linux/drivers/gpu/drm/i915/intel_device_info.c
<<
>>
Prefs
   1/*
   2 * Copyright © 2016 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 */
  24
  25#include <drm/drm_print.h>
  26
  27#include "intel_device_info.h"
  28#include "i915_drv.h"
  29
  30#define PLATFORM_NAME(x) [INTEL_##x] = #x
  31static const char * const platform_names[] = {
  32        PLATFORM_NAME(I830),
  33        PLATFORM_NAME(I845G),
  34        PLATFORM_NAME(I85X),
  35        PLATFORM_NAME(I865G),
  36        PLATFORM_NAME(I915G),
  37        PLATFORM_NAME(I915GM),
  38        PLATFORM_NAME(I945G),
  39        PLATFORM_NAME(I945GM),
  40        PLATFORM_NAME(G33),
  41        PLATFORM_NAME(PINEVIEW),
  42        PLATFORM_NAME(I965G),
  43        PLATFORM_NAME(I965GM),
  44        PLATFORM_NAME(G45),
  45        PLATFORM_NAME(GM45),
  46        PLATFORM_NAME(IRONLAKE),
  47        PLATFORM_NAME(SANDYBRIDGE),
  48        PLATFORM_NAME(IVYBRIDGE),
  49        PLATFORM_NAME(VALLEYVIEW),
  50        PLATFORM_NAME(HASWELL),
  51        PLATFORM_NAME(BROADWELL),
  52        PLATFORM_NAME(CHERRYVIEW),
  53        PLATFORM_NAME(SKYLAKE),
  54        PLATFORM_NAME(BROXTON),
  55        PLATFORM_NAME(KABYLAKE),
  56        PLATFORM_NAME(GEMINILAKE),
  57        PLATFORM_NAME(COFFEELAKE),
  58        PLATFORM_NAME(CANNONLAKE),
  59        PLATFORM_NAME(ICELAKE),
  60        PLATFORM_NAME(ELKHARTLAKE),
  61};
  62#undef PLATFORM_NAME
  63
  64const char *intel_platform_name(enum intel_platform platform)
  65{
  66        BUILD_BUG_ON(ARRAY_SIZE(platform_names) != INTEL_MAX_PLATFORMS);
  67
  68        if (WARN_ON_ONCE(platform >= ARRAY_SIZE(platform_names) ||
  69                         platform_names[platform] == NULL))
  70                return "<unknown>";
  71
  72        return platform_names[platform];
  73}
  74
  75void intel_device_info_dump_flags(const struct intel_device_info *info,
  76                                  struct drm_printer *p)
  77{
  78#define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->name));
  79        DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
  80#undef PRINT_FLAG
  81
  82#define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->display.name));
  83        DEV_INFO_DISPLAY_FOR_EACH_FLAG(PRINT_FLAG);
  84#undef PRINT_FLAG
  85}
  86
  87static void sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p)
  88{
  89        int s;
  90
  91        drm_printf(p, "slice total: %u, mask=%04x\n",
  92                   hweight8(sseu->slice_mask), sseu->slice_mask);
  93        drm_printf(p, "subslice total: %u\n", intel_sseu_subslice_total(sseu));
  94        for (s = 0; s < sseu->max_slices; s++) {
  95                drm_printf(p, "slice%d: %u subslices, mask=%04x\n",
  96                           s, intel_sseu_subslices_per_slice(sseu, s),
  97                           sseu->subslice_mask[s]);
  98        }
  99        drm_printf(p, "EU total: %u\n", sseu->eu_total);
 100        drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice);
 101        drm_printf(p, "has slice power gating: %s\n",
 102                   yesno(sseu->has_slice_pg));
 103        drm_printf(p, "has subslice power gating: %s\n",
 104                   yesno(sseu->has_subslice_pg));
 105        drm_printf(p, "has EU power gating: %s\n", yesno(sseu->has_eu_pg));
 106}
 107
 108void intel_device_info_dump_runtime(const struct intel_runtime_info *info,
 109                                    struct drm_printer *p)
 110{
 111        sseu_dump(&info->sseu, p);
 112
 113        drm_printf(p, "CS timestamp frequency: %u kHz\n",
 114                   info->cs_timestamp_frequency_khz);
 115}
 116
 117static int sseu_eu_idx(const struct sseu_dev_info *sseu, int slice,
 118                       int subslice)
 119{
 120        int subslice_stride = GEN_SSEU_STRIDE(sseu->max_eus_per_subslice);
 121        int slice_stride = sseu->max_subslices * subslice_stride;
 122
 123        return slice * slice_stride + subslice * subslice_stride;
 124}
 125
 126static u16 sseu_get_eus(const struct sseu_dev_info *sseu, int slice,
 127                        int subslice)
 128{
 129        int i, offset = sseu_eu_idx(sseu, slice, subslice);
 130        u16 eu_mask = 0;
 131
 132        for (i = 0; i < GEN_SSEU_STRIDE(sseu->max_eus_per_subslice); i++) {
 133                eu_mask |= ((u16)sseu->eu_mask[offset + i]) <<
 134                        (i * BITS_PER_BYTE);
 135        }
 136
 137        return eu_mask;
 138}
 139
 140static void sseu_set_eus(struct sseu_dev_info *sseu, int slice, int subslice,
 141                         u16 eu_mask)
 142{
 143        int i, offset = sseu_eu_idx(sseu, slice, subslice);
 144
 145        for (i = 0; i < GEN_SSEU_STRIDE(sseu->max_eus_per_subslice); i++) {
 146                sseu->eu_mask[offset + i] =
 147                        (eu_mask >> (BITS_PER_BYTE * i)) & 0xff;
 148        }
 149}
 150
 151void intel_device_info_dump_topology(const struct sseu_dev_info *sseu,
 152                                     struct drm_printer *p)
 153{
 154        int s, ss;
 155
 156        if (sseu->max_slices == 0) {
 157                drm_printf(p, "Unavailable\n");
 158                return;
 159        }
 160
 161        for (s = 0; s < sseu->max_slices; s++) {
 162                drm_printf(p, "slice%d: %u subslice(s) (0x%hhx):\n",
 163                           s, intel_sseu_subslices_per_slice(sseu, s),
 164                           sseu->subslice_mask[s]);
 165
 166                for (ss = 0; ss < sseu->max_subslices; ss++) {
 167                        u16 enabled_eus = sseu_get_eus(sseu, s, ss);
 168
 169                        drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n",
 170                                   ss, hweight16(enabled_eus), enabled_eus);
 171                }
 172        }
 173}
 174
 175static u16 compute_eu_total(const struct sseu_dev_info *sseu)
 176{
 177        u16 i, total = 0;
 178
 179        for (i = 0; i < ARRAY_SIZE(sseu->eu_mask); i++)
 180                total += hweight8(sseu->eu_mask[i]);
 181
 182        return total;
 183}
 184
 185static void gen11_sseu_info_init(struct drm_i915_private *dev_priv)
 186{
 187        struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
 188        u8 s_en;
 189        u32 ss_en, ss_en_mask;
 190        u8 eu_en;
 191        int s;
 192
 193        if (IS_ELKHARTLAKE(dev_priv)) {
 194                sseu->max_slices = 1;
 195                sseu->max_subslices = 4;
 196                sseu->max_eus_per_subslice = 8;
 197        } else {
 198                sseu->max_slices = 1;
 199                sseu->max_subslices = 8;
 200                sseu->max_eus_per_subslice = 8;
 201        }
 202
 203        s_en = I915_READ(GEN11_GT_SLICE_ENABLE) & GEN11_GT_S_ENA_MASK;
 204        ss_en = ~I915_READ(GEN11_GT_SUBSLICE_DISABLE);
 205        ss_en_mask = BIT(sseu->max_subslices) - 1;
 206        eu_en = ~(I915_READ(GEN11_EU_DISABLE) & GEN11_EU_DIS_MASK);
 207
 208        for (s = 0; s < sseu->max_slices; s++) {
 209                if (s_en & BIT(s)) {
 210                        int ss_idx = sseu->max_subslices * s;
 211                        int ss;
 212
 213                        sseu->slice_mask |= BIT(s);
 214                        sseu->subslice_mask[s] = (ss_en >> ss_idx) & ss_en_mask;
 215                        for (ss = 0; ss < sseu->max_subslices; ss++) {
 216                                if (sseu->subslice_mask[s] & BIT(ss))
 217                                        sseu_set_eus(sseu, s, ss, eu_en);
 218                        }
 219                }
 220        }
 221        sseu->eu_per_subslice = hweight8(eu_en);
 222        sseu->eu_total = compute_eu_total(sseu);
 223
 224        /* ICL has no power gating restrictions. */
 225        sseu->has_slice_pg = 1;
 226        sseu->has_subslice_pg = 1;
 227        sseu->has_eu_pg = 1;
 228}
 229
 230static void gen10_sseu_info_init(struct drm_i915_private *dev_priv)
 231{
 232        struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
 233        const u32 fuse2 = I915_READ(GEN8_FUSE2);
 234        int s, ss;
 235        const int eu_mask = 0xff;
 236        u32 subslice_mask, eu_en;
 237
 238        sseu->slice_mask = (fuse2 & GEN10_F2_S_ENA_MASK) >>
 239                            GEN10_F2_S_ENA_SHIFT;
 240        sseu->max_slices = 6;
 241        sseu->max_subslices = 4;
 242        sseu->max_eus_per_subslice = 8;
 243
 244        subslice_mask = (1 << 4) - 1;
 245        subslice_mask &= ~((fuse2 & GEN10_F2_SS_DIS_MASK) >>
 246                           GEN10_F2_SS_DIS_SHIFT);
 247
 248        /*
 249         * Slice0 can have up to 3 subslices, but there are only 2 in
 250         * slice1/2.
 251         */
 252        sseu->subslice_mask[0] = subslice_mask;
 253        for (s = 1; s < sseu->max_slices; s++)
 254                sseu->subslice_mask[s] = subslice_mask & 0x3;
 255
 256        /* Slice0 */
 257        eu_en = ~I915_READ(GEN8_EU_DISABLE0);
 258        for (ss = 0; ss < sseu->max_subslices; ss++)
 259                sseu_set_eus(sseu, 0, ss, (eu_en >> (8 * ss)) & eu_mask);
 260        /* Slice1 */
 261        sseu_set_eus(sseu, 1, 0, (eu_en >> 24) & eu_mask);
 262        eu_en = ~I915_READ(GEN8_EU_DISABLE1);
 263        sseu_set_eus(sseu, 1, 1, eu_en & eu_mask);
 264        /* Slice2 */
 265        sseu_set_eus(sseu, 2, 0, (eu_en >> 8) & eu_mask);
 266        sseu_set_eus(sseu, 2, 1, (eu_en >> 16) & eu_mask);
 267        /* Slice3 */
 268        sseu_set_eus(sseu, 3, 0, (eu_en >> 24) & eu_mask);
 269        eu_en = ~I915_READ(GEN8_EU_DISABLE2);
 270        sseu_set_eus(sseu, 3, 1, eu_en & eu_mask);
 271        /* Slice4 */
 272        sseu_set_eus(sseu, 4, 0, (eu_en >> 8) & eu_mask);
 273        sseu_set_eus(sseu, 4, 1, (eu_en >> 16) & eu_mask);
 274        /* Slice5 */
 275        sseu_set_eus(sseu, 5, 0, (eu_en >> 24) & eu_mask);
 276        eu_en = ~I915_READ(GEN10_EU_DISABLE3);
 277        sseu_set_eus(sseu, 5, 1, eu_en & eu_mask);
 278
 279        /* Do a second pass where we mark the subslices disabled if all their
 280         * eus are off.
 281         */
 282        for (s = 0; s < sseu->max_slices; s++) {
 283                for (ss = 0; ss < sseu->max_subslices; ss++) {
 284                        if (sseu_get_eus(sseu, s, ss) == 0)
 285                                sseu->subslice_mask[s] &= ~BIT(ss);
 286                }
 287        }
 288
 289        sseu->eu_total = compute_eu_total(sseu);
 290
 291        /*
 292         * CNL is expected to always have a uniform distribution
 293         * of EU across subslices with the exception that any one
 294         * EU in any one subslice may be fused off for die
 295         * recovery.
 296         */
 297        sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
 298                                DIV_ROUND_UP(sseu->eu_total,
 299                                             intel_sseu_subslice_total(sseu)) :
 300                                0;
 301
 302        /* No restrictions on Power Gating */
 303        sseu->has_slice_pg = 1;
 304        sseu->has_subslice_pg = 1;
 305        sseu->has_eu_pg = 1;
 306}
 307
 308static void cherryview_sseu_info_init(struct drm_i915_private *dev_priv)
 309{
 310        struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
 311        u32 fuse;
 312
 313        fuse = I915_READ(CHV_FUSE_GT);
 314
 315        sseu->slice_mask = BIT(0);
 316        sseu->max_slices = 1;
 317        sseu->max_subslices = 2;
 318        sseu->max_eus_per_subslice = 8;
 319
 320        if (!(fuse & CHV_FGT_DISABLE_SS0)) {
 321                u8 disabled_mask =
 322                        ((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >>
 323                         CHV_FGT_EU_DIS_SS0_R0_SHIFT) |
 324                        (((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >>
 325                          CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4);
 326
 327                sseu->subslice_mask[0] |= BIT(0);
 328                sseu_set_eus(sseu, 0, 0, ~disabled_mask);
 329        }
 330
 331        if (!(fuse & CHV_FGT_DISABLE_SS1)) {
 332                u8 disabled_mask =
 333                        ((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >>
 334                         CHV_FGT_EU_DIS_SS1_R0_SHIFT) |
 335                        (((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >>
 336                          CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4);
 337
 338                sseu->subslice_mask[0] |= BIT(1);
 339                sseu_set_eus(sseu, 0, 1, ~disabled_mask);
 340        }
 341
 342        sseu->eu_total = compute_eu_total(sseu);
 343
 344        /*
 345         * CHV expected to always have a uniform distribution of EU
 346         * across subslices.
 347        */
 348        sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
 349                                sseu->eu_total /
 350                                        intel_sseu_subslice_total(sseu) :
 351                                0;
 352        /*
 353         * CHV supports subslice power gating on devices with more than
 354         * one subslice, and supports EU power gating on devices with
 355         * more than one EU pair per subslice.
 356        */
 357        sseu->has_slice_pg = 0;
 358        sseu->has_subslice_pg = intel_sseu_subslice_total(sseu) > 1;
 359        sseu->has_eu_pg = (sseu->eu_per_subslice > 2);
 360}
 361
 362static void gen9_sseu_info_init(struct drm_i915_private *dev_priv)
 363{
 364        struct intel_device_info *info = mkwrite_device_info(dev_priv);
 365        struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
 366        int s, ss;
 367        u32 fuse2, eu_disable, subslice_mask;
 368        const u8 eu_mask = 0xff;
 369
 370        fuse2 = I915_READ(GEN8_FUSE2);
 371        sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
 372
 373        /* BXT has a single slice and at most 3 subslices. */
 374        sseu->max_slices = IS_GEN9_LP(dev_priv) ? 1 : 3;
 375        sseu->max_subslices = IS_GEN9_LP(dev_priv) ? 3 : 4;
 376        sseu->max_eus_per_subslice = 8;
 377
 378        /*
 379         * The subslice disable field is global, i.e. it applies
 380         * to each of the enabled slices.
 381        */
 382        subslice_mask = (1 << sseu->max_subslices) - 1;
 383        subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >>
 384                           GEN9_F2_SS_DIS_SHIFT);
 385
 386        /*
 387         * Iterate through enabled slices and subslices to
 388         * count the total enabled EU.
 389        */
 390        for (s = 0; s < sseu->max_slices; s++) {
 391                if (!(sseu->slice_mask & BIT(s)))
 392                        /* skip disabled slice */
 393                        continue;
 394
 395                sseu->subslice_mask[s] = subslice_mask;
 396
 397                eu_disable = I915_READ(GEN9_EU_DISABLE(s));
 398                for (ss = 0; ss < sseu->max_subslices; ss++) {
 399                        int eu_per_ss;
 400                        u8 eu_disabled_mask;
 401
 402                        if (!(sseu->subslice_mask[s] & BIT(ss)))
 403                                /* skip disabled subslice */
 404                                continue;
 405
 406                        eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask;
 407
 408                        sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
 409
 410                        eu_per_ss = sseu->max_eus_per_subslice -
 411                                hweight8(eu_disabled_mask);
 412
 413                        /*
 414                         * Record which subslice(s) has(have) 7 EUs. we
 415                         * can tune the hash used to spread work among
 416                         * subslices if they are unbalanced.
 417                         */
 418                        if (eu_per_ss == 7)
 419                                sseu->subslice_7eu[s] |= BIT(ss);
 420                }
 421        }
 422
 423        sseu->eu_total = compute_eu_total(sseu);
 424
 425        /*
 426         * SKL is expected to always have a uniform distribution
 427         * of EU across subslices with the exception that any one
 428         * EU in any one subslice may be fused off for die
 429         * recovery. BXT is expected to be perfectly uniform in EU
 430         * distribution.
 431        */
 432        sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
 433                                DIV_ROUND_UP(sseu->eu_total,
 434                                             intel_sseu_subslice_total(sseu)) :
 435                                0;
 436        /*
 437         * SKL+ supports slice power gating on devices with more than
 438         * one slice, and supports EU power gating on devices with
 439         * more than one EU pair per subslice. BXT+ supports subslice
 440         * power gating on devices with more than one subslice, and
 441         * supports EU power gating on devices with more than one EU
 442         * pair per subslice.
 443        */
 444        sseu->has_slice_pg =
 445                !IS_GEN9_LP(dev_priv) && hweight8(sseu->slice_mask) > 1;
 446        sseu->has_subslice_pg =
 447                IS_GEN9_LP(dev_priv) && intel_sseu_subslice_total(sseu) > 1;
 448        sseu->has_eu_pg = sseu->eu_per_subslice > 2;
 449
 450        if (IS_GEN9_LP(dev_priv)) {
 451#define IS_SS_DISABLED(ss)      (!(sseu->subslice_mask[0] & BIT(ss)))
 452                info->has_pooled_eu = hweight8(sseu->subslice_mask[0]) == 3;
 453
 454                sseu->min_eu_in_pool = 0;
 455                if (info->has_pooled_eu) {
 456                        if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0))
 457                                sseu->min_eu_in_pool = 3;
 458                        else if (IS_SS_DISABLED(1))
 459                                sseu->min_eu_in_pool = 6;
 460                        else
 461                                sseu->min_eu_in_pool = 9;
 462                }
 463#undef IS_SS_DISABLED
 464        }
 465}
 466
 467static void broadwell_sseu_info_init(struct drm_i915_private *dev_priv)
 468{
 469        struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
 470        int s, ss;
 471        u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */
 472
 473        fuse2 = I915_READ(GEN8_FUSE2);
 474        sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
 475        sseu->max_slices = 3;
 476        sseu->max_subslices = 3;
 477        sseu->max_eus_per_subslice = 8;
 478
 479        /*
 480         * The subslice disable field is global, i.e. it applies
 481         * to each of the enabled slices.
 482         */
 483        subslice_mask = GENMASK(sseu->max_subslices - 1, 0);
 484        subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >>
 485                           GEN8_F2_SS_DIS_SHIFT);
 486
 487        eu_disable[0] = I915_READ(GEN8_EU_DISABLE0) & GEN8_EU_DIS0_S0_MASK;
 488        eu_disable[1] = (I915_READ(GEN8_EU_DISABLE0) >> GEN8_EU_DIS0_S1_SHIFT) |
 489                        ((I915_READ(GEN8_EU_DISABLE1) & GEN8_EU_DIS1_S1_MASK) <<
 490                         (32 - GEN8_EU_DIS0_S1_SHIFT));
 491        eu_disable[2] = (I915_READ(GEN8_EU_DISABLE1) >> GEN8_EU_DIS1_S2_SHIFT) |
 492                        ((I915_READ(GEN8_EU_DISABLE2) & GEN8_EU_DIS2_S2_MASK) <<
 493                         (32 - GEN8_EU_DIS1_S2_SHIFT));
 494
 495        /*
 496         * Iterate through enabled slices and subslices to
 497         * count the total enabled EU.
 498         */
 499        for (s = 0; s < sseu->max_slices; s++) {
 500                if (!(sseu->slice_mask & BIT(s)))
 501                        /* skip disabled slice */
 502                        continue;
 503
 504                sseu->subslice_mask[s] = subslice_mask;
 505
 506                for (ss = 0; ss < sseu->max_subslices; ss++) {
 507                        u8 eu_disabled_mask;
 508                        u32 n_disabled;
 509
 510                        if (!(sseu->subslice_mask[s] & BIT(ss)))
 511                                /* skip disabled subslice */
 512                                continue;
 513
 514                        eu_disabled_mask =
 515                                eu_disable[s] >> (ss * sseu->max_eus_per_subslice);
 516
 517                        sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
 518
 519                        n_disabled = hweight8(eu_disabled_mask);
 520
 521                        /*
 522                         * Record which subslices have 7 EUs.
 523                         */
 524                        if (sseu->max_eus_per_subslice - n_disabled == 7)
 525                                sseu->subslice_7eu[s] |= 1 << ss;
 526                }
 527        }
 528
 529        sseu->eu_total = compute_eu_total(sseu);
 530
 531        /*
 532         * BDW is expected to always have a uniform distribution of EU across
 533         * subslices with the exception that any one EU in any one subslice may
 534         * be fused off for die recovery.
 535         */
 536        sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
 537                                DIV_ROUND_UP(sseu->eu_total,
 538                                             intel_sseu_subslice_total(sseu)) :
 539                                0;
 540
 541        /*
 542         * BDW supports slice power gating on devices with more than
 543         * one slice.
 544         */
 545        sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1;
 546        sseu->has_subslice_pg = 0;
 547        sseu->has_eu_pg = 0;
 548}
 549
 550static void haswell_sseu_info_init(struct drm_i915_private *dev_priv)
 551{
 552        struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
 553        u32 fuse1;
 554        int s, ss;
 555
 556        /*
 557         * There isn't a register to tell us how many slices/subslices. We
 558         * work off the PCI-ids here.
 559         */
 560        switch (INTEL_INFO(dev_priv)->gt) {
 561        default:
 562                MISSING_CASE(INTEL_INFO(dev_priv)->gt);
 563                /* fall through */
 564        case 1:
 565                sseu->slice_mask = BIT(0);
 566                sseu->subslice_mask[0] = BIT(0);
 567                break;
 568        case 2:
 569                sseu->slice_mask = BIT(0);
 570                sseu->subslice_mask[0] = BIT(0) | BIT(1);
 571                break;
 572        case 3:
 573                sseu->slice_mask = BIT(0) | BIT(1);
 574                sseu->subslice_mask[0] = BIT(0) | BIT(1);
 575                sseu->subslice_mask[1] = BIT(0) | BIT(1);
 576                break;
 577        }
 578
 579        sseu->max_slices = hweight8(sseu->slice_mask);
 580        sseu->max_subslices = hweight8(sseu->subslice_mask[0]);
 581
 582        fuse1 = I915_READ(HSW_PAVP_FUSE1);
 583        switch ((fuse1 & HSW_F1_EU_DIS_MASK) >> HSW_F1_EU_DIS_SHIFT) {
 584        default:
 585                MISSING_CASE((fuse1 & HSW_F1_EU_DIS_MASK) >>
 586                             HSW_F1_EU_DIS_SHIFT);
 587                /* fall through */
 588        case HSW_F1_EU_DIS_10EUS:
 589                sseu->eu_per_subslice = 10;
 590                break;
 591        case HSW_F1_EU_DIS_8EUS:
 592                sseu->eu_per_subslice = 8;
 593                break;
 594        case HSW_F1_EU_DIS_6EUS:
 595                sseu->eu_per_subslice = 6;
 596                break;
 597        }
 598        sseu->max_eus_per_subslice = sseu->eu_per_subslice;
 599
 600        for (s = 0; s < sseu->max_slices; s++) {
 601                for (ss = 0; ss < sseu->max_subslices; ss++) {
 602                        sseu_set_eus(sseu, s, ss,
 603                                     (1UL << sseu->eu_per_subslice) - 1);
 604                }
 605        }
 606
 607        sseu->eu_total = compute_eu_total(sseu);
 608
 609        /* No powergating for you. */
 610        sseu->has_slice_pg = 0;
 611        sseu->has_subslice_pg = 0;
 612        sseu->has_eu_pg = 0;
 613}
 614
 615static u32 read_reference_ts_freq(struct drm_i915_private *dev_priv)
 616{
 617        u32 ts_override = I915_READ(GEN9_TIMESTAMP_OVERRIDE);
 618        u32 base_freq, frac_freq;
 619
 620        base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >>
 621                     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1;
 622        base_freq *= 1000;
 623
 624        frac_freq = ((ts_override &
 625                      GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >>
 626                     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT);
 627        frac_freq = 1000 / (frac_freq + 1);
 628
 629        return base_freq + frac_freq;
 630}
 631
 632static u32 gen10_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
 633                                        u32 rpm_config_reg)
 634{
 635        u32 f19_2_mhz = 19200;
 636        u32 f24_mhz = 24000;
 637        u32 crystal_clock = (rpm_config_reg &
 638                             GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
 639                            GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
 640
 641        switch (crystal_clock) {
 642        case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
 643                return f19_2_mhz;
 644        case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
 645                return f24_mhz;
 646        default:
 647                MISSING_CASE(crystal_clock);
 648                return 0;
 649        }
 650}
 651
 652static u32 gen11_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
 653                                        u32 rpm_config_reg)
 654{
 655        u32 f19_2_mhz = 19200;
 656        u32 f24_mhz = 24000;
 657        u32 f25_mhz = 25000;
 658        u32 f38_4_mhz = 38400;
 659        u32 crystal_clock = (rpm_config_reg &
 660                             GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
 661                            GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
 662
 663        switch (crystal_clock) {
 664        case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
 665                return f24_mhz;
 666        case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
 667                return f19_2_mhz;
 668        case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_38_4_MHZ:
 669                return f38_4_mhz;
 670        case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_25_MHZ:
 671                return f25_mhz;
 672        default:
 673                MISSING_CASE(crystal_clock);
 674                return 0;
 675        }
 676}
 677
 678static u32 read_timestamp_frequency(struct drm_i915_private *dev_priv)
 679{
 680        u32 f12_5_mhz = 12500;
 681        u32 f19_2_mhz = 19200;
 682        u32 f24_mhz = 24000;
 683
 684        if (INTEL_GEN(dev_priv) <= 4) {
 685                /* PRMs say:
 686                 *
 687                 *     "The value in this register increments once every 16
 688                 *      hclks." (through the “Clocking Configuration”
 689                 *      (“CLKCFG”) MCHBAR register)
 690                 */
 691                return dev_priv->rawclk_freq / 16;
 692        } else if (INTEL_GEN(dev_priv) <= 8) {
 693                /* PRMs say:
 694                 *
 695                 *     "The PCU TSC counts 10ns increments; this timestamp
 696                 *      reflects bits 38:3 of the TSC (i.e. 80ns granularity,
 697                 *      rolling over every 1.5 hours).
 698                 */
 699                return f12_5_mhz;
 700        } else if (INTEL_GEN(dev_priv) <= 9) {
 701                u32 ctc_reg = I915_READ(CTC_MODE);
 702                u32 freq = 0;
 703
 704                if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
 705                        freq = read_reference_ts_freq(dev_priv);
 706                } else {
 707                        freq = IS_GEN9_LP(dev_priv) ? f19_2_mhz : f24_mhz;
 708
 709                        /* Now figure out how the command stream's timestamp
 710                         * register increments from this frequency (it might
 711                         * increment only every few clock cycle).
 712                         */
 713                        freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >>
 714                                      CTC_SHIFT_PARAMETER_SHIFT);
 715                }
 716
 717                return freq;
 718        } else if (INTEL_GEN(dev_priv) <= 11) {
 719                u32 ctc_reg = I915_READ(CTC_MODE);
 720                u32 freq = 0;
 721
 722                /* First figure out the reference frequency. There are 2 ways
 723                 * we can compute the frequency, either through the
 724                 * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE
 725                 * tells us which one we should use.
 726                 */
 727                if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
 728                        freq = read_reference_ts_freq(dev_priv);
 729                } else {
 730                        u32 rpm_config_reg = I915_READ(RPM_CONFIG0);
 731
 732                        if (INTEL_GEN(dev_priv) <= 10)
 733                                freq = gen10_get_crystal_clock_freq(dev_priv,
 734                                                                rpm_config_reg);
 735                        else
 736                                freq = gen11_get_crystal_clock_freq(dev_priv,
 737                                                                rpm_config_reg);
 738
 739                        /* Now figure out how the command stream's timestamp
 740                         * register increments from this frequency (it might
 741                         * increment only every few clock cycle).
 742                         */
 743                        freq >>= 3 - ((rpm_config_reg &
 744                                       GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
 745                                      GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT);
 746                }
 747
 748                return freq;
 749        }
 750
 751        MISSING_CASE("Unknown gen, unable to read command streamer timestamp frequency\n");
 752        return 0;
 753}
 754
 755#undef INTEL_VGA_DEVICE
 756#define INTEL_VGA_DEVICE(id, info) (id)
 757
 758static const u16 subplatform_ult_ids[] = {
 759        INTEL_HSW_ULT_GT1_IDS(0),
 760        INTEL_HSW_ULT_GT2_IDS(0),
 761        INTEL_HSW_ULT_GT3_IDS(0),
 762        INTEL_BDW_ULT_GT1_IDS(0),
 763        INTEL_BDW_ULT_GT2_IDS(0),
 764        INTEL_BDW_ULT_GT3_IDS(0),
 765        INTEL_BDW_ULT_RSVD_IDS(0),
 766        INTEL_SKL_ULT_GT1_IDS(0),
 767        INTEL_SKL_ULT_GT2_IDS(0),
 768        INTEL_SKL_ULT_GT3_IDS(0),
 769        INTEL_KBL_ULT_GT1_IDS(0),
 770        INTEL_KBL_ULT_GT2_IDS(0),
 771        INTEL_KBL_ULT_GT3_IDS(0),
 772        INTEL_CFL_U_GT2_IDS(0),
 773        INTEL_CFL_U_GT3_IDS(0),
 774        INTEL_WHL_U_GT1_IDS(0),
 775        INTEL_WHL_U_GT2_IDS(0),
 776        INTEL_WHL_U_GT3_IDS(0),
 777};
 778
 779static const u16 subplatform_ulx_ids[] = {
 780        INTEL_HSW_ULX_GT1_IDS(0),
 781        INTEL_HSW_ULX_GT2_IDS(0),
 782        INTEL_BDW_ULX_GT1_IDS(0),
 783        INTEL_BDW_ULX_GT2_IDS(0),
 784        INTEL_BDW_ULX_GT3_IDS(0),
 785        INTEL_BDW_ULX_RSVD_IDS(0),
 786        INTEL_SKL_ULX_GT1_IDS(0),
 787        INTEL_SKL_ULX_GT2_IDS(0),
 788        INTEL_KBL_ULX_GT1_IDS(0),
 789        INTEL_KBL_ULX_GT2_IDS(0),
 790        INTEL_AML_KBL_GT2_IDS(0),
 791        INTEL_AML_CFL_GT2_IDS(0),
 792};
 793
 794static const u16 subplatform_portf_ids[] = {
 795        INTEL_CNL_PORT_F_IDS(0),
 796        INTEL_ICL_PORT_F_IDS(0),
 797};
 798
 799static bool find_devid(u16 id, const u16 *p, unsigned int num)
 800{
 801        for (; num; num--, p++) {
 802                if (*p == id)
 803                        return true;
 804        }
 805
 806        return false;
 807}
 808
 809void intel_device_info_subplatform_init(struct drm_i915_private *i915)
 810{
 811        const struct intel_device_info *info = INTEL_INFO(i915);
 812        const struct intel_runtime_info *rinfo = RUNTIME_INFO(i915);
 813        const unsigned int pi = __platform_mask_index(rinfo, info->platform);
 814        const unsigned int pb = __platform_mask_bit(rinfo, info->platform);
 815        u16 devid = INTEL_DEVID(i915);
 816        u32 mask = 0;
 817
 818        /* Make sure IS_<platform> checks are working. */
 819        RUNTIME_INFO(i915)->platform_mask[pi] = BIT(pb);
 820
 821        /* Find and mark subplatform bits based on the PCI device id. */
 822        if (find_devid(devid, subplatform_ult_ids,
 823                       ARRAY_SIZE(subplatform_ult_ids))) {
 824                mask = BIT(INTEL_SUBPLATFORM_ULT);
 825        } else if (find_devid(devid, subplatform_ulx_ids,
 826                              ARRAY_SIZE(subplatform_ulx_ids))) {
 827                mask = BIT(INTEL_SUBPLATFORM_ULX);
 828                if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
 829                        /* ULX machines are also considered ULT. */
 830                        mask |= BIT(INTEL_SUBPLATFORM_ULT);
 831                }
 832        } else if (find_devid(devid, subplatform_portf_ids,
 833                              ARRAY_SIZE(subplatform_portf_ids))) {
 834                mask = BIT(INTEL_SUBPLATFORM_PORTF);
 835        }
 836
 837        GEM_BUG_ON(mask & ~INTEL_SUBPLATFORM_BITS);
 838
 839        RUNTIME_INFO(i915)->platform_mask[pi] |= mask;
 840}
 841
 842/**
 843 * intel_device_info_runtime_init - initialize runtime info
 844 * @dev_priv: the i915 device
 845 *
 846 * Determine various intel_device_info fields at runtime.
 847 *
 848 * Use it when either:
 849 *   - it's judged too laborious to fill n static structures with the limit
 850 *     when a simple if statement does the job,
 851 *   - run-time checks (eg read fuse/strap registers) are needed.
 852 *
 853 * This function needs to be called:
 854 *   - after the MMIO has been setup as we are reading registers,
 855 *   - after the PCH has been detected,
 856 *   - before the first usage of the fields it can tweak.
 857 */
 858void intel_device_info_runtime_init(struct drm_i915_private *dev_priv)
 859{
 860        struct intel_device_info *info = mkwrite_device_info(dev_priv);
 861        struct intel_runtime_info *runtime = RUNTIME_INFO(dev_priv);
 862        enum pipe pipe;
 863
 864        if (INTEL_GEN(dev_priv) >= 10) {
 865                for_each_pipe(dev_priv, pipe)
 866                        runtime->num_scalers[pipe] = 2;
 867        } else if (IS_GEN(dev_priv, 9)) {
 868                runtime->num_scalers[PIPE_A] = 2;
 869                runtime->num_scalers[PIPE_B] = 2;
 870                runtime->num_scalers[PIPE_C] = 1;
 871        }
 872
 873        BUILD_BUG_ON(BITS_PER_TYPE(intel_engine_mask_t) < I915_NUM_ENGINES);
 874
 875        if (INTEL_GEN(dev_priv) >= 11)
 876                for_each_pipe(dev_priv, pipe)
 877                        runtime->num_sprites[pipe] = 6;
 878        else if (IS_GEN(dev_priv, 10) || IS_GEMINILAKE(dev_priv))
 879                for_each_pipe(dev_priv, pipe)
 880                        runtime->num_sprites[pipe] = 3;
 881        else if (IS_BROXTON(dev_priv)) {
 882                /*
 883                 * Skylake and Broxton currently don't expose the topmost plane as its
 884                 * use is exclusive with the legacy cursor and we only want to expose
 885                 * one of those, not both. Until we can safely expose the topmost plane
 886                 * as a DRM_PLANE_TYPE_CURSOR with all the features exposed/supported,
 887                 * we don't expose the topmost plane at all to prevent ABI breakage
 888                 * down the line.
 889                 */
 890
 891                runtime->num_sprites[PIPE_A] = 2;
 892                runtime->num_sprites[PIPE_B] = 2;
 893                runtime->num_sprites[PIPE_C] = 1;
 894        } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
 895                for_each_pipe(dev_priv, pipe)
 896                        runtime->num_sprites[pipe] = 2;
 897        } else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
 898                for_each_pipe(dev_priv, pipe)
 899                        runtime->num_sprites[pipe] = 1;
 900        }
 901
 902        if (i915_modparams.disable_display) {
 903                DRM_INFO("Display disabled (module parameter)\n");
 904                info->num_pipes = 0;
 905        } else if (HAS_DISPLAY(dev_priv) &&
 906                   (IS_GEN_RANGE(dev_priv, 7, 8)) &&
 907                   HAS_PCH_SPLIT(dev_priv)) {
 908                u32 fuse_strap = I915_READ(FUSE_STRAP);
 909                u32 sfuse_strap = I915_READ(SFUSE_STRAP);
 910
 911                /*
 912                 * SFUSE_STRAP is supposed to have a bit signalling the display
 913                 * is fused off. Unfortunately it seems that, at least in
 914                 * certain cases, fused off display means that PCH display
 915                 * reads don't land anywhere. In that case, we read 0s.
 916                 *
 917                 * On CPT/PPT, we can detect this case as SFUSE_STRAP_FUSE_LOCK
 918                 * should be set when taking over after the firmware.
 919                 */
 920                if (fuse_strap & ILK_INTERNAL_DISPLAY_DISABLE ||
 921                    sfuse_strap & SFUSE_STRAP_DISPLAY_DISABLED ||
 922                    (HAS_PCH_CPT(dev_priv) &&
 923                     !(sfuse_strap & SFUSE_STRAP_FUSE_LOCK))) {
 924                        DRM_INFO("Display fused off, disabling\n");
 925                        info->num_pipes = 0;
 926                } else if (fuse_strap & IVB_PIPE_C_DISABLE) {
 927                        DRM_INFO("PipeC fused off\n");
 928                        info->num_pipes -= 1;
 929                }
 930        } else if (HAS_DISPLAY(dev_priv) && INTEL_GEN(dev_priv) >= 9) {
 931                u32 dfsm = I915_READ(SKL_DFSM);
 932                u8 disabled_mask = 0;
 933                bool invalid;
 934                int num_bits;
 935
 936                if (dfsm & SKL_DFSM_PIPE_A_DISABLE)
 937                        disabled_mask |= BIT(PIPE_A);
 938                if (dfsm & SKL_DFSM_PIPE_B_DISABLE)
 939                        disabled_mask |= BIT(PIPE_B);
 940                if (dfsm & SKL_DFSM_PIPE_C_DISABLE)
 941                        disabled_mask |= BIT(PIPE_C);
 942
 943                num_bits = hweight8(disabled_mask);
 944
 945                switch (disabled_mask) {
 946                case BIT(PIPE_A):
 947                case BIT(PIPE_B):
 948                case BIT(PIPE_A) | BIT(PIPE_B):
 949                case BIT(PIPE_A) | BIT(PIPE_C):
 950                        invalid = true;
 951                        break;
 952                default:
 953                        invalid = false;
 954                }
 955
 956                if (num_bits > info->num_pipes || invalid)
 957                        DRM_ERROR("invalid pipe fuse configuration: 0x%x\n",
 958                                  disabled_mask);
 959                else
 960                        info->num_pipes -= num_bits;
 961        }
 962
 963        /* Initialize slice/subslice/EU info */
 964        if (IS_HASWELL(dev_priv))
 965                haswell_sseu_info_init(dev_priv);
 966        else if (IS_CHERRYVIEW(dev_priv))
 967                cherryview_sseu_info_init(dev_priv);
 968        else if (IS_BROADWELL(dev_priv))
 969                broadwell_sseu_info_init(dev_priv);
 970        else if (IS_GEN(dev_priv, 9))
 971                gen9_sseu_info_init(dev_priv);
 972        else if (IS_GEN(dev_priv, 10))
 973                gen10_sseu_info_init(dev_priv);
 974        else if (INTEL_GEN(dev_priv) >= 11)
 975                gen11_sseu_info_init(dev_priv);
 976
 977        if (IS_GEN(dev_priv, 6) && intel_vtd_active()) {
 978                DRM_INFO("Disabling ppGTT for VT-d support\n");
 979                info->ppgtt_type = INTEL_PPGTT_NONE;
 980        }
 981
 982        /* Initialize command stream timestamp frequency */
 983        runtime->cs_timestamp_frequency_khz = read_timestamp_frequency(dev_priv);
 984}
 985
 986void intel_driver_caps_print(const struct intel_driver_caps *caps,
 987                             struct drm_printer *p)
 988{
 989        drm_printf(p, "Has logical contexts? %s\n",
 990                   yesno(caps->has_logical_contexts));
 991        drm_printf(p, "scheduler: %x\n", caps->scheduler);
 992}
 993
 994/*
 995 * Determine which engines are fused off in our particular hardware. Since the
 996 * fuse register is in the blitter powerwell, we need forcewake to be ready at
 997 * this point (but later we need to prune the forcewake domains for engines that
 998 * are indeed fused off).
 999 */
1000void intel_device_info_init_mmio(struct drm_i915_private *dev_priv)
1001{
1002        struct intel_device_info *info = mkwrite_device_info(dev_priv);
1003        unsigned int logical_vdbox = 0;
1004        unsigned int i;
1005        u32 media_fuse;
1006        u16 vdbox_mask;
1007        u16 vebox_mask;
1008
1009        if (INTEL_GEN(dev_priv) < 11)
1010                return;
1011
1012        media_fuse = ~I915_READ(GEN11_GT_VEBOX_VDBOX_DISABLE);
1013
1014        vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
1015        vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
1016                      GEN11_GT_VEBOX_DISABLE_SHIFT;
1017
1018        for (i = 0; i < I915_MAX_VCS; i++) {
1019                if (!HAS_ENGINE(dev_priv, _VCS(i)))
1020                        continue;
1021
1022                if (!(BIT(i) & vdbox_mask)) {
1023                        info->engine_mask &= ~BIT(_VCS(i));
1024                        DRM_DEBUG_DRIVER("vcs%u fused off\n", i);
1025                        continue;
1026                }
1027
1028                /*
1029                 * In Gen11, only even numbered logical VDBOXes are
1030                 * hooked up to an SFC (Scaler & Format Converter) unit.
1031                 */
1032                if (logical_vdbox++ % 2 == 0)
1033                        RUNTIME_INFO(dev_priv)->vdbox_sfc_access |= BIT(i);
1034        }
1035        DRM_DEBUG_DRIVER("vdbox enable: %04x, instances: %04lx\n",
1036                         vdbox_mask, VDBOX_MASK(dev_priv));
1037        GEM_BUG_ON(vdbox_mask != VDBOX_MASK(dev_priv));
1038
1039        for (i = 0; i < I915_MAX_VECS; i++) {
1040                if (!HAS_ENGINE(dev_priv, _VECS(i)))
1041                        continue;
1042
1043                if (!(BIT(i) & vebox_mask)) {
1044                        info->engine_mask &= ~BIT(_VECS(i));
1045                        DRM_DEBUG_DRIVER("vecs%u fused off\n", i);
1046                }
1047        }
1048        DRM_DEBUG_DRIVER("vebox enable: %04x, instances: %04lx\n",
1049                         vebox_mask, VEBOX_MASK(dev_priv));
1050        GEM_BUG_ON(vebox_mask != VEBOX_MASK(dev_priv));
1051}
1052