linux/drivers/gpu/drm/i915/intel_guc_submission.c
<<
>>
Prefs
   1/*
   2 * Copyright © 2014 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 */
  24
  25#include <linux/circ_buf.h>
  26
  27#include "gt/intel_engine_pm.h"
  28#include "gt/intel_lrc_reg.h"
  29#include "gt/intel_context.h"
  30#include "gem/i915_gem_context.h"
  31
  32#include "intel_guc_submission.h"
  33#include "i915_drv.h"
  34
  35#define GUC_PREEMPT_FINISHED            0x1
  36#define GUC_PREEMPT_BREADCRUMB_DWORDS   0x8
  37#define GUC_PREEMPT_BREADCRUMB_BYTES    \
  38        (sizeof(u32) * GUC_PREEMPT_BREADCRUMB_DWORDS)
  39
  40/**
  41 * DOC: GuC-based command submission
  42 *
  43 * GuC client:
  44 * A intel_guc_client refers to a submission path through GuC. Currently, there
  45 * are two clients. One of them (the execbuf_client) is charged with all
  46 * submissions to the GuC, the other one (preempt_client) is responsible for
  47 * preempting the execbuf_client. This struct is the owner of a doorbell, a
  48 * process descriptor and a workqueue (all of them inside a single gem object
  49 * that contains all required pages for these elements).
  50 *
  51 * GuC stage descriptor:
  52 * During initialization, the driver allocates a static pool of 1024 such
  53 * descriptors, and shares them with the GuC.
  54 * Currently, there exists a 1:1 mapping between a intel_guc_client and a
  55 * guc_stage_desc (via the client's stage_id), so effectively only one
  56 * gets used. This stage descriptor lets the GuC know about the doorbell,
  57 * workqueue and process descriptor. Theoretically, it also lets the GuC
  58 * know about our HW contexts (context ID, etc...), but we actually
  59 * employ a kind of submission where the GuC uses the LRCA sent via the work
  60 * item instead (the single guc_stage_desc associated to execbuf client
  61 * contains information about the default kernel context only, but this is
  62 * essentially unused). This is called a "proxy" submission.
  63 *
  64 * The Scratch registers:
  65 * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
  66 * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
  67 * triggers an interrupt on the GuC via another register write (0xC4C8).
  68 * Firmware writes a success/fail code back to the action register after
  69 * processes the request. The kernel driver polls waiting for this update and
  70 * then proceeds.
  71 * See intel_guc_send()
  72 *
  73 * Doorbells:
  74 * Doorbells are interrupts to uKernel. A doorbell is a single cache line (QW)
  75 * mapped into process space.
  76 *
  77 * Work Items:
  78 * There are several types of work items that the host may place into a
  79 * workqueue, each with its own requirements and limitations. Currently only
  80 * WQ_TYPE_INORDER is needed to support legacy submission via GuC, which
  81 * represents in-order queue. The kernel driver packs ring tail pointer and an
  82 * ELSP context descriptor dword into Work Item.
  83 * See guc_add_request()
  84 *
  85 */
  86
  87static inline u32 intel_hws_preempt_done_address(struct intel_engine_cs *engine)
  88{
  89        return (i915_ggtt_offset(engine->status_page.vma) +
  90                I915_GEM_HWS_PREEMPT_ADDR);
  91}
  92
  93static inline struct i915_priolist *to_priolist(struct rb_node *rb)
  94{
  95        return rb_entry(rb, struct i915_priolist, node);
  96}
  97
  98static inline bool is_high_priority(struct intel_guc_client *client)
  99{
 100        return (client->priority == GUC_CLIENT_PRIORITY_KMD_HIGH ||
 101                client->priority == GUC_CLIENT_PRIORITY_HIGH);
 102}
 103
 104static int reserve_doorbell(struct intel_guc_client *client)
 105{
 106        unsigned long offset;
 107        unsigned long end;
 108        u16 id;
 109
 110        GEM_BUG_ON(client->doorbell_id != GUC_DOORBELL_INVALID);
 111
 112        /*
 113         * The bitmap tracks which doorbell registers are currently in use.
 114         * It is split into two halves; the first half is used for normal
 115         * priority contexts, the second half for high-priority ones.
 116         */
 117        offset = 0;
 118        end = GUC_NUM_DOORBELLS / 2;
 119        if (is_high_priority(client)) {
 120                offset = end;
 121                end += offset;
 122        }
 123
 124        id = find_next_zero_bit(client->guc->doorbell_bitmap, end, offset);
 125        if (id == end)
 126                return -ENOSPC;
 127
 128        __set_bit(id, client->guc->doorbell_bitmap);
 129        client->doorbell_id = id;
 130        DRM_DEBUG_DRIVER("client %u (high prio=%s) reserved doorbell: %d\n",
 131                         client->stage_id, yesno(is_high_priority(client)),
 132                         id);
 133        return 0;
 134}
 135
 136static bool has_doorbell(struct intel_guc_client *client)
 137{
 138        if (client->doorbell_id == GUC_DOORBELL_INVALID)
 139                return false;
 140
 141        return test_bit(client->doorbell_id, client->guc->doorbell_bitmap);
 142}
 143
 144static void unreserve_doorbell(struct intel_guc_client *client)
 145{
 146        GEM_BUG_ON(!has_doorbell(client));
 147
 148        __clear_bit(client->doorbell_id, client->guc->doorbell_bitmap);
 149        client->doorbell_id = GUC_DOORBELL_INVALID;
 150}
 151
 152/*
 153 * Tell the GuC to allocate or deallocate a specific doorbell
 154 */
 155
 156static int __guc_allocate_doorbell(struct intel_guc *guc, u32 stage_id)
 157{
 158        u32 action[] = {
 159                INTEL_GUC_ACTION_ALLOCATE_DOORBELL,
 160                stage_id
 161        };
 162
 163        return intel_guc_send(guc, action, ARRAY_SIZE(action));
 164}
 165
 166static int __guc_deallocate_doorbell(struct intel_guc *guc, u32 stage_id)
 167{
 168        u32 action[] = {
 169                INTEL_GUC_ACTION_DEALLOCATE_DOORBELL,
 170                stage_id
 171        };
 172
 173        return intel_guc_send(guc, action, ARRAY_SIZE(action));
 174}
 175
 176static struct guc_stage_desc *__get_stage_desc(struct intel_guc_client *client)
 177{
 178        struct guc_stage_desc *base = client->guc->stage_desc_pool_vaddr;
 179
 180        return &base[client->stage_id];
 181}
 182
 183/*
 184 * Initialise, update, or clear doorbell data shared with the GuC
 185 *
 186 * These functions modify shared data and so need access to the mapped
 187 * client object which contains the page being used for the doorbell
 188 */
 189
 190static void __update_doorbell_desc(struct intel_guc_client *client, u16 new_id)
 191{
 192        struct guc_stage_desc *desc;
 193
 194        /* Update the GuC's idea of the doorbell ID */
 195        desc = __get_stage_desc(client);
 196        desc->db_id = new_id;
 197}
 198
 199static struct guc_doorbell_info *__get_doorbell(struct intel_guc_client *client)
 200{
 201        return client->vaddr + client->doorbell_offset;
 202}
 203
 204static bool __doorbell_valid(struct intel_guc *guc, u16 db_id)
 205{
 206        struct drm_i915_private *dev_priv = guc_to_i915(guc);
 207
 208        GEM_BUG_ON(db_id >= GUC_NUM_DOORBELLS);
 209        return I915_READ(GEN8_DRBREGL(db_id)) & GEN8_DRB_VALID;
 210}
 211
 212static void __init_doorbell(struct intel_guc_client *client)
 213{
 214        struct guc_doorbell_info *doorbell;
 215
 216        doorbell = __get_doorbell(client);
 217        doorbell->db_status = GUC_DOORBELL_ENABLED;
 218        doorbell->cookie = 0;
 219}
 220
 221static void __fini_doorbell(struct intel_guc_client *client)
 222{
 223        struct guc_doorbell_info *doorbell;
 224        u16 db_id = client->doorbell_id;
 225
 226        doorbell = __get_doorbell(client);
 227        doorbell->db_status = GUC_DOORBELL_DISABLED;
 228
 229        /* Doorbell release flow requires that we wait for GEN8_DRB_VALID bit
 230         * to go to zero after updating db_status before we call the GuC to
 231         * release the doorbell
 232         */
 233        if (wait_for_us(!__doorbell_valid(client->guc, db_id), 10))
 234                WARN_ONCE(true, "Doorbell never became invalid after disable\n");
 235}
 236
 237static int create_doorbell(struct intel_guc_client *client)
 238{
 239        int ret;
 240
 241        if (WARN_ON(!has_doorbell(client)))
 242                return -ENODEV; /* internal setup error, should never happen */
 243
 244        __update_doorbell_desc(client, client->doorbell_id);
 245        __init_doorbell(client);
 246
 247        ret = __guc_allocate_doorbell(client->guc, client->stage_id);
 248        if (ret) {
 249                __fini_doorbell(client);
 250                __update_doorbell_desc(client, GUC_DOORBELL_INVALID);
 251                DRM_DEBUG_DRIVER("Couldn't create client %u doorbell: %d\n",
 252                                 client->stage_id, ret);
 253                return ret;
 254        }
 255
 256        return 0;
 257}
 258
 259static int destroy_doorbell(struct intel_guc_client *client)
 260{
 261        int ret;
 262
 263        GEM_BUG_ON(!has_doorbell(client));
 264
 265        __fini_doorbell(client);
 266        ret = __guc_deallocate_doorbell(client->guc, client->stage_id);
 267        if (ret)
 268                DRM_ERROR("Couldn't destroy client %u doorbell: %d\n",
 269                          client->stage_id, ret);
 270
 271        __update_doorbell_desc(client, GUC_DOORBELL_INVALID);
 272
 273        return ret;
 274}
 275
 276static unsigned long __select_cacheline(struct intel_guc *guc)
 277{
 278        unsigned long offset;
 279
 280        /* Doorbell uses a single cache line within a page */
 281        offset = offset_in_page(guc->db_cacheline);
 282
 283        /* Moving to next cache line to reduce contention */
 284        guc->db_cacheline += cache_line_size();
 285
 286        DRM_DEBUG_DRIVER("reserved cacheline 0x%lx, next 0x%x, linesize %u\n",
 287                         offset, guc->db_cacheline, cache_line_size());
 288        return offset;
 289}
 290
 291static inline struct guc_process_desc *
 292__get_process_desc(struct intel_guc_client *client)
 293{
 294        return client->vaddr + client->proc_desc_offset;
 295}
 296
 297/*
 298 * Initialise the process descriptor shared with the GuC firmware.
 299 */
 300static void guc_proc_desc_init(struct intel_guc_client *client)
 301{
 302        struct guc_process_desc *desc;
 303
 304        desc = memset(__get_process_desc(client), 0, sizeof(*desc));
 305
 306        /*
 307         * XXX: pDoorbell and WQVBaseAddress are pointers in process address
 308         * space for ring3 clients (set them as in mmap_ioctl) or kernel
 309         * space for kernel clients (map on demand instead? May make debug
 310         * easier to have it mapped).
 311         */
 312        desc->wq_base_addr = 0;
 313        desc->db_base_addr = 0;
 314
 315        desc->stage_id = client->stage_id;
 316        desc->wq_size_bytes = GUC_WQ_SIZE;
 317        desc->wq_status = WQ_STATUS_ACTIVE;
 318        desc->priority = client->priority;
 319}
 320
 321static void guc_proc_desc_fini(struct intel_guc_client *client)
 322{
 323        struct guc_process_desc *desc;
 324
 325        desc = __get_process_desc(client);
 326        memset(desc, 0, sizeof(*desc));
 327}
 328
 329static int guc_stage_desc_pool_create(struct intel_guc *guc)
 330{
 331        struct i915_vma *vma;
 332        void *vaddr;
 333
 334        vma = intel_guc_allocate_vma(guc,
 335                                     PAGE_ALIGN(sizeof(struct guc_stage_desc) *
 336                                     GUC_MAX_STAGE_DESCRIPTORS));
 337        if (IS_ERR(vma))
 338                return PTR_ERR(vma);
 339
 340        vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
 341        if (IS_ERR(vaddr)) {
 342                i915_vma_unpin_and_release(&vma, 0);
 343                return PTR_ERR(vaddr);
 344        }
 345
 346        guc->stage_desc_pool = vma;
 347        guc->stage_desc_pool_vaddr = vaddr;
 348        ida_init(&guc->stage_ids);
 349
 350        return 0;
 351}
 352
 353static void guc_stage_desc_pool_destroy(struct intel_guc *guc)
 354{
 355        ida_destroy(&guc->stage_ids);
 356        i915_vma_unpin_and_release(&guc->stage_desc_pool, I915_VMA_RELEASE_MAP);
 357}
 358
 359/*
 360 * Initialise/clear the stage descriptor shared with the GuC firmware.
 361 *
 362 * This descriptor tells the GuC where (in GGTT space) to find the important
 363 * data structures relating to this client (doorbell, process descriptor,
 364 * write queue, etc).
 365 */
 366static void guc_stage_desc_init(struct intel_guc_client *client)
 367{
 368        struct intel_guc *guc = client->guc;
 369        struct i915_gem_context *ctx = client->owner;
 370        struct i915_gem_engines_iter it;
 371        struct guc_stage_desc *desc;
 372        struct intel_context *ce;
 373        u32 gfx_addr;
 374
 375        desc = __get_stage_desc(client);
 376        memset(desc, 0, sizeof(*desc));
 377
 378        desc->attribute = GUC_STAGE_DESC_ATTR_ACTIVE |
 379                          GUC_STAGE_DESC_ATTR_KERNEL;
 380        if (is_high_priority(client))
 381                desc->attribute |= GUC_STAGE_DESC_ATTR_PREEMPT;
 382        desc->stage_id = client->stage_id;
 383        desc->priority = client->priority;
 384        desc->db_id = client->doorbell_id;
 385
 386        for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
 387                struct guc_execlist_context *lrc;
 388
 389                if (!(ce->engine->mask & client->engines))
 390                        continue;
 391
 392                /* TODO: We have a design issue to be solved here. Only when we
 393                 * receive the first batch, we know which engine is used by the
 394                 * user. But here GuC expects the lrc and ring to be pinned. It
 395                 * is not an issue for default context, which is the only one
 396                 * for now who owns a GuC client. But for future owner of GuC
 397                 * client, need to make sure lrc is pinned prior to enter here.
 398                 */
 399                if (!ce->state)
 400                        break;  /* XXX: continue? */
 401
 402                /*
 403                 * XXX: When this is a GUC_STAGE_DESC_ATTR_KERNEL client (proxy
 404                 * submission or, in other words, not using a direct submission
 405                 * model) the KMD's LRCA is not used for any work submission.
 406                 * Instead, the GuC uses the LRCA of the user mode context (see
 407                 * guc_add_request below).
 408                 */
 409                lrc = &desc->lrc[ce->engine->guc_id];
 410                lrc->context_desc = lower_32_bits(ce->lrc_desc);
 411
 412                /* The state page is after PPHWSP */
 413                lrc->ring_lrca = intel_guc_ggtt_offset(guc, ce->state) +
 414                                 LRC_STATE_PN * PAGE_SIZE;
 415
 416                /* XXX: In direct submission, the GuC wants the HW context id
 417                 * here. In proxy submission, it wants the stage id
 418                 */
 419                lrc->context_id = (client->stage_id << GUC_ELC_CTXID_OFFSET) |
 420                                (ce->engine->guc_id << GUC_ELC_ENGINE_OFFSET);
 421
 422                lrc->ring_begin = intel_guc_ggtt_offset(guc, ce->ring->vma);
 423                lrc->ring_end = lrc->ring_begin + ce->ring->size - 1;
 424                lrc->ring_next_free_location = lrc->ring_begin;
 425                lrc->ring_current_tail_pointer_value = 0;
 426
 427                desc->engines_used |= BIT(ce->engine->guc_id);
 428        }
 429        i915_gem_context_unlock_engines(ctx);
 430
 431        DRM_DEBUG_DRIVER("Host engines 0x%x => GuC engines used 0x%x\n",
 432                         client->engines, desc->engines_used);
 433        WARN_ON(desc->engines_used == 0);
 434
 435        /*
 436         * The doorbell, process descriptor, and workqueue are all parts
 437         * of the client object, which the GuC will reference via the GGTT
 438         */
 439        gfx_addr = intel_guc_ggtt_offset(guc, client->vma);
 440        desc->db_trigger_phy = sg_dma_address(client->vma->pages->sgl) +
 441                                client->doorbell_offset;
 442        desc->db_trigger_cpu = ptr_to_u64(__get_doorbell(client));
 443        desc->db_trigger_uk = gfx_addr + client->doorbell_offset;
 444        desc->process_desc = gfx_addr + client->proc_desc_offset;
 445        desc->wq_addr = gfx_addr + GUC_DB_SIZE;
 446        desc->wq_size = GUC_WQ_SIZE;
 447
 448        desc->desc_private = ptr_to_u64(client);
 449}
 450
 451static void guc_stage_desc_fini(struct intel_guc_client *client)
 452{
 453        struct guc_stage_desc *desc;
 454
 455        desc = __get_stage_desc(client);
 456        memset(desc, 0, sizeof(*desc));
 457}
 458
 459/* Construct a Work Item and append it to the GuC's Work Queue */
 460static void guc_wq_item_append(struct intel_guc_client *client,
 461                               u32 target_engine, u32 context_desc,
 462                               u32 ring_tail, u32 fence_id)
 463{
 464        /* wqi_len is in DWords, and does not include the one-word header */
 465        const size_t wqi_size = sizeof(struct guc_wq_item);
 466        const u32 wqi_len = wqi_size / sizeof(u32) - 1;
 467        struct guc_process_desc *desc = __get_process_desc(client);
 468        struct guc_wq_item *wqi;
 469        u32 wq_off;
 470
 471        lockdep_assert_held(&client->wq_lock);
 472
 473        /* For now workqueue item is 4 DWs; workqueue buffer is 2 pages. So we
 474         * should not have the case where structure wqi is across page, neither
 475         * wrapped to the beginning. This simplifies the implementation below.
 476         *
 477         * XXX: if not the case, we need save data to a temp wqi and copy it to
 478         * workqueue buffer dw by dw.
 479         */
 480        BUILD_BUG_ON(wqi_size != 16);
 481
 482        /* We expect the WQ to be active if we're appending items to it */
 483        GEM_BUG_ON(desc->wq_status != WQ_STATUS_ACTIVE);
 484
 485        /* Free space is guaranteed. */
 486        wq_off = READ_ONCE(desc->tail);
 487        GEM_BUG_ON(CIRC_SPACE(wq_off, READ_ONCE(desc->head),
 488                              GUC_WQ_SIZE) < wqi_size);
 489        GEM_BUG_ON(wq_off & (wqi_size - 1));
 490
 491        /* WQ starts from the page after doorbell / process_desc */
 492        wqi = client->vaddr + wq_off + GUC_DB_SIZE;
 493
 494        if (I915_SELFTEST_ONLY(client->use_nop_wqi)) {
 495                wqi->header = WQ_TYPE_NOOP | (wqi_len << WQ_LEN_SHIFT);
 496        } else {
 497                /* Now fill in the 4-word work queue item */
 498                wqi->header = WQ_TYPE_INORDER |
 499                              (wqi_len << WQ_LEN_SHIFT) |
 500                              (target_engine << WQ_TARGET_SHIFT) |
 501                              WQ_NO_WCFLUSH_WAIT;
 502                wqi->context_desc = context_desc;
 503                wqi->submit_element_info = ring_tail << WQ_RING_TAIL_SHIFT;
 504                GEM_BUG_ON(ring_tail > WQ_RING_TAIL_MAX);
 505                wqi->fence_id = fence_id;
 506        }
 507
 508        /* Make the update visible to GuC */
 509        WRITE_ONCE(desc->tail, (wq_off + wqi_size) & (GUC_WQ_SIZE - 1));
 510}
 511
 512static void guc_ring_doorbell(struct intel_guc_client *client)
 513{
 514        struct guc_doorbell_info *db;
 515        u32 cookie;
 516
 517        lockdep_assert_held(&client->wq_lock);
 518
 519        /* pointer of current doorbell cacheline */
 520        db = __get_doorbell(client);
 521
 522        /*
 523         * We're not expecting the doorbell cookie to change behind our back,
 524         * we also need to treat 0 as a reserved value.
 525         */
 526        cookie = READ_ONCE(db->cookie);
 527        WARN_ON_ONCE(xchg(&db->cookie, cookie + 1 ?: cookie + 2) != cookie);
 528
 529        /* XXX: doorbell was lost and need to acquire it again */
 530        GEM_BUG_ON(db->db_status != GUC_DOORBELL_ENABLED);
 531}
 532
 533static void guc_add_request(struct intel_guc *guc, struct i915_request *rq)
 534{
 535        struct intel_guc_client *client = guc->execbuf_client;
 536        struct intel_engine_cs *engine = rq->engine;
 537        u32 ctx_desc = lower_32_bits(rq->hw_context->lrc_desc);
 538        u32 ring_tail = intel_ring_set_tail(rq->ring, rq->tail) / sizeof(u64);
 539
 540        spin_lock(&client->wq_lock);
 541
 542        guc_wq_item_append(client, engine->guc_id, ctx_desc,
 543                           ring_tail, rq->fence.seqno);
 544        guc_ring_doorbell(client);
 545
 546        client->submissions[engine->id] += 1;
 547
 548        spin_unlock(&client->wq_lock);
 549}
 550
 551/*
 552 * When we're doing submissions using regular execlists backend, writing to
 553 * ELSP from CPU side is enough to make sure that writes to ringbuffer pages
 554 * pinned in mappable aperture portion of GGTT are visible to command streamer.
 555 * Writes done by GuC on our behalf are not guaranteeing such ordering,
 556 * therefore, to ensure the flush, we're issuing a POSTING READ.
 557 */
 558static void flush_ggtt_writes(struct i915_vma *vma)
 559{
 560        struct drm_i915_private *i915 = vma->vm->i915;
 561
 562        if (i915_vma_is_map_and_fenceable(vma))
 563                intel_uncore_posting_read_fw(&i915->uncore, GUC_STATUS);
 564}
 565
 566static void inject_preempt_context(struct work_struct *work)
 567{
 568        struct guc_preempt_work *preempt_work =
 569                container_of(work, typeof(*preempt_work), work);
 570        struct intel_engine_cs *engine = preempt_work->engine;
 571        struct intel_guc *guc = container_of(preempt_work, typeof(*guc),
 572                                             preempt_work[engine->id]);
 573        struct intel_guc_client *client = guc->preempt_client;
 574        struct guc_stage_desc *stage_desc = __get_stage_desc(client);
 575        struct intel_context *ce = engine->preempt_context;
 576        u32 data[7];
 577
 578        if (!ce->ring->emit) { /* recreate upon load/resume */
 579                u32 addr = intel_hws_preempt_done_address(engine);
 580                u32 *cs;
 581
 582                cs = ce->ring->vaddr;
 583                if (engine->class == RENDER_CLASS) {
 584                        cs = gen8_emit_ggtt_write_rcs(cs,
 585                                                      GUC_PREEMPT_FINISHED,
 586                                                      addr,
 587                                                      PIPE_CONTROL_CS_STALL);
 588                } else {
 589                        cs = gen8_emit_ggtt_write(cs,
 590                                                  GUC_PREEMPT_FINISHED,
 591                                                  addr,
 592                                                  0);
 593                        *cs++ = MI_NOOP;
 594                        *cs++ = MI_NOOP;
 595                }
 596                *cs++ = MI_USER_INTERRUPT;
 597                *cs++ = MI_NOOP;
 598
 599                ce->ring->emit = GUC_PREEMPT_BREADCRUMB_BYTES;
 600                GEM_BUG_ON((void *)cs - ce->ring->vaddr != ce->ring->emit);
 601
 602                flush_ggtt_writes(ce->ring->vma);
 603        }
 604
 605        spin_lock_irq(&client->wq_lock);
 606        guc_wq_item_append(client, engine->guc_id, lower_32_bits(ce->lrc_desc),
 607                           GUC_PREEMPT_BREADCRUMB_BYTES / sizeof(u64), 0);
 608        spin_unlock_irq(&client->wq_lock);
 609
 610        /*
 611         * If GuC firmware performs an engine reset while that engine had
 612         * a preemption pending, it will set the terminated attribute bit
 613         * on our preemption stage descriptor. GuC firmware retains all
 614         * pending work items for a high-priority GuC client, unlike the
 615         * normal-priority GuC client where work items are dropped. It
 616         * wants to make sure the preempt-to-idle work doesn't run when
 617         * scheduling resumes, and uses this bit to inform its scheduler
 618         * and presumably us as well. Our job is to clear it for the next
 619         * preemption after reset, otherwise that and future preemptions
 620         * will never complete. We'll just clear it every time.
 621         */
 622        stage_desc->attribute &= ~GUC_STAGE_DESC_ATTR_TERMINATED;
 623
 624        data[0] = INTEL_GUC_ACTION_REQUEST_PREEMPTION;
 625        data[1] = client->stage_id;
 626        data[2] = INTEL_GUC_PREEMPT_OPTION_DROP_WORK_Q |
 627                  INTEL_GUC_PREEMPT_OPTION_DROP_SUBMIT_Q;
 628        data[3] = engine->guc_id;
 629        data[4] = guc->execbuf_client->priority;
 630        data[5] = guc->execbuf_client->stage_id;
 631        data[6] = intel_guc_ggtt_offset(guc, guc->shared_data);
 632
 633        if (WARN_ON(intel_guc_send(guc, data, ARRAY_SIZE(data)))) {
 634                execlists_clear_active(&engine->execlists,
 635                                       EXECLISTS_ACTIVE_PREEMPT);
 636                tasklet_schedule(&engine->execlists.tasklet);
 637        }
 638
 639        (void)I915_SELFTEST_ONLY(engine->execlists.preempt_hang.count++);
 640}
 641
 642/*
 643 * We're using user interrupt and HWSP value to mark that preemption has
 644 * finished and GPU is idle. Normally, we could unwind and continue similar to
 645 * execlists submission path. Unfortunately, with GuC we also need to wait for
 646 * it to finish its own postprocessing, before attempting to submit. Otherwise
 647 * GuC may silently ignore our submissions, and thus we risk losing request at
 648 * best, executing out-of-order and causing kernel panic at worst.
 649 */
 650#define GUC_PREEMPT_POSTPROCESS_DELAY_MS 10
 651static void wait_for_guc_preempt_report(struct intel_engine_cs *engine)
 652{
 653        struct intel_guc *guc = &engine->i915->guc;
 654        struct guc_shared_ctx_data *data = guc->shared_data_vaddr;
 655        struct guc_ctx_report *report =
 656                &data->preempt_ctx_report[engine->guc_id];
 657
 658        if (wait_for_atomic(report->report_return_status ==
 659                            INTEL_GUC_REPORT_STATUS_COMPLETE,
 660                            GUC_PREEMPT_POSTPROCESS_DELAY_MS))
 661                DRM_ERROR("Timed out waiting for GuC preemption report\n");
 662        /*
 663         * GuC is expecting that we're also going to clear the affected context
 664         * counter, let's also reset the return status to not depend on GuC
 665         * resetting it after recieving another preempt action
 666         */
 667        report->affected_count = 0;
 668        report->report_return_status = INTEL_GUC_REPORT_STATUS_UNKNOWN;
 669}
 670
 671static void complete_preempt_context(struct intel_engine_cs *engine)
 672{
 673        struct intel_engine_execlists *execlists = &engine->execlists;
 674
 675        GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT));
 676
 677        if (inject_preempt_hang(execlists))
 678                return;
 679
 680        execlists_cancel_port_requests(execlists);
 681        execlists_unwind_incomplete_requests(execlists);
 682
 683        wait_for_guc_preempt_report(engine);
 684        intel_write_status_page(engine, I915_GEM_HWS_PREEMPT, 0);
 685}
 686
 687/**
 688 * guc_submit() - Submit commands through GuC
 689 * @engine: engine associated with the commands
 690 *
 691 * The only error here arises if the doorbell hardware isn't functioning
 692 * as expected, which really shouln't happen.
 693 */
 694static void guc_submit(struct intel_engine_cs *engine)
 695{
 696        struct intel_guc *guc = &engine->i915->guc;
 697        struct intel_engine_execlists * const execlists = &engine->execlists;
 698        struct execlist_port *port = execlists->port;
 699        unsigned int n;
 700
 701        for (n = 0; n < execlists_num_ports(execlists); n++) {
 702                struct i915_request *rq;
 703                unsigned int count;
 704
 705                rq = port_unpack(&port[n], &count);
 706                if (rq && count == 0) {
 707                        port_set(&port[n], port_pack(rq, ++count));
 708
 709                        flush_ggtt_writes(rq->ring->vma);
 710
 711                        guc_add_request(guc, rq);
 712                }
 713        }
 714}
 715
 716static void port_assign(struct execlist_port *port, struct i915_request *rq)
 717{
 718        GEM_BUG_ON(port_isset(port));
 719
 720        port_set(port, i915_request_get(rq));
 721}
 722
 723static inline int rq_prio(const struct i915_request *rq)
 724{
 725        return rq->sched.attr.priority;
 726}
 727
 728static inline int port_prio(const struct execlist_port *port)
 729{
 730        return rq_prio(port_request(port)) | __NO_PREEMPTION;
 731}
 732
 733static bool __guc_dequeue(struct intel_engine_cs *engine)
 734{
 735        struct intel_engine_execlists * const execlists = &engine->execlists;
 736        struct execlist_port *port = execlists->port;
 737        struct i915_request *last = NULL;
 738        const struct execlist_port * const last_port =
 739                &execlists->port[execlists->port_mask];
 740        bool submit = false;
 741        struct rb_node *rb;
 742
 743        lockdep_assert_held(&engine->active.lock);
 744
 745        if (port_isset(port)) {
 746                if (intel_engine_has_preemption(engine)) {
 747                        struct guc_preempt_work *preempt_work =
 748                                &engine->i915->guc.preempt_work[engine->id];
 749                        int prio = execlists->queue_priority_hint;
 750
 751                        if (i915_scheduler_need_preempt(prio,
 752                                                        port_prio(port))) {
 753                                execlists_set_active(execlists,
 754                                                     EXECLISTS_ACTIVE_PREEMPT);
 755                                queue_work(engine->i915->guc.preempt_wq,
 756                                           &preempt_work->work);
 757                                return false;
 758                        }
 759                }
 760
 761                port++;
 762                if (port_isset(port))
 763                        return false;
 764        }
 765        GEM_BUG_ON(port_isset(port));
 766
 767        while ((rb = rb_first_cached(&execlists->queue))) {
 768                struct i915_priolist *p = to_priolist(rb);
 769                struct i915_request *rq, *rn;
 770                int i;
 771
 772                priolist_for_each_request_consume(rq, rn, p, i) {
 773                        if (last && rq->hw_context != last->hw_context) {
 774                                if (port == last_port)
 775                                        goto done;
 776
 777                                if (submit)
 778                                        port_assign(port, last);
 779                                port++;
 780                        }
 781
 782                        list_del_init(&rq->sched.link);
 783
 784                        __i915_request_submit(rq);
 785                        trace_i915_request_in(rq, port_index(port, execlists));
 786
 787                        last = rq;
 788                        submit = true;
 789                }
 790
 791                rb_erase_cached(&p->node, &execlists->queue);
 792                i915_priolist_free(p);
 793        }
 794done:
 795        execlists->queue_priority_hint =
 796                rb ? to_priolist(rb)->priority : INT_MIN;
 797        if (submit)
 798                port_assign(port, last);
 799        if (last)
 800                execlists_user_begin(execlists, execlists->port);
 801
 802        /* We must always keep the beast fed if we have work piled up */
 803        GEM_BUG_ON(port_isset(execlists->port) &&
 804                   !execlists_is_active(execlists, EXECLISTS_ACTIVE_USER));
 805        GEM_BUG_ON(rb_first_cached(&execlists->queue) &&
 806                   !port_isset(execlists->port));
 807
 808        return submit;
 809}
 810
 811static void guc_dequeue(struct intel_engine_cs *engine)
 812{
 813        if (__guc_dequeue(engine))
 814                guc_submit(engine);
 815}
 816
 817static void guc_submission_tasklet(unsigned long data)
 818{
 819        struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
 820        struct intel_engine_execlists * const execlists = &engine->execlists;
 821        struct execlist_port *port = execlists->port;
 822        struct i915_request *rq;
 823        unsigned long flags;
 824
 825        spin_lock_irqsave(&engine->active.lock, flags);
 826
 827        rq = port_request(port);
 828        while (rq && i915_request_completed(rq)) {
 829                trace_i915_request_out(rq);
 830                i915_request_put(rq);
 831
 832                port = execlists_port_complete(execlists, port);
 833                if (port_isset(port)) {
 834                        execlists_user_begin(execlists, port);
 835                        rq = port_request(port);
 836                } else {
 837                        execlists_user_end(execlists);
 838                        rq = NULL;
 839                }
 840        }
 841
 842        if (execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT) &&
 843            intel_read_status_page(engine, I915_GEM_HWS_PREEMPT) ==
 844            GUC_PREEMPT_FINISHED)
 845                complete_preempt_context(engine);
 846
 847        if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT))
 848                guc_dequeue(engine);
 849
 850        spin_unlock_irqrestore(&engine->active.lock, flags);
 851}
 852
 853static void guc_reset_prepare(struct intel_engine_cs *engine)
 854{
 855        struct intel_engine_execlists * const execlists = &engine->execlists;
 856
 857        GEM_TRACE("%s\n", engine->name);
 858
 859        /*
 860         * Prevent request submission to the hardware until we have
 861         * completed the reset in i915_gem_reset_finish(). If a request
 862         * is completed by one engine, it may then queue a request
 863         * to a second via its execlists->tasklet *just* as we are
 864         * calling engine->init_hw() and also writing the ELSP.
 865         * Turning off the execlists->tasklet until the reset is over
 866         * prevents the race.
 867         */
 868        __tasklet_disable_sync_once(&execlists->tasklet);
 869
 870        /*
 871         * We're using worker to queue preemption requests from the tasklet in
 872         * GuC submission mode.
 873         * Even though tasklet was disabled, we may still have a worker queued.
 874         * Let's make sure that all workers scheduled before disabling the
 875         * tasklet are completed before continuing with the reset.
 876         */
 877        if (engine->i915->guc.preempt_wq)
 878                flush_workqueue(engine->i915->guc.preempt_wq);
 879}
 880
 881static void guc_reset(struct intel_engine_cs *engine, bool stalled)
 882{
 883        struct intel_engine_execlists * const execlists = &engine->execlists;
 884        struct i915_request *rq;
 885        unsigned long flags;
 886
 887        spin_lock_irqsave(&engine->active.lock, flags);
 888
 889        execlists_cancel_port_requests(execlists);
 890
 891        /* Push back any incomplete requests for replay after the reset. */
 892        rq = execlists_unwind_incomplete_requests(execlists);
 893        if (!rq)
 894                goto out_unlock;
 895
 896        if (!i915_request_started(rq))
 897                stalled = false;
 898
 899        i915_reset_request(rq, stalled);
 900        intel_lr_context_reset(engine, rq->hw_context, rq->head, stalled);
 901
 902out_unlock:
 903        spin_unlock_irqrestore(&engine->active.lock, flags);
 904}
 905
 906static void guc_cancel_requests(struct intel_engine_cs *engine)
 907{
 908        struct intel_engine_execlists * const execlists = &engine->execlists;
 909        struct i915_request *rq, *rn;
 910        struct rb_node *rb;
 911        unsigned long flags;
 912
 913        GEM_TRACE("%s\n", engine->name);
 914
 915        /*
 916         * Before we call engine->cancel_requests(), we should have exclusive
 917         * access to the submission state. This is arranged for us by the
 918         * caller disabling the interrupt generation, the tasklet and other
 919         * threads that may then access the same state, giving us a free hand
 920         * to reset state. However, we still need to let lockdep be aware that
 921         * we know this state may be accessed in hardirq context, so we
 922         * disable the irq around this manipulation and we want to keep
 923         * the spinlock focused on its duties and not accidentally conflate
 924         * coverage to the submission's irq state. (Similarly, although we
 925         * shouldn't need to disable irq around the manipulation of the
 926         * submission's irq state, we also wish to remind ourselves that
 927         * it is irq state.)
 928         */
 929        spin_lock_irqsave(&engine->active.lock, flags);
 930
 931        /* Cancel the requests on the HW and clear the ELSP tracker. */
 932        execlists_cancel_port_requests(execlists);
 933
 934        /* Mark all executing requests as skipped. */
 935        list_for_each_entry(rq, &engine->active.requests, sched.link) {
 936                if (!i915_request_signaled(rq))
 937                        dma_fence_set_error(&rq->fence, -EIO);
 938
 939                i915_request_mark_complete(rq);
 940        }
 941
 942        /* Flush the queued requests to the timeline list (for retiring). */
 943        while ((rb = rb_first_cached(&execlists->queue))) {
 944                struct i915_priolist *p = to_priolist(rb);
 945                int i;
 946
 947                priolist_for_each_request_consume(rq, rn, p, i) {
 948                        list_del_init(&rq->sched.link);
 949                        __i915_request_submit(rq);
 950                        dma_fence_set_error(&rq->fence, -EIO);
 951                        i915_request_mark_complete(rq);
 952                }
 953
 954                rb_erase_cached(&p->node, &execlists->queue);
 955                i915_priolist_free(p);
 956        }
 957
 958        /* Remaining _unready_ requests will be nop'ed when submitted */
 959
 960        execlists->queue_priority_hint = INT_MIN;
 961        execlists->queue = RB_ROOT_CACHED;
 962        GEM_BUG_ON(port_isset(execlists->port));
 963
 964        spin_unlock_irqrestore(&engine->active.lock, flags);
 965}
 966
 967static void guc_reset_finish(struct intel_engine_cs *engine)
 968{
 969        struct intel_engine_execlists * const execlists = &engine->execlists;
 970
 971        if (__tasklet_enable(&execlists->tasklet))
 972                /* And kick in case we missed a new request submission. */
 973                tasklet_hi_schedule(&execlists->tasklet);
 974
 975        GEM_TRACE("%s: depth->%d\n", engine->name,
 976                  atomic_read(&execlists->tasklet.count));
 977}
 978
 979/*
 980 * Everything below here is concerned with setup & teardown, and is
 981 * therefore not part of the somewhat time-critical batch-submission
 982 * path of guc_submit() above.
 983 */
 984
 985/* Check that a doorbell register is in the expected state */
 986static bool doorbell_ok(struct intel_guc *guc, u16 db_id)
 987{
 988        bool valid;
 989
 990        GEM_BUG_ON(db_id >= GUC_NUM_DOORBELLS);
 991
 992        valid = __doorbell_valid(guc, db_id);
 993
 994        if (test_bit(db_id, guc->doorbell_bitmap) == valid)
 995                return true;
 996
 997        DRM_DEBUG_DRIVER("Doorbell %u has unexpected state: valid=%s\n",
 998                         db_id, yesno(valid));
 999
1000        return false;
1001}
1002
1003static bool guc_verify_doorbells(struct intel_guc *guc)
1004{
1005        bool doorbells_ok = true;
1006        u16 db_id;
1007
1008        for (db_id = 0; db_id < GUC_NUM_DOORBELLS; ++db_id)
1009                if (!doorbell_ok(guc, db_id))
1010                        doorbells_ok = false;
1011
1012        return doorbells_ok;
1013}
1014
1015/**
1016 * guc_client_alloc() - Allocate an intel_guc_client
1017 * @dev_priv:   driver private data structure
1018 * @engines:    The set of engines to enable for this client
1019 * @priority:   four levels priority _CRITICAL, _HIGH, _NORMAL and _LOW
1020 *              The kernel client to replace ExecList submission is created with
1021 *              NORMAL priority. Priority of a client for scheduler can be HIGH,
1022 *              while a preemption context can use CRITICAL.
1023 * @ctx:        the context that owns the client (we use the default render
1024 *              context)
1025 *
1026 * Return:      An intel_guc_client object if success, else NULL.
1027 */
1028static struct intel_guc_client *
1029guc_client_alloc(struct drm_i915_private *dev_priv,
1030                 u32 engines,
1031                 u32 priority,
1032                 struct i915_gem_context *ctx)
1033{
1034        struct intel_guc_client *client;
1035        struct intel_guc *guc = &dev_priv->guc;
1036        struct i915_vma *vma;
1037        void *vaddr;
1038        int ret;
1039
1040        client = kzalloc(sizeof(*client), GFP_KERNEL);
1041        if (!client)
1042                return ERR_PTR(-ENOMEM);
1043
1044        client->guc = guc;
1045        client->owner = ctx;
1046        client->engines = engines;
1047        client->priority = priority;
1048        client->doorbell_id = GUC_DOORBELL_INVALID;
1049        spin_lock_init(&client->wq_lock);
1050
1051        ret = ida_simple_get(&guc->stage_ids, 0, GUC_MAX_STAGE_DESCRIPTORS,
1052                             GFP_KERNEL);
1053        if (ret < 0)
1054                goto err_client;
1055
1056        client->stage_id = ret;
1057
1058        /* The first page is doorbell/proc_desc. Two followed pages are wq. */
1059        vma = intel_guc_allocate_vma(guc, GUC_DB_SIZE + GUC_WQ_SIZE);
1060        if (IS_ERR(vma)) {
1061                ret = PTR_ERR(vma);
1062                goto err_id;
1063        }
1064
1065        /* We'll keep just the first (doorbell/proc) page permanently kmap'd. */
1066        client->vma = vma;
1067
1068        vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1069        if (IS_ERR(vaddr)) {
1070                ret = PTR_ERR(vaddr);
1071                goto err_vma;
1072        }
1073        client->vaddr = vaddr;
1074
1075        ret = reserve_doorbell(client);
1076        if (ret)
1077                goto err_vaddr;
1078
1079        client->doorbell_offset = __select_cacheline(guc);
1080
1081        /*
1082         * Since the doorbell only requires a single cacheline, we can save
1083         * space by putting the application process descriptor in the same
1084         * page. Use the half of the page that doesn't include the doorbell.
1085         */
1086        if (client->doorbell_offset >= (GUC_DB_SIZE / 2))
1087                client->proc_desc_offset = 0;
1088        else
1089                client->proc_desc_offset = (GUC_DB_SIZE / 2);
1090
1091        DRM_DEBUG_DRIVER("new priority %u client %p for engine(s) 0x%x: stage_id %u\n",
1092                         priority, client, client->engines, client->stage_id);
1093        DRM_DEBUG_DRIVER("doorbell id %u, cacheline offset 0x%lx\n",
1094                         client->doorbell_id, client->doorbell_offset);
1095
1096        return client;
1097
1098err_vaddr:
1099        i915_gem_object_unpin_map(client->vma->obj);
1100err_vma:
1101        i915_vma_unpin_and_release(&client->vma, 0);
1102err_id:
1103        ida_simple_remove(&guc->stage_ids, client->stage_id);
1104err_client:
1105        kfree(client);
1106        return ERR_PTR(ret);
1107}
1108
1109static void guc_client_free(struct intel_guc_client *client)
1110{
1111        unreserve_doorbell(client);
1112        i915_vma_unpin_and_release(&client->vma, I915_VMA_RELEASE_MAP);
1113        ida_simple_remove(&client->guc->stage_ids, client->stage_id);
1114        kfree(client);
1115}
1116
1117static inline bool ctx_save_restore_disabled(struct intel_context *ce)
1118{
1119        u32 sr = ce->lrc_reg_state[CTX_CONTEXT_CONTROL + 1];
1120
1121#define SR_DISABLED \
1122        _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT | \
1123                           CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT)
1124
1125        return (sr & SR_DISABLED) == SR_DISABLED;
1126
1127#undef SR_DISABLED
1128}
1129
1130static int guc_clients_create(struct intel_guc *guc)
1131{
1132        struct drm_i915_private *dev_priv = guc_to_i915(guc);
1133        struct intel_guc_client *client;
1134
1135        GEM_BUG_ON(guc->execbuf_client);
1136        GEM_BUG_ON(guc->preempt_client);
1137
1138        client = guc_client_alloc(dev_priv,
1139                                  INTEL_INFO(dev_priv)->engine_mask,
1140                                  GUC_CLIENT_PRIORITY_KMD_NORMAL,
1141                                  dev_priv->kernel_context);
1142        if (IS_ERR(client)) {
1143                DRM_ERROR("Failed to create GuC client for submission!\n");
1144                return PTR_ERR(client);
1145        }
1146        guc->execbuf_client = client;
1147
1148        if (dev_priv->preempt_context) {
1149                client = guc_client_alloc(dev_priv,
1150                                          INTEL_INFO(dev_priv)->engine_mask,
1151                                          GUC_CLIENT_PRIORITY_KMD_HIGH,
1152                                          dev_priv->preempt_context);
1153                if (IS_ERR(client)) {
1154                        DRM_ERROR("Failed to create GuC client for preemption!\n");
1155                        guc_client_free(guc->execbuf_client);
1156                        guc->execbuf_client = NULL;
1157                        return PTR_ERR(client);
1158                }
1159                guc->preempt_client = client;
1160        }
1161
1162        return 0;
1163}
1164
1165static void guc_clients_destroy(struct intel_guc *guc)
1166{
1167        struct intel_guc_client *client;
1168
1169        client = fetch_and_zero(&guc->preempt_client);
1170        if (client)
1171                guc_client_free(client);
1172
1173        client = fetch_and_zero(&guc->execbuf_client);
1174        if (client)
1175                guc_client_free(client);
1176}
1177
1178static int __guc_client_enable(struct intel_guc_client *client)
1179{
1180        int ret;
1181
1182        guc_proc_desc_init(client);
1183        guc_stage_desc_init(client);
1184
1185        ret = create_doorbell(client);
1186        if (ret)
1187                goto fail;
1188
1189        return 0;
1190
1191fail:
1192        guc_stage_desc_fini(client);
1193        guc_proc_desc_fini(client);
1194        return ret;
1195}
1196
1197static void __guc_client_disable(struct intel_guc_client *client)
1198{
1199        /*
1200         * By the time we're here, GuC may have already been reset. if that is
1201         * the case, instead of trying (in vain) to communicate with it, let's
1202         * just cleanup the doorbell HW and our internal state.
1203         */
1204        if (intel_guc_is_loaded(client->guc))
1205                destroy_doorbell(client);
1206        else
1207                __fini_doorbell(client);
1208
1209        guc_stage_desc_fini(client);
1210        guc_proc_desc_fini(client);
1211}
1212
1213static int guc_clients_enable(struct intel_guc *guc)
1214{
1215        int ret;
1216
1217        ret = __guc_client_enable(guc->execbuf_client);
1218        if (ret)
1219                return ret;
1220
1221        if (guc->preempt_client) {
1222                ret = __guc_client_enable(guc->preempt_client);
1223                if (ret) {
1224                        __guc_client_disable(guc->execbuf_client);
1225                        return ret;
1226                }
1227        }
1228
1229        return 0;
1230}
1231
1232static void guc_clients_disable(struct intel_guc *guc)
1233{
1234        if (guc->preempt_client)
1235                __guc_client_disable(guc->preempt_client);
1236
1237        if (guc->execbuf_client)
1238                __guc_client_disable(guc->execbuf_client);
1239}
1240
1241/*
1242 * Set up the memory resources to be shared with the GuC (via the GGTT)
1243 * at firmware loading time.
1244 */
1245int intel_guc_submission_init(struct intel_guc *guc)
1246{
1247        struct drm_i915_private *dev_priv = guc_to_i915(guc);
1248        struct intel_engine_cs *engine;
1249        enum intel_engine_id id;
1250        int ret;
1251
1252        if (guc->stage_desc_pool)
1253                return 0;
1254
1255        ret = guc_stage_desc_pool_create(guc);
1256        if (ret)
1257                return ret;
1258        /*
1259         * Keep static analysers happy, let them know that we allocated the
1260         * vma after testing that it didn't exist earlier.
1261         */
1262        GEM_BUG_ON(!guc->stage_desc_pool);
1263
1264        WARN_ON(!guc_verify_doorbells(guc));
1265        ret = guc_clients_create(guc);
1266        if (ret)
1267                goto err_pool;
1268
1269        for_each_engine(engine, dev_priv, id) {
1270                guc->preempt_work[id].engine = engine;
1271                INIT_WORK(&guc->preempt_work[id].work, inject_preempt_context);
1272        }
1273
1274        return 0;
1275
1276err_pool:
1277        guc_stage_desc_pool_destroy(guc);
1278        return ret;
1279}
1280
1281void intel_guc_submission_fini(struct intel_guc *guc)
1282{
1283        struct drm_i915_private *dev_priv = guc_to_i915(guc);
1284        struct intel_engine_cs *engine;
1285        enum intel_engine_id id;
1286
1287        for_each_engine(engine, dev_priv, id)
1288                cancel_work_sync(&guc->preempt_work[id].work);
1289
1290        guc_clients_destroy(guc);
1291        WARN_ON(!guc_verify_doorbells(guc));
1292
1293        if (guc->stage_desc_pool)
1294                guc_stage_desc_pool_destroy(guc);
1295}
1296
1297static void guc_interrupts_capture(struct drm_i915_private *dev_priv)
1298{
1299        struct intel_rps *rps = &dev_priv->gt_pm.rps;
1300        struct intel_engine_cs *engine;
1301        enum intel_engine_id id;
1302        int irqs;
1303
1304        /* tell all command streamers to forward interrupts (but not vblank)
1305         * to GuC
1306         */
1307        irqs = _MASKED_BIT_ENABLE(GFX_INTERRUPT_STEERING);
1308        for_each_engine(engine, dev_priv, id)
1309                ENGINE_WRITE(engine, RING_MODE_GEN7, irqs);
1310
1311        /* route USER_INTERRUPT to Host, all others are sent to GuC. */
1312        irqs = GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
1313               GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1314        /* These three registers have the same bit definitions */
1315        I915_WRITE(GUC_BCS_RCS_IER, ~irqs);
1316        I915_WRITE(GUC_VCS2_VCS1_IER, ~irqs);
1317        I915_WRITE(GUC_WD_VECS_IER, ~irqs);
1318
1319        /*
1320         * The REDIRECT_TO_GUC bit of the PMINTRMSK register directs all
1321         * (unmasked) PM interrupts to the GuC. All other bits of this
1322         * register *disable* generation of a specific interrupt.
1323         *
1324         * 'pm_intrmsk_mbz' indicates bits that are NOT to be set when
1325         * writing to the PM interrupt mask register, i.e. interrupts
1326         * that must not be disabled.
1327         *
1328         * If the GuC is handling these interrupts, then we must not let
1329         * the PM code disable ANY interrupt that the GuC is expecting.
1330         * So for each ENABLED (0) bit in this register, we must SET the
1331         * bit in pm_intrmsk_mbz so that it's left enabled for the GuC.
1332         * GuC needs ARAT expired interrupt unmasked hence it is set in
1333         * pm_intrmsk_mbz.
1334         *
1335         * Here we CLEAR REDIRECT_TO_GUC bit in pm_intrmsk_mbz, which will
1336         * result in the register bit being left SET!
1337         */
1338        rps->pm_intrmsk_mbz |= ARAT_EXPIRED_INTRMSK;
1339        rps->pm_intrmsk_mbz &= ~GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
1340}
1341
1342static void guc_interrupts_release(struct drm_i915_private *dev_priv)
1343{
1344        struct intel_rps *rps = &dev_priv->gt_pm.rps;
1345        struct intel_engine_cs *engine;
1346        enum intel_engine_id id;
1347        int irqs;
1348
1349        /*
1350         * tell all command streamers NOT to forward interrupts or vblank
1351         * to GuC.
1352         */
1353        irqs = _MASKED_FIELD(GFX_FORWARD_VBLANK_MASK, GFX_FORWARD_VBLANK_NEVER);
1354        irqs |= _MASKED_BIT_DISABLE(GFX_INTERRUPT_STEERING);
1355        for_each_engine(engine, dev_priv, id)
1356                ENGINE_WRITE(engine, RING_MODE_GEN7, irqs);
1357
1358        /* route all GT interrupts to the host */
1359        I915_WRITE(GUC_BCS_RCS_IER, 0);
1360        I915_WRITE(GUC_VCS2_VCS1_IER, 0);
1361        I915_WRITE(GUC_WD_VECS_IER, 0);
1362
1363        rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
1364        rps->pm_intrmsk_mbz &= ~ARAT_EXPIRED_INTRMSK;
1365}
1366
1367static void guc_submission_park(struct intel_engine_cs *engine)
1368{
1369        intel_engine_park(engine);
1370        intel_engine_unpin_breadcrumbs_irq(engine);
1371        engine->flags &= ~I915_ENGINE_NEEDS_BREADCRUMB_TASKLET;
1372}
1373
1374static void guc_submission_unpark(struct intel_engine_cs *engine)
1375{
1376        engine->flags |= I915_ENGINE_NEEDS_BREADCRUMB_TASKLET;
1377        intel_engine_pin_breadcrumbs_irq(engine);
1378}
1379
1380static void guc_set_default_submission(struct intel_engine_cs *engine)
1381{
1382        /*
1383         * We inherit a bunch of functions from execlists that we'd like
1384         * to keep using:
1385         *
1386         *    engine->submit_request = execlists_submit_request;
1387         *    engine->cancel_requests = execlists_cancel_requests;
1388         *    engine->schedule = execlists_schedule;
1389         *
1390         * But we need to override the actual submission backend in order
1391         * to talk to the GuC.
1392         */
1393        intel_execlists_set_default_submission(engine);
1394
1395        engine->execlists.tasklet.func = guc_submission_tasklet;
1396
1397        engine->park = guc_submission_park;
1398        engine->unpark = guc_submission_unpark;
1399
1400        engine->reset.prepare = guc_reset_prepare;
1401        engine->reset.reset = guc_reset;
1402        engine->reset.finish = guc_reset_finish;
1403
1404        engine->cancel_requests = guc_cancel_requests;
1405
1406        engine->flags &= ~I915_ENGINE_SUPPORTS_STATS;
1407}
1408
1409int intel_guc_submission_enable(struct intel_guc *guc)
1410{
1411        struct drm_i915_private *dev_priv = guc_to_i915(guc);
1412        struct intel_engine_cs *engine;
1413        enum intel_engine_id id;
1414        int err;
1415
1416        /*
1417         * We're using GuC work items for submitting work through GuC. Since
1418         * we're coalescing multiple requests from a single context into a
1419         * single work item prior to assigning it to execlist_port, we can
1420         * never have more work items than the total number of ports (for all
1421         * engines). The GuC firmware is controlling the HEAD of work queue,
1422         * and it is guaranteed that it will remove the work item from the
1423         * queue before our request is completed.
1424         */
1425        BUILD_BUG_ON(ARRAY_SIZE(engine->execlists.port) *
1426                     sizeof(struct guc_wq_item) *
1427                     I915_NUM_ENGINES > GUC_WQ_SIZE);
1428
1429        GEM_BUG_ON(!guc->execbuf_client);
1430
1431        err = guc_clients_enable(guc);
1432        if (err)
1433                return err;
1434
1435        /* Take over from manual control of ELSP (execlists) */
1436        guc_interrupts_capture(dev_priv);
1437
1438        for_each_engine(engine, dev_priv, id) {
1439                engine->set_default_submission = guc_set_default_submission;
1440                engine->set_default_submission(engine);
1441        }
1442
1443        return 0;
1444}
1445
1446void intel_guc_submission_disable(struct intel_guc *guc)
1447{
1448        struct drm_i915_private *dev_priv = guc_to_i915(guc);
1449
1450        GEM_BUG_ON(dev_priv->gt.awake); /* GT should be parked first */
1451
1452        guc_interrupts_release(dev_priv);
1453        guc_clients_disable(guc);
1454}
1455
1456#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1457#include "selftests/intel_guc.c"
1458#endif
1459