linux/drivers/gpu/drm/msm/disp/mdp5/mdp5_ctl.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2014-2015 The Linux Foundation. All rights reserved.
   4 */
   5
   6#include "mdp5_kms.h"
   7#include "mdp5_ctl.h"
   8
   9/*
  10 * CTL - MDP Control Pool Manager
  11 *
  12 * Controls are shared between all display interfaces.
  13 *
  14 * They are intended to be used for data path configuration.
  15 * The top level register programming describes the complete data path for
  16 * a specific data path ID - REG_MDP5_CTL_*(<id>, ...)
  17 *
  18 * Hardware capabilities determine the number of concurrent data paths
  19 *
  20 * In certain use cases (high-resolution dual pipe), one single CTL can be
  21 * shared across multiple CRTCs.
  22 */
  23
  24#define CTL_STAT_BUSY           0x1
  25#define CTL_STAT_BOOKED 0x2
  26
  27struct mdp5_ctl {
  28        struct mdp5_ctl_manager *ctlm;
  29
  30        u32 id;
  31
  32        /* CTL status bitmask */
  33        u32 status;
  34
  35        bool encoder_enabled;
  36
  37        /* pending flush_mask bits */
  38        u32 flush_mask;
  39
  40        /* REG_MDP5_CTL_*(<id>) registers access info + lock: */
  41        spinlock_t hw_lock;
  42        u32 reg_offset;
  43
  44        /* when do CTL registers need to be flushed? (mask of trigger bits) */
  45        u32 pending_ctl_trigger;
  46
  47        bool cursor_on;
  48
  49        /* True if the current CTL has FLUSH bits pending for single FLUSH. */
  50        bool flush_pending;
  51
  52        struct mdp5_ctl *pair; /* Paired CTL to be flushed together */
  53};
  54
  55struct mdp5_ctl_manager {
  56        struct drm_device *dev;
  57
  58        /* number of CTL / Layer Mixers in this hw config: */
  59        u32 nlm;
  60        u32 nctl;
  61
  62        /* to filter out non-present bits in the current hardware config */
  63        u32 flush_hw_mask;
  64
  65        /* status for single FLUSH */
  66        bool single_flush_supported;
  67        u32 single_flush_pending_mask;
  68
  69        /* pool of CTLs + lock to protect resource allocation (ctls[i].busy) */
  70        spinlock_t pool_lock;
  71        struct mdp5_ctl ctls[MAX_CTL];
  72};
  73
  74static inline
  75struct mdp5_kms *get_kms(struct mdp5_ctl_manager *ctl_mgr)
  76{
  77        struct msm_drm_private *priv = ctl_mgr->dev->dev_private;
  78
  79        return to_mdp5_kms(to_mdp_kms(priv->kms));
  80}
  81
  82static inline
  83void ctl_write(struct mdp5_ctl *ctl, u32 reg, u32 data)
  84{
  85        struct mdp5_kms *mdp5_kms = get_kms(ctl->ctlm);
  86
  87        (void)ctl->reg_offset; /* TODO use this instead of mdp5_write */
  88        mdp5_write(mdp5_kms, reg, data);
  89}
  90
  91static inline
  92u32 ctl_read(struct mdp5_ctl *ctl, u32 reg)
  93{
  94        struct mdp5_kms *mdp5_kms = get_kms(ctl->ctlm);
  95
  96        (void)ctl->reg_offset; /* TODO use this instead of mdp5_write */
  97        return mdp5_read(mdp5_kms, reg);
  98}
  99
 100static void set_display_intf(struct mdp5_kms *mdp5_kms,
 101                struct mdp5_interface *intf)
 102{
 103        unsigned long flags;
 104        u32 intf_sel;
 105
 106        spin_lock_irqsave(&mdp5_kms->resource_lock, flags);
 107        intf_sel = mdp5_read(mdp5_kms, REG_MDP5_DISP_INTF_SEL);
 108
 109        switch (intf->num) {
 110        case 0:
 111                intf_sel &= ~MDP5_DISP_INTF_SEL_INTF0__MASK;
 112                intf_sel |= MDP5_DISP_INTF_SEL_INTF0(intf->type);
 113                break;
 114        case 1:
 115                intf_sel &= ~MDP5_DISP_INTF_SEL_INTF1__MASK;
 116                intf_sel |= MDP5_DISP_INTF_SEL_INTF1(intf->type);
 117                break;
 118        case 2:
 119                intf_sel &= ~MDP5_DISP_INTF_SEL_INTF2__MASK;
 120                intf_sel |= MDP5_DISP_INTF_SEL_INTF2(intf->type);
 121                break;
 122        case 3:
 123                intf_sel &= ~MDP5_DISP_INTF_SEL_INTF3__MASK;
 124                intf_sel |= MDP5_DISP_INTF_SEL_INTF3(intf->type);
 125                break;
 126        default:
 127                BUG();
 128                break;
 129        }
 130
 131        mdp5_write(mdp5_kms, REG_MDP5_DISP_INTF_SEL, intf_sel);
 132        spin_unlock_irqrestore(&mdp5_kms->resource_lock, flags);
 133}
 134
 135static void set_ctl_op(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline)
 136{
 137        unsigned long flags;
 138        struct mdp5_interface *intf = pipeline->intf;
 139        u32 ctl_op = 0;
 140
 141        if (!mdp5_cfg_intf_is_virtual(intf->type))
 142                ctl_op |= MDP5_CTL_OP_INTF_NUM(INTF0 + intf->num);
 143
 144        switch (intf->type) {
 145        case INTF_DSI:
 146                if (intf->mode == MDP5_INTF_DSI_MODE_COMMAND)
 147                        ctl_op |= MDP5_CTL_OP_CMD_MODE;
 148                break;
 149
 150        case INTF_WB:
 151                if (intf->mode == MDP5_INTF_WB_MODE_LINE)
 152                        ctl_op |= MDP5_CTL_OP_MODE(MODE_WB_2_LINE);
 153                break;
 154
 155        default:
 156                break;
 157        }
 158
 159        if (pipeline->r_mixer)
 160                ctl_op |= MDP5_CTL_OP_PACK_3D_ENABLE |
 161                          MDP5_CTL_OP_PACK_3D(1);
 162
 163        spin_lock_irqsave(&ctl->hw_lock, flags);
 164        ctl_write(ctl, REG_MDP5_CTL_OP(ctl->id), ctl_op);
 165        spin_unlock_irqrestore(&ctl->hw_lock, flags);
 166}
 167
 168int mdp5_ctl_set_pipeline(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline)
 169{
 170        struct mdp5_kms *mdp5_kms = get_kms(ctl->ctlm);
 171        struct mdp5_interface *intf = pipeline->intf;
 172
 173        /* Virtual interfaces need not set a display intf (e.g.: Writeback) */
 174        if (!mdp5_cfg_intf_is_virtual(intf->type))
 175                set_display_intf(mdp5_kms, intf);
 176
 177        set_ctl_op(ctl, pipeline);
 178
 179        return 0;
 180}
 181
 182static bool start_signal_needed(struct mdp5_ctl *ctl,
 183                                struct mdp5_pipeline *pipeline)
 184{
 185        struct mdp5_interface *intf = pipeline->intf;
 186
 187        if (!ctl->encoder_enabled)
 188                return false;
 189
 190        switch (intf->type) {
 191        case INTF_WB:
 192                return true;
 193        case INTF_DSI:
 194                return intf->mode == MDP5_INTF_DSI_MODE_COMMAND;
 195        default:
 196                return false;
 197        }
 198}
 199
 200/*
 201 * send_start_signal() - Overlay Processor Start Signal
 202 *
 203 * For a given control operation (display pipeline), a START signal needs to be
 204 * executed in order to kick off operation and activate all layers.
 205 * e.g.: DSI command mode, Writeback
 206 */
 207static void send_start_signal(struct mdp5_ctl *ctl)
 208{
 209        unsigned long flags;
 210
 211        spin_lock_irqsave(&ctl->hw_lock, flags);
 212        ctl_write(ctl, REG_MDP5_CTL_START(ctl->id), 1);
 213        spin_unlock_irqrestore(&ctl->hw_lock, flags);
 214}
 215
 216/**
 217 * mdp5_ctl_set_encoder_state() - set the encoder state
 218 *
 219 * @enable: true, when encoder is ready for data streaming; false, otherwise.
 220 *
 221 * Note:
 222 * This encoder state is needed to trigger START signal (data path kickoff).
 223 */
 224int mdp5_ctl_set_encoder_state(struct mdp5_ctl *ctl,
 225                               struct mdp5_pipeline *pipeline,
 226                               bool enabled)
 227{
 228        struct mdp5_interface *intf = pipeline->intf;
 229
 230        if (WARN_ON(!ctl))
 231                return -EINVAL;
 232
 233        ctl->encoder_enabled = enabled;
 234        DBG("intf_%d: %s", intf->num, enabled ? "on" : "off");
 235
 236        if (start_signal_needed(ctl, pipeline)) {
 237                send_start_signal(ctl);
 238        }
 239
 240        return 0;
 241}
 242
 243/*
 244 * Note:
 245 * CTL registers need to be flushed after calling this function
 246 * (call mdp5_ctl_commit() with mdp_ctl_flush_mask_ctl() mask)
 247 */
 248int mdp5_ctl_set_cursor(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline,
 249                        int cursor_id, bool enable)
 250{
 251        struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
 252        unsigned long flags;
 253        u32 blend_cfg;
 254        struct mdp5_hw_mixer *mixer = pipeline->mixer;
 255
 256        if (unlikely(WARN_ON(!mixer))) {
 257                DRM_DEV_ERROR(ctl_mgr->dev->dev, "CTL %d cannot find LM",
 258                        ctl->id);
 259                return -EINVAL;
 260        }
 261
 262        if (pipeline->r_mixer) {
 263                DRM_DEV_ERROR(ctl_mgr->dev->dev, "unsupported configuration");
 264                return -EINVAL;
 265        }
 266
 267        spin_lock_irqsave(&ctl->hw_lock, flags);
 268
 269        blend_cfg = ctl_read(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, mixer->lm));
 270
 271        if (enable)
 272                blend_cfg |=  MDP5_CTL_LAYER_REG_CURSOR_OUT;
 273        else
 274                blend_cfg &= ~MDP5_CTL_LAYER_REG_CURSOR_OUT;
 275
 276        ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, mixer->lm), blend_cfg);
 277        ctl->cursor_on = enable;
 278
 279        spin_unlock_irqrestore(&ctl->hw_lock, flags);
 280
 281        ctl->pending_ctl_trigger = mdp_ctl_flush_mask_cursor(cursor_id);
 282
 283        return 0;
 284}
 285
 286static u32 mdp_ctl_blend_mask(enum mdp5_pipe pipe,
 287                enum mdp_mixer_stage_id stage)
 288{
 289        switch (pipe) {
 290        case SSPP_VIG0: return MDP5_CTL_LAYER_REG_VIG0(stage);
 291        case SSPP_VIG1: return MDP5_CTL_LAYER_REG_VIG1(stage);
 292        case SSPP_VIG2: return MDP5_CTL_LAYER_REG_VIG2(stage);
 293        case SSPP_RGB0: return MDP5_CTL_LAYER_REG_RGB0(stage);
 294        case SSPP_RGB1: return MDP5_CTL_LAYER_REG_RGB1(stage);
 295        case SSPP_RGB2: return MDP5_CTL_LAYER_REG_RGB2(stage);
 296        case SSPP_DMA0: return MDP5_CTL_LAYER_REG_DMA0(stage);
 297        case SSPP_DMA1: return MDP5_CTL_LAYER_REG_DMA1(stage);
 298        case SSPP_VIG3: return MDP5_CTL_LAYER_REG_VIG3(stage);
 299        case SSPP_RGB3: return MDP5_CTL_LAYER_REG_RGB3(stage);
 300        case SSPP_CURSOR0:
 301        case SSPP_CURSOR1:
 302        default:        return 0;
 303        }
 304}
 305
 306static u32 mdp_ctl_blend_ext_mask(enum mdp5_pipe pipe,
 307                enum mdp_mixer_stage_id stage)
 308{
 309        if (stage < STAGE6 && (pipe != SSPP_CURSOR0 && pipe != SSPP_CURSOR1))
 310                return 0;
 311
 312        switch (pipe) {
 313        case SSPP_VIG0: return MDP5_CTL_LAYER_EXT_REG_VIG0_BIT3;
 314        case SSPP_VIG1: return MDP5_CTL_LAYER_EXT_REG_VIG1_BIT3;
 315        case SSPP_VIG2: return MDP5_CTL_LAYER_EXT_REG_VIG2_BIT3;
 316        case SSPP_RGB0: return MDP5_CTL_LAYER_EXT_REG_RGB0_BIT3;
 317        case SSPP_RGB1: return MDP5_CTL_LAYER_EXT_REG_RGB1_BIT3;
 318        case SSPP_RGB2: return MDP5_CTL_LAYER_EXT_REG_RGB2_BIT3;
 319        case SSPP_DMA0: return MDP5_CTL_LAYER_EXT_REG_DMA0_BIT3;
 320        case SSPP_DMA1: return MDP5_CTL_LAYER_EXT_REG_DMA1_BIT3;
 321        case SSPP_VIG3: return MDP5_CTL_LAYER_EXT_REG_VIG3_BIT3;
 322        case SSPP_RGB3: return MDP5_CTL_LAYER_EXT_REG_RGB3_BIT3;
 323        case SSPP_CURSOR0: return MDP5_CTL_LAYER_EXT_REG_CURSOR0(stage);
 324        case SSPP_CURSOR1: return MDP5_CTL_LAYER_EXT_REG_CURSOR1(stage);
 325        default:        return 0;
 326        }
 327}
 328
 329static void mdp5_ctl_reset_blend_regs(struct mdp5_ctl *ctl)
 330{
 331        unsigned long flags;
 332        struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
 333        int i;
 334
 335        spin_lock_irqsave(&ctl->hw_lock, flags);
 336
 337        for (i = 0; i < ctl_mgr->nlm; i++) {
 338                ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, i), 0x0);
 339                ctl_write(ctl, REG_MDP5_CTL_LAYER_EXT_REG(ctl->id, i), 0x0);
 340        }
 341
 342        spin_unlock_irqrestore(&ctl->hw_lock, flags);
 343}
 344
 345#define PIPE_LEFT       0
 346#define PIPE_RIGHT      1
 347int mdp5_ctl_blend(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline,
 348                   enum mdp5_pipe stage[][MAX_PIPE_STAGE],
 349                   enum mdp5_pipe r_stage[][MAX_PIPE_STAGE],
 350                   u32 stage_cnt, u32 ctl_blend_op_flags)
 351{
 352        struct mdp5_hw_mixer *mixer = pipeline->mixer;
 353        struct mdp5_hw_mixer *r_mixer = pipeline->r_mixer;
 354        unsigned long flags;
 355        u32 blend_cfg = 0, blend_ext_cfg = 0;
 356        u32 r_blend_cfg = 0, r_blend_ext_cfg = 0;
 357        int i, start_stage;
 358
 359        mdp5_ctl_reset_blend_regs(ctl);
 360
 361        if (ctl_blend_op_flags & MDP5_CTL_BLEND_OP_FLAG_BORDER_OUT) {
 362                start_stage = STAGE0;
 363                blend_cfg |= MDP5_CTL_LAYER_REG_BORDER_COLOR;
 364                if (r_mixer)
 365                        r_blend_cfg |= MDP5_CTL_LAYER_REG_BORDER_COLOR;
 366        } else {
 367                start_stage = STAGE_BASE;
 368        }
 369
 370        for (i = start_stage; stage_cnt && i <= STAGE_MAX; i++) {
 371                blend_cfg |=
 372                        mdp_ctl_blend_mask(stage[i][PIPE_LEFT], i) |
 373                        mdp_ctl_blend_mask(stage[i][PIPE_RIGHT], i);
 374                blend_ext_cfg |=
 375                        mdp_ctl_blend_ext_mask(stage[i][PIPE_LEFT], i) |
 376                        mdp_ctl_blend_ext_mask(stage[i][PIPE_RIGHT], i);
 377                if (r_mixer) {
 378                        r_blend_cfg |=
 379                                mdp_ctl_blend_mask(r_stage[i][PIPE_LEFT], i) |
 380                                mdp_ctl_blend_mask(r_stage[i][PIPE_RIGHT], i);
 381                        r_blend_ext_cfg |=
 382                             mdp_ctl_blend_ext_mask(r_stage[i][PIPE_LEFT], i) |
 383                             mdp_ctl_blend_ext_mask(r_stage[i][PIPE_RIGHT], i);
 384                }
 385        }
 386
 387        spin_lock_irqsave(&ctl->hw_lock, flags);
 388        if (ctl->cursor_on)
 389                blend_cfg |=  MDP5_CTL_LAYER_REG_CURSOR_OUT;
 390
 391        ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, mixer->lm), blend_cfg);
 392        ctl_write(ctl, REG_MDP5_CTL_LAYER_EXT_REG(ctl->id, mixer->lm),
 393                  blend_ext_cfg);
 394        if (r_mixer) {
 395                ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, r_mixer->lm),
 396                          r_blend_cfg);
 397                ctl_write(ctl, REG_MDP5_CTL_LAYER_EXT_REG(ctl->id, r_mixer->lm),
 398                          r_blend_ext_cfg);
 399        }
 400        spin_unlock_irqrestore(&ctl->hw_lock, flags);
 401
 402        ctl->pending_ctl_trigger = mdp_ctl_flush_mask_lm(mixer->lm);
 403        if (r_mixer)
 404                ctl->pending_ctl_trigger |= mdp_ctl_flush_mask_lm(r_mixer->lm);
 405
 406        DBG("lm%d: blend config = 0x%08x. ext_cfg = 0x%08x", mixer->lm,
 407                blend_cfg, blend_ext_cfg);
 408        if (r_mixer)
 409                DBG("lm%d: blend config = 0x%08x. ext_cfg = 0x%08x",
 410                    r_mixer->lm, r_blend_cfg, r_blend_ext_cfg);
 411
 412        return 0;
 413}
 414
 415u32 mdp_ctl_flush_mask_encoder(struct mdp5_interface *intf)
 416{
 417        if (intf->type == INTF_WB)
 418                return MDP5_CTL_FLUSH_WB;
 419
 420        switch (intf->num) {
 421        case 0: return MDP5_CTL_FLUSH_TIMING_0;
 422        case 1: return MDP5_CTL_FLUSH_TIMING_1;
 423        case 2: return MDP5_CTL_FLUSH_TIMING_2;
 424        case 3: return MDP5_CTL_FLUSH_TIMING_3;
 425        default: return 0;
 426        }
 427}
 428
 429u32 mdp_ctl_flush_mask_cursor(int cursor_id)
 430{
 431        switch (cursor_id) {
 432        case 0: return MDP5_CTL_FLUSH_CURSOR_0;
 433        case 1: return MDP5_CTL_FLUSH_CURSOR_1;
 434        default: return 0;
 435        }
 436}
 437
 438u32 mdp_ctl_flush_mask_pipe(enum mdp5_pipe pipe)
 439{
 440        switch (pipe) {
 441        case SSPP_VIG0: return MDP5_CTL_FLUSH_VIG0;
 442        case SSPP_VIG1: return MDP5_CTL_FLUSH_VIG1;
 443        case SSPP_VIG2: return MDP5_CTL_FLUSH_VIG2;
 444        case SSPP_RGB0: return MDP5_CTL_FLUSH_RGB0;
 445        case SSPP_RGB1: return MDP5_CTL_FLUSH_RGB1;
 446        case SSPP_RGB2: return MDP5_CTL_FLUSH_RGB2;
 447        case SSPP_DMA0: return MDP5_CTL_FLUSH_DMA0;
 448        case SSPP_DMA1: return MDP5_CTL_FLUSH_DMA1;
 449        case SSPP_VIG3: return MDP5_CTL_FLUSH_VIG3;
 450        case SSPP_RGB3: return MDP5_CTL_FLUSH_RGB3;
 451        case SSPP_CURSOR0: return MDP5_CTL_FLUSH_CURSOR_0;
 452        case SSPP_CURSOR1: return MDP5_CTL_FLUSH_CURSOR_1;
 453        default:        return 0;
 454        }
 455}
 456
 457u32 mdp_ctl_flush_mask_lm(int lm)
 458{
 459        switch (lm) {
 460        case 0:  return MDP5_CTL_FLUSH_LM0;
 461        case 1:  return MDP5_CTL_FLUSH_LM1;
 462        case 2:  return MDP5_CTL_FLUSH_LM2;
 463        case 3:  return MDP5_CTL_FLUSH_LM3;
 464        case 4:  return MDP5_CTL_FLUSH_LM4;
 465        case 5:  return MDP5_CTL_FLUSH_LM5;
 466        default: return 0;
 467        }
 468}
 469
 470static u32 fix_sw_flush(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline,
 471                        u32 flush_mask)
 472{
 473        struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
 474        u32 sw_mask = 0;
 475#define BIT_NEEDS_SW_FIX(bit) \
 476        (!(ctl_mgr->flush_hw_mask & bit) && (flush_mask & bit))
 477
 478        /* for some targets, cursor bit is the same as LM bit */
 479        if (BIT_NEEDS_SW_FIX(MDP5_CTL_FLUSH_CURSOR_0))
 480                sw_mask |= mdp_ctl_flush_mask_lm(pipeline->mixer->lm);
 481
 482        return sw_mask;
 483}
 484
 485static void fix_for_single_flush(struct mdp5_ctl *ctl, u32 *flush_mask,
 486                u32 *flush_id)
 487{
 488        struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
 489
 490        if (ctl->pair) {
 491                DBG("CTL %d FLUSH pending mask %x", ctl->id, *flush_mask);
 492                ctl->flush_pending = true;
 493                ctl_mgr->single_flush_pending_mask |= (*flush_mask);
 494                *flush_mask = 0;
 495
 496                if (ctl->pair->flush_pending) {
 497                        *flush_id = min_t(u32, ctl->id, ctl->pair->id);
 498                        *flush_mask = ctl_mgr->single_flush_pending_mask;
 499
 500                        ctl->flush_pending = false;
 501                        ctl->pair->flush_pending = false;
 502                        ctl_mgr->single_flush_pending_mask = 0;
 503
 504                        DBG("Single FLUSH mask %x,ID %d", *flush_mask,
 505                                *flush_id);
 506                }
 507        }
 508}
 509
 510/**
 511 * mdp5_ctl_commit() - Register Flush
 512 *
 513 * The flush register is used to indicate several registers are all
 514 * programmed, and are safe to update to the back copy of the double
 515 * buffered registers.
 516 *
 517 * Some registers FLUSH bits are shared when the hardware does not have
 518 * dedicated bits for them; handling these is the job of fix_sw_flush().
 519 *
 520 * CTL registers need to be flushed in some circumstances; if that is the
 521 * case, some trigger bits will be present in both flush mask and
 522 * ctl->pending_ctl_trigger.
 523 *
 524 * Return H/W flushed bit mask.
 525 */
 526u32 mdp5_ctl_commit(struct mdp5_ctl *ctl,
 527                    struct mdp5_pipeline *pipeline,
 528                    u32 flush_mask, bool start)
 529{
 530        struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
 531        unsigned long flags;
 532        u32 flush_id = ctl->id;
 533        u32 curr_ctl_flush_mask;
 534
 535        VERB("flush_mask=%x, trigger=%x", flush_mask, ctl->pending_ctl_trigger);
 536
 537        if (ctl->pending_ctl_trigger & flush_mask) {
 538                flush_mask |= MDP5_CTL_FLUSH_CTL;
 539                ctl->pending_ctl_trigger = 0;
 540        }
 541
 542        flush_mask |= fix_sw_flush(ctl, pipeline, flush_mask);
 543
 544        flush_mask &= ctl_mgr->flush_hw_mask;
 545
 546        curr_ctl_flush_mask = flush_mask;
 547
 548        fix_for_single_flush(ctl, &flush_mask, &flush_id);
 549
 550        if (!start) {
 551                ctl->flush_mask |= flush_mask;
 552                return curr_ctl_flush_mask;
 553        } else {
 554                flush_mask |= ctl->flush_mask;
 555                ctl->flush_mask = 0;
 556        }
 557
 558        if (flush_mask) {
 559                spin_lock_irqsave(&ctl->hw_lock, flags);
 560                ctl_write(ctl, REG_MDP5_CTL_FLUSH(flush_id), flush_mask);
 561                spin_unlock_irqrestore(&ctl->hw_lock, flags);
 562        }
 563
 564        if (start_signal_needed(ctl, pipeline)) {
 565                send_start_signal(ctl);
 566        }
 567
 568        return curr_ctl_flush_mask;
 569}
 570
 571u32 mdp5_ctl_get_commit_status(struct mdp5_ctl *ctl)
 572{
 573        return ctl_read(ctl, REG_MDP5_CTL_FLUSH(ctl->id));
 574}
 575
 576int mdp5_ctl_get_ctl_id(struct mdp5_ctl *ctl)
 577{
 578        return WARN_ON(!ctl) ? -EINVAL : ctl->id;
 579}
 580
 581/*
 582 * mdp5_ctl_pair() - Associate 2 booked CTLs for single FLUSH
 583 */
 584int mdp5_ctl_pair(struct mdp5_ctl *ctlx, struct mdp5_ctl *ctly, bool enable)
 585{
 586        struct mdp5_ctl_manager *ctl_mgr = ctlx->ctlm;
 587        struct mdp5_kms *mdp5_kms = get_kms(ctl_mgr);
 588
 589        /* do nothing silently if hw doesn't support */
 590        if (!ctl_mgr->single_flush_supported)
 591                return 0;
 592
 593        if (!enable) {
 594                ctlx->pair = NULL;
 595                ctly->pair = NULL;
 596                mdp5_write(mdp5_kms, REG_MDP5_SPARE_0, 0);
 597                return 0;
 598        } else if ((ctlx->pair != NULL) || (ctly->pair != NULL)) {
 599                DRM_DEV_ERROR(ctl_mgr->dev->dev, "CTLs already paired\n");
 600                return -EINVAL;
 601        } else if (!(ctlx->status & ctly->status & CTL_STAT_BOOKED)) {
 602                DRM_DEV_ERROR(ctl_mgr->dev->dev, "Only pair booked CTLs\n");
 603                return -EINVAL;
 604        }
 605
 606        ctlx->pair = ctly;
 607        ctly->pair = ctlx;
 608
 609        mdp5_write(mdp5_kms, REG_MDP5_SPARE_0,
 610                   MDP5_SPARE_0_SPLIT_DPL_SINGLE_FLUSH_EN);
 611
 612        return 0;
 613}
 614
 615/*
 616 * mdp5_ctl_request() - CTL allocation
 617 *
 618 * Try to return booked CTL for @intf_num is 1 or 2, unbooked for other INTFs.
 619 * If no CTL is available in preferred category, allocate from the other one.
 620 *
 621 * @return fail if no CTL is available.
 622 */
 623struct mdp5_ctl *mdp5_ctlm_request(struct mdp5_ctl_manager *ctl_mgr,
 624                int intf_num)
 625{
 626        struct mdp5_ctl *ctl = NULL;
 627        const u32 checkm = CTL_STAT_BUSY | CTL_STAT_BOOKED;
 628        u32 match = ((intf_num == 1) || (intf_num == 2)) ? CTL_STAT_BOOKED : 0;
 629        unsigned long flags;
 630        int c;
 631
 632        spin_lock_irqsave(&ctl_mgr->pool_lock, flags);
 633
 634        /* search the preferred */
 635        for (c = 0; c < ctl_mgr->nctl; c++)
 636                if ((ctl_mgr->ctls[c].status & checkm) == match)
 637                        goto found;
 638
 639        dev_warn(ctl_mgr->dev->dev,
 640                "fall back to the other CTL category for INTF %d!\n", intf_num);
 641
 642        match ^= CTL_STAT_BOOKED;
 643        for (c = 0; c < ctl_mgr->nctl; c++)
 644                if ((ctl_mgr->ctls[c].status & checkm) == match)
 645                        goto found;
 646
 647        DRM_DEV_ERROR(ctl_mgr->dev->dev, "No more CTL available!");
 648        goto unlock;
 649
 650found:
 651        ctl = &ctl_mgr->ctls[c];
 652        ctl->status |= CTL_STAT_BUSY;
 653        ctl->pending_ctl_trigger = 0;
 654        DBG("CTL %d allocated", ctl->id);
 655
 656unlock:
 657        spin_unlock_irqrestore(&ctl_mgr->pool_lock, flags);
 658        return ctl;
 659}
 660
 661void mdp5_ctlm_hw_reset(struct mdp5_ctl_manager *ctl_mgr)
 662{
 663        unsigned long flags;
 664        int c;
 665
 666        for (c = 0; c < ctl_mgr->nctl; c++) {
 667                struct mdp5_ctl *ctl = &ctl_mgr->ctls[c];
 668
 669                spin_lock_irqsave(&ctl->hw_lock, flags);
 670                ctl_write(ctl, REG_MDP5_CTL_OP(ctl->id), 0);
 671                spin_unlock_irqrestore(&ctl->hw_lock, flags);
 672        }
 673}
 674
 675void mdp5_ctlm_destroy(struct mdp5_ctl_manager *ctl_mgr)
 676{
 677        kfree(ctl_mgr);
 678}
 679
 680struct mdp5_ctl_manager *mdp5_ctlm_init(struct drm_device *dev,
 681                void __iomem *mmio_base, struct mdp5_cfg_handler *cfg_hnd)
 682{
 683        struct mdp5_ctl_manager *ctl_mgr;
 684        const struct mdp5_cfg_hw *hw_cfg = mdp5_cfg_get_hw_config(cfg_hnd);
 685        int rev = mdp5_cfg_get_hw_rev(cfg_hnd);
 686        unsigned dsi_cnt = 0;
 687        const struct mdp5_ctl_block *ctl_cfg = &hw_cfg->ctl;
 688        unsigned long flags;
 689        int c, ret;
 690
 691        ctl_mgr = kzalloc(sizeof(*ctl_mgr), GFP_KERNEL);
 692        if (!ctl_mgr) {
 693                DRM_DEV_ERROR(dev->dev, "failed to allocate CTL manager\n");
 694                ret = -ENOMEM;
 695                goto fail;
 696        }
 697
 698        if (unlikely(WARN_ON(ctl_cfg->count > MAX_CTL))) {
 699                DRM_DEV_ERROR(dev->dev, "Increase static pool size to at least %d\n",
 700                                ctl_cfg->count);
 701                ret = -ENOSPC;
 702                goto fail;
 703        }
 704
 705        /* initialize the CTL manager: */
 706        ctl_mgr->dev = dev;
 707        ctl_mgr->nlm = hw_cfg->lm.count;
 708        ctl_mgr->nctl = ctl_cfg->count;
 709        ctl_mgr->flush_hw_mask = ctl_cfg->flush_hw_mask;
 710        spin_lock_init(&ctl_mgr->pool_lock);
 711
 712        /* initialize each CTL of the pool: */
 713        spin_lock_irqsave(&ctl_mgr->pool_lock, flags);
 714        for (c = 0; c < ctl_mgr->nctl; c++) {
 715                struct mdp5_ctl *ctl = &ctl_mgr->ctls[c];
 716
 717                if (WARN_ON(!ctl_cfg->base[c])) {
 718                        DRM_DEV_ERROR(dev->dev, "CTL_%d: base is null!\n", c);
 719                        ret = -EINVAL;
 720                        spin_unlock_irqrestore(&ctl_mgr->pool_lock, flags);
 721                        goto fail;
 722                }
 723                ctl->ctlm = ctl_mgr;
 724                ctl->id = c;
 725                ctl->reg_offset = ctl_cfg->base[c];
 726                ctl->status = 0;
 727                spin_lock_init(&ctl->hw_lock);
 728        }
 729
 730        /*
 731         * In Dual DSI case, CTL0 and CTL1 are always assigned to two DSI
 732         * interfaces to support single FLUSH feature (Flush CTL0 and CTL1 when
 733         * only write into CTL0's FLUSH register) to keep two DSI pipes in sync.
 734         * Single FLUSH is supported from hw rev v3.0.
 735         */
 736        for (c = 0; c < ARRAY_SIZE(hw_cfg->intf.connect); c++)
 737                if (hw_cfg->intf.connect[c] == INTF_DSI)
 738                        dsi_cnt++;
 739        if ((rev >= 3) && (dsi_cnt > 1)) {
 740                ctl_mgr->single_flush_supported = true;
 741                /* Reserve CTL0/1 for INTF1/2 */
 742                ctl_mgr->ctls[0].status |= CTL_STAT_BOOKED;
 743                ctl_mgr->ctls[1].status |= CTL_STAT_BOOKED;
 744        }
 745        spin_unlock_irqrestore(&ctl_mgr->pool_lock, flags);
 746        DBG("Pool of %d CTLs created.", ctl_mgr->nctl);
 747
 748        return ctl_mgr;
 749
 750fail:
 751        if (ctl_mgr)
 752                mdp5_ctlm_destroy(ctl_mgr);
 753
 754        return ERR_PTR(ret);
 755}
 756