linux/drivers/gpu/drm/i915/i915_perf.c
<<
>>
Prefs
   1/*
   2 * Copyright © 2015-2016 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *   Robert Bragg <robert@sixbynine.org>
  25 */
  26
  27
  28/**
  29 * DOC: i915 Perf Overview
  30 *
  31 * Gen graphics supports a large number of performance counters that can help
  32 * driver and application developers understand and optimize their use of the
  33 * GPU.
  34 *
  35 * This i915 perf interface enables userspace to configure and open a file
  36 * descriptor representing a stream of GPU metrics which can then be read() as
  37 * a stream of sample records.
  38 *
  39 * The interface is particularly suited to exposing buffered metrics that are
  40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
  41 *
  42 * Streams representing a single context are accessible to applications with a
  43 * corresponding drm file descriptor, such that OpenGL can use the interface
  44 * without special privileges. Access to system-wide metrics requires root
  45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid
  46 * sysctl option.
  47 *
  48 */
  49
  50/**
  51 * DOC: i915 Perf History and Comparison with Core Perf
  52 *
  53 * The interface was initially inspired by the core Perf infrastructure but
  54 * some notable differences are:
  55 *
  56 * i915 perf file descriptors represent a "stream" instead of an "event"; where
  57 * a perf event primarily corresponds to a single 64bit value, while a stream
  58 * might sample sets of tightly-coupled counters, depending on the
  59 * configuration.  For example the Gen OA unit isn't designed to support
  60 * orthogonal configurations of individual counters; it's configured for a set
  61 * of related counters. Samples for an i915 perf stream capturing OA metrics
  62 * will include a set of counter values packed in a compact HW specific format.
  63 * The OA unit supports a number of different packing formats which can be
  64 * selected by the user opening the stream. Perf has support for grouping
  65 * events, but each event in the group is configured, validated and
  66 * authenticated individually with separate system calls.
  67 *
  68 * i915 perf stream configurations are provided as an array of u64 (key,value)
  69 * pairs, instead of a fixed struct with multiple miscellaneous config members,
  70 * interleaved with event-type specific members.
  71 *
  72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
  73 * The supported metrics are being written to memory by the GPU unsynchronized
  74 * with the CPU, using HW specific packing formats for counter sets. Sometimes
  75 * the constraints on HW configuration require reports to be filtered before it
  76 * would be acceptable to expose them to unprivileged applications - to hide
  77 * the metrics of other processes/contexts. For these use cases a read() based
  78 * interface is a good fit, and provides an opportunity to filter data as it
  79 * gets copied from the GPU mapped buffers to userspace buffers.
  80 *
  81 *
  82 * Issues hit with first prototype based on Core Perf
  83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  84 *
  85 * The first prototype of this driver was based on the core perf
  86 * infrastructure, and while we did make that mostly work, with some changes to
  87 * perf, we found we were breaking or working around too many assumptions baked
  88 * into perf's currently cpu centric design.
  89 *
  90 * In the end we didn't see a clear benefit to making perf's implementation and
  91 * interface more complex by changing design assumptions while we knew we still
  92 * wouldn't be able to use any existing perf based userspace tools.
  93 *
  94 * Also considering the Gen specific nature of the Observability hardware and
  95 * how userspace will sometimes need to combine i915 perf OA metrics with
  96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
  97 * expecting the interface to be used by a platform specific userspace such as
  98 * OpenGL or tools. This is to say; we aren't inherently missing out on having
  99 * a standard vendor/architecture agnostic interface by not using perf.
 100 *
 101 *
 102 * For posterity, in case we might re-visit trying to adapt core perf to be
 103 * better suited to exposing i915 metrics these were the main pain points we
 104 * hit:
 105 *
 106 * - The perf based OA PMU driver broke some significant design assumptions:
 107 *
 108 *   Existing perf pmus are used for profiling work on a cpu and we were
 109 *   introducing the idea of _IS_DEVICE pmus with different security
 110 *   implications, the need to fake cpu-related data (such as user/kernel
 111 *   registers) to fit with perf's current design, and adding _DEVICE records
 112 *   as a way to forward device-specific status records.
 113 *
 114 *   The OA unit writes reports of counters into a circular buffer, without
 115 *   involvement from the CPU, making our PMU driver the first of a kind.
 116 *
 117 *   Given the way we were periodically forward data from the GPU-mapped, OA
 118 *   buffer to perf's buffer, those bursts of sample writes looked to perf like
 119 *   we were sampling too fast and so we had to subvert its throttling checks.
 120 *
 121 *   Perf supports groups of counters and allows those to be read via
 122 *   transactions internally but transactions currently seem designed to be
 123 *   explicitly initiated from the cpu (say in response to a userspace read())
 124 *   and while we could pull a report out of the OA buffer we can't
 125 *   trigger a report from the cpu on demand.
 126 *
 127 *   Related to being report based; the OA counters are configured in HW as a
 128 *   set while perf generally expects counter configurations to be orthogonal.
 129 *   Although counters can be associated with a group leader as they are
 130 *   opened, there's no clear precedent for being able to provide group-wide
 131 *   configuration attributes (for example we want to let userspace choose the
 132 *   OA unit report format used to capture all counters in a set, or specify a
 133 *   GPU context to filter metrics on). We avoided using perf's grouping
 134 *   feature and forwarded OA reports to userspace via perf's 'raw' sample
 135 *   field. This suited our userspace well considering how coupled the counters
 136 *   are when dealing with normalizing. It would be inconvenient to split
 137 *   counters up into separate events, only to require userspace to recombine
 138 *   them. For Mesa it's also convenient to be forwarded raw, periodic reports
 139 *   for combining with the side-band raw reports it captures using
 140 *   MI_REPORT_PERF_COUNT commands.
 141 *
 142 *   - As a side note on perf's grouping feature; there was also some concern
 143 *     that using PERF_FORMAT_GROUP as a way to pack together counter values
 144 *     would quite drastically inflate our sample sizes, which would likely
 145 *     lower the effective sampling resolutions we could use when the available
 146 *     memory bandwidth is limited.
 147 *
 148 *     With the OA unit's report formats, counters are packed together as 32
 149 *     or 40bit values, with the largest report size being 256 bytes.
 150 *
 151 *     PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
 152 *     documented ordering to the values, implying PERF_FORMAT_ID must also be
 153 *     used to add a 64bit ID before each value; giving 16 bytes per counter.
 154 *
 155 *   Related to counter orthogonality; we can't time share the OA unit, while
 156 *   event scheduling is a central design idea within perf for allowing
 157 *   userspace to open + enable more events than can be configured in HW at any
 158 *   one time.  The OA unit is not designed to allow re-configuration while in
 159 *   use. We can't reconfigure the OA unit without losing internal OA unit
 160 *   state which we can't access explicitly to save and restore. Reconfiguring
 161 *   the OA unit is also relatively slow, involving ~100 register writes. From
 162 *   userspace Mesa also depends on a stable OA configuration when emitting
 163 *   MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
 164 *   disabled while there are outstanding MI_RPC commands lest we hang the
 165 *   command streamer.
 166 *
 167 *   The contents of sample records aren't extensible by device drivers (i.e.
 168 *   the sample_type bits). As an example; Sourab Gupta had been looking to
 169 *   attach GPU timestamps to our OA samples. We were shoehorning OA reports
 170 *   into sample records by using the 'raw' field, but it's tricky to pack more
 171 *   than one thing into this field because events/core.c currently only lets a
 172 *   pmu give a single raw data pointer plus len which will be copied into the
 173 *   ring buffer. To include more than the OA report we'd have to copy the
 174 *   report into an intermediate larger buffer. I'd been considering allowing a
 175 *   vector of data+len values to be specified for copying the raw data, but
 176 *   it felt like a kludge to being using the raw field for this purpose.
 177 *
 178 * - It felt like our perf based PMU was making some technical compromises
 179 *   just for the sake of using perf:
 180 *
 181 *   perf_event_open() requires events to either relate to a pid or a specific
 182 *   cpu core, while our device pmu related to neither.  Events opened with a
 183 *   pid will be automatically enabled/disabled according to the scheduling of
 184 *   that process - so not appropriate for us. When an event is related to a
 185 *   cpu id, perf ensures pmu methods will be invoked via an inter process
 186 *   interrupt on that core. To avoid invasive changes our userspace opened OA
 187 *   perf events for a specific cpu. This was workable but it meant the
 188 *   majority of the OA driver ran in atomic context, including all OA report
 189 *   forwarding, which wasn't really necessary in our case and seems to make
 190 *   our locking requirements somewhat complex as we handled the interaction
 191 *   with the rest of the i915 driver.
 192 */
 193
 194#include <linux/anon_inodes.h>
 195#include <linux/sizes.h>
 196#include <linux/uuid.h>
 197
 198#include "gem/i915_gem_context.h"
 199#include "gem/i915_gem_pm.h"
 200#include "gt/intel_lrc_reg.h"
 201
 202#include "i915_drv.h"
 203#include "i915_oa_hsw.h"
 204#include "i915_oa_bdw.h"
 205#include "i915_oa_chv.h"
 206#include "i915_oa_sklgt2.h"
 207#include "i915_oa_sklgt3.h"
 208#include "i915_oa_sklgt4.h"
 209#include "i915_oa_bxt.h"
 210#include "i915_oa_kblgt2.h"
 211#include "i915_oa_kblgt3.h"
 212#include "i915_oa_glk.h"
 213#include "i915_oa_cflgt2.h"
 214#include "i915_oa_cflgt3.h"
 215#include "i915_oa_cnl.h"
 216#include "i915_oa_icl.h"
 217
 218/* HW requires this to be a power of two, between 128k and 16M, though driver
 219 * is currently generally designed assuming the largest 16M size is used such
 220 * that the overflow cases are unlikely in normal operation.
 221 */
 222#define OA_BUFFER_SIZE          SZ_16M
 223
 224#define OA_TAKEN(tail, head)    ((tail - head) & (OA_BUFFER_SIZE - 1))
 225
 226/**
 227 * DOC: OA Tail Pointer Race
 228 *
 229 * There's a HW race condition between OA unit tail pointer register updates and
 230 * writes to memory whereby the tail pointer can sometimes get ahead of what's
 231 * been written out to the OA buffer so far (in terms of what's visible to the
 232 * CPU).
 233 *
 234 * Although this can be observed explicitly while copying reports to userspace
 235 * by checking for a zeroed report-id field in tail reports, we want to account
 236 * for this earlier, as part of the oa_buffer_check to avoid lots of redundant
 237 * read() attempts.
 238 *
 239 * In effect we define a tail pointer for reading that lags the real tail
 240 * pointer by at least %OA_TAIL_MARGIN_NSEC nanoseconds, which gives enough
 241 * time for the corresponding reports to become visible to the CPU.
 242 *
 243 * To manage this we actually track two tail pointers:
 244 *  1) An 'aging' tail with an associated timestamp that is tracked until we
 245 *     can trust the corresponding data is visible to the CPU; at which point
 246 *     it is considered 'aged'.
 247 *  2) An 'aged' tail that can be used for read()ing.
 248 *
 249 * The two separate pointers let us decouple read()s from tail pointer aging.
 250 *
 251 * The tail pointers are checked and updated at a limited rate within a hrtimer
 252 * callback (the same callback that is used for delivering EPOLLIN events)
 253 *
 254 * Initially the tails are marked invalid with %INVALID_TAIL_PTR which
 255 * indicates that an updated tail pointer is needed.
 256 *
 257 * Most of the implementation details for this workaround are in
 258 * oa_buffer_check_unlocked() and _append_oa_reports()
 259 *
 260 * Note for posterity: previously the driver used to define an effective tail
 261 * pointer that lagged the real pointer by a 'tail margin' measured in bytes
 262 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
 263 * This was flawed considering that the OA unit may also automatically generate
 264 * non-periodic reports (such as on context switch) or the OA unit may be
 265 * enabled without any periodic sampling.
 266 */
 267#define OA_TAIL_MARGIN_NSEC     100000ULL
 268#define INVALID_TAIL_PTR        0xffffffff
 269
 270/* frequency for checking whether the OA unit has written new reports to the
 271 * circular OA buffer...
 272 */
 273#define POLL_FREQUENCY 200
 274#define POLL_PERIOD (NSEC_PER_SEC / POLL_FREQUENCY)
 275
 276/* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
 277static u32 i915_perf_stream_paranoid = true;
 278
 279/* The maximum exponent the hardware accepts is 63 (essentially it selects one
 280 * of the 64bit timestamp bits to trigger reports from) but there's currently
 281 * no known use case for sampling as infrequently as once per 47 thousand years.
 282 *
 283 * Since the timestamps included in OA reports are only 32bits it seems
 284 * reasonable to limit the OA exponent where it's still possible to account for
 285 * overflow in OA report timestamps.
 286 */
 287#define OA_EXPONENT_MAX 31
 288
 289#define INVALID_CTX_ID 0xffffffff
 290
 291/* On Gen8+ automatically triggered OA reports include a 'reason' field... */
 292#define OAREPORT_REASON_MASK           0x3f
 293#define OAREPORT_REASON_SHIFT          19
 294#define OAREPORT_REASON_TIMER          (1<<0)
 295#define OAREPORT_REASON_CTX_SWITCH     (1<<3)
 296#define OAREPORT_REASON_CLK_RATIO      (1<<5)
 297
 298
 299/* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
 300 *
 301 * The highest sampling frequency we can theoretically program the OA unit
 302 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
 303 *
 304 * Initialized just before we register the sysctl parameter.
 305 */
 306static int oa_sample_rate_hard_limit;
 307
 308/* Theoretically we can program the OA unit to sample every 160ns but don't
 309 * allow that by default unless root...
 310 *
 311 * The default threshold of 100000Hz is based on perf's similar
 312 * kernel.perf_event_max_sample_rate sysctl parameter.
 313 */
 314static u32 i915_oa_max_sample_rate = 100000;
 315
 316/* XXX: beware if future OA HW adds new report formats that the current
 317 * code assumes all reports have a power-of-two size and ~(size - 1) can
 318 * be used as a mask to align the OA tail pointer.
 319 */
 320static const struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = {
 321        [I915_OA_FORMAT_A13]        = { 0, 64 },
 322        [I915_OA_FORMAT_A29]        = { 1, 128 },
 323        [I915_OA_FORMAT_A13_B8_C8]  = { 2, 128 },
 324        /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
 325        [I915_OA_FORMAT_B4_C8]      = { 4, 64 },
 326        [I915_OA_FORMAT_A45_B8_C8]  = { 5, 256 },
 327        [I915_OA_FORMAT_B4_C8_A16]  = { 6, 128 },
 328        [I915_OA_FORMAT_C4_B8]      = { 7, 64 },
 329};
 330
 331static const struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = {
 332        [I915_OA_FORMAT_A12]                = { 0, 64 },
 333        [I915_OA_FORMAT_A12_B8_C8]          = { 2, 128 },
 334        [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
 335        [I915_OA_FORMAT_C4_B8]              = { 7, 64 },
 336};
 337
 338#define SAMPLE_OA_REPORT      (1<<0)
 339
 340/**
 341 * struct perf_open_properties - for validated properties given to open a stream
 342 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
 343 * @single_context: Whether a single or all gpu contexts should be monitored
 344 * @ctx_handle: A gem ctx handle for use with @single_context
 345 * @metrics_set: An ID for an OA unit metric set advertised via sysfs
 346 * @oa_format: An OA unit HW report format
 347 * @oa_periodic: Whether to enable periodic OA unit sampling
 348 * @oa_period_exponent: The OA unit sampling period is derived from this
 349 *
 350 * As read_properties_unlocked() enumerates and validates the properties given
 351 * to open a stream of metrics the configuration is built up in the structure
 352 * which starts out zero initialized.
 353 */
 354struct perf_open_properties {
 355        u32 sample_flags;
 356
 357        u64 single_context:1;
 358        u64 ctx_handle;
 359
 360        /* OA sampling state */
 361        int metrics_set;
 362        int oa_format;
 363        bool oa_periodic;
 364        int oa_period_exponent;
 365};
 366
 367static void free_oa_config(struct drm_i915_private *dev_priv,
 368                           struct i915_oa_config *oa_config)
 369{
 370        if (!PTR_ERR(oa_config->flex_regs))
 371                kfree(oa_config->flex_regs);
 372        if (!PTR_ERR(oa_config->b_counter_regs))
 373                kfree(oa_config->b_counter_regs);
 374        if (!PTR_ERR(oa_config->mux_regs))
 375                kfree(oa_config->mux_regs);
 376        kfree(oa_config);
 377}
 378
 379static void put_oa_config(struct drm_i915_private *dev_priv,
 380                          struct i915_oa_config *oa_config)
 381{
 382        if (!atomic_dec_and_test(&oa_config->ref_count))
 383                return;
 384
 385        free_oa_config(dev_priv, oa_config);
 386}
 387
 388static int get_oa_config(struct drm_i915_private *dev_priv,
 389                         int metrics_set,
 390                         struct i915_oa_config **out_config)
 391{
 392        int ret;
 393
 394        if (metrics_set == 1) {
 395                *out_config = &dev_priv->perf.oa.test_config;
 396                atomic_inc(&dev_priv->perf.oa.test_config.ref_count);
 397                return 0;
 398        }
 399
 400        ret = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
 401        if (ret)
 402                return ret;
 403
 404        *out_config = idr_find(&dev_priv->perf.metrics_idr, metrics_set);
 405        if (!*out_config)
 406                ret = -EINVAL;
 407        else
 408                atomic_inc(&(*out_config)->ref_count);
 409
 410        mutex_unlock(&dev_priv->perf.metrics_lock);
 411
 412        return ret;
 413}
 414
 415static u32 gen8_oa_hw_tail_read(struct drm_i915_private *dev_priv)
 416{
 417        return I915_READ(GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
 418}
 419
 420static u32 gen7_oa_hw_tail_read(struct drm_i915_private *dev_priv)
 421{
 422        u32 oastatus1 = I915_READ(GEN7_OASTATUS1);
 423
 424        return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
 425}
 426
 427/**
 428 * oa_buffer_check_unlocked - check for data and update tail ptr state
 429 * @dev_priv: i915 device instance
 430 *
 431 * This is either called via fops (for blocking reads in user ctx) or the poll
 432 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
 433 * if there is data available for userspace to read.
 434 *
 435 * This function is central to providing a workaround for the OA unit tail
 436 * pointer having a race with respect to what data is visible to the CPU.
 437 * It is responsible for reading tail pointers from the hardware and giving
 438 * the pointers time to 'age' before they are made available for reading.
 439 * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
 440 *
 441 * Besides returning true when there is data available to read() this function
 442 * also has the side effect of updating the oa_buffer.tails[], .aging_timestamp
 443 * and .aged_tail_idx state used for reading.
 444 *
 445 * Note: It's safe to read OA config state here unlocked, assuming that this is
 446 * only called while the stream is enabled, while the global OA configuration
 447 * can't be modified.
 448 *
 449 * Returns: %true if the OA buffer contains data, else %false
 450 */
 451static bool oa_buffer_check_unlocked(struct drm_i915_private *dev_priv)
 452{
 453        int report_size = dev_priv->perf.oa.oa_buffer.format_size;
 454        unsigned long flags;
 455        unsigned int aged_idx;
 456        u32 head, hw_tail, aged_tail, aging_tail;
 457        u64 now;
 458
 459        /* We have to consider the (unlikely) possibility that read() errors
 460         * could result in an OA buffer reset which might reset the head,
 461         * tails[] and aged_tail state.
 462         */
 463        spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
 464
 465        /* NB: The head we observe here might effectively be a little out of
 466         * date (between head and tails[aged_idx].offset if there is currently
 467         * a read() in progress.
 468         */
 469        head = dev_priv->perf.oa.oa_buffer.head;
 470
 471        aged_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
 472        aged_tail = dev_priv->perf.oa.oa_buffer.tails[aged_idx].offset;
 473        aging_tail = dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset;
 474
 475        hw_tail = dev_priv->perf.oa.ops.oa_hw_tail_read(dev_priv);
 476
 477        /* The tail pointer increases in 64 byte increments,
 478         * not in report_size steps...
 479         */
 480        hw_tail &= ~(report_size - 1);
 481
 482        now = ktime_get_mono_fast_ns();
 483
 484        /* Update the aged tail
 485         *
 486         * Flip the tail pointer available for read()s once the aging tail is
 487         * old enough to trust that the corresponding data will be visible to
 488         * the CPU...
 489         *
 490         * Do this before updating the aging pointer in case we may be able to
 491         * immediately start aging a new pointer too (if new data has become
 492         * available) without needing to wait for a later hrtimer callback.
 493         */
 494        if (aging_tail != INVALID_TAIL_PTR &&
 495            ((now - dev_priv->perf.oa.oa_buffer.aging_timestamp) >
 496             OA_TAIL_MARGIN_NSEC)) {
 497
 498                aged_idx ^= 1;
 499                dev_priv->perf.oa.oa_buffer.aged_tail_idx = aged_idx;
 500
 501                aged_tail = aging_tail;
 502
 503                /* Mark that we need a new pointer to start aging... */
 504                dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset = INVALID_TAIL_PTR;
 505                aging_tail = INVALID_TAIL_PTR;
 506        }
 507
 508        /* Update the aging tail
 509         *
 510         * We throttle aging tail updates until we have a new tail that
 511         * represents >= one report more data than is already available for
 512         * reading. This ensures there will be enough data for a successful
 513         * read once this new pointer has aged and ensures we will give the new
 514         * pointer time to age.
 515         */
 516        if (aging_tail == INVALID_TAIL_PTR &&
 517            (aged_tail == INVALID_TAIL_PTR ||
 518             OA_TAKEN(hw_tail, aged_tail) >= report_size)) {
 519                struct i915_vma *vma = dev_priv->perf.oa.oa_buffer.vma;
 520                u32 gtt_offset = i915_ggtt_offset(vma);
 521
 522                /* Be paranoid and do a bounds check on the pointer read back
 523                 * from hardware, just in case some spurious hardware condition
 524                 * could put the tail out of bounds...
 525                 */
 526                if (hw_tail >= gtt_offset &&
 527                    hw_tail < (gtt_offset + OA_BUFFER_SIZE)) {
 528                        dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset =
 529                                aging_tail = hw_tail;
 530                        dev_priv->perf.oa.oa_buffer.aging_timestamp = now;
 531                } else {
 532                        DRM_ERROR("Ignoring spurious out of range OA buffer tail pointer = %u\n",
 533                                  hw_tail);
 534                }
 535        }
 536
 537        spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
 538
 539        return aged_tail == INVALID_TAIL_PTR ?
 540                false : OA_TAKEN(aged_tail, head) >= report_size;
 541}
 542
 543/**
 544 * append_oa_status - Appends a status record to a userspace read() buffer.
 545 * @stream: An i915-perf stream opened for OA metrics
 546 * @buf: destination buffer given by userspace
 547 * @count: the number of bytes userspace wants to read
 548 * @offset: (inout): the current position for writing into @buf
 549 * @type: The kind of status to report to userspace
 550 *
 551 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
 552 * into the userspace read() buffer.
 553 *
 554 * The @buf @offset will only be updated on success.
 555 *
 556 * Returns: 0 on success, negative error code on failure.
 557 */
 558static int append_oa_status(struct i915_perf_stream *stream,
 559                            char __user *buf,
 560                            size_t count,
 561                            size_t *offset,
 562                            enum drm_i915_perf_record_type type)
 563{
 564        struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
 565
 566        if ((count - *offset) < header.size)
 567                return -ENOSPC;
 568
 569        if (copy_to_user(buf + *offset, &header, sizeof(header)))
 570                return -EFAULT;
 571
 572        (*offset) += header.size;
 573
 574        return 0;
 575}
 576
 577/**
 578 * append_oa_sample - Copies single OA report into userspace read() buffer.
 579 * @stream: An i915-perf stream opened for OA metrics
 580 * @buf: destination buffer given by userspace
 581 * @count: the number of bytes userspace wants to read
 582 * @offset: (inout): the current position for writing into @buf
 583 * @report: A single OA report to (optionally) include as part of the sample
 584 *
 585 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
 586 * properties when opening a stream, tracked as `stream->sample_flags`. This
 587 * function copies the requested components of a single sample to the given
 588 * read() @buf.
 589 *
 590 * The @buf @offset will only be updated on success.
 591 *
 592 * Returns: 0 on success, negative error code on failure.
 593 */
 594static int append_oa_sample(struct i915_perf_stream *stream,
 595                            char __user *buf,
 596                            size_t count,
 597                            size_t *offset,
 598                            const u8 *report)
 599{
 600        struct drm_i915_private *dev_priv = stream->dev_priv;
 601        int report_size = dev_priv->perf.oa.oa_buffer.format_size;
 602        struct drm_i915_perf_record_header header;
 603        u32 sample_flags = stream->sample_flags;
 604
 605        header.type = DRM_I915_PERF_RECORD_SAMPLE;
 606        header.pad = 0;
 607        header.size = stream->sample_size;
 608
 609        if ((count - *offset) < header.size)
 610                return -ENOSPC;
 611
 612        buf += *offset;
 613        if (copy_to_user(buf, &header, sizeof(header)))
 614                return -EFAULT;
 615        buf += sizeof(header);
 616
 617        if (sample_flags & SAMPLE_OA_REPORT) {
 618                if (copy_to_user(buf, report, report_size))
 619                        return -EFAULT;
 620        }
 621
 622        (*offset) += header.size;
 623
 624        return 0;
 625}
 626
 627/**
 628 * Copies all buffered OA reports into userspace read() buffer.
 629 * @stream: An i915-perf stream opened for OA metrics
 630 * @buf: destination buffer given by userspace
 631 * @count: the number of bytes userspace wants to read
 632 * @offset: (inout): the current position for writing into @buf
 633 *
 634 * Notably any error condition resulting in a short read (-%ENOSPC or
 635 * -%EFAULT) will be returned even though one or more records may
 636 * have been successfully copied. In this case it's up to the caller
 637 * to decide if the error should be squashed before returning to
 638 * userspace.
 639 *
 640 * Note: reports are consumed from the head, and appended to the
 641 * tail, so the tail chases the head?... If you think that's mad
 642 * and back-to-front you're not alone, but this follows the
 643 * Gen PRM naming convention.
 644 *
 645 * Returns: 0 on success, negative error code on failure.
 646 */
 647static int gen8_append_oa_reports(struct i915_perf_stream *stream,
 648                                  char __user *buf,
 649                                  size_t count,
 650                                  size_t *offset)
 651{
 652        struct drm_i915_private *dev_priv = stream->dev_priv;
 653        int report_size = dev_priv->perf.oa.oa_buffer.format_size;
 654        u8 *oa_buf_base = dev_priv->perf.oa.oa_buffer.vaddr;
 655        u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
 656        u32 mask = (OA_BUFFER_SIZE - 1);
 657        size_t start_offset = *offset;
 658        unsigned long flags;
 659        unsigned int aged_tail_idx;
 660        u32 head, tail;
 661        u32 taken;
 662        int ret = 0;
 663
 664        if (WARN_ON(!stream->enabled))
 665                return -EIO;
 666
 667        spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
 668
 669        head = dev_priv->perf.oa.oa_buffer.head;
 670        aged_tail_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
 671        tail = dev_priv->perf.oa.oa_buffer.tails[aged_tail_idx].offset;
 672
 673        spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
 674
 675        /*
 676         * An invalid tail pointer here means we're still waiting for the poll
 677         * hrtimer callback to give us a pointer
 678         */
 679        if (tail == INVALID_TAIL_PTR)
 680                return -EAGAIN;
 681
 682        /*
 683         * NB: oa_buffer.head/tail include the gtt_offset which we don't want
 684         * while indexing relative to oa_buf_base.
 685         */
 686        head -= gtt_offset;
 687        tail -= gtt_offset;
 688
 689        /*
 690         * An out of bounds or misaligned head or tail pointer implies a driver
 691         * bug since we validate + align the tail pointers we read from the
 692         * hardware and we are in full control of the head pointer which should
 693         * only be incremented by multiples of the report size (notably also
 694         * all a power of two).
 695         */
 696        if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
 697                      tail > OA_BUFFER_SIZE || tail % report_size,
 698                      "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
 699                      head, tail))
 700                return -EIO;
 701
 702
 703        for (/* none */;
 704             (taken = OA_TAKEN(tail, head));
 705             head = (head + report_size) & mask) {
 706                u8 *report = oa_buf_base + head;
 707                u32 *report32 = (void *)report;
 708                u32 ctx_id;
 709                u32 reason;
 710
 711                /*
 712                 * All the report sizes factor neatly into the buffer
 713                 * size so we never expect to see a report split
 714                 * between the beginning and end of the buffer.
 715                 *
 716                 * Given the initial alignment check a misalignment
 717                 * here would imply a driver bug that would result
 718                 * in an overrun.
 719                 */
 720                if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
 721                        DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
 722                        break;
 723                }
 724
 725                /*
 726                 * The reason field includes flags identifying what
 727                 * triggered this specific report (mostly timer
 728                 * triggered or e.g. due to a context switch).
 729                 *
 730                 * This field is never expected to be zero so we can
 731                 * check that the report isn't invalid before copying
 732                 * it to userspace...
 733                 */
 734                reason = ((report32[0] >> OAREPORT_REASON_SHIFT) &
 735                          OAREPORT_REASON_MASK);
 736                if (reason == 0) {
 737                        if (__ratelimit(&dev_priv->perf.oa.spurious_report_rs))
 738                                DRM_NOTE("Skipping spurious, invalid OA report\n");
 739                        continue;
 740                }
 741
 742                ctx_id = report32[2] & dev_priv->perf.oa.specific_ctx_id_mask;
 743
 744                /*
 745                 * Squash whatever is in the CTX_ID field if it's marked as
 746                 * invalid to be sure we avoid false-positive, single-context
 747                 * filtering below...
 748                 *
 749                 * Note: that we don't clear the valid_ctx_bit so userspace can
 750                 * understand that the ID has been squashed by the kernel.
 751                 */
 752                if (!(report32[0] & dev_priv->perf.oa.gen8_valid_ctx_bit))
 753                        ctx_id = report32[2] = INVALID_CTX_ID;
 754
 755                /*
 756                 * NB: For Gen 8 the OA unit no longer supports clock gating
 757                 * off for a specific context and the kernel can't securely
 758                 * stop the counters from updating as system-wide / global
 759                 * values.
 760                 *
 761                 * Automatic reports now include a context ID so reports can be
 762                 * filtered on the cpu but it's not worth trying to
 763                 * automatically subtract/hide counter progress for other
 764                 * contexts while filtering since we can't stop userspace
 765                 * issuing MI_REPORT_PERF_COUNT commands which would still
 766                 * provide a side-band view of the real values.
 767                 *
 768                 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
 769                 * to normalize counters for a single filtered context then it
 770                 * needs be forwarded bookend context-switch reports so that it
 771                 * can track switches in between MI_REPORT_PERF_COUNT commands
 772                 * and can itself subtract/ignore the progress of counters
 773                 * associated with other contexts. Note that the hardware
 774                 * automatically triggers reports when switching to a new
 775                 * context which are tagged with the ID of the newly active
 776                 * context. To avoid the complexity (and likely fragility) of
 777                 * reading ahead while parsing reports to try and minimize
 778                 * forwarding redundant context switch reports (i.e. between
 779                 * other, unrelated contexts) we simply elect to forward them
 780                 * all.
 781                 *
 782                 * We don't rely solely on the reason field to identify context
 783                 * switches since it's not-uncommon for periodic samples to
 784                 * identify a switch before any 'context switch' report.
 785                 */
 786                if (!dev_priv->perf.oa.exclusive_stream->ctx ||
 787                    dev_priv->perf.oa.specific_ctx_id == ctx_id ||
 788                    (dev_priv->perf.oa.oa_buffer.last_ctx_id ==
 789                     dev_priv->perf.oa.specific_ctx_id) ||
 790                    reason & OAREPORT_REASON_CTX_SWITCH) {
 791
 792                        /*
 793                         * While filtering for a single context we avoid
 794                         * leaking the IDs of other contexts.
 795                         */
 796                        if (dev_priv->perf.oa.exclusive_stream->ctx &&
 797                            dev_priv->perf.oa.specific_ctx_id != ctx_id) {
 798                                report32[2] = INVALID_CTX_ID;
 799                        }
 800
 801                        ret = append_oa_sample(stream, buf, count, offset,
 802                                               report);
 803                        if (ret)
 804                                break;
 805
 806                        dev_priv->perf.oa.oa_buffer.last_ctx_id = ctx_id;
 807                }
 808
 809                /*
 810                 * The above reason field sanity check is based on
 811                 * the assumption that the OA buffer is initially
 812                 * zeroed and we reset the field after copying so the
 813                 * check is still meaningful once old reports start
 814                 * being overwritten.
 815                 */
 816                report32[0] = 0;
 817        }
 818
 819        if (start_offset != *offset) {
 820                spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
 821
 822                /*
 823                 * We removed the gtt_offset for the copy loop above, indexing
 824                 * relative to oa_buf_base so put back here...
 825                 */
 826                head += gtt_offset;
 827
 828                I915_WRITE(GEN8_OAHEADPTR, head & GEN8_OAHEADPTR_MASK);
 829                dev_priv->perf.oa.oa_buffer.head = head;
 830
 831                spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
 832        }
 833
 834        return ret;
 835}
 836
 837/**
 838 * gen8_oa_read - copy status records then buffered OA reports
 839 * @stream: An i915-perf stream opened for OA metrics
 840 * @buf: destination buffer given by userspace
 841 * @count: the number of bytes userspace wants to read
 842 * @offset: (inout): the current position for writing into @buf
 843 *
 844 * Checks OA unit status registers and if necessary appends corresponding
 845 * status records for userspace (such as for a buffer full condition) and then
 846 * initiate appending any buffered OA reports.
 847 *
 848 * Updates @offset according to the number of bytes successfully copied into
 849 * the userspace buffer.
 850 *
 851 * NB: some data may be successfully copied to the userspace buffer
 852 * even if an error is returned, and this is reflected in the
 853 * updated @offset.
 854 *
 855 * Returns: zero on success or a negative error code
 856 */
 857static int gen8_oa_read(struct i915_perf_stream *stream,
 858                        char __user *buf,
 859                        size_t count,
 860                        size_t *offset)
 861{
 862        struct drm_i915_private *dev_priv = stream->dev_priv;
 863        u32 oastatus;
 864        int ret;
 865
 866        if (WARN_ON(!dev_priv->perf.oa.oa_buffer.vaddr))
 867                return -EIO;
 868
 869        oastatus = I915_READ(GEN8_OASTATUS);
 870
 871        /*
 872         * We treat OABUFFER_OVERFLOW as a significant error:
 873         *
 874         * Although theoretically we could handle this more gracefully
 875         * sometimes, some Gens don't correctly suppress certain
 876         * automatically triggered reports in this condition and so we
 877         * have to assume that old reports are now being trampled
 878         * over.
 879         *
 880         * Considering how we don't currently give userspace control
 881         * over the OA buffer size and always configure a large 16MB
 882         * buffer, then a buffer overflow does anyway likely indicate
 883         * that something has gone quite badly wrong.
 884         */
 885        if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
 886                ret = append_oa_status(stream, buf, count, offset,
 887                                       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
 888                if (ret)
 889                        return ret;
 890
 891                DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
 892                          dev_priv->perf.oa.period_exponent);
 893
 894                dev_priv->perf.oa.ops.oa_disable(stream);
 895                dev_priv->perf.oa.ops.oa_enable(stream);
 896
 897                /*
 898                 * Note: .oa_enable() is expected to re-init the oabuffer and
 899                 * reset GEN8_OASTATUS for us
 900                 */
 901                oastatus = I915_READ(GEN8_OASTATUS);
 902        }
 903
 904        if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
 905                ret = append_oa_status(stream, buf, count, offset,
 906                                       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
 907                if (ret)
 908                        return ret;
 909                I915_WRITE(GEN8_OASTATUS,
 910                           oastatus & ~GEN8_OASTATUS_REPORT_LOST);
 911        }
 912
 913        return gen8_append_oa_reports(stream, buf, count, offset);
 914}
 915
 916/**
 917 * Copies all buffered OA reports into userspace read() buffer.
 918 * @stream: An i915-perf stream opened for OA metrics
 919 * @buf: destination buffer given by userspace
 920 * @count: the number of bytes userspace wants to read
 921 * @offset: (inout): the current position for writing into @buf
 922 *
 923 * Notably any error condition resulting in a short read (-%ENOSPC or
 924 * -%EFAULT) will be returned even though one or more records may
 925 * have been successfully copied. In this case it's up to the caller
 926 * to decide if the error should be squashed before returning to
 927 * userspace.
 928 *
 929 * Note: reports are consumed from the head, and appended to the
 930 * tail, so the tail chases the head?... If you think that's mad
 931 * and back-to-front you're not alone, but this follows the
 932 * Gen PRM naming convention.
 933 *
 934 * Returns: 0 on success, negative error code on failure.
 935 */
 936static int gen7_append_oa_reports(struct i915_perf_stream *stream,
 937                                  char __user *buf,
 938                                  size_t count,
 939                                  size_t *offset)
 940{
 941        struct drm_i915_private *dev_priv = stream->dev_priv;
 942        int report_size = dev_priv->perf.oa.oa_buffer.format_size;
 943        u8 *oa_buf_base = dev_priv->perf.oa.oa_buffer.vaddr;
 944        u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
 945        u32 mask = (OA_BUFFER_SIZE - 1);
 946        size_t start_offset = *offset;
 947        unsigned long flags;
 948        unsigned int aged_tail_idx;
 949        u32 head, tail;
 950        u32 taken;
 951        int ret = 0;
 952
 953        if (WARN_ON(!stream->enabled))
 954                return -EIO;
 955
 956        spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
 957
 958        head = dev_priv->perf.oa.oa_buffer.head;
 959        aged_tail_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
 960        tail = dev_priv->perf.oa.oa_buffer.tails[aged_tail_idx].offset;
 961
 962        spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
 963
 964        /* An invalid tail pointer here means we're still waiting for the poll
 965         * hrtimer callback to give us a pointer
 966         */
 967        if (tail == INVALID_TAIL_PTR)
 968                return -EAGAIN;
 969
 970        /* NB: oa_buffer.head/tail include the gtt_offset which we don't want
 971         * while indexing relative to oa_buf_base.
 972         */
 973        head -= gtt_offset;
 974        tail -= gtt_offset;
 975
 976        /* An out of bounds or misaligned head or tail pointer implies a driver
 977         * bug since we validate + align the tail pointers we read from the
 978         * hardware and we are in full control of the head pointer which should
 979         * only be incremented by multiples of the report size (notably also
 980         * all a power of two).
 981         */
 982        if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
 983                      tail > OA_BUFFER_SIZE || tail % report_size,
 984                      "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
 985                      head, tail))
 986                return -EIO;
 987
 988
 989        for (/* none */;
 990             (taken = OA_TAKEN(tail, head));
 991             head = (head + report_size) & mask) {
 992                u8 *report = oa_buf_base + head;
 993                u32 *report32 = (void *)report;
 994
 995                /* All the report sizes factor neatly into the buffer
 996                 * size so we never expect to see a report split
 997                 * between the beginning and end of the buffer.
 998                 *
 999                 * Given the initial alignment check a misalignment
1000                 * here would imply a driver bug that would result
1001                 * in an overrun.
1002                 */
1003                if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
1004                        DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
1005                        break;
1006                }
1007
1008                /* The report-ID field for periodic samples includes
1009                 * some undocumented flags related to what triggered
1010                 * the report and is never expected to be zero so we
1011                 * can check that the report isn't invalid before
1012                 * copying it to userspace...
1013                 */
1014                if (report32[0] == 0) {
1015                        if (__ratelimit(&dev_priv->perf.oa.spurious_report_rs))
1016                                DRM_NOTE("Skipping spurious, invalid OA report\n");
1017                        continue;
1018                }
1019
1020                ret = append_oa_sample(stream, buf, count, offset, report);
1021                if (ret)
1022                        break;
1023
1024                /* The above report-id field sanity check is based on
1025                 * the assumption that the OA buffer is initially
1026                 * zeroed and we reset the field after copying so the
1027                 * check is still meaningful once old reports start
1028                 * being overwritten.
1029                 */
1030                report32[0] = 0;
1031        }
1032
1033        if (start_offset != *offset) {
1034                spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1035
1036                /* We removed the gtt_offset for the copy loop above, indexing
1037                 * relative to oa_buf_base so put back here...
1038                 */
1039                head += gtt_offset;
1040
1041                I915_WRITE(GEN7_OASTATUS2,
1042                           ((head & GEN7_OASTATUS2_HEAD_MASK) |
1043                            GEN7_OASTATUS2_MEM_SELECT_GGTT));
1044                dev_priv->perf.oa.oa_buffer.head = head;
1045
1046                spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1047        }
1048
1049        return ret;
1050}
1051
1052/**
1053 * gen7_oa_read - copy status records then buffered OA reports
1054 * @stream: An i915-perf stream opened for OA metrics
1055 * @buf: destination buffer given by userspace
1056 * @count: the number of bytes userspace wants to read
1057 * @offset: (inout): the current position for writing into @buf
1058 *
1059 * Checks Gen 7 specific OA unit status registers and if necessary appends
1060 * corresponding status records for userspace (such as for a buffer full
1061 * condition) and then initiate appending any buffered OA reports.
1062 *
1063 * Updates @offset according to the number of bytes successfully copied into
1064 * the userspace buffer.
1065 *
1066 * Returns: zero on success or a negative error code
1067 */
1068static int gen7_oa_read(struct i915_perf_stream *stream,
1069                        char __user *buf,
1070                        size_t count,
1071                        size_t *offset)
1072{
1073        struct drm_i915_private *dev_priv = stream->dev_priv;
1074        u32 oastatus1;
1075        int ret;
1076
1077        if (WARN_ON(!dev_priv->perf.oa.oa_buffer.vaddr))
1078                return -EIO;
1079
1080        oastatus1 = I915_READ(GEN7_OASTATUS1);
1081
1082        /* XXX: On Haswell we don't have a safe way to clear oastatus1
1083         * bits while the OA unit is enabled (while the tail pointer
1084         * may be updated asynchronously) so we ignore status bits
1085         * that have already been reported to userspace.
1086         */
1087        oastatus1 &= ~dev_priv->perf.oa.gen7_latched_oastatus1;
1088
1089        /* We treat OABUFFER_OVERFLOW as a significant error:
1090         *
1091         * - The status can be interpreted to mean that the buffer is
1092         *   currently full (with a higher precedence than OA_TAKEN()
1093         *   which will start to report a near-empty buffer after an
1094         *   overflow) but it's awkward that we can't clear the status
1095         *   on Haswell, so without a reset we won't be able to catch
1096         *   the state again.
1097         *
1098         * - Since it also implies the HW has started overwriting old
1099         *   reports it may also affect our sanity checks for invalid
1100         *   reports when copying to userspace that assume new reports
1101         *   are being written to cleared memory.
1102         *
1103         * - In the future we may want to introduce a flight recorder
1104         *   mode where the driver will automatically maintain a safe
1105         *   guard band between head/tail, avoiding this overflow
1106         *   condition, but we avoid the added driver complexity for
1107         *   now.
1108         */
1109        if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1110                ret = append_oa_status(stream, buf, count, offset,
1111                                       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1112                if (ret)
1113                        return ret;
1114
1115                DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
1116                          dev_priv->perf.oa.period_exponent);
1117
1118                dev_priv->perf.oa.ops.oa_disable(stream);
1119                dev_priv->perf.oa.ops.oa_enable(stream);
1120
1121                oastatus1 = I915_READ(GEN7_OASTATUS1);
1122        }
1123
1124        if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1125                ret = append_oa_status(stream, buf, count, offset,
1126                                       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1127                if (ret)
1128                        return ret;
1129                dev_priv->perf.oa.gen7_latched_oastatus1 |=
1130                        GEN7_OASTATUS1_REPORT_LOST;
1131        }
1132
1133        return gen7_append_oa_reports(stream, buf, count, offset);
1134}
1135
1136/**
1137 * i915_oa_wait_unlocked - handles blocking IO until OA data available
1138 * @stream: An i915-perf stream opened for OA metrics
1139 *
1140 * Called when userspace tries to read() from a blocking stream FD opened
1141 * for OA metrics. It waits until the hrtimer callback finds a non-empty
1142 * OA buffer and wakes us.
1143 *
1144 * Note: it's acceptable to have this return with some false positives
1145 * since any subsequent read handling will return -EAGAIN if there isn't
1146 * really data ready for userspace yet.
1147 *
1148 * Returns: zero on success or a negative error code
1149 */
1150static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1151{
1152        struct drm_i915_private *dev_priv = stream->dev_priv;
1153
1154        /* We would wait indefinitely if periodic sampling is not enabled */
1155        if (!dev_priv->perf.oa.periodic)
1156                return -EIO;
1157
1158        return wait_event_interruptible(dev_priv->perf.oa.poll_wq,
1159                                        oa_buffer_check_unlocked(dev_priv));
1160}
1161
1162/**
1163 * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1164 * @stream: An i915-perf stream opened for OA metrics
1165 * @file: An i915 perf stream file
1166 * @wait: poll() state table
1167 *
1168 * For handling userspace polling on an i915 perf stream opened for OA metrics,
1169 * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1170 * when it sees data ready to read in the circular OA buffer.
1171 */
1172static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1173                              struct file *file,
1174                              poll_table *wait)
1175{
1176        struct drm_i915_private *dev_priv = stream->dev_priv;
1177
1178        poll_wait(file, &dev_priv->perf.oa.poll_wq, wait);
1179}
1180
1181/**
1182 * i915_oa_read - just calls through to &i915_oa_ops->read
1183 * @stream: An i915-perf stream opened for OA metrics
1184 * @buf: destination buffer given by userspace
1185 * @count: the number of bytes userspace wants to read
1186 * @offset: (inout): the current position for writing into @buf
1187 *
1188 * Updates @offset according to the number of bytes successfully copied into
1189 * the userspace buffer.
1190 *
1191 * Returns: zero on success or a negative error code
1192 */
1193static int i915_oa_read(struct i915_perf_stream *stream,
1194                        char __user *buf,
1195                        size_t count,
1196                        size_t *offset)
1197{
1198        struct drm_i915_private *dev_priv = stream->dev_priv;
1199
1200        return dev_priv->perf.oa.ops.read(stream, buf, count, offset);
1201}
1202
1203static struct intel_context *oa_pin_context(struct drm_i915_private *i915,
1204                                            struct i915_gem_context *ctx)
1205{
1206        struct i915_gem_engines_iter it;
1207        struct intel_context *ce;
1208        int err;
1209
1210        err = i915_mutex_lock_interruptible(&i915->drm);
1211        if (err)
1212                return ERR_PTR(err);
1213
1214        for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
1215                if (ce->engine->class != RENDER_CLASS)
1216                        continue;
1217
1218                /*
1219                 * As the ID is the gtt offset of the context's vma we
1220                 * pin the vma to ensure the ID remains fixed.
1221                 */
1222                err = intel_context_pin(ce);
1223                if (err == 0) {
1224                        i915->perf.oa.pinned_ctx = ce;
1225                        break;
1226                }
1227        }
1228        i915_gem_context_unlock_engines(ctx);
1229
1230        mutex_unlock(&i915->drm.struct_mutex);
1231        if (err)
1232                return ERR_PTR(err);
1233
1234        return i915->perf.oa.pinned_ctx;
1235}
1236
1237/**
1238 * oa_get_render_ctx_id - determine and hold ctx hw id
1239 * @stream: An i915-perf stream opened for OA metrics
1240 *
1241 * Determine the render context hw id, and ensure it remains fixed for the
1242 * lifetime of the stream. This ensures that we don't have to worry about
1243 * updating the context ID in OACONTROL on the fly.
1244 *
1245 * Returns: zero on success or a negative error code
1246 */
1247static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1248{
1249        struct drm_i915_private *i915 = stream->dev_priv;
1250        struct intel_context *ce;
1251
1252        ce = oa_pin_context(i915, stream->ctx);
1253        if (IS_ERR(ce))
1254                return PTR_ERR(ce);
1255
1256        switch (INTEL_GEN(i915)) {
1257        case 7: {
1258                /*
1259                 * On Haswell we don't do any post processing of the reports
1260                 * and don't need to use the mask.
1261                 */
1262                i915->perf.oa.specific_ctx_id = i915_ggtt_offset(ce->state);
1263                i915->perf.oa.specific_ctx_id_mask = 0;
1264                break;
1265        }
1266
1267        case 8:
1268        case 9:
1269        case 10:
1270                if (USES_GUC_SUBMISSION(i915)) {
1271                        /*
1272                         * When using GuC, the context descriptor we write in
1273                         * i915 is read by GuC and rewritten before it's
1274                         * actually written into the hardware. The LRCA is
1275                         * what is put into the context id field of the
1276                         * context descriptor by GuC. Because it's aligned to
1277                         * a page, the lower 12bits are always at 0 and
1278                         * dropped by GuC. They won't be part of the context
1279                         * ID in the OA reports, so squash those lower bits.
1280                         */
1281                        i915->perf.oa.specific_ctx_id =
1282                                lower_32_bits(ce->lrc_desc) >> 12;
1283
1284                        /*
1285                         * GuC uses the top bit to signal proxy submission, so
1286                         * ignore that bit.
1287                         */
1288                        i915->perf.oa.specific_ctx_id_mask =
1289                                (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
1290                } else {
1291                        i915->perf.oa.specific_ctx_id_mask =
1292                                (1U << GEN8_CTX_ID_WIDTH) - 1;
1293                        i915->perf.oa.specific_ctx_id =
1294                                upper_32_bits(ce->lrc_desc);
1295                        i915->perf.oa.specific_ctx_id &=
1296                                i915->perf.oa.specific_ctx_id_mask;
1297                }
1298                break;
1299
1300        case 11: {
1301                i915->perf.oa.specific_ctx_id_mask =
1302                        ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32) |
1303                        ((1U << GEN11_ENGINE_INSTANCE_WIDTH) - 1) << (GEN11_ENGINE_INSTANCE_SHIFT - 32) |
1304                        ((1 << GEN11_ENGINE_CLASS_WIDTH) - 1) << (GEN11_ENGINE_CLASS_SHIFT - 32);
1305                i915->perf.oa.specific_ctx_id = upper_32_bits(ce->lrc_desc);
1306                i915->perf.oa.specific_ctx_id &=
1307                        i915->perf.oa.specific_ctx_id_mask;
1308                break;
1309        }
1310
1311        default:
1312                MISSING_CASE(INTEL_GEN(i915));
1313        }
1314
1315        DRM_DEBUG_DRIVER("filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
1316                         i915->perf.oa.specific_ctx_id,
1317                         i915->perf.oa.specific_ctx_id_mask);
1318
1319        return 0;
1320}
1321
1322/**
1323 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1324 * @stream: An i915-perf stream opened for OA metrics
1325 *
1326 * In case anything needed doing to ensure the context HW ID would remain valid
1327 * for the lifetime of the stream, then that can be undone here.
1328 */
1329static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1330{
1331        struct drm_i915_private *dev_priv = stream->dev_priv;
1332        struct intel_context *ce;
1333
1334        dev_priv->perf.oa.specific_ctx_id = INVALID_CTX_ID;
1335        dev_priv->perf.oa.specific_ctx_id_mask = 0;
1336
1337        ce = fetch_and_zero(&dev_priv->perf.oa.pinned_ctx);
1338        if (ce) {
1339                mutex_lock(&dev_priv->drm.struct_mutex);
1340                intel_context_unpin(ce);
1341                mutex_unlock(&dev_priv->drm.struct_mutex);
1342        }
1343}
1344
1345static void
1346free_oa_buffer(struct drm_i915_private *i915)
1347{
1348        mutex_lock(&i915->drm.struct_mutex);
1349
1350        i915_vma_unpin_and_release(&i915->perf.oa.oa_buffer.vma,
1351                                   I915_VMA_RELEASE_MAP);
1352
1353        mutex_unlock(&i915->drm.struct_mutex);
1354
1355        i915->perf.oa.oa_buffer.vaddr = NULL;
1356}
1357
1358static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1359{
1360        struct drm_i915_private *dev_priv = stream->dev_priv;
1361
1362        BUG_ON(stream != dev_priv->perf.oa.exclusive_stream);
1363
1364        /*
1365         * Unset exclusive_stream first, it will be checked while disabling
1366         * the metric set on gen8+.
1367         */
1368        mutex_lock(&dev_priv->drm.struct_mutex);
1369        dev_priv->perf.oa.exclusive_stream = NULL;
1370        dev_priv->perf.oa.ops.disable_metric_set(dev_priv);
1371        mutex_unlock(&dev_priv->drm.struct_mutex);
1372
1373        free_oa_buffer(dev_priv);
1374
1375        intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1376        intel_runtime_pm_put(&dev_priv->runtime_pm, stream->wakeref);
1377
1378        if (stream->ctx)
1379                oa_put_render_ctx_id(stream);
1380
1381        put_oa_config(dev_priv, stream->oa_config);
1382
1383        if (dev_priv->perf.oa.spurious_report_rs.missed) {
1384                DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n",
1385                         dev_priv->perf.oa.spurious_report_rs.missed);
1386        }
1387}
1388
1389static void gen7_init_oa_buffer(struct drm_i915_private *dev_priv)
1390{
1391        u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
1392        unsigned long flags;
1393
1394        spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1395
1396        /* Pre-DevBDW: OABUFFER must be set with counters off,
1397         * before OASTATUS1, but after OASTATUS2
1398         */
1399        I915_WRITE(GEN7_OASTATUS2,
1400                   gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT); /* head */
1401        dev_priv->perf.oa.oa_buffer.head = gtt_offset;
1402
1403        I915_WRITE(GEN7_OABUFFER, gtt_offset);
1404
1405        I915_WRITE(GEN7_OASTATUS1, gtt_offset | OABUFFER_SIZE_16M); /* tail */
1406
1407        /* Mark that we need updated tail pointers to read from... */
1408        dev_priv->perf.oa.oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1409        dev_priv->perf.oa.oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1410
1411        spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1412
1413        /* On Haswell we have to track which OASTATUS1 flags we've
1414         * already seen since they can't be cleared while periodic
1415         * sampling is enabled.
1416         */
1417        dev_priv->perf.oa.gen7_latched_oastatus1 = 0;
1418
1419        /* NB: although the OA buffer will initially be allocated
1420         * zeroed via shmfs (and so this memset is redundant when
1421         * first allocating), we may re-init the OA buffer, either
1422         * when re-enabling a stream or in error/reset paths.
1423         *
1424         * The reason we clear the buffer for each re-init is for the
1425         * sanity check in gen7_append_oa_reports() that looks at the
1426         * report-id field to make sure it's non-zero which relies on
1427         * the assumption that new reports are being written to zeroed
1428         * memory...
1429         */
1430        memset(dev_priv->perf.oa.oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1431
1432        /* Maybe make ->pollin per-stream state if we support multiple
1433         * concurrent streams in the future.
1434         */
1435        dev_priv->perf.oa.pollin = false;
1436}
1437
1438static void gen8_init_oa_buffer(struct drm_i915_private *dev_priv)
1439{
1440        u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
1441        unsigned long flags;
1442
1443        spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1444
1445        I915_WRITE(GEN8_OASTATUS, 0);
1446        I915_WRITE(GEN8_OAHEADPTR, gtt_offset);
1447        dev_priv->perf.oa.oa_buffer.head = gtt_offset;
1448
1449        I915_WRITE(GEN8_OABUFFER_UDW, 0);
1450
1451        /*
1452         * PRM says:
1453         *
1454         *  "This MMIO must be set before the OATAILPTR
1455         *  register and after the OAHEADPTR register. This is
1456         *  to enable proper functionality of the overflow
1457         *  bit."
1458         */
1459        I915_WRITE(GEN8_OABUFFER, gtt_offset |
1460                   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1461        I915_WRITE(GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1462
1463        /* Mark that we need updated tail pointers to read from... */
1464        dev_priv->perf.oa.oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1465        dev_priv->perf.oa.oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1466
1467        /*
1468         * Reset state used to recognise context switches, affecting which
1469         * reports we will forward to userspace while filtering for a single
1470         * context.
1471         */
1472        dev_priv->perf.oa.oa_buffer.last_ctx_id = INVALID_CTX_ID;
1473
1474        spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1475
1476        /*
1477         * NB: although the OA buffer will initially be allocated
1478         * zeroed via shmfs (and so this memset is redundant when
1479         * first allocating), we may re-init the OA buffer, either
1480         * when re-enabling a stream or in error/reset paths.
1481         *
1482         * The reason we clear the buffer for each re-init is for the
1483         * sanity check in gen8_append_oa_reports() that looks at the
1484         * reason field to make sure it's non-zero which relies on
1485         * the assumption that new reports are being written to zeroed
1486         * memory...
1487         */
1488        memset(dev_priv->perf.oa.oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1489
1490        /*
1491         * Maybe make ->pollin per-stream state if we support multiple
1492         * concurrent streams in the future.
1493         */
1494        dev_priv->perf.oa.pollin = false;
1495}
1496
1497static int alloc_oa_buffer(struct drm_i915_private *dev_priv)
1498{
1499        struct drm_i915_gem_object *bo;
1500        struct i915_vma *vma;
1501        int ret;
1502
1503        if (WARN_ON(dev_priv->perf.oa.oa_buffer.vma))
1504                return -ENODEV;
1505
1506        ret = i915_mutex_lock_interruptible(&dev_priv->drm);
1507        if (ret)
1508                return ret;
1509
1510        BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1511        BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1512
1513        bo = i915_gem_object_create_shmem(dev_priv, OA_BUFFER_SIZE);
1514        if (IS_ERR(bo)) {
1515                DRM_ERROR("Failed to allocate OA buffer\n");
1516                ret = PTR_ERR(bo);
1517                goto unlock;
1518        }
1519
1520        i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC);
1521
1522        /* PreHSW required 512K alignment, HSW requires 16M */
1523        vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
1524        if (IS_ERR(vma)) {
1525                ret = PTR_ERR(vma);
1526                goto err_unref;
1527        }
1528        dev_priv->perf.oa.oa_buffer.vma = vma;
1529
1530        dev_priv->perf.oa.oa_buffer.vaddr =
1531                i915_gem_object_pin_map(bo, I915_MAP_WB);
1532        if (IS_ERR(dev_priv->perf.oa.oa_buffer.vaddr)) {
1533                ret = PTR_ERR(dev_priv->perf.oa.oa_buffer.vaddr);
1534                goto err_unpin;
1535        }
1536
1537        DRM_DEBUG_DRIVER("OA Buffer initialized, gtt offset = 0x%x, vaddr = %p\n",
1538                         i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma),
1539                         dev_priv->perf.oa.oa_buffer.vaddr);
1540
1541        goto unlock;
1542
1543err_unpin:
1544        __i915_vma_unpin(vma);
1545
1546err_unref:
1547        i915_gem_object_put(bo);
1548
1549        dev_priv->perf.oa.oa_buffer.vaddr = NULL;
1550        dev_priv->perf.oa.oa_buffer.vma = NULL;
1551
1552unlock:
1553        mutex_unlock(&dev_priv->drm.struct_mutex);
1554        return ret;
1555}
1556
1557static void config_oa_regs(struct drm_i915_private *dev_priv,
1558                           const struct i915_oa_reg *regs,
1559                           u32 n_regs)
1560{
1561        u32 i;
1562
1563        for (i = 0; i < n_regs; i++) {
1564                const struct i915_oa_reg *reg = regs + i;
1565
1566                I915_WRITE(reg->addr, reg->value);
1567        }
1568}
1569
1570static void delay_after_mux(void)
1571{
1572        /*
1573         * It apparently takes a fairly long time for a new MUX
1574         * configuration to be be applied after these register writes.
1575         * This delay duration was derived empirically based on the
1576         * render_basic config but hopefully it covers the maximum
1577         * configuration latency.
1578         *
1579         * As a fallback, the checks in _append_oa_reports() to skip
1580         * invalid OA reports do also seem to work to discard reports
1581         * generated before this config has completed - albeit not
1582         * silently.
1583         *
1584         * Unfortunately this is essentially a magic number, since we
1585         * don't currently know of a reliable mechanism for predicting
1586         * how long the MUX config will take to apply and besides
1587         * seeing invalid reports we don't know of a reliable way to
1588         * explicitly check that the MUX config has landed.
1589         *
1590         * It's even possible we've miss characterized the underlying
1591         * problem - it just seems like the simplest explanation why
1592         * a delay at this location would mitigate any invalid reports.
1593         */
1594        usleep_range(15000, 20000);
1595}
1596
1597static int hsw_enable_metric_set(struct i915_perf_stream *stream)
1598{
1599        struct drm_i915_private *dev_priv = stream->dev_priv;
1600        const struct i915_oa_config *oa_config = stream->oa_config;
1601
1602        /*
1603         * PRM:
1604         *
1605         * OA unit is using “crclk” for its functionality. When trunk
1606         * level clock gating takes place, OA clock would be gated,
1607         * unable to count the events from non-render clock domain.
1608         * Render clock gating must be disabled when OA is enabled to
1609         * count the events from non-render domain. Unit level clock
1610         * gating for RCS should also be disabled.
1611         */
1612        I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1613                                    ~GEN7_DOP_CLOCK_GATE_ENABLE));
1614        I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) |
1615                                  GEN6_CSUNIT_CLOCK_GATE_DISABLE));
1616
1617        config_oa_regs(dev_priv, oa_config->mux_regs, oa_config->mux_regs_len);
1618        delay_after_mux();
1619
1620        config_oa_regs(dev_priv, oa_config->b_counter_regs,
1621                       oa_config->b_counter_regs_len);
1622
1623        return 0;
1624}
1625
1626static void hsw_disable_metric_set(struct drm_i915_private *dev_priv)
1627{
1628        I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) &
1629                                  ~GEN6_CSUNIT_CLOCK_GATE_DISABLE));
1630        I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) |
1631                                    GEN7_DOP_CLOCK_GATE_ENABLE));
1632
1633        I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) &
1634                                      ~GT_NOA_ENABLE));
1635}
1636
1637/*
1638 * NB: It must always remain pointer safe to run this even if the OA unit
1639 * has been disabled.
1640 *
1641 * It's fine to put out-of-date values into these per-context registers
1642 * in the case that the OA unit has been disabled.
1643 */
1644static void
1645gen8_update_reg_state_unlocked(struct intel_context *ce,
1646                               u32 *reg_state,
1647                               const struct i915_oa_config *oa_config)
1648{
1649        struct drm_i915_private *i915 = ce->gem_context->i915;
1650        u32 ctx_oactxctrl = i915->perf.oa.ctx_oactxctrl_offset;
1651        u32 ctx_flexeu0 = i915->perf.oa.ctx_flexeu0_offset;
1652        /* The MMIO offsets for Flex EU registers aren't contiguous */
1653        i915_reg_t flex_regs[] = {
1654                EU_PERF_CNTL0,
1655                EU_PERF_CNTL1,
1656                EU_PERF_CNTL2,
1657                EU_PERF_CNTL3,
1658                EU_PERF_CNTL4,
1659                EU_PERF_CNTL5,
1660                EU_PERF_CNTL6,
1661        };
1662        int i;
1663
1664        CTX_REG(reg_state, ctx_oactxctrl, GEN8_OACTXCONTROL,
1665                (i915->perf.oa.period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
1666                (i915->perf.oa.periodic ? GEN8_OA_TIMER_ENABLE : 0) |
1667                GEN8_OA_COUNTER_RESUME);
1668
1669        for (i = 0; i < ARRAY_SIZE(flex_regs); i++) {
1670                u32 state_offset = ctx_flexeu0 + i * 2;
1671                u32 mmio = i915_mmio_reg_offset(flex_regs[i]);
1672
1673                /*
1674                 * This arbitrary default will select the 'EU FPU0 Pipeline
1675                 * Active' event. In the future it's anticipated that there
1676                 * will be an explicit 'No Event' we can select, but not yet...
1677                 */
1678                u32 value = 0;
1679
1680                if (oa_config) {
1681                        u32 j;
1682
1683                        for (j = 0; j < oa_config->flex_regs_len; j++) {
1684                                if (i915_mmio_reg_offset(oa_config->flex_regs[j].addr) == mmio) {
1685                                        value = oa_config->flex_regs[j].value;
1686                                        break;
1687                                }
1688                        }
1689                }
1690
1691                CTX_REG(reg_state, state_offset, flex_regs[i], value);
1692        }
1693
1694        CTX_REG(reg_state,
1695                CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
1696                intel_sseu_make_rpcs(i915, &ce->sseu));
1697}
1698
1699/*
1700 * Manages updating the per-context aspects of the OA stream
1701 * configuration across all contexts.
1702 *
1703 * The awkward consideration here is that OACTXCONTROL controls the
1704 * exponent for periodic sampling which is primarily used for system
1705 * wide profiling where we'd like a consistent sampling period even in
1706 * the face of context switches.
1707 *
1708 * Our approach of updating the register state context (as opposed to
1709 * say using a workaround batch buffer) ensures that the hardware
1710 * won't automatically reload an out-of-date timer exponent even
1711 * transiently before a WA BB could be parsed.
1712 *
1713 * This function needs to:
1714 * - Ensure the currently running context's per-context OA state is
1715 *   updated
1716 * - Ensure that all existing contexts will have the correct per-context
1717 *   OA state if they are scheduled for use.
1718 * - Ensure any new contexts will be initialized with the correct
1719 *   per-context OA state.
1720 *
1721 * Note: it's only the RCS/Render context that has any OA state.
1722 */
1723static int gen8_configure_all_contexts(struct drm_i915_private *dev_priv,
1724                                       const struct i915_oa_config *oa_config)
1725{
1726        unsigned int map_type = i915_coherent_map_type(dev_priv);
1727        struct i915_gem_context *ctx;
1728        struct i915_request *rq;
1729        int ret;
1730
1731        lockdep_assert_held(&dev_priv->drm.struct_mutex);
1732
1733        /*
1734         * The OA register config is setup through the context image. This image
1735         * might be written to by the GPU on context switch (in particular on
1736         * lite-restore). This means we can't safely update a context's image,
1737         * if this context is scheduled/submitted to run on the GPU.
1738         *
1739         * We could emit the OA register config through the batch buffer but
1740         * this might leave small interval of time where the OA unit is
1741         * configured at an invalid sampling period.
1742         *
1743         * So far the best way to work around this issue seems to be draining
1744         * the GPU from any submitted work.
1745         */
1746        ret = i915_gem_wait_for_idle(dev_priv,
1747                                     I915_WAIT_LOCKED,
1748                                     MAX_SCHEDULE_TIMEOUT);
1749        if (ret)
1750                return ret;
1751
1752        /* Update all contexts now that we've stalled the submission. */
1753        list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
1754                struct i915_gem_engines_iter it;
1755                struct intel_context *ce;
1756
1757                for_each_gem_engine(ce,
1758                                    i915_gem_context_lock_engines(ctx),
1759                                    it) {
1760                        u32 *regs;
1761
1762                        if (ce->engine->class != RENDER_CLASS)
1763                                continue;
1764
1765                        /* OA settings will be set upon first use */
1766                        if (!ce->state)
1767                                continue;
1768
1769                        regs = i915_gem_object_pin_map(ce->state->obj,
1770                                                       map_type);
1771                        if (IS_ERR(regs)) {
1772                                i915_gem_context_unlock_engines(ctx);
1773                                return PTR_ERR(regs);
1774                        }
1775
1776                        ce->state->obj->mm.dirty = true;
1777                        regs += LRC_STATE_PN * PAGE_SIZE / sizeof(*regs);
1778
1779                        gen8_update_reg_state_unlocked(ce, regs, oa_config);
1780
1781                        i915_gem_object_unpin_map(ce->state->obj);
1782                }
1783                i915_gem_context_unlock_engines(ctx);
1784        }
1785
1786        /*
1787         * Apply the configuration by doing one context restore of the edited
1788         * context image.
1789         */
1790        rq = i915_request_create(dev_priv->engine[RCS0]->kernel_context);
1791        if (IS_ERR(rq))
1792                return PTR_ERR(rq);
1793
1794        i915_request_add(rq);
1795
1796        return 0;
1797}
1798
1799static int gen8_enable_metric_set(struct i915_perf_stream *stream)
1800{
1801        struct drm_i915_private *dev_priv = stream->dev_priv;
1802        const struct i915_oa_config *oa_config = stream->oa_config;
1803        int ret;
1804
1805        /*
1806         * We disable slice/unslice clock ratio change reports on SKL since
1807         * they are too noisy. The HW generates a lot of redundant reports
1808         * where the ratio hasn't really changed causing a lot of redundant
1809         * work to processes and increasing the chances we'll hit buffer
1810         * overruns.
1811         *
1812         * Although we don't currently use the 'disable overrun' OABUFFER
1813         * feature it's worth noting that clock ratio reports have to be
1814         * disabled before considering to use that feature since the HW doesn't
1815         * correctly block these reports.
1816         *
1817         * Currently none of the high-level metrics we have depend on knowing
1818         * this ratio to normalize.
1819         *
1820         * Note: This register is not power context saved and restored, but
1821         * that's OK considering that we disable RC6 while the OA unit is
1822         * enabled.
1823         *
1824         * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
1825         * be read back from automatically triggered reports, as part of the
1826         * RPT_ID field.
1827         */
1828        if (IS_GEN_RANGE(dev_priv, 9, 11)) {
1829                I915_WRITE(GEN8_OA_DEBUG,
1830                           _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
1831                                              GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
1832        }
1833
1834        /*
1835         * Update all contexts prior writing the mux configurations as we need
1836         * to make sure all slices/subslices are ON before writing to NOA
1837         * registers.
1838         */
1839        ret = gen8_configure_all_contexts(dev_priv, oa_config);
1840        if (ret)
1841                return ret;
1842
1843        config_oa_regs(dev_priv, oa_config->mux_regs, oa_config->mux_regs_len);
1844        delay_after_mux();
1845
1846        config_oa_regs(dev_priv, oa_config->b_counter_regs,
1847                       oa_config->b_counter_regs_len);
1848
1849        return 0;
1850}
1851
1852static void gen8_disable_metric_set(struct drm_i915_private *dev_priv)
1853{
1854        /* Reset all contexts' slices/subslices configurations. */
1855        gen8_configure_all_contexts(dev_priv, NULL);
1856
1857        I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) &
1858                                      ~GT_NOA_ENABLE));
1859}
1860
1861static void gen10_disable_metric_set(struct drm_i915_private *dev_priv)
1862{
1863        /* Reset all contexts' slices/subslices configurations. */
1864        gen8_configure_all_contexts(dev_priv, NULL);
1865
1866        /* Make sure we disable noa to save power. */
1867        I915_WRITE(RPM_CONFIG1,
1868                   I915_READ(RPM_CONFIG1) & ~GEN10_GT_NOA_ENABLE);
1869}
1870
1871static void gen7_oa_enable(struct i915_perf_stream *stream)
1872{
1873        struct drm_i915_private *dev_priv = stream->dev_priv;
1874        struct i915_gem_context *ctx = stream->ctx;
1875        u32 ctx_id = dev_priv->perf.oa.specific_ctx_id;
1876        bool periodic = dev_priv->perf.oa.periodic;
1877        u32 period_exponent = dev_priv->perf.oa.period_exponent;
1878        u32 report_format = dev_priv->perf.oa.oa_buffer.format;
1879
1880        /*
1881         * Reset buf pointers so we don't forward reports from before now.
1882         *
1883         * Think carefully if considering trying to avoid this, since it
1884         * also ensures status flags and the buffer itself are cleared
1885         * in error paths, and we have checks for invalid reports based
1886         * on the assumption that certain fields are written to zeroed
1887         * memory which this helps maintains.
1888         */
1889        gen7_init_oa_buffer(dev_priv);
1890
1891        I915_WRITE(GEN7_OACONTROL,
1892                   (ctx_id & GEN7_OACONTROL_CTX_MASK) |
1893                   (period_exponent <<
1894                    GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
1895                   (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
1896                   (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
1897                   (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
1898                   GEN7_OACONTROL_ENABLE);
1899}
1900
1901static void gen8_oa_enable(struct i915_perf_stream *stream)
1902{
1903        struct drm_i915_private *dev_priv = stream->dev_priv;
1904        u32 report_format = dev_priv->perf.oa.oa_buffer.format;
1905
1906        /*
1907         * Reset buf pointers so we don't forward reports from before now.
1908         *
1909         * Think carefully if considering trying to avoid this, since it
1910         * also ensures status flags and the buffer itself are cleared
1911         * in error paths, and we have checks for invalid reports based
1912         * on the assumption that certain fields are written to zeroed
1913         * memory which this helps maintains.
1914         */
1915        gen8_init_oa_buffer(dev_priv);
1916
1917        /*
1918         * Note: we don't rely on the hardware to perform single context
1919         * filtering and instead filter on the cpu based on the context-id
1920         * field of reports
1921         */
1922        I915_WRITE(GEN8_OACONTROL, (report_format <<
1923                                    GEN8_OA_REPORT_FORMAT_SHIFT) |
1924                                   GEN8_OA_COUNTER_ENABLE);
1925}
1926
1927/**
1928 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
1929 * @stream: An i915 perf stream opened for OA metrics
1930 *
1931 * [Re]enables hardware periodic sampling according to the period configured
1932 * when opening the stream. This also starts a hrtimer that will periodically
1933 * check for data in the circular OA buffer for notifying userspace (e.g.
1934 * during a read() or poll()).
1935 */
1936static void i915_oa_stream_enable(struct i915_perf_stream *stream)
1937{
1938        struct drm_i915_private *dev_priv = stream->dev_priv;
1939
1940        dev_priv->perf.oa.ops.oa_enable(stream);
1941
1942        if (dev_priv->perf.oa.periodic)
1943                hrtimer_start(&dev_priv->perf.oa.poll_check_timer,
1944                              ns_to_ktime(POLL_PERIOD),
1945                              HRTIMER_MODE_REL_PINNED);
1946}
1947
1948static void gen7_oa_disable(struct i915_perf_stream *stream)
1949{
1950        struct intel_uncore *uncore = &stream->dev_priv->uncore;
1951
1952        intel_uncore_write(uncore, GEN7_OACONTROL, 0);
1953        if (intel_wait_for_register(uncore,
1954                                    GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
1955                                    50))
1956                DRM_ERROR("wait for OA to be disabled timed out\n");
1957}
1958
1959static void gen8_oa_disable(struct i915_perf_stream *stream)
1960{
1961        struct intel_uncore *uncore = &stream->dev_priv->uncore;
1962
1963        intel_uncore_write(uncore, GEN8_OACONTROL, 0);
1964        if (intel_wait_for_register(uncore,
1965                                    GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
1966                                    50))
1967                DRM_ERROR("wait for OA to be disabled timed out\n");
1968}
1969
1970/**
1971 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
1972 * @stream: An i915 perf stream opened for OA metrics
1973 *
1974 * Stops the OA unit from periodically writing counter reports into the
1975 * circular OA buffer. This also stops the hrtimer that periodically checks for
1976 * data in the circular OA buffer, for notifying userspace.
1977 */
1978static void i915_oa_stream_disable(struct i915_perf_stream *stream)
1979{
1980        struct drm_i915_private *dev_priv = stream->dev_priv;
1981
1982        dev_priv->perf.oa.ops.oa_disable(stream);
1983
1984        if (dev_priv->perf.oa.periodic)
1985                hrtimer_cancel(&dev_priv->perf.oa.poll_check_timer);
1986}
1987
1988static const struct i915_perf_stream_ops i915_oa_stream_ops = {
1989        .destroy = i915_oa_stream_destroy,
1990        .enable = i915_oa_stream_enable,
1991        .disable = i915_oa_stream_disable,
1992        .wait_unlocked = i915_oa_wait_unlocked,
1993        .poll_wait = i915_oa_poll_wait,
1994        .read = i915_oa_read,
1995};
1996
1997/**
1998 * i915_oa_stream_init - validate combined props for OA stream and init
1999 * @stream: An i915 perf stream
2000 * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
2001 * @props: The property state that configures stream (individually validated)
2002 *
2003 * While read_properties_unlocked() validates properties in isolation it
2004 * doesn't ensure that the combination necessarily makes sense.
2005 *
2006 * At this point it has been determined that userspace wants a stream of
2007 * OA metrics, but still we need to further validate the combined
2008 * properties are OK.
2009 *
2010 * If the configuration makes sense then we can allocate memory for
2011 * a circular OA buffer and apply the requested metric set configuration.
2012 *
2013 * Returns: zero on success or a negative error code.
2014 */
2015static int i915_oa_stream_init(struct i915_perf_stream *stream,
2016                               struct drm_i915_perf_open_param *param,
2017                               struct perf_open_properties *props)
2018{
2019        struct drm_i915_private *dev_priv = stream->dev_priv;
2020        int format_size;
2021        int ret;
2022
2023        /* If the sysfs metrics/ directory wasn't registered for some
2024         * reason then don't let userspace try their luck with config
2025         * IDs
2026         */
2027        if (!dev_priv->perf.metrics_kobj) {
2028                DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
2029                return -EINVAL;
2030        }
2031
2032        if (!(props->sample_flags & SAMPLE_OA_REPORT)) {
2033                DRM_DEBUG("Only OA report sampling supported\n");
2034                return -EINVAL;
2035        }
2036
2037        if (!dev_priv->perf.oa.ops.enable_metric_set) {
2038                DRM_DEBUG("OA unit not supported\n");
2039                return -ENODEV;
2040        }
2041
2042        /* To avoid the complexity of having to accurately filter
2043         * counter reports and marshal to the appropriate client
2044         * we currently only allow exclusive access
2045         */
2046        if (dev_priv->perf.oa.exclusive_stream) {
2047                DRM_DEBUG("OA unit already in use\n");
2048                return -EBUSY;
2049        }
2050
2051        if (!props->oa_format) {
2052                DRM_DEBUG("OA report format not specified\n");
2053                return -EINVAL;
2054        }
2055
2056        /* We set up some ratelimit state to potentially throttle any _NOTES
2057         * about spurious, invalid OA reports which we don't forward to
2058         * userspace.
2059         *
2060         * The initialization is associated with opening the stream (not driver
2061         * init) considering we print a _NOTE about any throttling when closing
2062         * the stream instead of waiting until driver _fini which no one would
2063         * ever see.
2064         *
2065         * Using the same limiting factors as printk_ratelimit()
2066         */
2067        ratelimit_state_init(&dev_priv->perf.oa.spurious_report_rs,
2068                             5 * HZ, 10);
2069        /* Since we use a DRM_NOTE for spurious reports it would be
2070         * inconsistent to let __ratelimit() automatically print a warning for
2071         * throttling.
2072         */
2073        ratelimit_set_flags(&dev_priv->perf.oa.spurious_report_rs,
2074                            RATELIMIT_MSG_ON_RELEASE);
2075
2076        stream->sample_size = sizeof(struct drm_i915_perf_record_header);
2077
2078        format_size = dev_priv->perf.oa.oa_formats[props->oa_format].size;
2079
2080        stream->sample_flags |= SAMPLE_OA_REPORT;
2081        stream->sample_size += format_size;
2082
2083        dev_priv->perf.oa.oa_buffer.format_size = format_size;
2084        if (WARN_ON(dev_priv->perf.oa.oa_buffer.format_size == 0))
2085                return -EINVAL;
2086
2087        dev_priv->perf.oa.oa_buffer.format =
2088                dev_priv->perf.oa.oa_formats[props->oa_format].format;
2089
2090        dev_priv->perf.oa.periodic = props->oa_periodic;
2091        if (dev_priv->perf.oa.periodic)
2092                dev_priv->perf.oa.period_exponent = props->oa_period_exponent;
2093
2094        if (stream->ctx) {
2095                ret = oa_get_render_ctx_id(stream);
2096                if (ret) {
2097                        DRM_DEBUG("Invalid context id to filter with\n");
2098                        return ret;
2099                }
2100        }
2101
2102        ret = get_oa_config(dev_priv, props->metrics_set, &stream->oa_config);
2103        if (ret) {
2104                DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set);
2105                goto err_config;
2106        }
2107
2108        /* PRM - observability performance counters:
2109         *
2110         *   OACONTROL, performance counter enable, note:
2111         *
2112         *   "When this bit is set, in order to have coherent counts,
2113         *   RC6 power state and trunk clock gating must be disabled.
2114         *   This can be achieved by programming MMIO registers as
2115         *   0xA094=0 and 0xA090[31]=1"
2116         *
2117         *   In our case we are expecting that taking pm + FORCEWAKE
2118         *   references will effectively disable RC6.
2119         */
2120        stream->wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
2121        intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
2122
2123        ret = alloc_oa_buffer(dev_priv);
2124        if (ret)
2125                goto err_oa_buf_alloc;
2126
2127        ret = i915_mutex_lock_interruptible(&dev_priv->drm);
2128        if (ret)
2129                goto err_lock;
2130
2131        stream->ops = &i915_oa_stream_ops;
2132        dev_priv->perf.oa.exclusive_stream = stream;
2133
2134        ret = dev_priv->perf.oa.ops.enable_metric_set(stream);
2135        if (ret) {
2136                DRM_DEBUG("Unable to enable metric set\n");
2137                goto err_enable;
2138        }
2139
2140        mutex_unlock(&dev_priv->drm.struct_mutex);
2141
2142        return 0;
2143
2144err_enable:
2145        dev_priv->perf.oa.exclusive_stream = NULL;
2146        dev_priv->perf.oa.ops.disable_metric_set(dev_priv);
2147        mutex_unlock(&dev_priv->drm.struct_mutex);
2148
2149err_lock:
2150        free_oa_buffer(dev_priv);
2151
2152err_oa_buf_alloc:
2153        put_oa_config(dev_priv, stream->oa_config);
2154
2155        intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
2156        intel_runtime_pm_put(&dev_priv->runtime_pm, stream->wakeref);
2157
2158err_config:
2159        if (stream->ctx)
2160                oa_put_render_ctx_id(stream);
2161
2162        return ret;
2163}
2164
2165void i915_oa_init_reg_state(struct intel_engine_cs *engine,
2166                            struct intel_context *ce,
2167                            u32 *regs)
2168{
2169        struct i915_perf_stream *stream;
2170
2171        if (engine->class != RENDER_CLASS)
2172                return;
2173
2174        stream = engine->i915->perf.oa.exclusive_stream;
2175        if (stream)
2176                gen8_update_reg_state_unlocked(ce, regs, stream->oa_config);
2177}
2178
2179/**
2180 * i915_perf_read_locked - &i915_perf_stream_ops->read with error normalisation
2181 * @stream: An i915 perf stream
2182 * @file: An i915 perf stream file
2183 * @buf: destination buffer given by userspace
2184 * @count: the number of bytes userspace wants to read
2185 * @ppos: (inout) file seek position (unused)
2186 *
2187 * Besides wrapping &i915_perf_stream_ops->read this provides a common place to
2188 * ensure that if we've successfully copied any data then reporting that takes
2189 * precedence over any internal error status, so the data isn't lost.
2190 *
2191 * For example ret will be -ENOSPC whenever there is more buffered data than
2192 * can be copied to userspace, but that's only interesting if we weren't able
2193 * to copy some data because it implies the userspace buffer is too small to
2194 * receive a single record (and we never split records).
2195 *
2196 * Another case with ret == -EFAULT is more of a grey area since it would seem
2197 * like bad form for userspace to ask us to overrun its buffer, but the user
2198 * knows best:
2199 *
2200 *   http://yarchive.net/comp/linux/partial_reads_writes.html
2201 *
2202 * Returns: The number of bytes copied or a negative error code on failure.
2203 */
2204static ssize_t i915_perf_read_locked(struct i915_perf_stream *stream,
2205                                     struct file *file,
2206                                     char __user *buf,
2207                                     size_t count,
2208                                     loff_t *ppos)
2209{
2210        /* Note we keep the offset (aka bytes read) separate from any
2211         * error status so that the final check for whether we return
2212         * the bytes read with a higher precedence than any error (see
2213         * comment below) doesn't need to be handled/duplicated in
2214         * stream->ops->read() implementations.
2215         */
2216        size_t offset = 0;
2217        int ret = stream->ops->read(stream, buf, count, &offset);
2218
2219        return offset ?: (ret ?: -EAGAIN);
2220}
2221
2222/**
2223 * i915_perf_read - handles read() FOP for i915 perf stream FDs
2224 * @file: An i915 perf stream file
2225 * @buf: destination buffer given by userspace
2226 * @count: the number of bytes userspace wants to read
2227 * @ppos: (inout) file seek position (unused)
2228 *
2229 * The entry point for handling a read() on a stream file descriptor from
2230 * userspace. Most of the work is left to the i915_perf_read_locked() and
2231 * &i915_perf_stream_ops->read but to save having stream implementations (of
2232 * which we might have multiple later) we handle blocking read here.
2233 *
2234 * We can also consistently treat trying to read from a disabled stream
2235 * as an IO error so implementations can assume the stream is enabled
2236 * while reading.
2237 *
2238 * Returns: The number of bytes copied or a negative error code on failure.
2239 */
2240static ssize_t i915_perf_read(struct file *file,
2241                              char __user *buf,
2242                              size_t count,
2243                              loff_t *ppos)
2244{
2245        struct i915_perf_stream *stream = file->private_data;
2246        struct drm_i915_private *dev_priv = stream->dev_priv;
2247        ssize_t ret;
2248
2249        /* To ensure it's handled consistently we simply treat all reads of a
2250         * disabled stream as an error. In particular it might otherwise lead
2251         * to a deadlock for blocking file descriptors...
2252         */
2253        if (!stream->enabled)
2254                return -EIO;
2255
2256        if (!(file->f_flags & O_NONBLOCK)) {
2257                /* There's the small chance of false positives from
2258                 * stream->ops->wait_unlocked.
2259                 *
2260                 * E.g. with single context filtering since we only wait until
2261                 * oabuffer has >= 1 report we don't immediately know whether
2262                 * any reports really belong to the current context
2263                 */
2264                do {
2265                        ret = stream->ops->wait_unlocked(stream);
2266                        if (ret)
2267                                return ret;
2268
2269                        mutex_lock(&dev_priv->perf.lock);
2270                        ret = i915_perf_read_locked(stream, file,
2271                                                    buf, count, ppos);
2272                        mutex_unlock(&dev_priv->perf.lock);
2273                } while (ret == -EAGAIN);
2274        } else {
2275                mutex_lock(&dev_priv->perf.lock);
2276                ret = i915_perf_read_locked(stream, file, buf, count, ppos);
2277                mutex_unlock(&dev_priv->perf.lock);
2278        }
2279
2280        /* We allow the poll checking to sometimes report false positive EPOLLIN
2281         * events where we might actually report EAGAIN on read() if there's
2282         * not really any data available. In this situation though we don't
2283         * want to enter a busy loop between poll() reporting a EPOLLIN event
2284         * and read() returning -EAGAIN. Clearing the oa.pollin state here
2285         * effectively ensures we back off until the next hrtimer callback
2286         * before reporting another EPOLLIN event.
2287         */
2288        if (ret >= 0 || ret == -EAGAIN) {
2289                /* Maybe make ->pollin per-stream state if we support multiple
2290                 * concurrent streams in the future.
2291                 */
2292                dev_priv->perf.oa.pollin = false;
2293        }
2294
2295        return ret;
2296}
2297
2298static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
2299{
2300        struct drm_i915_private *dev_priv =
2301                container_of(hrtimer, typeof(*dev_priv),
2302                             perf.oa.poll_check_timer);
2303
2304        if (oa_buffer_check_unlocked(dev_priv)) {
2305                dev_priv->perf.oa.pollin = true;
2306                wake_up(&dev_priv->perf.oa.poll_wq);
2307        }
2308
2309        hrtimer_forward_now(hrtimer, ns_to_ktime(POLL_PERIOD));
2310
2311        return HRTIMER_RESTART;
2312}
2313
2314/**
2315 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
2316 * @dev_priv: i915 device instance
2317 * @stream: An i915 perf stream
2318 * @file: An i915 perf stream file
2319 * @wait: poll() state table
2320 *
2321 * For handling userspace polling on an i915 perf stream, this calls through to
2322 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
2323 * will be woken for new stream data.
2324 *
2325 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2326 * with any non-file-operation driver hooks.
2327 *
2328 * Returns: any poll events that are ready without sleeping
2329 */
2330static __poll_t i915_perf_poll_locked(struct drm_i915_private *dev_priv,
2331                                          struct i915_perf_stream *stream,
2332                                          struct file *file,
2333                                          poll_table *wait)
2334{
2335        __poll_t events = 0;
2336
2337        stream->ops->poll_wait(stream, file, wait);
2338
2339        /* Note: we don't explicitly check whether there's something to read
2340         * here since this path may be very hot depending on what else
2341         * userspace is polling, or on the timeout in use. We rely solely on
2342         * the hrtimer/oa_poll_check_timer_cb to notify us when there are
2343         * samples to read.
2344         */
2345        if (dev_priv->perf.oa.pollin)
2346                events |= EPOLLIN;
2347
2348        return events;
2349}
2350
2351/**
2352 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
2353 * @file: An i915 perf stream file
2354 * @wait: poll() state table
2355 *
2356 * For handling userspace polling on an i915 perf stream, this ensures
2357 * poll_wait() gets called with a wait queue that will be woken for new stream
2358 * data.
2359 *
2360 * Note: Implementation deferred to i915_perf_poll_locked()
2361 *
2362 * Returns: any poll events that are ready without sleeping
2363 */
2364static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
2365{
2366        struct i915_perf_stream *stream = file->private_data;
2367        struct drm_i915_private *dev_priv = stream->dev_priv;
2368        __poll_t ret;
2369
2370        mutex_lock(&dev_priv->perf.lock);
2371        ret = i915_perf_poll_locked(dev_priv, stream, file, wait);
2372        mutex_unlock(&dev_priv->perf.lock);
2373
2374        return ret;
2375}
2376
2377/**
2378 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
2379 * @stream: A disabled i915 perf stream
2380 *
2381 * [Re]enables the associated capture of data for this stream.
2382 *
2383 * If a stream was previously enabled then there's currently no intention
2384 * to provide userspace any guarantee about the preservation of previously
2385 * buffered data.
2386 */
2387static void i915_perf_enable_locked(struct i915_perf_stream *stream)
2388{
2389        if (stream->enabled)
2390                return;
2391
2392        /* Allow stream->ops->enable() to refer to this */
2393        stream->enabled = true;
2394
2395        if (stream->ops->enable)
2396                stream->ops->enable(stream);
2397}
2398
2399/**
2400 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
2401 * @stream: An enabled i915 perf stream
2402 *
2403 * Disables the associated capture of data for this stream.
2404 *
2405 * The intention is that disabling an re-enabling a stream will ideally be
2406 * cheaper than destroying and re-opening a stream with the same configuration,
2407 * though there are no formal guarantees about what state or buffered data
2408 * must be retained between disabling and re-enabling a stream.
2409 *
2410 * Note: while a stream is disabled it's considered an error for userspace
2411 * to attempt to read from the stream (-EIO).
2412 */
2413static void i915_perf_disable_locked(struct i915_perf_stream *stream)
2414{
2415        if (!stream->enabled)
2416                return;
2417
2418        /* Allow stream->ops->disable() to refer to this */
2419        stream->enabled = false;
2420
2421        if (stream->ops->disable)
2422                stream->ops->disable(stream);
2423}
2424
2425/**
2426 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
2427 * @stream: An i915 perf stream
2428 * @cmd: the ioctl request
2429 * @arg: the ioctl data
2430 *
2431 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2432 * with any non-file-operation driver hooks.
2433 *
2434 * Returns: zero on success or a negative error code. Returns -EINVAL for
2435 * an unknown ioctl request.
2436 */
2437static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
2438                                   unsigned int cmd,
2439                                   unsigned long arg)
2440{
2441        switch (cmd) {
2442        case I915_PERF_IOCTL_ENABLE:
2443                i915_perf_enable_locked(stream);
2444                return 0;
2445        case I915_PERF_IOCTL_DISABLE:
2446                i915_perf_disable_locked(stream);
2447                return 0;
2448        }
2449
2450        return -EINVAL;
2451}
2452
2453/**
2454 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
2455 * @file: An i915 perf stream file
2456 * @cmd: the ioctl request
2457 * @arg: the ioctl data
2458 *
2459 * Implementation deferred to i915_perf_ioctl_locked().
2460 *
2461 * Returns: zero on success or a negative error code. Returns -EINVAL for
2462 * an unknown ioctl request.
2463 */
2464static long i915_perf_ioctl(struct file *file,
2465                            unsigned int cmd,
2466                            unsigned long arg)
2467{
2468        struct i915_perf_stream *stream = file->private_data;
2469        struct drm_i915_private *dev_priv = stream->dev_priv;
2470        long ret;
2471
2472        mutex_lock(&dev_priv->perf.lock);
2473        ret = i915_perf_ioctl_locked(stream, cmd, arg);
2474        mutex_unlock(&dev_priv->perf.lock);
2475
2476        return ret;
2477}
2478
2479/**
2480 * i915_perf_destroy_locked - destroy an i915 perf stream
2481 * @stream: An i915 perf stream
2482 *
2483 * Frees all resources associated with the given i915 perf @stream, disabling
2484 * any associated data capture in the process.
2485 *
2486 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2487 * with any non-file-operation driver hooks.
2488 */
2489static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
2490{
2491        if (stream->enabled)
2492                i915_perf_disable_locked(stream);
2493
2494        if (stream->ops->destroy)
2495                stream->ops->destroy(stream);
2496
2497        list_del(&stream->link);
2498
2499        if (stream->ctx)
2500                i915_gem_context_put(stream->ctx);
2501
2502        kfree(stream);
2503}
2504
2505/**
2506 * i915_perf_release - handles userspace close() of a stream file
2507 * @inode: anonymous inode associated with file
2508 * @file: An i915 perf stream file
2509 *
2510 * Cleans up any resources associated with an open i915 perf stream file.
2511 *
2512 * NB: close() can't really fail from the userspace point of view.
2513 *
2514 * Returns: zero on success or a negative error code.
2515 */
2516static int i915_perf_release(struct inode *inode, struct file *file)
2517{
2518        struct i915_perf_stream *stream = file->private_data;
2519        struct drm_i915_private *dev_priv = stream->dev_priv;
2520
2521        mutex_lock(&dev_priv->perf.lock);
2522        i915_perf_destroy_locked(stream);
2523        mutex_unlock(&dev_priv->perf.lock);
2524
2525        /* Release the reference the perf stream kept on the driver. */
2526        drm_dev_put(&dev_priv->drm);
2527
2528        return 0;
2529}
2530
2531
2532static const struct file_operations fops = {
2533        .owner          = THIS_MODULE,
2534        .llseek         = no_llseek,
2535        .release        = i915_perf_release,
2536        .poll           = i915_perf_poll,
2537        .read           = i915_perf_read,
2538        .unlocked_ioctl = i915_perf_ioctl,
2539        /* Our ioctl have no arguments, so it's safe to use the same function
2540         * to handle 32bits compatibility.
2541         */
2542        .compat_ioctl   = i915_perf_ioctl,
2543};
2544
2545
2546/**
2547 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
2548 * @dev_priv: i915 device instance
2549 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
2550 * @props: individually validated u64 property value pairs
2551 * @file: drm file
2552 *
2553 * See i915_perf_ioctl_open() for interface details.
2554 *
2555 * Implements further stream config validation and stream initialization on
2556 * behalf of i915_perf_open_ioctl() with the &drm_i915_private->perf.lock mutex
2557 * taken to serialize with any non-file-operation driver hooks.
2558 *
2559 * Note: at this point the @props have only been validated in isolation and
2560 * it's still necessary to validate that the combination of properties makes
2561 * sense.
2562 *
2563 * In the case where userspace is interested in OA unit metrics then further
2564 * config validation and stream initialization details will be handled by
2565 * i915_oa_stream_init(). The code here should only validate config state that
2566 * will be relevant to all stream types / backends.
2567 *
2568 * Returns: zero on success or a negative error code.
2569 */
2570static int
2571i915_perf_open_ioctl_locked(struct drm_i915_private *dev_priv,
2572                            struct drm_i915_perf_open_param *param,
2573                            struct perf_open_properties *props,
2574                            struct drm_file *file)
2575{
2576        struct i915_gem_context *specific_ctx = NULL;
2577        struct i915_perf_stream *stream = NULL;
2578        unsigned long f_flags = 0;
2579        bool privileged_op = true;
2580        int stream_fd;
2581        int ret;
2582
2583        if (props->single_context) {
2584                u32 ctx_handle = props->ctx_handle;
2585                struct drm_i915_file_private *file_priv = file->driver_priv;
2586
2587                specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
2588                if (!specific_ctx) {
2589                        DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n",
2590                                  ctx_handle);
2591                        ret = -ENOENT;
2592                        goto err;
2593                }
2594        }
2595
2596        /*
2597         * On Haswell the OA unit supports clock gating off for a specific
2598         * context and in this mode there's no visibility of metrics for the
2599         * rest of the system, which we consider acceptable for a
2600         * non-privileged client.
2601         *
2602         * For Gen8+ the OA unit no longer supports clock gating off for a
2603         * specific context and the kernel can't securely stop the counters
2604         * from updating as system-wide / global values. Even though we can
2605         * filter reports based on the included context ID we can't block
2606         * clients from seeing the raw / global counter values via
2607         * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
2608         * enable the OA unit by default.
2609         */
2610        if (IS_HASWELL(dev_priv) && specific_ctx)
2611                privileged_op = false;
2612
2613        /* Similar to perf's kernel.perf_paranoid_cpu sysctl option
2614         * we check a dev.i915.perf_stream_paranoid sysctl option
2615         * to determine if it's ok to access system wide OA counters
2616         * without CAP_SYS_ADMIN privileges.
2617         */
2618        if (privileged_op &&
2619            i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
2620                DRM_DEBUG("Insufficient privileges to open system-wide i915 perf stream\n");
2621                ret = -EACCES;
2622                goto err_ctx;
2623        }
2624
2625        stream = kzalloc(sizeof(*stream), GFP_KERNEL);
2626        if (!stream) {
2627                ret = -ENOMEM;
2628                goto err_ctx;
2629        }
2630
2631        stream->dev_priv = dev_priv;
2632        stream->ctx = specific_ctx;
2633
2634        ret = i915_oa_stream_init(stream, param, props);
2635        if (ret)
2636                goto err_alloc;
2637
2638        /* we avoid simply assigning stream->sample_flags = props->sample_flags
2639         * to have _stream_init check the combination of sample flags more
2640         * thoroughly, but still this is the expected result at this point.
2641         */
2642        if (WARN_ON(stream->sample_flags != props->sample_flags)) {
2643                ret = -ENODEV;
2644                goto err_flags;
2645        }
2646
2647        list_add(&stream->link, &dev_priv->perf.streams);
2648
2649        if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
2650                f_flags |= O_CLOEXEC;
2651        if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
2652                f_flags |= O_NONBLOCK;
2653
2654        stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
2655        if (stream_fd < 0) {
2656                ret = stream_fd;
2657                goto err_open;
2658        }
2659
2660        if (!(param->flags & I915_PERF_FLAG_DISABLED))
2661                i915_perf_enable_locked(stream);
2662
2663        /* Take a reference on the driver that will be kept with stream_fd
2664         * until its release.
2665         */
2666        drm_dev_get(&dev_priv->drm);
2667
2668        return stream_fd;
2669
2670err_open:
2671        list_del(&stream->link);
2672err_flags:
2673        if (stream->ops->destroy)
2674                stream->ops->destroy(stream);
2675err_alloc:
2676        kfree(stream);
2677err_ctx:
2678        if (specific_ctx)
2679                i915_gem_context_put(specific_ctx);
2680err:
2681        return ret;
2682}
2683
2684static u64 oa_exponent_to_ns(struct drm_i915_private *dev_priv, int exponent)
2685{
2686        return div64_u64(1000000000ULL * (2ULL << exponent),
2687                         1000ULL * RUNTIME_INFO(dev_priv)->cs_timestamp_frequency_khz);
2688}
2689
2690/**
2691 * read_properties_unlocked - validate + copy userspace stream open properties
2692 * @dev_priv: i915 device instance
2693 * @uprops: The array of u64 key value pairs given by userspace
2694 * @n_props: The number of key value pairs expected in @uprops
2695 * @props: The stream configuration built up while validating properties
2696 *
2697 * Note this function only validates properties in isolation it doesn't
2698 * validate that the combination of properties makes sense or that all
2699 * properties necessary for a particular kind of stream have been set.
2700 *
2701 * Note that there currently aren't any ordering requirements for properties so
2702 * we shouldn't validate or assume anything about ordering here. This doesn't
2703 * rule out defining new properties with ordering requirements in the future.
2704 */
2705static int read_properties_unlocked(struct drm_i915_private *dev_priv,
2706                                    u64 __user *uprops,
2707                                    u32 n_props,
2708                                    struct perf_open_properties *props)
2709{
2710        u64 __user *uprop = uprops;
2711        u32 i;
2712
2713        memset(props, 0, sizeof(struct perf_open_properties));
2714
2715        if (!n_props) {
2716                DRM_DEBUG("No i915 perf properties given\n");
2717                return -EINVAL;
2718        }
2719
2720        /* Considering that ID = 0 is reserved and assuming that we don't
2721         * (currently) expect any configurations to ever specify duplicate
2722         * values for a particular property ID then the last _PROP_MAX value is
2723         * one greater than the maximum number of properties we expect to get
2724         * from userspace.
2725         */
2726        if (n_props >= DRM_I915_PERF_PROP_MAX) {
2727                DRM_DEBUG("More i915 perf properties specified than exist\n");
2728                return -EINVAL;
2729        }
2730
2731        for (i = 0; i < n_props; i++) {
2732                u64 oa_period, oa_freq_hz;
2733                u64 id, value;
2734                int ret;
2735
2736                ret = get_user(id, uprop);
2737                if (ret)
2738                        return ret;
2739
2740                ret = get_user(value, uprop + 1);
2741                if (ret)
2742                        return ret;
2743
2744                if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
2745                        DRM_DEBUG("Unknown i915 perf property ID\n");
2746                        return -EINVAL;
2747                }
2748
2749                switch ((enum drm_i915_perf_property_id)id) {
2750                case DRM_I915_PERF_PROP_CTX_HANDLE:
2751                        props->single_context = 1;
2752                        props->ctx_handle = value;
2753                        break;
2754                case DRM_I915_PERF_PROP_SAMPLE_OA:
2755                        if (value)
2756                                props->sample_flags |= SAMPLE_OA_REPORT;
2757                        break;
2758                case DRM_I915_PERF_PROP_OA_METRICS_SET:
2759                        if (value == 0) {
2760                                DRM_DEBUG("Unknown OA metric set ID\n");
2761                                return -EINVAL;
2762                        }
2763                        props->metrics_set = value;
2764                        break;
2765                case DRM_I915_PERF_PROP_OA_FORMAT:
2766                        if (value == 0 || value >= I915_OA_FORMAT_MAX) {
2767                                DRM_DEBUG("Out-of-range OA report format %llu\n",
2768                                          value);
2769                                return -EINVAL;
2770                        }
2771                        if (!dev_priv->perf.oa.oa_formats[value].size) {
2772                                DRM_DEBUG("Unsupported OA report format %llu\n",
2773                                          value);
2774                                return -EINVAL;
2775                        }
2776                        props->oa_format = value;
2777                        break;
2778                case DRM_I915_PERF_PROP_OA_EXPONENT:
2779                        if (value > OA_EXPONENT_MAX) {
2780                                DRM_DEBUG("OA timer exponent too high (> %u)\n",
2781                                         OA_EXPONENT_MAX);
2782                                return -EINVAL;
2783                        }
2784
2785                        /* Theoretically we can program the OA unit to sample
2786                         * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
2787                         * for BXT. We don't allow such high sampling
2788                         * frequencies by default unless root.
2789                         */
2790
2791                        BUILD_BUG_ON(sizeof(oa_period) != 8);
2792                        oa_period = oa_exponent_to_ns(dev_priv, value);
2793
2794                        /* This check is primarily to ensure that oa_period <=
2795                         * UINT32_MAX (before passing to do_div which only
2796                         * accepts a u32 denominator), but we can also skip
2797                         * checking anything < 1Hz which implicitly can't be
2798                         * limited via an integer oa_max_sample_rate.
2799                         */
2800                        if (oa_period <= NSEC_PER_SEC) {
2801                                u64 tmp = NSEC_PER_SEC;
2802                                do_div(tmp, oa_period);
2803                                oa_freq_hz = tmp;
2804                        } else
2805                                oa_freq_hz = 0;
2806
2807                        if (oa_freq_hz > i915_oa_max_sample_rate &&
2808                            !capable(CAP_SYS_ADMIN)) {
2809                                DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without root privileges\n",
2810                                          i915_oa_max_sample_rate);
2811                                return -EACCES;
2812                        }
2813
2814                        props->oa_periodic = true;
2815                        props->oa_period_exponent = value;
2816                        break;
2817                case DRM_I915_PERF_PROP_MAX:
2818                        MISSING_CASE(id);
2819                        return -EINVAL;
2820                }
2821
2822                uprop += 2;
2823        }
2824
2825        return 0;
2826}
2827
2828/**
2829 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
2830 * @dev: drm device
2831 * @data: ioctl data copied from userspace (unvalidated)
2832 * @file: drm file
2833 *
2834 * Validates the stream open parameters given by userspace including flags
2835 * and an array of u64 key, value pair properties.
2836 *
2837 * Very little is assumed up front about the nature of the stream being
2838 * opened (for instance we don't assume it's for periodic OA unit metrics). An
2839 * i915-perf stream is expected to be a suitable interface for other forms of
2840 * buffered data written by the GPU besides periodic OA metrics.
2841 *
2842 * Note we copy the properties from userspace outside of the i915 perf
2843 * mutex to avoid an awkward lockdep with mmap_sem.
2844 *
2845 * Most of the implementation details are handled by
2846 * i915_perf_open_ioctl_locked() after taking the &drm_i915_private->perf.lock
2847 * mutex for serializing with any non-file-operation driver hooks.
2848 *
2849 * Return: A newly opened i915 Perf stream file descriptor or negative
2850 * error code on failure.
2851 */
2852int i915_perf_open_ioctl(struct drm_device *dev, void *data,
2853                         struct drm_file *file)
2854{
2855        struct drm_i915_private *dev_priv = dev->dev_private;
2856        struct drm_i915_perf_open_param *param = data;
2857        struct perf_open_properties props;
2858        u32 known_open_flags;
2859        int ret;
2860
2861        if (!dev_priv->perf.initialized) {
2862                DRM_DEBUG("i915 perf interface not available for this system\n");
2863                return -ENOTSUPP;
2864        }
2865
2866        known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
2867                           I915_PERF_FLAG_FD_NONBLOCK |
2868                           I915_PERF_FLAG_DISABLED;
2869        if (param->flags & ~known_open_flags) {
2870                DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n");
2871                return -EINVAL;
2872        }
2873
2874        ret = read_properties_unlocked(dev_priv,
2875                                       u64_to_user_ptr(param->properties_ptr),
2876                                       param->num_properties,
2877                                       &props);
2878        if (ret)
2879                return ret;
2880
2881        mutex_lock(&dev_priv->perf.lock);
2882        ret = i915_perf_open_ioctl_locked(dev_priv, param, &props, file);
2883        mutex_unlock(&dev_priv->perf.lock);
2884
2885        return ret;
2886}
2887
2888/**
2889 * i915_perf_register - exposes i915-perf to userspace
2890 * @dev_priv: i915 device instance
2891 *
2892 * In particular OA metric sets are advertised under a sysfs metrics/
2893 * directory allowing userspace to enumerate valid IDs that can be
2894 * used to open an i915-perf stream.
2895 */
2896void i915_perf_register(struct drm_i915_private *dev_priv)
2897{
2898        int ret;
2899
2900        if (!dev_priv->perf.initialized)
2901                return;
2902
2903        /* To be sure we're synchronized with an attempted
2904         * i915_perf_open_ioctl(); considering that we register after
2905         * being exposed to userspace.
2906         */
2907        mutex_lock(&dev_priv->perf.lock);
2908
2909        dev_priv->perf.metrics_kobj =
2910                kobject_create_and_add("metrics",
2911                                       &dev_priv->drm.primary->kdev->kobj);
2912        if (!dev_priv->perf.metrics_kobj)
2913                goto exit;
2914
2915        sysfs_attr_init(&dev_priv->perf.oa.test_config.sysfs_metric_id.attr);
2916
2917        if (INTEL_GEN(dev_priv) >= 11) {
2918                i915_perf_load_test_config_icl(dev_priv);
2919        } else if (IS_CANNONLAKE(dev_priv)) {
2920                i915_perf_load_test_config_cnl(dev_priv);
2921        } else if (IS_COFFEELAKE(dev_priv)) {
2922                if (IS_CFL_GT2(dev_priv))
2923                        i915_perf_load_test_config_cflgt2(dev_priv);
2924                if (IS_CFL_GT3(dev_priv))
2925                        i915_perf_load_test_config_cflgt3(dev_priv);
2926        } else if (IS_GEMINILAKE(dev_priv)) {
2927                i915_perf_load_test_config_glk(dev_priv);
2928        } else if (IS_KABYLAKE(dev_priv)) {
2929                if (IS_KBL_GT2(dev_priv))
2930                        i915_perf_load_test_config_kblgt2(dev_priv);
2931                else if (IS_KBL_GT3(dev_priv))
2932                        i915_perf_load_test_config_kblgt3(dev_priv);
2933        } else if (IS_BROXTON(dev_priv)) {
2934                i915_perf_load_test_config_bxt(dev_priv);
2935        } else if (IS_SKYLAKE(dev_priv)) {
2936                if (IS_SKL_GT2(dev_priv))
2937                        i915_perf_load_test_config_sklgt2(dev_priv);
2938                else if (IS_SKL_GT3(dev_priv))
2939                        i915_perf_load_test_config_sklgt3(dev_priv);
2940                else if (IS_SKL_GT4(dev_priv))
2941                        i915_perf_load_test_config_sklgt4(dev_priv);
2942        } else if (IS_CHERRYVIEW(dev_priv)) {
2943                i915_perf_load_test_config_chv(dev_priv);
2944        } else if (IS_BROADWELL(dev_priv)) {
2945                i915_perf_load_test_config_bdw(dev_priv);
2946        } else if (IS_HASWELL(dev_priv)) {
2947                i915_perf_load_test_config_hsw(dev_priv);
2948}
2949
2950        if (dev_priv->perf.oa.test_config.id == 0)
2951                goto sysfs_error;
2952
2953        ret = sysfs_create_group(dev_priv->perf.metrics_kobj,
2954                                 &dev_priv->perf.oa.test_config.sysfs_metric);
2955        if (ret)
2956                goto sysfs_error;
2957
2958        atomic_set(&dev_priv->perf.oa.test_config.ref_count, 1);
2959
2960        goto exit;
2961
2962sysfs_error:
2963        kobject_put(dev_priv->perf.metrics_kobj);
2964        dev_priv->perf.metrics_kobj = NULL;
2965
2966exit:
2967        mutex_unlock(&dev_priv->perf.lock);
2968}
2969
2970/**
2971 * i915_perf_unregister - hide i915-perf from userspace
2972 * @dev_priv: i915 device instance
2973 *
2974 * i915-perf state cleanup is split up into an 'unregister' and
2975 * 'deinit' phase where the interface is first hidden from
2976 * userspace by i915_perf_unregister() before cleaning up
2977 * remaining state in i915_perf_fini().
2978 */
2979void i915_perf_unregister(struct drm_i915_private *dev_priv)
2980{
2981        if (!dev_priv->perf.metrics_kobj)
2982                return;
2983
2984        sysfs_remove_group(dev_priv->perf.metrics_kobj,
2985                           &dev_priv->perf.oa.test_config.sysfs_metric);
2986
2987        kobject_put(dev_priv->perf.metrics_kobj);
2988        dev_priv->perf.metrics_kobj = NULL;
2989}
2990
2991static bool gen8_is_valid_flex_addr(struct drm_i915_private *dev_priv, u32 addr)
2992{
2993        static const i915_reg_t flex_eu_regs[] = {
2994                EU_PERF_CNTL0,
2995                EU_PERF_CNTL1,
2996                EU_PERF_CNTL2,
2997                EU_PERF_CNTL3,
2998                EU_PERF_CNTL4,
2999                EU_PERF_CNTL5,
3000                EU_PERF_CNTL6,
3001        };
3002        int i;
3003
3004        for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
3005                if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
3006                        return true;
3007        }
3008        return false;
3009}
3010
3011static bool gen7_is_valid_b_counter_addr(struct drm_i915_private *dev_priv, u32 addr)
3012{
3013        return (addr >= i915_mmio_reg_offset(OASTARTTRIG1) &&
3014                addr <= i915_mmio_reg_offset(OASTARTTRIG8)) ||
3015                (addr >= i915_mmio_reg_offset(OAREPORTTRIG1) &&
3016                 addr <= i915_mmio_reg_offset(OAREPORTTRIG8)) ||
3017                (addr >= i915_mmio_reg_offset(OACEC0_0) &&
3018                 addr <= i915_mmio_reg_offset(OACEC7_1));
3019}
3020
3021static bool gen7_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3022{
3023        return addr == i915_mmio_reg_offset(HALF_SLICE_CHICKEN2) ||
3024                (addr >= i915_mmio_reg_offset(MICRO_BP0_0) &&
3025                 addr <= i915_mmio_reg_offset(NOA_WRITE)) ||
3026                (addr >= i915_mmio_reg_offset(OA_PERFCNT1_LO) &&
3027                 addr <= i915_mmio_reg_offset(OA_PERFCNT2_HI)) ||
3028                (addr >= i915_mmio_reg_offset(OA_PERFMATRIX_LO) &&
3029                 addr <= i915_mmio_reg_offset(OA_PERFMATRIX_HI));
3030}
3031
3032static bool gen8_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3033{
3034        return gen7_is_valid_mux_addr(dev_priv, addr) ||
3035                addr == i915_mmio_reg_offset(WAIT_FOR_RC6_EXIT) ||
3036                (addr >= i915_mmio_reg_offset(RPM_CONFIG0) &&
3037                 addr <= i915_mmio_reg_offset(NOA_CONFIG(8)));
3038}
3039
3040static bool gen10_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3041{
3042        return gen8_is_valid_mux_addr(dev_priv, addr) ||
3043                addr == i915_mmio_reg_offset(GEN10_NOA_WRITE_HIGH) ||
3044                (addr >= i915_mmio_reg_offset(OA_PERFCNT3_LO) &&
3045                 addr <= i915_mmio_reg_offset(OA_PERFCNT4_HI));
3046}
3047
3048static bool hsw_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3049{
3050        return gen7_is_valid_mux_addr(dev_priv, addr) ||
3051                (addr >= 0x25100 && addr <= 0x2FF90) ||
3052                (addr >= i915_mmio_reg_offset(HSW_MBVID2_NOA0) &&
3053                 addr <= i915_mmio_reg_offset(HSW_MBVID2_NOA9)) ||
3054                addr == i915_mmio_reg_offset(HSW_MBVID2_MISR0);
3055}
3056
3057static bool chv_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3058{
3059        return gen7_is_valid_mux_addr(dev_priv, addr) ||
3060                (addr >= 0x182300 && addr <= 0x1823A4);
3061}
3062
3063static u32 mask_reg_value(u32 reg, u32 val)
3064{
3065        /* HALF_SLICE_CHICKEN2 is programmed with a the
3066         * WaDisableSTUnitPowerOptimization workaround. Make sure the value
3067         * programmed by userspace doesn't change this.
3068         */
3069        if (i915_mmio_reg_offset(HALF_SLICE_CHICKEN2) == reg)
3070                val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
3071
3072        /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
3073         * indicated by its name and a bunch of selection fields used by OA
3074         * configs.
3075         */
3076        if (i915_mmio_reg_offset(WAIT_FOR_RC6_EXIT) == reg)
3077                val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
3078
3079        return val;
3080}
3081
3082static struct i915_oa_reg *alloc_oa_regs(struct drm_i915_private *dev_priv,
3083                                         bool (*is_valid)(struct drm_i915_private *dev_priv, u32 addr),
3084                                         u32 __user *regs,
3085                                         u32 n_regs)
3086{
3087        struct i915_oa_reg *oa_regs;
3088        int err;
3089        u32 i;
3090
3091        if (!n_regs)
3092                return NULL;
3093
3094        if (!access_ok(regs, n_regs * sizeof(u32) * 2))
3095                return ERR_PTR(-EFAULT);
3096
3097        /* No is_valid function means we're not allowing any register to be programmed. */
3098        GEM_BUG_ON(!is_valid);
3099        if (!is_valid)
3100                return ERR_PTR(-EINVAL);
3101
3102        oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
3103        if (!oa_regs)
3104                return ERR_PTR(-ENOMEM);
3105
3106        for (i = 0; i < n_regs; i++) {
3107                u32 addr, value;
3108
3109                err = get_user(addr, regs);
3110                if (err)
3111                        goto addr_err;
3112
3113                if (!is_valid(dev_priv, addr)) {
3114                        DRM_DEBUG("Invalid oa_reg address: %X\n", addr);
3115                        err = -EINVAL;
3116                        goto addr_err;
3117                }
3118
3119                err = get_user(value, regs + 1);
3120                if (err)
3121                        goto addr_err;
3122
3123                oa_regs[i].addr = _MMIO(addr);
3124                oa_regs[i].value = mask_reg_value(addr, value);
3125
3126                regs += 2;
3127        }
3128
3129        return oa_regs;
3130
3131addr_err:
3132        kfree(oa_regs);
3133        return ERR_PTR(err);
3134}
3135
3136static ssize_t show_dynamic_id(struct device *dev,
3137                               struct device_attribute *attr,
3138                               char *buf)
3139{
3140        struct i915_oa_config *oa_config =
3141                container_of(attr, typeof(*oa_config), sysfs_metric_id);
3142
3143        return sprintf(buf, "%d\n", oa_config->id);
3144}
3145
3146static int create_dynamic_oa_sysfs_entry(struct drm_i915_private *dev_priv,
3147                                         struct i915_oa_config *oa_config)
3148{
3149        sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
3150        oa_config->sysfs_metric_id.attr.name = "id";
3151        oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
3152        oa_config->sysfs_metric_id.show = show_dynamic_id;
3153        oa_config->sysfs_metric_id.store = NULL;
3154
3155        oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
3156        oa_config->attrs[1] = NULL;
3157
3158        oa_config->sysfs_metric.name = oa_config->uuid;
3159        oa_config->sysfs_metric.attrs = oa_config->attrs;
3160
3161        return sysfs_create_group(dev_priv->perf.metrics_kobj,
3162                                  &oa_config->sysfs_metric);
3163}
3164
3165/**
3166 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
3167 * @dev: drm device
3168 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
3169 *        userspace (unvalidated)
3170 * @file: drm file
3171 *
3172 * Validates the submitted OA register to be saved into a new OA config that
3173 * can then be used for programming the OA unit and its NOA network.
3174 *
3175 * Returns: A new allocated config number to be used with the perf open ioctl
3176 * or a negative error code on failure.
3177 */
3178int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3179                               struct drm_file *file)
3180{
3181        struct drm_i915_private *dev_priv = dev->dev_private;
3182        struct drm_i915_perf_oa_config *args = data;
3183        struct i915_oa_config *oa_config, *tmp;
3184        int err, id;
3185
3186        if (!dev_priv->perf.initialized) {
3187                DRM_DEBUG("i915 perf interface not available for this system\n");
3188                return -ENOTSUPP;
3189        }
3190
3191        if (!dev_priv->perf.metrics_kobj) {
3192                DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
3193                return -EINVAL;
3194        }
3195
3196        if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
3197                DRM_DEBUG("Insufficient privileges to add i915 OA config\n");
3198                return -EACCES;
3199        }
3200
3201        if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
3202            (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
3203            (!args->flex_regs_ptr || !args->n_flex_regs)) {
3204                DRM_DEBUG("No OA registers given\n");
3205                return -EINVAL;
3206        }
3207
3208        oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
3209        if (!oa_config) {
3210                DRM_DEBUG("Failed to allocate memory for the OA config\n");
3211                return -ENOMEM;
3212        }
3213
3214        atomic_set(&oa_config->ref_count, 1);
3215
3216        if (!uuid_is_valid(args->uuid)) {
3217                DRM_DEBUG("Invalid uuid format for OA config\n");
3218                err = -EINVAL;
3219                goto reg_err;
3220        }
3221
3222        /* Last character in oa_config->uuid will be 0 because oa_config is
3223         * kzalloc.
3224         */
3225        memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
3226
3227        oa_config->mux_regs_len = args->n_mux_regs;
3228        oa_config->mux_regs =
3229                alloc_oa_regs(dev_priv,
3230                              dev_priv->perf.oa.ops.is_valid_mux_reg,
3231                              u64_to_user_ptr(args->mux_regs_ptr),
3232                              args->n_mux_regs);
3233
3234        if (IS_ERR(oa_config->mux_regs)) {
3235                DRM_DEBUG("Failed to create OA config for mux_regs\n");
3236                err = PTR_ERR(oa_config->mux_regs);
3237                goto reg_err;
3238        }
3239
3240        oa_config->b_counter_regs_len = args->n_boolean_regs;
3241        oa_config->b_counter_regs =
3242                alloc_oa_regs(dev_priv,
3243                              dev_priv->perf.oa.ops.is_valid_b_counter_reg,
3244                              u64_to_user_ptr(args->boolean_regs_ptr),
3245                              args->n_boolean_regs);
3246
3247        if (IS_ERR(oa_config->b_counter_regs)) {
3248                DRM_DEBUG("Failed to create OA config for b_counter_regs\n");
3249                err = PTR_ERR(oa_config->b_counter_regs);
3250                goto reg_err;
3251        }
3252
3253        if (INTEL_GEN(dev_priv) < 8) {
3254                if (args->n_flex_regs != 0) {
3255                        err = -EINVAL;
3256                        goto reg_err;
3257                }
3258        } else {
3259                oa_config->flex_regs_len = args->n_flex_regs;
3260                oa_config->flex_regs =
3261                        alloc_oa_regs(dev_priv,
3262                                      dev_priv->perf.oa.ops.is_valid_flex_reg,
3263                                      u64_to_user_ptr(args->flex_regs_ptr),
3264                                      args->n_flex_regs);
3265
3266                if (IS_ERR(oa_config->flex_regs)) {
3267                        DRM_DEBUG("Failed to create OA config for flex_regs\n");
3268                        err = PTR_ERR(oa_config->flex_regs);
3269                        goto reg_err;
3270                }
3271        }
3272
3273        err = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
3274        if (err)
3275                goto reg_err;
3276
3277        /* We shouldn't have too many configs, so this iteration shouldn't be
3278         * too costly.
3279         */
3280        idr_for_each_entry(&dev_priv->perf.metrics_idr, tmp, id) {
3281                if (!strcmp(tmp->uuid, oa_config->uuid)) {
3282                        DRM_DEBUG("OA config already exists with this uuid\n");
3283                        err = -EADDRINUSE;
3284                        goto sysfs_err;
3285                }
3286        }
3287
3288        err = create_dynamic_oa_sysfs_entry(dev_priv, oa_config);
3289        if (err) {
3290                DRM_DEBUG("Failed to create sysfs entry for OA config\n");
3291                goto sysfs_err;
3292        }
3293
3294        /* Config id 0 is invalid, id 1 for kernel stored test config. */
3295        oa_config->id = idr_alloc(&dev_priv->perf.metrics_idr,
3296                                  oa_config, 2,
3297                                  0, GFP_KERNEL);
3298        if (oa_config->id < 0) {
3299                DRM_DEBUG("Failed to create sysfs entry for OA config\n");
3300                err = oa_config->id;
3301                goto sysfs_err;
3302        }
3303
3304        mutex_unlock(&dev_priv->perf.metrics_lock);
3305
3306        DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id);
3307
3308        return oa_config->id;
3309
3310sysfs_err:
3311        mutex_unlock(&dev_priv->perf.metrics_lock);
3312reg_err:
3313        put_oa_config(dev_priv, oa_config);
3314        DRM_DEBUG("Failed to add new OA config\n");
3315        return err;
3316}
3317
3318/**
3319 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
3320 * @dev: drm device
3321 * @data: ioctl data (pointer to u64 integer) copied from userspace
3322 * @file: drm file
3323 *
3324 * Configs can be removed while being used, the will stop appearing in sysfs
3325 * and their content will be freed when the stream using the config is closed.
3326 *
3327 * Returns: 0 on success or a negative error code on failure.
3328 */
3329int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3330                                  struct drm_file *file)
3331{
3332        struct drm_i915_private *dev_priv = dev->dev_private;
3333        u64 *arg = data;
3334        struct i915_oa_config *oa_config;
3335        int ret;
3336
3337        if (!dev_priv->perf.initialized) {
3338                DRM_DEBUG("i915 perf interface not available for this system\n");
3339                return -ENOTSUPP;
3340        }
3341
3342        if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
3343                DRM_DEBUG("Insufficient privileges to remove i915 OA config\n");
3344                return -EACCES;
3345        }
3346
3347        ret = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
3348        if (ret)
3349                goto lock_err;
3350
3351        oa_config = idr_find(&dev_priv->perf.metrics_idr, *arg);
3352        if (!oa_config) {
3353                DRM_DEBUG("Failed to remove unknown OA config\n");
3354                ret = -ENOENT;
3355                goto config_err;
3356        }
3357
3358        GEM_BUG_ON(*arg != oa_config->id);
3359
3360        sysfs_remove_group(dev_priv->perf.metrics_kobj,
3361                           &oa_config->sysfs_metric);
3362
3363        idr_remove(&dev_priv->perf.metrics_idr, *arg);
3364
3365        DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id);
3366
3367        put_oa_config(dev_priv, oa_config);
3368
3369config_err:
3370        mutex_unlock(&dev_priv->perf.metrics_lock);
3371lock_err:
3372        return ret;
3373}
3374
3375static struct ctl_table oa_table[] = {
3376        {
3377         .procname = "perf_stream_paranoid",
3378         .data = &i915_perf_stream_paranoid,
3379         .maxlen = sizeof(i915_perf_stream_paranoid),
3380         .mode = 0644,
3381         .proc_handler = proc_dointvec_minmax,
3382         .extra1 = SYSCTL_ZERO,
3383         .extra2 = SYSCTL_ONE,
3384         },
3385        {
3386         .procname = "oa_max_sample_rate",
3387         .data = &i915_oa_max_sample_rate,
3388         .maxlen = sizeof(i915_oa_max_sample_rate),
3389         .mode = 0644,
3390         .proc_handler = proc_dointvec_minmax,
3391         .extra1 = SYSCTL_ZERO,
3392         .extra2 = &oa_sample_rate_hard_limit,
3393         },
3394        {}
3395};
3396
3397static struct ctl_table i915_root[] = {
3398        {
3399         .procname = "i915",
3400         .maxlen = 0,
3401         .mode = 0555,
3402         .child = oa_table,
3403         },
3404        {}
3405};
3406
3407static struct ctl_table dev_root[] = {
3408        {
3409         .procname = "dev",
3410         .maxlen = 0,
3411         .mode = 0555,
3412         .child = i915_root,
3413         },
3414        {}
3415};
3416
3417/**
3418 * i915_perf_init - initialize i915-perf state on module load
3419 * @dev_priv: i915 device instance
3420 *
3421 * Initializes i915-perf state without exposing anything to userspace.
3422 *
3423 * Note: i915-perf initialization is split into an 'init' and 'register'
3424 * phase with the i915_perf_register() exposing state to userspace.
3425 */
3426void i915_perf_init(struct drm_i915_private *dev_priv)
3427{
3428        if (IS_HASWELL(dev_priv)) {
3429                dev_priv->perf.oa.ops.is_valid_b_counter_reg =
3430                        gen7_is_valid_b_counter_addr;
3431                dev_priv->perf.oa.ops.is_valid_mux_reg =
3432                        hsw_is_valid_mux_addr;
3433                dev_priv->perf.oa.ops.is_valid_flex_reg = NULL;
3434                dev_priv->perf.oa.ops.enable_metric_set = hsw_enable_metric_set;
3435                dev_priv->perf.oa.ops.disable_metric_set = hsw_disable_metric_set;
3436                dev_priv->perf.oa.ops.oa_enable = gen7_oa_enable;
3437                dev_priv->perf.oa.ops.oa_disable = gen7_oa_disable;
3438                dev_priv->perf.oa.ops.read = gen7_oa_read;
3439                dev_priv->perf.oa.ops.oa_hw_tail_read =
3440                        gen7_oa_hw_tail_read;
3441
3442                dev_priv->perf.oa.oa_formats = hsw_oa_formats;
3443        } else if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
3444                /* Note: that although we could theoretically also support the
3445                 * legacy ringbuffer mode on BDW (and earlier iterations of
3446                 * this driver, before upstreaming did this) it didn't seem
3447                 * worth the complexity to maintain now that BDW+ enable
3448                 * execlist mode by default.
3449                 */
3450                dev_priv->perf.oa.oa_formats = gen8_plus_oa_formats;
3451
3452                dev_priv->perf.oa.ops.oa_enable = gen8_oa_enable;
3453                dev_priv->perf.oa.ops.oa_disable = gen8_oa_disable;
3454                dev_priv->perf.oa.ops.read = gen8_oa_read;
3455                dev_priv->perf.oa.ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
3456
3457                if (IS_GEN_RANGE(dev_priv, 8, 9)) {
3458                        dev_priv->perf.oa.ops.is_valid_b_counter_reg =
3459                                gen7_is_valid_b_counter_addr;
3460                        dev_priv->perf.oa.ops.is_valid_mux_reg =
3461                                gen8_is_valid_mux_addr;
3462                        dev_priv->perf.oa.ops.is_valid_flex_reg =
3463                                gen8_is_valid_flex_addr;
3464
3465                        if (IS_CHERRYVIEW(dev_priv)) {
3466                                dev_priv->perf.oa.ops.is_valid_mux_reg =
3467                                        chv_is_valid_mux_addr;
3468                        }
3469
3470                        dev_priv->perf.oa.ops.enable_metric_set = gen8_enable_metric_set;
3471                        dev_priv->perf.oa.ops.disable_metric_set = gen8_disable_metric_set;
3472
3473                        if (IS_GEN(dev_priv, 8)) {
3474                                dev_priv->perf.oa.ctx_oactxctrl_offset = 0x120;
3475                                dev_priv->perf.oa.ctx_flexeu0_offset = 0x2ce;
3476
3477                                dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<25);
3478                        } else {
3479                                dev_priv->perf.oa.ctx_oactxctrl_offset = 0x128;
3480                                dev_priv->perf.oa.ctx_flexeu0_offset = 0x3de;
3481
3482                                dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<16);
3483                        }
3484                } else if (IS_GEN_RANGE(dev_priv, 10, 11)) {
3485                        dev_priv->perf.oa.ops.is_valid_b_counter_reg =
3486                                gen7_is_valid_b_counter_addr;
3487                        dev_priv->perf.oa.ops.is_valid_mux_reg =
3488                                gen10_is_valid_mux_addr;
3489                        dev_priv->perf.oa.ops.is_valid_flex_reg =
3490                                gen8_is_valid_flex_addr;
3491
3492                        dev_priv->perf.oa.ops.enable_metric_set = gen8_enable_metric_set;
3493                        dev_priv->perf.oa.ops.disable_metric_set = gen10_disable_metric_set;
3494
3495                        if (IS_GEN(dev_priv, 10)) {
3496                                dev_priv->perf.oa.ctx_oactxctrl_offset = 0x128;
3497                                dev_priv->perf.oa.ctx_flexeu0_offset = 0x3de;
3498                        } else {
3499                                dev_priv->perf.oa.ctx_oactxctrl_offset = 0x124;
3500                                dev_priv->perf.oa.ctx_flexeu0_offset = 0x78e;
3501                        }
3502                        dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<16);
3503                }
3504        }
3505
3506        if (dev_priv->perf.oa.ops.enable_metric_set) {
3507                hrtimer_init(&dev_priv->perf.oa.poll_check_timer,
3508                                CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3509                dev_priv->perf.oa.poll_check_timer.function = oa_poll_check_timer_cb;
3510                init_waitqueue_head(&dev_priv->perf.oa.poll_wq);
3511
3512                INIT_LIST_HEAD(&dev_priv->perf.streams);
3513                mutex_init(&dev_priv->perf.lock);
3514                spin_lock_init(&dev_priv->perf.oa.oa_buffer.ptr_lock);
3515
3516                oa_sample_rate_hard_limit = 1000 *
3517                        (RUNTIME_INFO(dev_priv)->cs_timestamp_frequency_khz / 2);
3518                dev_priv->perf.sysctl_header = register_sysctl_table(dev_root);
3519
3520                mutex_init(&dev_priv->perf.metrics_lock);
3521                idr_init(&dev_priv->perf.metrics_idr);
3522
3523                dev_priv->perf.initialized = true;
3524        }
3525}
3526
3527static int destroy_config(int id, void *p, void *data)
3528{
3529        struct drm_i915_private *dev_priv = data;
3530        struct i915_oa_config *oa_config = p;
3531
3532        put_oa_config(dev_priv, oa_config);
3533
3534        return 0;
3535}
3536
3537/**
3538 * i915_perf_fini - Counter part to i915_perf_init()
3539 * @dev_priv: i915 device instance
3540 */
3541void i915_perf_fini(struct drm_i915_private *dev_priv)
3542{
3543        if (!dev_priv->perf.initialized)
3544                return;
3545
3546        idr_for_each(&dev_priv->perf.metrics_idr, destroy_config, dev_priv);
3547        idr_destroy(&dev_priv->perf.metrics_idr);
3548
3549        unregister_sysctl_table(dev_priv->perf.sysctl_header);
3550
3551        memset(&dev_priv->perf.oa.ops, 0, sizeof(dev_priv->perf.oa.ops));
3552
3553        dev_priv->perf.initialized = false;
3554}
3555