)
2575                intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2576
2577        if (pch_iir & SDE_GMBUS_CPT)
2578                gmbus_irq_handler(dev_priv);
2579}
2580
2581static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2582                                u32 hotplug_trigger,
2583                                const u32 hpd[HPD_NUM_PINS])
2584{
2585        u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2586
2587        dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2588        I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2589
2590        intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2591                           dig_hotplug_reg, hpd,
2592                           ilk_port_hotplug_long_detect);
2593
2594        intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2595}
2596
2597static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2598                                    u32 de_iir)
2599{
2600        enum pipe pipe;
2601        u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2602
2603        if (hotplug_trigger)
2604                ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2605
2606        if (de_iir & DE_AUX_CHANNEL_A)
2607                dp_aux_irq_handler(dev_priv);
2608
2609        if (de_iir & DE_GSE)
2610                intel_opregion_asle_intr(dev_priv);
2611
2612        if (de_iir & DE_POISON)
2613                DRM_ERROR("Poison interrupt\n");
2614
2615        for_each_pipe(dev_priv, pipe) {
2616                if (de_iir & DE_PIPE_VBLANK(pipe))
2617                        drm_handle_vblank(&dev_priv->drm, pipe);
2618
2619                if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2620                        intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2621
2622                if (de_iir & DE_PIPE_CRC_DONE(pipe))
2623                        i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2624        }
2625
2626        /* check event from PCH */
2627        if (de_iir & DE_PCH_EVENT) {
2628                u32 pch_iir = I915_READ(SDEIIR);
2629
2630                if (HAS_PCH_CPT(dev_priv))
2631                        cpt_irq_handler(dev_priv, pch_iir);
2632                else
2633                        ibx_irq_handler(dev_priv, pch_iir);
2634
2635                /* should clear PCH hotplug event before clear CPU irq */
2636                I915_WRITE(SDEIIR, pch_iir);
2637        }
2638
2639        if (IS_GEN(dev_priv, 5) && de_iir & DE_PCU_EVENT)
2640                ironlake_rps_change_irq_handler(dev_priv);
2641}
2642
2643static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2644                                    u32 de_iir)
2645{
2646        enum pipe pipe;
2647        u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2648
2649        if (hotplug_trigger)
2650                ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2651
2652        if (de_iir & DE_ERR_INT_IVB)
2653                ivb_err_int_handler(dev_priv);
2654
2655        if (de_iir & DE_EDP_PSR_INT_HSW) {
2656                u32 psr_iir = I915_READ(EDP_PSR_IIR);
2657
2658                intel_psr_irq_handler(dev_priv, psr_iir);
2659                I915_WRITE(EDP_PSR_IIR, psr_iir);
2660        }
2661
2662        if (de_iir & DE_AUX_CHANNEL_A_IVB)
2663                dp_aux_irq_handler(dev_priv);
2664
2665        if (de_iir & DE_GSE_IVB)
2666                intel_opregion_asle_intr(dev_priv);
2667
2668        for_each_pipe(dev_priv, pipe) {
2669                if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2670                        drm_handle_vblank(&dev_priv->drm, pipe);
2671        }
2672
2673        /* check event from PCH */
2674        if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2675                u32 pch_iir = I915_READ(SDEIIR);
2676
2677                cpt_irq_handler(dev_priv, pch_iir);
2678
2679                /* clear PCH hotplug event before clear CPU irq */
2680                I915_WRITE(SDEIIR, pch_iir);
2681        }
2682}
2683
2684/*
2685 * To handle irqs with the minimum potential races with fresh interrupts, we:
2686 * 1 - Disable Master Interrupt Control.
2687 * 2 - Find the source(s) of the interrupt.
2688 * 3 - Clear the Interrupt Identity bits (IIR).
2689 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2690 * 5 - Re-enable Master Interrupt Control.
2691 */
2692static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2693{
2694        struct drm_device *dev = arg;
2695        struct drm_i915_private *dev_priv = to_i915(dev);
2696        u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2697        irqreturn_t ret = IRQ_NONE;
2698
2699        if (!intel_irqs_enabled(dev_priv))
2700                return IRQ_NONE;
2701
2702        /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2703        disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2704
2705        /* disable master interrupt before clearing iir  */
2706        de_ier = I915_READ(DEIER);
2707        I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2708
2709        /* Disable south interrupts. We'll only write to SDEIIR once, so further
2710         * interrupts will will be stored on its back queue, and then we'll be
2711         * able to process them after we restore SDEIER (as soon as we restore
2712         * it, we'll get an interrupt if SDEIIR still has something to process
2713         * due to its back queue). */
2714        if (!HAS_PCH_NOP(dev_priv)) {
2715                sde_ier = I915_READ(SDEIER);
2716                I915_WRITE(SDEIER, 0);
2717        }
2718
2719        /* Find, clear, then process each source of interrupt */
2720
2721        gt_iir = I915_READ(GTIIR);
2722        if (gt_iir) {
2723                I915_WRITE(GTIIR, gt_iir);
2724                ret = IRQ_HANDLED;
2725                if (INTEL_GEN(dev_priv) >= 6)
2726                        snb_gt_irq_handler(dev_priv, gt_iir);
2727                else
2728                        ilk_gt_irq_handler(dev_priv, gt_iir);
2729        }
2730
2731        de_iir = I915_READ(DEIIR);
2732        if (de_iir) {
2733                I915_WRITE(DEIIR, de_iir);
2734                ret = IRQ_HANDLED;
2735                if (INTEL_GEN(dev_priv) >= 7)
2736                        ivb_display_irq_handler(dev_priv, de_iir);
2737                else
2738                        ilk_display_irq_handler(dev_priv, de_iir);
2739        }
2740
2741        if (INTEL_GEN(dev_priv) >= 6) {
2742                u32 pm_iir = I915_READ(GEN6_PMIIR);
2743                if (pm_iir) {
2744                        I915_WRITE(GEN6_PMIIR, pm_iir);
2745                        ret = IRQ_HANDLED;
2746                        gen6_rps_irq_handler(dev_priv, pm_iir);
2747                }
2748        }
2749
2750        I915_WRITE(DEIER, de_ier);
2751        if (!HAS_PCH_NOP(dev_priv))
2752                I915_WRITE(SDEIER, sde_ier);
2753
2754        /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2755        enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2756
2757        return ret;
2758}
2759
2760static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2761                                u32 hotplug_trigger,
2762                                const u32 hpd[HPD_NUM_PINS])
2763{
2764        u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2765
2766        dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2767        I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2768
2769        intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2770                           dig_hotplug_reg, hpd,
2771                           bxt_port_hotplug_long_detect);
2772
2773        intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2774}
2775
2776static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2777{
2778        u32 pin_mask = 0, long_mask = 0;
2779        u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK;
2780        u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK;
2781
2782        if (trigger_tc) {
2783                u32 dig_hotplug_reg;
2784
2785                dig_hotplug_reg = I915_READ(GEN11_TC_HOTPLUG_CTL);
2786                I915_WRITE(GEN11_TC_HOTPLUG_CTL, dig_hotplug_reg);
2787
2788                intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tc,
2789                                   dig_hotplug_reg, hpd_gen11,
2790                                   gen11_port_hotplug_long_detect);
2791        }
2792
2793        if (trigger_tbt) {
2794                u32 dig_hotplug_reg;
2795
2796                dig_hotplug_reg = I915_READ(GEN11_TBT_HOTPLUG_CTL);
2797                I915_WRITE(GEN11_TBT_HOTPLUG_CTL, dig_hotplug_reg);
2798
2799                intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tbt,
2800                                   dig_hotplug_reg, hpd_gen11,
2801                                   gen11_port_hotplug_long_detect);
2802        }
2803
2804        if (pin_mask)
2805                intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2806        else
2807                DRM_ERROR("Unexpected DE HPD interrupt 0x%08x\n", iir);
2808}
2809
2810static u32 gen8_de_port_aux_mask(struct drm_i915_private *dev_priv)
2811{
2812        u32 mask = GEN8_AUX_CHANNEL_A;
2813
2814        if (INTEL_GEN(dev_priv) >= 9)
2815                mask |= GEN9_AUX_CHANNEL_B |
2816                        GEN9_AUX_CHANNEL_C |
2817                        GEN9_AUX_CHANNEL_D;
2818
2819        if (IS_CNL_WITH_PORT_F(dev_priv))
2820                mask |= CNL_AUX_CHANNEL_F;
2821
2822        if (INTEL_GEN(dev_priv) >= 11)
2823                mask |= ICL_AUX_CHANNEL_E |
2824                        CNL_AUX_CHANNEL_F;
2825
2826        return mask;
2827}
2828
2829static irqreturn_t
2830gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2831{
2832        irqreturn_t ret = IRQ_NONE;
2833        u32 iir;
2834        enum pipe pipe;
2835
2836        if (master_ctl & GEN8_DE_MISC_IRQ) {
2837                iir = I915_READ(GEN8_DE_MISC_IIR);
2838                if (iir) {
2839                        bool found = false;
2840
2841                        I915_WRITE(GEN8_DE_MISC_IIR, iir);
2842                        ret = IRQ_HANDLED;
2843
2844                        if (iir & GEN8_DE_MISC_GSE) {
2845                                intel_opregion_asle_intr(dev_priv);
2846                                found = true;
2847                        }
2848
2849                        if (iir & GEN8_DE_EDP_PSR) {
2850                                u32 psr_iir = I915_READ(EDP_PSR_IIR);
2851
2852                                intel_psr_irq_handler(dev_priv, psr_iir);
2853                                I915_WRITE(EDP_PSR_IIR, psr_iir);
2854                                found = true;
2855                        }
2856
2857                        if (!found)
2858                                DRM_ERROR("Unexpected DE Misc interrupt\n");
2859                }
2860                else
2861                        DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2862        }
2863
2864        if (INTEL_GEN(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) {
2865                iir = I915_READ(GEN11_DE_HPD_IIR);
2866                if (iir) {
2867                        I915_WRITE(GEN11_DE_HPD_IIR, iir);
2868                        ret = IRQ_HANDLED;
2869                        gen11_hpd_irq_handler(dev_priv, iir);
2870                } else {
2871                        DRM_ERROR("The master control interrupt lied, (DE HPD)!\n");
2872                }
2873        }
2874
2875        if (master_ctl & GEN8_DE_PORT_IRQ) {
2876                iir = I915_READ(GEN8_DE_PORT_IIR);
2877                if (iir) {
2878                        u32 tmp_mask;
2879                        bool found = false;
2880
2881                        I915_WRITE(GEN8_DE_PORT_IIR, iir);
2882                        ret = IRQ_HANDLED;
2883
2884                        if (iir & gen8_de_port_aux_mask(dev_priv)) {
2885                                dp_aux_irq_handler(dev_priv);
2886                                found = true;
2887                        }
2888
2889                        if (IS_GEN9_LP(dev_priv)) {
2890                                tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2891                                if (tmp_mask) {
2892                                        bxt_hpd_irq_handler(dev_priv, tmp_mask,
2893                                                            hpd_bxt);
2894                                        found = true;
2895                                }
2896                        } else if (IS_BROADWELL(dev_priv)) {
2897                                tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2898                                if (tmp_mask) {
2899                                        ilk_hpd_irq_handler(dev_priv,
2900                                                            tmp_mask, hpd_bdw);
2901                                        found = true;
2902                                }
2903                        }
2904
2905                        if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2906                                gmbus_irq_handler(dev_priv);
2907                                found = true;
2908                        }
2909
2910                        if (!found)
2911                                DRM_ERROR("Unexpected DE Port interrupt\n");
2912                }
2913                else
2914                        DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2915        }
2916
2917        for_each_pipe(dev_priv, pipe) {
2918                u32 fault_errors;
2919
2920                if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2921                        continue;
2922
2923                iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2924                if (!iir) {
2925                        DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2926                        continue;
2927                }
2928
2929                ret = IRQ_HANDLED;
2930                I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2931
2932                if (iir & GEN8_PIPE_VBLANK)
2933                        drm_handle_vblank(&dev_priv->drm, pipe);
2934
2935                if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2936                        hsw_pipe_crc_irq_handler(dev_priv, pipe);
2937
2938                if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2939                        intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2940
2941                fault_errors = iir;
2942                if (INTEL_GEN(dev_priv) >= 9)
2943                        fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2944                else
2945                        fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2946
2947                if (fault_errors)
2948                        DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2949                                  pipe_name(pipe),
2950                                  fault_errors);
2951        }
2952
2953        if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2954            master_ctl & GEN8_DE_PCH_IRQ) {
2955                /*
2956                 * FIXME(BDW): Assume for now that the new interrupt handling
2957                 * scheme also closed the SDE interrupt handling race we've seen
2958                 * on older pch-split platforms. But this needs testing.
2959                 */
2960                iir = I915_READ(SDEIIR);
2961                if (iir) {
2962                        I915_WRITE(SDEIIR, iir);
2963                        ret = IRQ_HANDLED;
2964
2965                        if (INTEL_PCH_TYPE(dev_priv) >= PCH_MCC)
2966                                icp_irq_handler(dev_priv, iir, hpd_mcc);
2967                        else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2968                                icp_irq_handler(dev_priv, iir, hpd_icp);
2969                        else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
2970                                spt_irq_handler(dev_priv, iir);
2971                        else
2972                                cpt_irq_handler(dev_priv, iir);
2973                } else {
2974                        /*
2975                         * Like on previous PCH there seems to be something
2976                         * fishy going on with forwarding PCH interrupts.
2977                         */
2978                        DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2979                }
2980        }
2981
2982        return ret;
2983}
2984
2985static inline u32 gen8_master_intr_disable(void __iomem * const regs)
2986{
2987        raw_reg_write(regs, GEN8_MASTER_IRQ, 0);
2988
2989        /*
2990         * Now with master disabled, get a sample of level indications
2991         * for this interrupt. Indications will be cleared on related acks.
2992         * New indications can and will light up during processing,
2993         * and will generate new interrupt after enabling master.
2994         */
2995        return raw_reg_read(regs, GEN8_MASTER_IRQ);
2996}
2997
2998static inline void gen8_master_intr_enable(void __iomem * const regs)
2999{
3000        raw_reg_write(regs, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3001}
3002
3003static irqreturn_t gen8_irq_handler(int irq, void *arg)
3004{
3005        struct drm_i915_private *dev_priv = to_i915(arg);
3006        void __iomem * const regs = dev_priv->uncore.regs;
3007        u32 master_ctl;
3008        u32 gt_iir[4];
3009
3010        if (!intel_irqs_enabled(dev_priv))
3011                return IRQ_NONE;
3012
3013        master_ctl = gen8_master_intr_disable(regs);
3014        if (!master_ctl) {
3015                gen8_master_intr_enable(regs);
3016                return IRQ_NONE;
3017        }
3018
3019        /* Find, clear, then process each source of interrupt */
3020        gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
3021
3022        /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3023        if (master_ctl & ~GEN8_GT_IRQS) {
3024                disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3025                gen8_de_irq_handler(dev_priv, master_ctl);
3026                enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3027        }
3028
3029        gen8_master_intr_enable(regs);
3030
3031        gen8_gt_irq_handler(dev_priv, master_ctl, gt_iir);
3032
3033        return IRQ_HANDLED;
3034}
3035
3036static u32
3037gen11_gt_engine_identity(struct drm_i915_private * const i915,
3038                         const unsigned int bank, const unsigned int bit)
3039{
3040        void __iomem * const regs = i915->uncore.regs;
3041        u32 timeout_ts;
3042        u32 ident;
3043
3044        lockdep_assert_held(&i915->irq_lock);
3045
3046        raw_reg_write(regs, GEN11_IIR_REG_SELECTOR(bank), BIT(bit));
3047
3048        /*
3049         * NB: Specs do not specify how long to spin wait,
3050         * so we do ~100us as an educated guess.
3051         */
3052        timeout_ts = (local_clock() >> 10) + 100;
3053        do {
3054                ident = raw_reg_read(regs, GEN11_INTR_IDENTITY_REG(bank));
3055        } while (!(ident & GEN11_INTR_DATA_VALID) &&
3056                 !time_after32(local_clock() >> 10, timeout_ts));
3057
3058        if (unlikely(!(ident & GEN11_INTR_DATA_VALID))) {
3059                DRM_ERROR("INTR_IDENTITY_REG%u:%u 0x%08x not valid!\n",
3060                          bank, bit, ident);
3061                return 0;
3062        }
3063
3064        raw_reg_write(regs, GEN11_INTR_IDENTITY_REG(bank),
3065                      GEN11_INTR_DATA_VALID);
3066
3067        return ident;
3068}
3069
3070static void
3071gen11_other_irq_handler(struct drm_i915_private * const i915,
3072                        const u8 instance, const u16 iir)
3073{
3074        if (instance == OTHER_GUC_INSTANCE)
3075                return gen11_guc_irq_handler(i915, iir);
3076
3077        if (instance == OTHER_GTPM_INSTANCE)
3078                return gen11_rps_irq_handler(i915, iir);
3079
3080        WARN_ONCE(1, "unhandled other interrupt instance=0x%x, iir=0x%x\n",
3081                  instance, iir);
3082}
3083
3084static void
3085gen11_engine_irq_handler(struct drm_i915_private * const i915,
3086                         const u8 class, const u8 instance, const u16 iir)
3087{
3088        struct intel_engine_cs *engine;
3089
3090        if (instance <= MAX_ENGINE_INSTANCE)
3091                engine = i915->engine_class[class][instance];
3092        else
3093                engine = NULL;
3094
3095        if (likely(engine))
3096                return gen8_cs_irq_handler(engine, iir);
3097
3098        WARN_ONCE(1, "unhandled engine interrupt class=0x%x, instance=0x%x\n",
3099                  class, instance);
3100}
3101
3102static void
3103gen11_gt_identity_handler(struct drm_i915_private * const i915,
3104                          const u32 identity)
3105{
3106        const u8 class = GEN11_INTR_ENGINE_CLASS(identity);
3107        const u8 instance = GEN11_INTR_ENGINE_INSTANCE(identity);
3108        const u16 intr = GEN11_INTR_ENGINE_INTR(identity);
3109
3110        if (unlikely(!intr))
3111                return;
3112
3113        if (class <= COPY_ENGINE_CLASS)
3114                return gen11_engine_irq_handler(i915, class, instance, intr);
3115
3116        if (class == OTHER_CLASS)
3117                return gen11_other_irq_handler(i915, instance, intr);
3118
3119        WARN_ONCE(1, "unknown interrupt class=0x%x, instance=0x%x, intr=0x%x\n",
3120                  class, instance, intr);
3121}
3122
3123static void
3124gen11_gt_bank_handler(struct drm_i915_private * const i915,
3125                      const unsigned int bank)
3126{
3127        void __iomem * const regs = i915->uncore.regs;
3128        unsigned long intr_dw;
3129        unsigned int bit;
3130
3131        lockdep_assert_held(&i915->irq_lock);
3132
3133        intr_dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank));
3134
3135        for_each_set_bit(bit, &intr_dw, 32) {
3136                const u32 ident = gen11_gt_engine_identity(i915, bank, bit);
3137
3138                gen11_gt_identity_handler(i915, ident);
3139        }
3140
3141        /* Clear must be after shared has been served for engine */
3142        raw_reg_write(regs, GEN11_GT_INTR_DW(bank), intr_dw);
3143}
3144
3145static void
3146gen11_gt_irq_handler(struct drm_i915_private * const i915,
3147                     const u32 master_ctl)
3148{
3149        unsigned int bank;
3150
3151        spin_lock(&i915->irq_lock);
3152
3153        for (bank = 0; bank < 2; bank++) {
3154                if (master_ctl & GEN11_GT_DW_IRQ(bank))
3155                        gen11_gt_bank_handler(i915, bank);
3156        }
3157
3158        spin_unlock(&i915->irq_lock);
3159}
3160
3161static u32
3162gen11_gu_misc_irq_ack(struct drm_i915_private *dev_priv, const u32 master_ctl)
3163{
3164        void __iomem * const regs = dev_priv->uncore.regs;
3165        u32 iir;
3166
3167        if (!(master_ctl & GEN11_GU_MISC_IRQ))
3168                return 0;
3169
3170        iir = raw_reg_read(regs, GEN11_GU_MISC_IIR);
3171        if (likely(iir))
3172                raw_reg_write(regs, GEN11_GU_MISC_IIR, iir);
3173
3174        return iir;
3175}
3176
3177static void
3178gen11_gu_misc_irq_handler(struct drm_i915_private *dev_priv, const u32 iir)
3179{
3180        if (iir & GEN11_GU_MISC_GSE)
3181                intel_opregion_asle_intr(dev_priv);
3182}
3183
3184static inline u32 gen11_master_intr_disable(void __iomem * const regs)
3185{
3186        raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
3187
3188        /*
3189         * Now with master disabled, get a sample of level indications
3190         * for this interrupt. Indications will be cleared on related acks.
3191         * New indications can and will light up during processing,
3192         * and will generate new interrupt after enabling master.
3193         */
3194        return raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
3195}
3196
3197static inline void gen11_master_intr_enable(void __iomem * const regs)
3198{
3199        raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
3200}
3201
3202static irqreturn_t gen11_irq_handler(int irq, void *arg)
3203{
3204        struct drm_i915_private * const i915 = to_i915(arg);
3205        void __iomem * const regs = i915->uncore.regs;
3206        u32 master_ctl;
3207        u32 gu_misc_iir;
3208
3209        if (!intel_irqs_enabled(i915))
3210                return IRQ_NONE;
3211
3212        master_ctl = gen11_master_intr_disable(regs);
3213        if (!master_ctl) {
3214                gen11_master_intr_enable(regs);
3215                return IRQ_NONE;
3216        }
3217
3218        /* Find, clear, then process each source of interrupt. */
3219        gen11_gt_irq_handler(i915, master_ctl);
3220
3221        /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3222        if (master_ctl & GEN11_DISPLAY_IRQ) {
3223                const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL);
3224
3225                disable_rpm_wakeref_asserts(&i915->runtime_pm);
3226                /*
3227                 * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
3228                 * for the display related bits.
3229                 */
3230                gen8_de_irq_handler(i915, disp_ctl);
3231                enable_rpm_wakeref_asserts(&i915->runtime_pm);
3232        }
3233
3234        gu_misc_iir = gen11_gu_misc_irq_ack(i915, master_ctl);
3235
3236        gen11_master_intr_enable(regs);
3237
3238        gen11_gu_misc_irq_handler(i915, gu_misc_iir);
3239
3240        return IRQ_HANDLED;
3241}
3242
3243/* Called from drm generic code, passed 'crtc' which
3244 * we use as a pipe index
3245 */
3246static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe)
3247{
3248        struct drm_i915_private *dev_priv = to_i915(dev);
3249        unsigned long irqflags;
3250
3251        spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3252        i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
3253        spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3254
3255        return 0;
3256}
3257
3258static int i945gm_enable_vblank(struct drm_device *dev, unsigned int pipe)
3259{
3260        struct drm_i915_private *dev_priv = to_i915(dev);
3261
3262        if (dev_priv->i945gm_vblank.enabled++ == 0)
3263                schedule_work(&dev_priv->i945gm_vblank.work);
3264
3265        return i8xx_enable_vblank(dev, pipe);
3266}
3267
3268static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe)
3269{
3270        struct drm_i915_private *dev_priv = to_i915(dev);
3271        unsigned long irqflags;
3272
3273        spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3274        i915_enable_pipestat(dev_priv, pipe,
3275                             PIPE_START_VBLANK_INTERRUPT_STATUS);
3276        spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3277
3278        return 0;
3279}
3280
3281static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
3282{
3283        struct drm_i915_private *dev_priv = to_i915(dev);
3284        unsigned long irqflags;
3285        u32 bit = INTEL_GEN(dev_priv) >= 7 ?
3286                DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
3287
3288        spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3289        ilk_enable_display_irq(dev_priv, bit);
3290        spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3291
3292        /* Even though there is no DMC, frame counter can get stuck when
3293         * PSR is active as no frames are generated.
3294         */
3295        if (HAS_PSR(dev_priv))
3296                drm_vblank_restore(dev, pipe);
3297
3298        return 0;
3299}
3300
3301static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
3302{
3303        struct drm_i915_private *dev_priv = to_i915(dev);
3304        unsigned long irqflags;
3305
3306        spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3307        bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
3308        spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3309
3310        /* Even if there is no DMC, frame counter can get stuck when
3311         * PSR is active as no frames are generated, so check only for PSR.
3312         */
3313        if (HAS_PSR(dev_priv))
3314                drm_vblank_restore(dev, pipe);
3315
3316        return 0;
3317}
3318
3319/* Called from drm generic code, passed 'crtc' which
3320 * we use as a pipe index
3321 */
3322static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe)
3323{
3324        struct drm_i915_private *dev_priv = to_i915(dev);
3325        unsigned long irqflags;
3326
3327        spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3328        i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
3329        spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3330}
3331
3332static void i945gm_disable_vblank(struct drm_device *dev, unsigned int pipe)
3333{
3334        struct drm_i915_private *dev_priv = to_i915(dev);
3335
3336        i8xx_disable_vblank(dev, pipe);
3337
3338        if (--dev_priv->i945gm_vblank.enabled == 0)
3339                schedule_work(&dev_priv->i945gm_vblank.work);
3340}
3341
3342static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe)
3343{
3344        struct drm_i915_private *dev_priv = to_i915(dev);
3345        unsigned long irqflags;
3346
3347        spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3348        i915_disable_pipestat(dev_priv, pipe,
3349                              PIPE_START_VBLANK_INTERRUPT_STATUS);
3350        spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3351}
3352
3353static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
3354{
3355        struct drm_i915_private *dev_priv = to_i915(dev);
3356        unsigned long irqflags;
3357        u32 bit = INTEL_GEN(dev_priv) >= 7 ?
3358                DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
3359
3360        spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3361        ilk_disable_display_irq(dev_priv, bit);
3362        spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3363}
3364
3365static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
3366{
3367        struct drm_i915_private *dev_priv = to_i915(dev);
3368        unsigned long irqflags;
3369
3370        spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3371        bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
3372        spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3373}
3374
3375static void i945gm_vblank_work_func(struct work_struct *work)
3376{
3377        struct drm_i915_private *dev_priv =
3378                container_of(work, struct drm_i915_private, i945gm_vblank.work);
3379
3380        /*
3381         * Vblank interrupts fail to wake up the device from C3,
3382         * hence we want to prevent C3 usage while vblank interrupts
3383         * are enabled.
3384         */
3385        pm_qos_update_request(&dev_priv->i945gm_vblank.pm_qos,
3386                              READ_ONCE(dev_priv->i945gm_vblank.enabled) ?
3387                              dev_priv->i945gm_vblank.c3_disable_latency :
3388                              PM_QOS_DEFAULT_VALUE);
3389}
3390
3391static int cstate_disable_latency(const char *name)
3392{
3393        const struct cpuidle_driver *drv;
3394        int i;
3395
3396        drv = cpuidle_get_driver();
3397        if (!drv)
3398                return 0;
3399
3400        for (i = 0; i < drv->state_count; i++) {
3401                const struct cpuidle_state *state = &drv->states[i];
3402
3403                if (!strcmp(state->name, name))
3404                        return state->exit_latency ?
3405                                state->exit_latency - 1 : 0;
3406        }
3407
3408        return 0;
3409}
3410
3411static void i945gm_vblank_work_init(struct drm_i915_private *dev_priv)
3412{
3413        INIT_WORK(&dev_priv->i945gm_vblank.work,
3414                  i945gm_vblank_work_func);
3415
3416        dev_priv->i945gm_vblank.c3_disable_latency =
3417                cstate_disable_latency("C3");
3418        pm_qos_add_request(&dev_priv->i945gm_vblank.pm_qos,
3419                           PM_QOS_CPU_DMA_LATENCY,
3420                           PM_QOS_DEFAULT_VALUE);
3421}
3422
3423static void i945gm_vblank_work_fini(struct drm_i915_private *dev_priv)
3424{
3425        cancel_work_sync(&dev_priv->i945gm_vblank.work);
3426        pm_qos_remove_request(&dev_priv->i945gm_vblank.pm_qos);
3427}
3428
3429static void ibx_irq_reset(struct drm_i915_private *dev_priv)
3430{
3431        struct intel_uncore *uncore = &dev_priv->uncore;
3432
3433        if (HAS_PCH_NOP(dev_priv))
3434                return;
3435
3436        GEN3_IRQ_RESET(uncore, SDE);
3437
3438        if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3439                I915_WRITE(SERR_INT, 0xffffffff);
3440}
3441
3442/*
3443 * SDEIER is also touched by the interrupt handler to work around missed PCH
3444 * interrupts. Hence we can't update it after the interrupt handler is enabled -
3445 * instead we unconditionally enable all PCH interrupt sources here, but then
3446 * only unmask them as needed with SDEIMR.
3447 *
3448 * This function needs to be called before interrupts are enabled.
3449 */
3450static void ibx_irq_pre_postinstall(struct drm_device *dev)
3451{
3452        struct drm_i915_private *dev_priv = to_i915(dev);
3453
3454        if (HAS_PCH_NOP(dev_priv))
3455                return;
3456
3457        WARN_ON(I915_READ(SDEIER) != 0);
3458        I915_WRITE(SDEIER, 0xffffffff);
3459        POSTING_READ(SDEIER);
3460}
3461
3462static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv)
3463{
3464        struct intel_uncore *uncore = &dev_priv->uncore;
3465
3466        GEN3_IRQ_RESET(uncore, GT);
3467        if (INTEL_GEN(dev_priv) >= 6)
3468                GEN3_IRQ_RESET(uncore, GEN6_PM);
3469}
3470
3471static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3472{
3473        struct intel_uncore *uncore = &dev_priv->uncore;
3474
3475        if (IS_CHERRYVIEW(dev_priv))
3476                I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3477        else
3478                I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3479
3480        i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
3481        I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3482
3483        i9xx_pipestat_irq_reset(dev_priv);
3484
3485        GEN3_IRQ_RESET(uncore, VLV_);
3486        dev_priv->irq_mask = ~0u;
3487}
3488
3489static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3490{
3491        struct intel_uncore *uncore = &dev_priv->uncore;
3492
3493        u32 pipestat_mask;
3494        u32 enable_mask;
3495        enum pipe pipe;
3496
3497        pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
3498
3499        i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3500        for_each_pipe(dev_priv, pipe)
3501                i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3502
3503        enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3504                I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3505                I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3506                I915_LPE_PIPE_A_INTERRUPT |
3507                I915_LPE_PIPE_B_INTERRUPT;
3508
3509        if (IS_CHERRYVIEW(dev_priv))
3510                enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
3511                        I915_LPE_PIPE_C_INTERRUPT;
3512
3513        WARN_ON(dev_priv->irq_mask != ~0u);
3514
3515        dev_priv->irq_mask = ~enable_mask;
3516
3517        GEN3_IRQ_INIT(uncore, VLV_, dev_priv->irq_mask, enable_mask);
3518}
3519
3520/* drm_dma.h hooks
3521*/
3522static void ironlake_irq_reset(struct drm_device *dev)
3523{
3524        struct drm_i915_private *dev_priv = to_i915(dev);
3525        struct intel_uncore *uncore = &dev_priv->uncore;
3526
3527        GEN3_IRQ_RESET(uncore, DE);
3528        if (IS_GEN(dev_priv, 7))
3529                I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3530
3531        if (IS_HASWELL(dev_priv)) {
3532                I915_WRITE(EDP_PSR_IMR, 0xffffffff);
3533                I915_WRITE(EDP_PSR_IIR, 0xffffffff);
3534        }
3535
3536        gen5_gt_irq_reset(dev_priv);
3537
3538        ibx_irq_reset(dev_priv);
3539}
3540
3541static void valleyview_irq_reset(struct drm_device *dev)
3542{
3543        struct drm_i915_private *dev_priv = to_i915(dev);
3544
3545        I915_WRITE(VLV_MASTER_IER, 0);
3546        POSTING_READ(VLV_MASTER_IER);
3547
3548        gen5_gt_irq_reset(dev_priv);
3549
3550        spin_lock_irq(&dev_priv->irq_lock);
3551        if (dev_priv->display_irqs_enabled)
3552                vlv_display_irq_reset(dev_priv);
3553        spin_unlock_irq(&dev_priv->irq_lock);
3554}
3555
3556static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3557{
3558        struct intel_uncore *uncore = &dev_priv->uncore;
3559
3560        GEN8_IRQ_RESET_NDX(uncore, GT, 0);
3561        GEN8_IRQ_RESET_NDX(uncore, GT, 1);
3562        GEN8_IRQ_RESET_NDX(uncore, GT, 2);
3563        GEN8_IRQ_RESET_NDX(uncore, GT, 3);
3564}
3565
3566static void gen8_irq_reset(struct drm_device *dev)
3567{
3568        struct drm_i915_private *dev_priv = to_i915(dev);
3569        struct intel_uncore *uncore = &dev_priv->uncore;
3570        int pipe;
3571
3572        gen8_master_intr_disable(dev_priv->uncore.regs);
3573
3574        gen8_gt_irq_reset(dev_priv);
3575
3576        I915_WRITE(EDP_PSR_IMR, 0xffffffff);
3577        I915_WRITE(EDP_PSR_IIR, 0xffffffff);
3578
3579        for_each_pipe(dev_priv, pipe)
3580                if (intel_display_power_is_enabled(dev_priv,
3581                                                   POWER_DOMAIN_PIPE(pipe)))
3582                        GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3583
3584        GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
3585        GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
3586        GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3587
3588        if (HAS_PCH_SPLIT(dev_priv))
3589                ibx_irq_reset(dev_priv);
3590}
3591
3592static void gen11_gt_irq_reset(struct drm_i915_private *dev_priv)
3593{
3594        /* Disable RCS, BCS, VCS and VECS class engines. */
3595        I915_WRITE(GEN11_RENDER_COPY_INTR_ENABLE, 0);
3596        I915_WRITE(GEN11_VCS_VECS_INTR_ENABLE,    0);
3597
3598        /* Restore masks irqs on RCS, BCS, VCS and VECS engines. */
3599        I915_WRITE(GEN11_RCS0_RSVD_INTR_MASK,   ~0);
3600        I915_WRITE(GEN11_BCS_RSVD_INTR_MASK,    ~0);
3601        I915_WRITE(GEN11_VCS0_VCS1_INTR_MASK,   ~0);
3602        I915_WRITE(GEN11_VCS2_VCS3_INTR_MASK,   ~0);
3603        I915_WRITE(GEN11_VECS0_VECS1_INTR_MASK, ~0);
3604
3605        I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0);
3606        I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_MASK,  ~0);
3607        I915_WRITE(GEN11_GUC_SG_INTR_ENABLE, 0);
3608        I915_WRITE(GEN11_GUC_SG_INTR_MASK,  ~0);
3609}
3610
3611static void gen11_irq_reset(struct drm_device *dev)
3612{
3613        struct drm_i915_private *dev_priv = dev->dev_private;
3614        struct intel_uncore *uncore = &dev_priv->uncore;
3615        int pipe;
3616
3617        gen11_master_intr_disable(dev_priv->uncore.regs);
3618
3619        gen11_gt_irq_reset(dev_priv);
3620
3621        I915_WRITE(GEN11_DISPLAY_INT_CTL, 0);
3622
3623        I915_WRITE(EDP_PSR_IMR, 0xffffffff);
3624        I915_WRITE(EDP_PSR_IIR, 0xffffffff);
3625
3626        for_each_pipe(dev_priv, pipe)
3627                if (intel_display_power_is_enabled(dev_priv,
3628                                                   POWER_DOMAIN_PIPE(pipe)))
3629                        GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3630
3631        GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
3632        GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
3633        GEN3_IRQ_RESET(uncore, GEN11_DE_HPD_);
3634        GEN3_IRQ_RESET(uncore, GEN11_GU_MISC_);
3635        GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3636
3637        if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3638                GEN3_IRQ_RESET(uncore, SDE);
3639}
3640
3641void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3642                                     u8 pipe_mask)
3643{
3644        struct intel_uncore *uncore = &dev_priv->uncore;
3645
3646        u32 extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3647        enum pipe pipe;
3648
3649        spin_lock_irq(&dev_priv->irq_lock);
3650
3651        if (!intel_irqs_enabled(dev_priv)) {
3652                spin_unlock_irq(&dev_priv->irq_lock);
3653                return;
3654        }
3655
3656        for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3657                GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
3658                                  dev_priv->de_irq_mask[pipe],
3659                                  ~dev_priv->de_irq_mask[pipe] | extra_ier);
3660
3661        spin_unlock_irq(&dev_priv->irq_lock);
3662}
3663
3664void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3665                                     u8 pipe_mask)
3666{
3667        struct intel_uncore *uncore = &dev_priv->uncore;
3668        enum pipe pipe;
3669
3670        spin_lock_irq(&dev_priv->irq_lock);
3671
3672        if (!intel_irqs_enabled(dev_priv)) {
3673                spin_unlock_irq(&dev_priv->irq_lock);
3674                return;
3675        }
3676
3677        for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3678                GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3679
3680        spin_unlock_irq(&dev_priv->irq_lock);
3681
3682        /* make sure we're done processing display irqs */
3683        synchronize_irq(dev_priv->drm.irq);
3684}
3685
3686static void cherryview_irq_reset(struct drm_device *dev)
3687{
3688        struct drm_i915_private *dev_priv = to_i915(dev);
3689        struct intel_uncore *uncore = &dev_priv->uncore;
3690
3691        I915_WRITE(GEN8_MASTER_IRQ, 0);
3692        POSTING_READ(GEN8_MASTER_IRQ);
3693
3694        gen8_gt_irq_reset(dev_priv);
3695
3696        GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3697
3698        spin_lock_irq(&dev_priv->irq_lock);
3699        if (dev_priv->display_irqs_enabled)
3700                vlv_display_irq_reset(dev_priv);
3701        spin_unlock_irq(&dev_priv->irq_lock);
3702}
3703
3704static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3705                                  const u32 hpd[HPD_NUM_PINS])
3706{
3707        struct intel_encoder *encoder;
3708        u32 enabled_irqs = 0;
3709
3710        for_each_intel_encoder(&dev_priv->drm, encoder)
3711                if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3712                        enabled_irqs |= hpd[encoder->hpd_pin];
3713
3714        return enabled_irqs;
3715}
3716
3717static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3718{
3719        u32 hotplug;
3720
3721        /*
3722         * Enable digital hotplug on the PCH, and configure the DP short pulse
3723         * duration to 2ms (which is the minimum in the Display Port spec).
3724         * The pulse duration bits are reserved on LPT+.
3725         */
3726        hotplug = I915_READ(PCH_PORT_HOTPLUG);
3727        hotplug &= ~(PORTB_PULSE_DURATION_MASK |
3728                     PORTC_PULSE_DURATION_MASK |
3729                     PORTD_PULSE_DURATION_MASK);
3730        hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3731        hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3732        hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3733        /*
3734         * When CPU and PCH are on the same package, port A
3735         * HPD must be enabled in both north and south.
3736         */
3737        if (HAS_PCH_LPT_LP(dev_priv))
3738                hotplug |= PORTA_HOTPLUG_ENABLE;
3739        I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3740}
3741
3742static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3743{
3744        u32 hotplug_irqs, enabled_irqs;
3745
3746        if (HAS_PCH_IBX(dev_priv)) {
3747                hotplug_irqs = SDE_HOTPLUG_MASK;
3748                enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3749        } else {
3750                hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3751                enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3752        }
3753
3754        ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3755
3756        ibx_hpd_detection_setup(dev_priv);
3757}
3758
3759static void icp_hpd_detection_setup(struct drm_i915_private *dev_priv)
3760{
3761        u32 hotplug;
3762
3763        hotplug = I915_READ(SHOTPLUG_CTL_DDI);
3764        hotplug |= ICP_DDIA_HPD_ENABLE |
3765                   ICP_DDIB_HPD_ENABLE;
3766        I915_WRITE(SHOTPLUG_CTL_DDI, hotplug);
3767
3768        hotplug = I915_READ(SHOTPLUG_CTL_TC);
3769        hotplug |= ICP_TC_HPD_ENABLE(PORT_TC1) |
3770                   ICP_TC_HPD_ENABLE(PORT_TC2) |
3771                   ICP_TC_HPD_ENABLE(PORT_TC3) |
3772                   ICP_TC_HPD_ENABLE(PORT_TC4);
3773        I915_WRITE(SHOTPLUG_CTL_TC, hotplug);
3774}
3775
3776static void icp_hpd_irq_setup(struct drm_i915_private *dev_priv)
3777{
3778        u32 hotplug_irqs, enabled_irqs;
3779
3780        hotplug_irqs = SDE_DDI_MASK_ICP | SDE_TC_MASK_ICP;
3781        enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_icp);
3782
3783        ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3784
3785        icp_hpd_detection_setup(dev_priv);
3786}
3787
3788static void gen11_hpd_detection_setup(struct drm_i915_private *dev_priv)
3789{
3790        u32 hotplug;
3791
3792        hotplug = I915_READ(GEN11_TC_HOTPLUG_CTL);
3793        hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3794                   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3795                   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3796                   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3797        I915_WRITE(GEN11_TC_HOTPLUG_CTL, hotplug);
3798
3799        hotplug = I915_READ(GEN11_TBT_HOTPLUG_CTL);
3800        hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3801                   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3802                   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3803                   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3804        I915_WRITE(GEN11_TBT_HOTPLUG_CTL, hotplug);
3805}
3806
3807static void gen11_hpd_irq_setup(struct drm_i915_private *dev_priv)
3808{
3809        u32 hotplug_irqs, enabled_irqs;
3810        u32 val;
3811
3812        enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_gen11);
3813        hotplug_irqs = GEN11_DE_TC_HOTPLUG_MASK | GEN11_DE_TBT_HOTPLUG_MASK;
3814
3815        val = I915_READ(GEN11_DE_HPD_IMR);
3816        val &= ~hotplug_irqs;
3817        I915_WRITE(GEN11_DE_HPD_IMR, val);
3818        POSTING_READ(GEN11_DE_HPD_IMR);
3819
3820        gen11_hpd_detection_setup(dev_priv);
3821
3822        if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3823                icp_hpd_irq_setup(dev_priv);
3824}
3825
3826static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3827{
3828        u32 val, hotplug;
3829
3830        /* Display WA #1179 WaHardHangonHotPlug: cnp */
3831        if (HAS_PCH_CNP(dev_priv)) {
3832                val = I915_READ(SOUTH_CHICKEN1);
3833                val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
3834                val |= CHASSIS_CLK_REQ_DURATION(0xf);
3835                I915_WRITE(SOUTH_CHICKEN1, val);
3836        }
3837
3838        /* Enable digital hotplug on the PCH */
3839        hotplug = I915_READ(PCH_PORT_HOTPLUG);
3840        hotplug |= PORTA_HOTPLUG_ENABLE |
3841                   PORTB_HOTPLUG_ENABLE |
3842                   PORTC_HOTPLUG_ENABLE |
3843                   PORTD_HOTPLUG_ENABLE;
3844        I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3845
3846        hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3847        hotplug |= PORTE_HOTPLUG_ENABLE;
3848        I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3849}
3850
3851static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3852{
3853        u32 hotplug_irqs, enabled_irqs;
3854
3855        hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3856        enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3857
3858        ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3859
3860        spt_hpd_detection_setup(dev_priv);
3861}
3862
3863static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3864{
3865        u32 hotplug;
3866
3867        /*
3868         * Enable digital hotplug on the CPU, and configure the DP short pulse
3869         * duration to 2ms (which is the minimum in the Display Port spec)
3870         * The pulse duration bits are reserved on HSW+.
3871         */
3872        hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3873        hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3874        hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3875                   DIGITAL_PORTA_PULSE_DURATION_2ms;
3876        I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3877}
3878
3879static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3880{
3881        u32 hotplug_irqs, enabled_irqs;
3882
3883        if (INTEL_GEN(dev_priv) >= 8) {
3884                hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3885                enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3886
3887                bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3888        } else if (INTEL_GEN(dev_priv) >= 7) {
3889                hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3890                enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3891
3892                ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3893        } else {
3894                hotplug_irqs = DE_DP_A_HOTPLUG;
3895                enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3896
3897                ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3898        }
3899
3900        ilk_hpd_detection_setup(dev_priv);
3901
3902        ibx_hpd_irq_setup(dev_priv);
3903}
3904
3905static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3906                                      u32 enabled_irqs)
3907{
3908        u32 hotplug;
3909
3910        hotplug = I915_READ(PCH_PORT_HOTPLUG);
3911        hotplug |= PORTA_HOTPLUG_ENABLE |
3912                   PORTB_HOTPLUG_ENABLE |
3913                   PORTC_HOTPLUG_ENABLE;
3914
3915        DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3916                      hotplug, enabled_irqs);
3917        hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3918
3919        /*
3920         * For BXT invert bit has to be set based on AOB design
3921         * for HPD detection logic, update it based on VBT fields.
3922         */
3923        if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3924            intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3925                hotplug |= BXT_DDIA_HPD_INVERT;
3926        if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3927            intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3928                hotplug |= BXT_DDIB_HPD_INVERT;
3929        if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3930            intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3931                hotplug |= BXT_DDIC_HPD_INVERT;
3932
3933        I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3934}
3935
3936static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3937{
3938        __bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3939}
3940
3941static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3942{
3943        u32 hotplug_irqs, enabled_irqs;
3944
3945        enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3946        hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3947
3948        bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3949
3950        __bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3951}
3952
3953static void ibx_irq_postinstall(struct drm_device *dev)
3954{
3955        struct drm_i915_private *dev_priv = to_i915(dev);
3956        u32 mask;
3957
3958        if (HAS_PCH_NOP(dev_priv))
3959                return;
3960
3961        if (HAS_PCH_IBX(dev_priv))
3962                mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3963        else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3964                mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3965        else
3966                mask = SDE_GMBUS_CPT;
3967
3968        gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR);
3969        I915_WRITE(SDEIMR, ~mask);
3970
3971        if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3972            HAS_PCH_LPT(dev_priv))
3973                ibx_hpd_detection_setup(dev_priv);
3974        else
3975                spt_hpd_detection_setup(dev_priv);
3976}
3977
3978static void gen5_gt_irq_postinstall(struct drm_device *dev)
3979{
3980        struct drm_i915_private *dev_priv = to_i915(dev);
3981        struct intel_uncore *uncore = &dev_priv->uncore;
3982        u32 pm_irqs, gt_irqs;
3983
3984        pm_irqs = gt_irqs = 0;
3985
3986        dev_priv->gt_irq_mask = ~0;
3987        if (HAS_L3_DPF(dev_priv)) {
3988                /* L3 parity interrupt is always unmasked. */
3989                dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv);
3990                gt_irqs |= GT_PARITY_ERROR(dev_priv);
3991        }
3992
3993        gt_irqs |= GT_RENDER_USER_INTERRUPT;
3994        if (IS_GEN(dev_priv, 5)) {
3995                gt_irqs |= ILK_BSD_USER_INTERRUPT;
3996        } else {
3997                gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3998        }
3999
4000        GEN3_IRQ_INIT(uncore, GT, dev_priv->gt_irq_mask, gt_irqs);
4001
4002        if (INTEL_GEN(dev_priv) >= 6) {
4003                /*
4004                 * RPS interrupts will get enabled/disabled on demand when RPS
4005                 * itself is enabled/disabled.
4006                 */
4007                if (HAS_ENGINE(dev_priv, VECS0)) {
4008                        pm_irqs |= PM_VEBOX_USER_INTERRUPT;
4009                        dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT;
4010                }
4011
4012                dev_priv->pm_imr = 0xffffffff;
4013                GEN3_IRQ_INIT(uncore, GEN6_PM, dev_priv->pm_imr, pm_irqs);
4014        }
4015}
4016
4017static int ironlake_irq_postinstall(struct drm_device *dev)
4018{
4019        struct drm_i915_private *dev_priv = to_i915(dev);
4020        struct intel_uncore *uncore = &dev_priv->uncore;
4021        u32 display_mask, extra_mask;
4022
4023        if (INTEL_GEN(dev_priv) >= 7) {
4024                display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
4025                                DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
4026                extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
4027                              DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
4028                              DE_DP_A_HOTPLUG_IVB);
4029        } else {
4030                display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
4031                                DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
4032                                DE_PIPEA_CRC_DONE | DE_POISON);
4033                extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
4034                              DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
4035                              DE_DP_A_HOTPLUG);
4036        }
4037
4038        if (IS_HASWELL(dev_priv)) {
4039                gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
4040                intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
4041                display_mask |= DE_EDP_PSR_INT_HSW;
4042        }
4043
4044        dev_priv->irq_mask = ~display_mask;
4045
4046        ibx_irq_pre_postinstall(dev);
4047
4048        GEN3_IRQ_INIT(uncore, DE, dev_priv->irq_mask,
4049                      display_mask | extra_mask);
4050
4051        gen5_gt_irq_postinstall(dev);
4052
4053        ilk_hpd_detection_setup(dev_priv);
4054
4055        ibx_irq_postinstall(dev);
4056
4057        if (IS_IRONLAKE_M(dev_priv)) {
4058                /* Enable PCU event interrupts
4059                 *
4060                 * spinlocking not required here for correctness since interrupt
4061                 * setup is guaranteed to run in single-threaded context. But we
4062                 * need it to make the assert_spin_locked happy. */
4063                spin_lock_irq(&dev_priv->irq_lock);
4064                ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
4065                spin_unlock_irq(&dev_priv->irq_lock);
4066        }
4067
4068        return 0;
4069}
4070
4071void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
4072{
4073        lockdep_assert_held(&dev_priv->irq_lock);
4074
4075        if (dev_priv->display_irqs_enabled)
4076                return;
4077
4078        dev_priv->display_irqs_enabled = true;
4079
4080        if (intel_irqs_enabled(dev_priv)) {
4081                vlv_display_irq_reset(dev_priv);
4082                vlv_display_irq_postinstall(dev_priv);
4083        }
4084}
4085
4086void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
4087{
4088        lockdep_assert_held(&dev_priv->irq_lock);
4089
4090        if (!dev_priv->display_irqs_enabled)
4091                return;
4092
4093        dev_priv->display_irqs_enabled = false;
4094
4095        if (intel_irqs_enabled(dev_priv))
4096                vlv_display_irq_reset(dev_priv);
4097}
4098
4099
4100static int valleyview_irq_postinstall(struct drm_device *dev)
4101{
4102        struct drm_i915_private *dev_priv = to_i915(dev);
4103
4104        gen5_gt_irq_postinstall(dev);
4105
4106        spin_lock_irq(&dev_priv->irq_lock);
4107        if (dev_priv->display_irqs_enabled)
4108                vlv_display_irq_postinstall(dev_priv);
4109        spin_unlock_irq(&dev_priv->irq_lock);
4110
4111        I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
4112        POSTING_READ(VLV_MASTER_IER);
4113
4114        return 0;
4115}
4116
4117static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
4118{
4119        struct intel_uncore *uncore = &dev_priv->uncore;
4120
4121        /* These are interrupts we'll toggle with the ring mask register */
4122        u32 gt_interrupts[] = {
4123                (GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
4124                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
4125                 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
4126                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT),
4127
4128                (GT_RENDER_USER_INTERRUPT << GEN8_VCS0_IRQ_SHIFT |
4129                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS0_IRQ_SHIFT |
4130                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
4131                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT),
4132
4133                0,
4134
4135                (GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
4136                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT)
4137        };
4138
4139        dev_priv->pm_ier = 0x0;
4140        dev_priv->pm_imr = ~dev_priv->pm_ier;
4141        GEN8_IRQ_INIT_NDX(uncore, GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
4142        GEN8_IRQ_INIT_NDX(uncore, GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
4143        /*
4144         * RPS interrupts will get enabled/disabled on demand when RPS itself
4145         * is enabled/disabled. Same wil be the case for GuC interrupts.
4146         */
4147        GEN8_IRQ_INIT_NDX(uncore, GT, 2, dev_priv->pm_imr, dev_priv->pm_ier);
4148        GEN8_IRQ_INIT_NDX(uncore, GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
4149}
4150
4151static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
4152{
4153        struct intel_uncore *uncore = &dev_priv->uncore;
4154
4155        u32 de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
4156        u32 de_pipe_enables;
4157        u32 de_port_masked = GEN8_AUX_CHANNEL_A;
4158        u32 de_port_enables;
4159        u32 de_misc_masked = GEN8_DE_EDP_PSR;
4160        enum pipe pipe;
4161
4162        if (INTEL_GEN(dev_priv) <= 10)
4163                de_misc_masked |= GEN8_DE_MISC_GSE;
4164
4165        if (INTEL_GEN(dev_priv) >= 9) {
4166                de_pipe_masked |= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
4167                de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
4168                                  GEN9_AUX_CHANNEL_D;
4169                if (IS_GEN9_LP(dev_priv))
4170                        de_port_masked |= BXT_DE_PORT_GMBUS;
4171        } else {
4172                de_pipe_masked |= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
4173        }
4174
4175        if (INTEL_GEN(dev_priv) >= 11)
4176                de_port_masked |= ICL_AUX_CHANNEL_E;
4177
4178        if (IS_CNL_WITH_PORT_F(dev_priv) || INTEL_GEN(dev_priv) >= 11)
4179                de_port_masked |= CNL_AUX_CHANNEL_F;
4180
4181        de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
4182                                           GEN8_PIPE_FIFO_UNDERRUN;
4183
4184        de_port_enables = de_port_masked;
4185        if (IS_GEN9_LP(dev_priv))
4186                de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
4187        else if (IS_BROADWELL(dev_priv))
4188                de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
4189
4190        gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
4191        intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
4192
4193        for_each_pipe(dev_priv, pipe) {
4194                dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
4195
4196                if (intel_display_power_is_enabled(dev_priv,
4197                                POWER_DOMAIN_PIPE(pipe)))
4198                        GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
4199                                          dev_priv->de_irq_mask[pipe],
4200                                          de_pipe_enables);
4201        }
4202
4203        GEN3_IRQ_INIT(uncore, GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
4204        GEN3_IRQ_INIT(uncore, GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
4205
4206        if (INTEL_GEN(dev_priv) >= 11) {
4207                u32 de_hpd_masked = 0;
4208                u32 de_hpd_enables = GEN11_DE_TC_HOTPLUG_MASK |
4209                                     GEN11_DE_TBT_HOTPLUG_MASK;
4210
4211                GEN3_IRQ_INIT(uncore, GEN11_DE_HPD_, ~de_hpd_masked,
4212                              de_hpd_enables);
4213                gen11_hpd_detection_setup(dev_priv);
4214        } else if (IS_GEN9_LP(dev_priv)) {
4215                bxt_hpd_detection_setup(dev_priv);
4216        } else if (IS_BROADWELL(dev_priv)) {
4217                ilk_hpd_detection_setup(dev_priv);
4218        }
4219}
4220
4221static int gen8_irq_postinstall(struct drm_device *dev)
4222{
4223        struct drm_i915_private *dev_priv = to_i915(dev);
4224
4225        if (HAS_PCH_SPLIT(dev_priv))
4226                ibx_irq_pre_postinstall(dev);
4227
4228        gen8_gt_irq_postinstall(dev_priv);
4229        gen8_de_irq_postinstall(dev_priv);
4230
4231        if (HAS_PCH_SPLIT(dev_priv))
4232                ibx_irq_postinstall(dev);
4233
4234        gen8_master_intr_enable(dev_priv->uncore.regs);
4235
4236        return 0;
4237}
4238
4239static void gen11_gt_irq_postinstall(struct drm_i915_private *dev_priv)
4240{
4241        const u32 irqs = GT_RENDER_USER_INTERRUPT | GT_CONTEXT_SWITCH_INTERRUPT;
4242
4243        BUILD_BUG_ON(irqs & 0xffff0000);
4244
4245        /* Enable RCS, BCS, VCS and VECS class interrupts. */
4246        I915_WRITE(GEN11_RENDER_COPY_INTR_ENABLE, irqs << 16 | irqs);
4247        I915_WRITE(GEN11_VCS_VECS_INTR_ENABLE,    irqs << 16 | irqs);
4248
4249        /* Unmask irqs on RCS, BCS, VCS and VECS engines. */
4250        I915_WRITE(GEN11_RCS0_RSVD_INTR_MASK,   ~(irqs << 16));
4251        I915_WRITE(GEN11_BCS_RSVD_INTR_MASK,    ~(irqs << 16));
4252        I915_WRITE(GEN11_VCS0_VCS1_INTR_MASK,   ~(irqs | irqs << 16));
4253        I915_WRITE(GEN11_VCS2_VCS3_INTR_MASK,   ~(irqs | irqs << 16));
4254        I915_WRITE(GEN11_VECS0_VECS1_INTR_MASK, ~(irqs | irqs << 16));
4255
4256        /*
4257         * RPS interrupts will get enabled/disabled on demand when RPS itself
4258         * is enabled/disabled.
4259         */
4260        dev_priv->pm_ier = 0x0;
4261        dev_priv->pm_imr = ~dev_priv->pm_ier;
4262        I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0);
4263        I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_MASK,  ~0);
4264
4265        /* Same thing for GuC interrupts */
4266        I915_WRITE(GEN11_GUC_SG_INTR_ENABLE, 0);
4267        I915_WRITE(GEN11_GUC_SG_INTR_MASK,  ~0);
4268}
4269
4270static void icp_irq_postinstall(struct drm_device *dev)
4271{
4272        struct drm_i915_private *dev_priv = to_i915(dev);
4273        u32 mask = SDE_GMBUS_ICP;
4274
4275        WARN_ON(I915_READ(SDEIER) != 0);
4276        I915_WRITE(SDEIER, 0xffffffff);
4277        POSTING_READ(SDEIER);
4278
4279        gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR);
4280        I915_WRITE(SDEIMR, ~mask);
4281
4282        icp_hpd_detection_setup(dev_priv);
4283}
4284
4285static int gen11_irq_postinstall(struct drm_device *dev)
4286{
4287        struct drm_i915_private *dev_priv = dev->dev_private;
4288        struct intel_uncore *uncore = &dev_priv->uncore;
4289        u32 gu_misc_masked = GEN11_GU_MISC_GSE;
4290
4291        if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
4292                icp_irq_postinstall(dev);
4293
4294        gen11_gt_irq_postinstall(dev_priv);
4295        gen8_de_irq_postinstall(dev_priv);
4296
4297        GEN3_IRQ_INIT(uncore, GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked);
4298
4299        I915_WRITE(GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE);
4300
4301        gen11_master_intr_enable(dev_priv->uncore.regs);
4302        POSTING_READ(GEN11_GFX_MSTR_IRQ);
4303
4304        return 0;
4305}
4306
4307static int cherryview_irq_postinstall(struct drm_device *dev)
4308{
4309        struct drm_i915_private *dev_priv = to_i915(dev);
4310
4311        gen8_gt_irq_postinstall(dev_priv);
4312
4313        spin_lock_irq(&dev_priv->irq_lock);
4314        if (dev_priv->display_irqs_enabled)
4315                vlv_display_irq_postinstall(dev_priv);
4316        spin_unlock_irq(&dev_priv->irq_lock);
4317
4318        I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
4319        POSTING_READ(GEN8_MASTER_IRQ);
4320
4321        return 0;
4322}
4323
4324static void i8xx_irq_reset(struct drm_device *dev)
4325{
4326        struct drm_i915_private *dev_priv = to_i915(dev);
4327        struct intel_uncore *uncore = &dev_priv->uncore;
4328
4329        i9xx_pipestat_irq_reset(dev_priv);
4330
4331        GEN2_IRQ_RESET(uncore);
4332}
4333
4334static int i8xx_irq_postinstall(struct drm_device *dev)
4335{
4336        struct drm_i915_private *dev_priv = to_i915(dev);
4337        struct intel_uncore *uncore = &dev_priv->uncore;
4338        u16 enable_mask;
4339
4340        intel_uncore_write16(uncore,
4341                             EMR,
4342                             ~(I915_ERROR_PAGE_TABLE |
4343                               I915_ERROR_MEMORY_REFRESH));
4344
4345        /* Unmask the interrupts that we always want on. */
4346        dev_priv->irq_mask =
4347                ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4348                  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4349                  I915_MASTER_ERROR_INTERRUPT);
4350
4351        enable_mask =
4352                I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4353                I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4354                I915_MASTER_ERROR_INTERRUPT |
4355                I915_USER_INTERRUPT;
4356
4357        GEN2_IRQ_INIT(uncore, dev_priv->irq_mask, enable_mask);
4358
4359        /* Interrupt setup is already guaranteed to be single-threaded, this is
4360         * just to make the assert_spin_locked check happy. */
4361        spin_lock_irq(&dev_priv->irq_lock);
4362        i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4363        i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4364        spin_unlock_irq(&dev_priv->irq_lock);
4365
4366        return 0;
4367}
4368
4369static void i8xx_error_irq_ack(struct drm_i915_private *i915,
4370                               u16 *eir, u16 *eir_stuck)
4371{
4372        struct intel_uncore *uncore = &i915->uncore;
4373        u16 emr;
4374
4375        *eir = intel_uncore_read16(uncore, EIR);
4376
4377        if (*eir)
4378                intel_uncore_write16(uncore, EIR, *eir);
4379
4380        *eir_stuck = intel_uncore_read16(uncore, EIR);
4381        if (*eir_stuck == 0)
4382                return;
4383
4384        /*
4385         * Toggle all EMR bits to make sure we get an edge
4386         * in the ISR master error bit if we don't clear
4387         * all the EIR bits. Otherwise the edge triggered
4388         * IIR on i965/g4x wouldn't notice that an interrupt
4389         * is still pending. Also some EIR bits can't be
4390         * cleared except by handling the underlying error
4391         * (or by a GPU reset) so we mask any bit that
4392         * remains set.
4393         */
4394        emr = intel_uncore_read16(uncore, EMR);
4395        intel_uncore_write16(uncore, EMR, 0xffff);
4396        intel_uncore_write16(uncore, EMR, emr | *eir_stuck);
4397}
4398
4399static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv,
4400                                   u16 eir, u16 eir_stuck)
4401{
4402        DRM_DEBUG("Master Error: EIR 0x%04x\n", eir);
4403
4404        if (eir_stuck)
4405                DRM_DEBUG_DRIVER("EIR stuck: 0x%04x, masked\n", eir_stuck);
4406}
4407
4408static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv,
4409                               u32 *eir, u32 *eir_stuck)
4410{
4411        u32 emr;
4412
4413        *eir = I915_READ(EIR);
4414
4415        I915_WRITE(EIR, *eir);
4416
4417        *eir_stuck = I915_READ(EIR);
4418        if (*eir_stuck == 0)
4419                return;
4420
4421        /*
4422         * Toggle all EMR bits to make sure we get an edge
4423         * in the ISR master error bit if we don't clear
4424         * all the EIR bits. Otherwise the edge triggered
4425         * IIR on i965/g4x wouldn't notice that an interrupt
4426         * is still pending. Also some EIR bits can't be
4427         * cleared except by handling the underlying error
4428         * (or by a GPU reset) so we mask any bit that
4429         * remains set.
4430         */
4431        emr = I915_READ(EMR);
4432        I915_WRITE(EMR, 0xffffffff);
4433        I915_WRITE(EMR, emr | *eir_stuck);
4434}
4435
4436static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv,
4437                                   u32 eir, u32 eir_stuck)
4438{
4439        DRM_DEBUG("Master Error, EIR 0x%08x\n", eir);
4440
4441        if (eir_stuck)
4442                DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masked\n", eir_stuck);
4443}
4444
4445static irqreturn_t i8xx_irq_handler(int irq, void *arg)
4446{
4447        struct drm_device *dev = arg;
4448        struct drm_i915_private *dev_priv = to_i915(dev);
4449        irqreturn_t ret = IRQ_NONE;
4450
4451        if (!intel_irqs_enabled(dev_priv))
4452                return IRQ_NONE;
4453
4454        /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4455        disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4456
4457        do {
4458                u32 pipe_stats[I915_MAX_PIPES] = {};
4459                u16 eir = 0, eir_stuck = 0;
4460                u16 iir;
4461
4462                iir = intel_uncore_read16(&dev_priv->uncore, GEN2_IIR);
4463                if (iir == 0)
4464                        break;
4465
4466                ret = IRQ_HANDLED;
4467
4468                /* Call regardless, as some status bits might not be
4469                 * signalled in iir */
4470                i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4471
4472                if (iir & I915_MASTER_ERROR_INTERRUPT)
4473                        i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4474
4475                intel_uncore_write16(&dev_priv->uncore, GEN2_IIR, iir);
4476
4477                if (iir & I915_USER_INTERRUPT)
4478                        intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]);
4479
4480                if (iir & I915_MASTER_ERROR_INTERRUPT)
4481                        i8xx_error_irq_handler(dev_priv, eir, eir_stuck);
4482
4483                i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4484        } while (0);
4485
4486        enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4487
4488        return ret;
4489}
4490
4491static void i915_irq_reset(struct drm_device *dev)
4492{
4493        struct drm_i915_private *dev_priv = to_i915(dev);
4494        struct intel_uncore *uncore = &dev_priv->uncore;
4495
4496        if (I915_HAS_HOTPLUG(dev_priv)) {
4497                i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4498                I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4499        }
4500
4501        i9xx_pipestat_irq_reset(dev_priv);
4502
4503        GEN3_IRQ_RESET(uncore, GEN2_);
4504}
4505
4506static int i915_irq_postinstall(struct drm_device *dev)
4507{
4508        struct drm_i915_private *dev_priv = to_i915(dev);
4509        struct intel_uncore *uncore = &dev_priv->uncore;
4510        u32 enable_mask;
4511
4512        I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE |
4513                          I915_ERROR_MEMORY_REFRESH));
4514
4515        /* Unmask the interrupts that we always want on. */
4516        dev_priv->irq_mask =
4517                ~(I915_ASLE_INTERRUPT |
4518                  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4519                  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4520                  I915_MASTER_ERROR_INTERRUPT);
4521
4522        enable_mask =
4523                I915_ASLE_INTERRUPT |
4524                I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4525                I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4526                I915_MASTER_ERROR_INTERRUPT |
4527                I915_USER_INTERRUPT;
4528
4529        if (I915_HAS_HOTPLUG(dev_priv)) {
4530                /* Enable in IER... */
4531                enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4532                /* and unmask in IMR */
4533                dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4534        }
4535
4536        GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
4537
4538        /* Interrupt setup is already guaranteed to be single-threaded, this is
4539         * just to make the assert_spin_locked check happy. */
4540        spin_lock_irq(&dev_priv->irq_lock);
4541        i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4542        i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4543        spin_unlock_irq(&dev_priv->irq_lock);
4544
4545        i915_enable_asle_pipestat(dev_priv);
4546
4547        return 0;
4548}
4549
4550static irqreturn_t i915_irq_handler(int irq, void *arg)
4551{
4552        struct drm_device *dev = arg;
4553        struct drm_i915_private *dev_priv = to_i915(dev);
4554        irqreturn_t ret = IRQ_NONE;
4555
4556        if (!intel_irqs_enabled(dev_priv))
4557                return IRQ_NONE;
4558
4559        /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4560        disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4561
4562        do {
4563                u32 pipe_stats[I915_MAX_PIPES] = {};
4564                u32 eir = 0, eir_stuck = 0;
4565                u32 hotplug_status = 0;
4566                u32 iir;
4567
4568                iir = I915_READ(GEN2_IIR);
4569                if (iir == 0)
4570                        break;
4571
4572                ret = IRQ_HANDLED;
4573
4574                if (I915_HAS_HOTPLUG(dev_priv) &&
4575                    iir & I915_DISPLAY_PORT_INTERRUPT)
4576                        hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4577
4578                /* Call regardless, as some status bits might not be
4579                 * signalled in iir */
4580                i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4581
4582                if (iir & I915_MASTER_ERROR_INTERRUPT)
4583                        i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4584
4585                I915_WRITE(GEN2_IIR, iir);
4586
4587                if (iir & I915_USER_INTERRUPT)
4588                        intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]);
4589
4590                if (iir & I915_MASTER_ERROR_INTERRUPT)
4591                        i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4592
4593                if (hotplug_status)
4594                        i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4595
4596                i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4597        } while (0);
4598
4599        enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4600
4601        return ret;
4602}
4603
4604static void i965_irq_reset(struct drm_device *dev)
4605{
4606        struct drm_i915_private *dev_priv = to_i915(dev);
4607        struct intel_uncore *uncore = &dev_priv->uncore;
4608
4609        i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4610        I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4611
4612        i9xx_pipestat_irq_reset(dev_priv);
4613
4614        GEN3_IRQ_RESET(uncore, GEN2_);
4615}
4616
4617static int i965_irq_postinstall(struct drm_device *dev)
4618{
4619        struct drm_i915_private *dev_priv = to_i915(dev);
4620        struct intel_uncore *uncore = &dev_priv->uncore;
4621        u32 enable_mask;
4622        u32 error_mask;
4623
4624        /*
4625         * Enable some error detection, note the instruction error mask
4626         * bit is reserved, so we leave it masked.
4627         */
4628        if (IS_G4X(dev_priv)) {
4629                error_mask = ~(GM45_ERROR_PAGE_TABLE |
4630                               GM45_ERROR_MEM_PRIV |
4631                               GM45_ERROR_CP_PRIV |
4632                               I915_ERROR_MEMORY_REFRESH);
4633        } else {
4634                error_mask = ~(I915_ERROR_PAGE_TABLE |
4635                               I915_ERROR_MEMORY_REFRESH);
4636        }
4637        I915_WRITE(EMR, error_mask);
4638
4639        /* Unmask the interrupts that we always want on. */
4640        dev_priv->irq_mask =
4641                ~(I915_ASLE_INTERRUPT |
4642                  I915_DISPLAY_PORT_INTERRUPT |
4643                  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4644                  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4645                  I915_MASTER_ERROR_INTERRUPT);
4646
4647        enable_mask =
4648                I915_ASLE_INTERRUPT |
4649                I915_DISPLAY_PORT_INTERRUPT |
4650                I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4651                I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4652                I915_MASTER_ERROR_INTERRUPT |
4653                I915_USER_INTERRUPT;
4654
4655        if (IS_G4X(dev_priv))
4656                enable_mask |= I915_BSD_USER_INTERRUPT;
4657
4658        GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
4659
4660        /* Interrupt setup is already guaranteed to be single-threaded, this is
4661         * just to make the assert_spin_locked check happy. */
4662        spin_lock_irq(&dev_priv->irq_lock);
4663        i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4664        i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4665        i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4666        spin_unlock_irq(&dev_priv->irq_lock);
4667
4668        i915_enable_asle_pipestat(dev_priv);
4669
4670        return 0;
4671}
4672
4673static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4674{
4675        u32 hotplug_en;
4676
4677        lockdep_assert_held(&dev_priv->irq_lock);
4678
4679        /* Note HDMI and DP share hotplug bits */
4680        /* enable bits are the same for all generations */
4681        hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4682        /* Programming the CRT detection parameters tends
4683           to generate a spurious hotplug event about three
4684           seconds later.  So just do it once.
4685        */
4686        if (IS_G4X(dev_priv))
4687                hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4688        hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4689
4690        /* Ignore TV since it's buggy */
4691        i915_hotplug_interrupt_update_locked(dev_priv,
4692                                             HOTPLUG_INT_EN_MASK |
4693                                             CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4694                                             CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4695                                             hotplug_en);
4696}
4697
4698static irqreturn_t i965_irq_handler(int irq, void *arg)
4699{
4700        struct drm_device *dev = arg;
4701        struct drm_i915_private *dev_priv = to_i915(dev);
4702        irqreturn_t ret = IRQ_NONE;
4703
4704        if (!intel_irqs_enabled(dev_priv))
4705                return IRQ_NONE;
4706
4707        /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4708        disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4709
4710        do {
4711                u32 pipe_stats[I915_MAX_PIPES] = {};
4712                u32 eir = 0, eir_stuck = 0;
4713                u32 hotplug_status = 0;
4714                u32 iir;
4715
4716                iir = I915_READ(GEN2_IIR);
4717                if (iir == 0)
4718                        break;
4719
4720                ret = IRQ_HANDLED;
4721
4722                if (iir & I915_DISPLAY_PORT_INTERRUPT)
4723                        hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4724
4725                /* Call regardless, as some status bits might not be
4726                 * signalled in iir */
4727                i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4728
4729                if (iir & I915_MASTER_ERROR_INTERRUPT)
4730                        i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4731
4732                I915_WRITE(GEN2_IIR, iir);
4733
4734                if (iir & I915_USER_INTERRUPT)
4735                        intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]);
4736
4737                if (iir & I915_BSD_USER_INTERRUPT)
4738                        intel_engine_breadcrumbs_irq(dev_priv->engine[VCS0]);
4739
4740                if (iir & I915_MASTER_ERROR_INTERRUPT)
4741                        i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4742
4743                if (hotplug_status)
4744                        i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4745
4746                i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4747        } while (0);
4748
4749        enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4750
4751        return ret;
4752}
4753
4754/**
4755 * intel_irq_init - initializes irq support
4756 * @dev_priv: i915 device instance
4757 *
4758 * This function initializes all the irq support including work items, timers
4759 * and all the vtables. It does not setup the interrupt itself though.
4760 */
4761void intel_irq_init(struct drm_i915_private *dev_priv)
4762{
4763        struct drm_device *dev = &dev_priv->drm;
4764        struct intel_rps *rps = &dev_priv->gt_pm.rps;
4765        int i;
4766
4767        if (IS_I945GM(dev_priv))
4768                i945gm_vblank_work_init(dev_priv);
4769
4770        intel_hpd_init_work(dev_priv);
4771
4772        INIT_WORK(&rps->work, gen6_pm_rps_work);
4773
4774        INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4775        for (i = 0; i < MAX_L3_SLICES; ++i)
4776                dev_priv->l3_parity.remap_info[i] = NULL;
4777
4778        if (HAS_GUC_SCHED(dev_priv) && INTEL_GEN(dev_priv) < 11)
4779                dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT;
4780
4781        /* Let's track the enabled rps events */
4782        if (IS_VALLEYVIEW(dev_priv))
4783                /* WaGsvRC0ResidencyMethod:vlv */
4784                dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4785        else
4786                dev_priv->pm_rps_events = (GEN6_PM_RP_UP_THRESHOLD |
4787                                           GEN6_PM_RP_DOWN_THRESHOLD |
4788                                           GEN6_PM_RP_DOWN_TIMEOUT);
4789
4790        /* We share the register with other engine */
4791        if (INTEL_GEN(dev_priv) > 9)
4792                GEM_WARN_ON(dev_priv->pm_rps_events & 0xffff0000);
4793
4794        rps->pm_intrmsk_mbz = 0;
4795
4796        /*
4797         * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
4798         * if GEN6_PM_UP_EI_EXPIRED is masked.
4799         *
4800         * TODO: verify if this can be reproduced on VLV,CHV.
4801         */
4802        if (INTEL_GEN(dev_priv) <= 7)
4803                rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
4804
4805        if (INTEL_GEN(dev_priv) >= 8)
4806                rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
4807
4808        if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
4809                dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4810        else if (INTEL_GEN(dev_priv) >= 3)
4811                dev->driver->get_vblank_counter = i915_get_vblank_counter;
4812
4813        dev->vblank_disable_immediate = true;
4814
4815        /* Most platforms treat the display irq block as an always-on
4816         * power domain. vlv/chv can disable it at runtime and need
4817         * special care to avoid writing any of the display block registers
4818         * outside of the power domain. We defer setting up the display irqs
4819         * in this case to the runtime pm.
4820         */
4821        dev_priv->display_irqs_enabled = true;
4822        if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4823                dev_priv->display_irqs_enabled = false;
4824
4825        dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4826        /* If we have MST support, we want to avoid doing short HPD IRQ storm
4827         * detection, as short HPD storms will occur as a natural part of
4828         * sideband messaging with MST.
4829         * On older platforms however, IRQ storms can occur with both long and
4830         * short pulses, as seen on some G4x systems.
4831         */
4832        dev_priv->hotplug.hpd_short_storm_enabled = !HAS_DP_MST(dev_priv);
4833
4834        dev->driver->get_vblank_timestamp = drm_calc_vbltimestamp_from_scanoutpos;
4835        dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4836
4837        if (IS_CHERRYVIEW(dev_priv)) {
4838                dev->driver->irq_handler = cherryview_irq_handler;
4839                dev->driver->irq_preinstall = cherryview_irq_reset;
4840                dev->driver->irq_postinstall = cherryview_irq_postinstall;
4841                dev->driver->irq_uninstall = cherryview_irq_reset;
4842                dev->driver->enable_vblank = i965_enable_vblank;
4843                dev->driver->disable_vblank = i965_disable_vblank;
4844                dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4845        } else if (IS_VALLEYVIEW(dev_priv)) {
4846                dev->driver->irq_handler = valleyview_irq_handler;
4847                dev->driver->irq_preinstall = valleyview_irq_reset;
4848                dev->driver->irq_postinstall = valleyview_irq_postinstall;
4849                dev->driver->irq_uninstall = valleyview_irq_reset;
4850                dev->driver->enable_vblank = i965_enable_vblank;
4851                dev->driver->disable_vblank = i965_disable_vblank;
4852                dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4853        } else if (INTEL_GEN(dev_priv) >= 11) {
4854                dev->driver->irq_handler = gen11_irq_handler;
4855                dev->driver->irq_preinstall = gen11_irq_reset;
4856                dev->driver->irq_postinstall = gen11_irq_postinstall;
4857                dev->driver->irq_uninstall = gen11_irq_reset;
4858                dev->driver->enable_vblank = gen8_enable_vblank;
4859                dev->driver->disable_vblank = gen8_disable_vblank;
4860                dev_priv->display.hpd_irq_setup = gen11_hpd_irq_setup;
4861        } else if (INTEL_GEN(dev_priv) >= 8) {
4862                dev->driver->irq_handler = gen8_irq_handler;
4863                dev->driver->irq_preinstall = gen8_irq_reset;
4864                dev->driver->irq_postinstall = gen8_irq_postinstall;
4865                dev->driver->irq_uninstall = gen8_irq_reset;
4866                dev->driver->enable_vblank = gen8_enable_vblank;
4867                dev->driver->disable_vblank = gen8_disable_vblank;
4868                if (IS_GEN9_LP(dev_priv))
4869                        dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4870                else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
4871                        dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4872                else
4873                        dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4874        } else if (HAS_PCH_SPLIT(dev_priv)) {
4875                dev->driver->irq_handler = ironlake_irq_handler;
4876                dev->driver->irq_preinstall = ironlake_irq_reset;
4877                dev->driver->irq_postinstall = ironlake_irq_postinstall;
4878                dev->driver->irq_uninstall = ironlake_irq_reset;
4879                dev->driver->enable_vblank = ironlake_enable_vblank;
4880                dev->driver->disable_vblank = ironlake_disable_vblank;
4881                dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4882        } else {
4883                if (IS_GEN(dev_priv, 2)) {
4884                        dev->driver->irq_preinstall = i8xx_irq_reset;
4885                        dev->driver->irq_postinstall = i8xx_irq_postinstall;
4886                        dev->driver->irq_handler = i8xx_irq_handler;
4887                        dev->driver->irq_uninstall = i8xx_irq_reset;
4888                        dev->driver->enable_vblank = i8xx_enable_vblank;
4889                        dev->driver->disable_vblank = i8xx_disable_vblank;
4890                } else if (IS_I945GM(dev_priv)) {
4891                        dev->driver->irq_preinstall = i915_irq_reset;
4892                        dev->driver->irq_postinstall = i915_irq_postinstall;
4893                        dev->driver->irq_uninstall = i915_irq_reset;
4894                        dev->driver->irq_handler = i915_irq_handler;
4895                        dev->driver->enable_vblank = i945gm_enable_vblank;
4896                        dev->driver->disable_vblank = i945gm_disable_vblank;
4897                } else if (IS_GEN(dev_priv, 3)) {
4898                        dev->driver->irq_preinstall = i915_irq_reset;
4899                        dev->driver->irq_postinstall = i915_irq_postinstall;
4900                        dev->driver->irq_uninstall = i915_irq_reset;
4901                        dev->driver->irq_handler = i915_irq_handler;
4902                        dev->driver->enable_vblank = i8xx_enable_vblank;
4903                        dev->driver->disable_vblank = i8xx_disable_vblank;
4904                } else {
4905                        dev->driver->irq_preinstall = i965_irq_reset;
4906                        dev->driver->irq_postinstall = i965_irq_postinstall;
4907                        dev->driver->irq_uninstall = i965_irq_reset;
4908                        dev->driver->irq_handler = i965_irq_handler;
4909                        dev->driver->enable_vblank = i965_enable_vblank;
4910                        dev->driver->disable_vblank = i965_disable_vblank;
4911                }
4912                if (I915_HAS_HOTPLUG(dev_priv))
4913                        dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4914        }
4915}
4916
4917/**
4918 * intel_irq_fini - deinitializes IRQ support
4919 * @i915: i915 device instance
4920 *
4921 * This function deinitializes all the IRQ support.
4922 */
4923void intel_irq_fini(struct drm_i915_private *i915)
4924{
4925        int i;
4926
4927        if (IS_I945GM(i915))
4928                i945gm_vblank_work_fini(i915);
4929
4930        for (i = 0; i < MAX_L3_SLICES; ++i)
4931                kfree(i915->l3_parity.remap_info[i]);
4932}
4933
4934/**
4935 * intel_irq_install - enables the hardware interrupt
4936 * @dev_priv: i915 device instance
4937 *
4938 * This function enables the hardware interrupt handling, but leaves the hotplug
4939 * handling still disabled. It is called after intel_irq_init().
4940 *
4941 * In the driver load and resume code we need working interrupts in a few places
4942 * but don't want to deal with the hassle of concurrent probe and hotplug
4943 * workers. Hence the split into this two-stage approach.
4944 */
4945int intel_irq_install(struct drm_i915_private *dev_priv)
4946{
4947        /*
4948         * We enable some interrupt sources in our postinstall hooks, so mark
4949         * interrupts as enabled _before_ actually enabling them to avoid
4950         * special cases in our ordering checks.
4951         */
4952        dev_priv->runtime_pm.irqs_enabled = true;
4953
4954        return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
4955}
4956
4957/**
4958 * intel_irq_uninstall - finilizes all irq handling
4959 * @dev_priv: i915 device instance
4960 *
4961 * This stops interrupt and hotplug handling and unregisters and frees all
4962 * resources acquired in the init functions.
4963 */
4964void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4965{
4966        drm_irq_uninstall(&dev_priv->drm);
4967        intel_hpd_cancel_work(dev_priv);
4968        dev_priv->runtime_pm.irqs_enabled = false;
4969}
4970
4971/**
4972 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4973 * @dev_priv: i915 device instance
4974 *
4975 * This function is used to disable interrupts at runtime, both in the runtime
4976 * pm and the system suspend/resume code.
4977 */
4978void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4979{
4980        dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
4981        dev_priv->runtime_pm.irqs_enabled = false;
4982        synchronize_irq(dev_priv->drm.irq);
4983}
4984
4985/**
4986 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4987 * @dev_priv: i915 device instance
4988 *
4989 * This function is used to enable interrupts at runtime, both in the runtime
4990 * pm and the system suspend/resume code.
4991 */
4992void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4993{
4994        dev_priv->runtime_pm.irqs_enabled = true;
4995        dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
4996        dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);
4997}
4998