linux/drivers/gpu/drm/nouveau/nvkm/subdev/ltc/gf100.c
<<
>>
Prefs
   1/*
   2 * Copyright 2012 Red Hat Inc.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20 * OTHER DEALINGS IN THE SOFTWARE.
  21 *
  22 * Authors: Ben Skeggs
  23 */
  24#include "priv.h"
  25
  26#include <core/memory.h>
  27#include <subdev/fb.h>
  28#include <subdev/timer.h>
  29
  30void
  31gf100_ltc_cbc_clear(struct nvkm_ltc *ltc, u32 start, u32 limit)
  32{
  33        struct nvkm_device *device = ltc->subdev.device;
  34        nvkm_wr32(device, 0x17e8cc, start);
  35        nvkm_wr32(device, 0x17e8d0, limit);
  36        nvkm_wr32(device, 0x17e8c8, 0x00000004);
  37}
  38
  39void
  40gf100_ltc_cbc_wait(struct nvkm_ltc *ltc)
  41{
  42        struct nvkm_device *device = ltc->subdev.device;
  43        int c, s;
  44        for (c = 0; c < ltc->ltc_nr; c++) {
  45                for (s = 0; s < ltc->lts_nr; s++) {
  46                        const u32 addr = 0x1410c8 + (c * 0x2000) + (s * 0x400);
  47                        nvkm_msec(device, 2000,
  48                                if (!nvkm_rd32(device, addr))
  49                                        break;
  50                        );
  51                }
  52        }
  53}
  54
  55void
  56gf100_ltc_zbc_clear_color(struct nvkm_ltc *ltc, int i, const u32 color[4])
  57{
  58        struct nvkm_device *device = ltc->subdev.device;
  59        nvkm_mask(device, 0x17ea44, 0x0000000f, i);
  60        nvkm_wr32(device, 0x17ea48, color[0]);
  61        nvkm_wr32(device, 0x17ea4c, color[1]);
  62        nvkm_wr32(device, 0x17ea50, color[2]);
  63        nvkm_wr32(device, 0x17ea54, color[3]);
  64}
  65
  66void
  67gf100_ltc_zbc_clear_depth(struct nvkm_ltc *ltc, int i, const u32 depth)
  68{
  69        struct nvkm_device *device = ltc->subdev.device;
  70        nvkm_mask(device, 0x17ea44, 0x0000000f, i);
  71        nvkm_wr32(device, 0x17ea58, depth);
  72}
  73
  74const struct nvkm_bitfield
  75gf100_ltc_lts_intr_name[] = {
  76        { 0x00000001, "IDLE_ERROR_IQ" },
  77        { 0x00000002, "IDLE_ERROR_CBC" },
  78        { 0x00000004, "IDLE_ERROR_TSTG" },
  79        { 0x00000008, "IDLE_ERROR_DSTG" },
  80        { 0x00000010, "EVICTED_CB" },
  81        { 0x00000020, "ILLEGAL_COMPSTAT" },
  82        { 0x00000040, "BLOCKLINEAR_CB" },
  83        { 0x00000100, "ECC_SEC_ERROR" },
  84        { 0x00000200, "ECC_DED_ERROR" },
  85        { 0x00000400, "DEBUG" },
  86        { 0x00000800, "ATOMIC_TO_Z" },
  87        { 0x00001000, "ILLEGAL_ATOMIC" },
  88        { 0x00002000, "BLKACTIVITY_ERR" },
  89        {}
  90};
  91
  92static void
  93gf100_ltc_lts_intr(struct nvkm_ltc *ltc, int c, int s)
  94{
  95        struct nvkm_subdev *subdev = &ltc->subdev;
  96        struct nvkm_device *device = subdev->device;
  97        u32 base = 0x141000 + (c * 0x2000) + (s * 0x400);
  98        u32 intr = nvkm_rd32(device, base + 0x020);
  99        u32 stat = intr & 0x0000ffff;
 100        char msg[128];
 101
 102        if (stat) {
 103                nvkm_snprintbf(msg, sizeof(msg), gf100_ltc_lts_intr_name, stat);
 104                nvkm_error(subdev, "LTC%d_LTS%d: %08x [%s]\n", c, s, stat, msg);
 105        }
 106
 107        nvkm_wr32(device, base + 0x020, intr);
 108}
 109
 110void
 111gf100_ltc_intr(struct nvkm_ltc *ltc)
 112{
 113        struct nvkm_device *device = ltc->subdev.device;
 114        u32 mask;
 115
 116        mask = nvkm_rd32(device, 0x00017c);
 117        while (mask) {
 118                u32 s, c = __ffs(mask);
 119                for (s = 0; s < ltc->lts_nr; s++)
 120                        gf100_ltc_lts_intr(ltc, c, s);
 121                mask &= ~(1 << c);
 122        }
 123}
 124
 125void
 126gf100_ltc_invalidate(struct nvkm_ltc *ltc)
 127{
 128        struct nvkm_device *device = ltc->subdev.device;
 129        s64 taken;
 130
 131        nvkm_wr32(device, 0x70004, 0x00000001);
 132        taken = nvkm_wait_msec(device, 2000, 0x70004, 0x00000003, 0x00000000);
 133
 134        if (taken > 0)
 135                nvkm_debug(&ltc->subdev, "LTC invalidate took %lld ns\n", taken);
 136}
 137
 138void
 139gf100_ltc_flush(struct nvkm_ltc *ltc)
 140{
 141        struct nvkm_device *device = ltc->subdev.device;
 142        s64 taken;
 143
 144        nvkm_wr32(device, 0x70010, 0x00000001);
 145        taken = nvkm_wait_msec(device, 2000, 0x70010, 0x00000003, 0x00000000);
 146
 147        if (taken > 0)
 148                nvkm_debug(&ltc->subdev, "LTC flush took %lld ns\n", taken);
 149}
 150
 151/* TODO: Figure out tag memory details and drop the over-cautious allocation.
 152 */
 153int
 154gf100_ltc_oneinit_tag_ram(struct nvkm_ltc *ltc)
 155{
 156        struct nvkm_device *device = ltc->subdev.device;
 157        struct nvkm_fb *fb = device->fb;
 158        struct nvkm_ram *ram = fb->ram;
 159        u32 bits = (nvkm_rd32(device, 0x100c80) & 0x00001000) ? 16 : 17;
 160        u32 tag_size, tag_margin, tag_align;
 161        int ret;
 162
 163        /* No VRAM, no tags for now. */
 164        if (!ram) {
 165                ltc->num_tags = 0;
 166                goto mm_init;
 167        }
 168
 169        /* tags for 1/4 of VRAM should be enough (8192/4 per GiB of VRAM) */
 170        ltc->num_tags = (ram->size >> 17) / 4;
 171        if (ltc->num_tags > (1 << bits))
 172                ltc->num_tags = 1 << bits; /* we have 16/17 bits in PTE */
 173        ltc->num_tags = (ltc->num_tags + 63) & ~63; /* round up to 64 */
 174
 175        tag_align = ltc->ltc_nr * 0x800;
 176        tag_margin = (tag_align < 0x6000) ? 0x6000 : tag_align;
 177
 178        /* 4 part 4 sub: 0x2000 bytes for 56 tags */
 179        /* 3 part 4 sub: 0x6000 bytes for 168 tags */
 180        /*
 181         * About 147 bytes per tag. Let's be safe and allocate x2, which makes
 182         * 0x4980 bytes for 64 tags, and round up to 0x6000 bytes for 64 tags.
 183         *
 184         * For 4 GiB of memory we'll have 8192 tags which makes 3 MiB, < 0.1 %.
 185         */
 186        tag_size  = (ltc->num_tags / 64) * 0x6000 + tag_margin;
 187        tag_size += tag_align;
 188
 189        ret = nvkm_ram_get(device, NVKM_RAM_MM_NORMAL, 0x01, 12, tag_size,
 190                           true, true, &ltc->tag_ram);
 191        if (ret) {
 192                ltc->num_tags = 0;
 193        } else {
 194                u64 tag_base = nvkm_memory_addr(ltc->tag_ram) + tag_margin;
 195
 196                tag_base += tag_align - 1;
 197                do_div(tag_base, tag_align);
 198
 199                ltc->tag_base = tag_base;
 200        }
 201
 202mm_init:
 203        nvkm_mm_fini(&fb->tags);
 204        return nvkm_mm_init(&fb->tags, 0, 0, ltc->num_tags, 1);
 205}
 206
 207int
 208gf100_ltc_oneinit(struct nvkm_ltc *ltc)
 209{
 210        struct nvkm_device *device = ltc->subdev.device;
 211        const u32 parts = nvkm_rd32(device, 0x022438);
 212        const u32  mask = nvkm_rd32(device, 0x022554);
 213        const u32 slice = nvkm_rd32(device, 0x17e8dc) >> 28;
 214        int i;
 215
 216        for (i = 0; i < parts; i++) {
 217                if (!(mask & (1 << i)))
 218                        ltc->ltc_nr++;
 219        }
 220        ltc->lts_nr = slice;
 221
 222        return gf100_ltc_oneinit_tag_ram(ltc);
 223}
 224
 225static void
 226gf100_ltc_init(struct nvkm_ltc *ltc)
 227{
 228        struct nvkm_device *device = ltc->subdev.device;
 229        u32 lpg128 = !(nvkm_rd32(device, 0x100c80) & 0x00000001);
 230
 231        nvkm_mask(device, 0x17e820, 0x00100000, 0x00000000); /* INTR_EN &= ~0x10 */
 232        nvkm_wr32(device, 0x17e8d8, ltc->ltc_nr);
 233        nvkm_wr32(device, 0x17e8d4, ltc->tag_base);
 234        nvkm_mask(device, 0x17e8c0, 0x00000002, lpg128 ? 0x00000002 : 0x00000000);
 235}
 236
 237static const struct nvkm_ltc_func
 238gf100_ltc = {
 239        .oneinit = gf100_ltc_oneinit,
 240        .init = gf100_ltc_init,
 241        .intr = gf100_ltc_intr,
 242        .cbc_clear = gf100_ltc_cbc_clear,
 243        .cbc_wait = gf100_ltc_cbc_wait,
 244        .zbc = 16,
 245        .zbc_clear_color = gf100_ltc_zbc_clear_color,
 246        .zbc_clear_depth = gf100_ltc_zbc_clear_depth,
 247        .invalidate = gf100_ltc_invalidate,
 248        .flush = gf100_ltc_flush,
 249};
 250
 251int
 252gf100_ltc_new(struct nvkm_device *device, int index, struct nvkm_ltc **pltc)
 253{
 254        return nvkm_ltc_new_(&gf100_ltc, device, index, pltc);
 255}
 256