linux/drivers/gpu/drm/rcar-du/rcar_du_crtc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * rcar_du_crtc.c  --  R-Car Display Unit CRTCs
   4 *
   5 * Copyright (C) 2013-2015 Renesas Electronics Corporation
   6 *
   7 * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
   8 */
   9
  10#include <linux/clk.h>
  11#include <linux/mutex.h>
  12#include <linux/platform_device.h>
  13#include <linux/sys_soc.h>
  14
  15#include <drm/drm_atomic.h>
  16#include <drm/drm_atomic_helper.h>
  17#include <drm/drm_crtc.h>
  18#include <drm/drm_device.h>
  19#include <drm/drm_fb_cma_helper.h>
  20#include <drm/drm_gem_cma_helper.h>
  21#include <drm/drm_plane_helper.h>
  22#include <drm/drm_vblank.h>
  23
  24#include "rcar_du_crtc.h"
  25#include "rcar_du_drv.h"
  26#include "rcar_du_encoder.h"
  27#include "rcar_du_kms.h"
  28#include "rcar_du_plane.h"
  29#include "rcar_du_regs.h"
  30#include "rcar_du_vsp.h"
  31#include "rcar_lvds.h"
  32
  33static u32 rcar_du_crtc_read(struct rcar_du_crtc *rcrtc, u32 reg)
  34{
  35        struct rcar_du_device *rcdu = rcrtc->dev;
  36
  37        return rcar_du_read(rcdu, rcrtc->mmio_offset + reg);
  38}
  39
  40static void rcar_du_crtc_write(struct rcar_du_crtc *rcrtc, u32 reg, u32 data)
  41{
  42        struct rcar_du_device *rcdu = rcrtc->dev;
  43
  44        rcar_du_write(rcdu, rcrtc->mmio_offset + reg, data);
  45}
  46
  47static void rcar_du_crtc_clr(struct rcar_du_crtc *rcrtc, u32 reg, u32 clr)
  48{
  49        struct rcar_du_device *rcdu = rcrtc->dev;
  50
  51        rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
  52                      rcar_du_read(rcdu, rcrtc->mmio_offset + reg) & ~clr);
  53}
  54
  55static void rcar_du_crtc_set(struct rcar_du_crtc *rcrtc, u32 reg, u32 set)
  56{
  57        struct rcar_du_device *rcdu = rcrtc->dev;
  58
  59        rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
  60                      rcar_du_read(rcdu, rcrtc->mmio_offset + reg) | set);
  61}
  62
  63void rcar_du_crtc_dsysr_clr_set(struct rcar_du_crtc *rcrtc, u32 clr, u32 set)
  64{
  65        struct rcar_du_device *rcdu = rcrtc->dev;
  66
  67        rcrtc->dsysr = (rcrtc->dsysr & ~clr) | set;
  68        rcar_du_write(rcdu, rcrtc->mmio_offset + DSYSR, rcrtc->dsysr);
  69}
  70
  71/* -----------------------------------------------------------------------------
  72 * Hardware Setup
  73 */
  74
  75struct dpll_info {
  76        unsigned int output;
  77        unsigned int fdpll;
  78        unsigned int n;
  79        unsigned int m;
  80};
  81
  82static void rcar_du_dpll_divider(struct rcar_du_crtc *rcrtc,
  83                                 struct dpll_info *dpll,
  84                                 unsigned long input,
  85                                 unsigned long target)
  86{
  87        unsigned long best_diff = (unsigned long)-1;
  88        unsigned long diff;
  89        unsigned int fdpll;
  90        unsigned int m;
  91        unsigned int n;
  92
  93        /*
  94         *   fin                                 fvco        fout       fclkout
  95         * in --> [1/M] --> |PD| -> [LPF] -> [VCO] -> [1/P] -+-> [1/FDPLL] -> out
  96         *              +-> |  |                             |
  97         *              |                                    |
  98         *              +---------------- [1/N] <------------+
  99         *
 100         *      fclkout = fvco / P / FDPLL -- (1)
 101         *
 102         * fin/M = fvco/P/N
 103         *
 104         *      fvco = fin * P *  N / M -- (2)
 105         *
 106         * (1) + (2) indicates
 107         *
 108         *      fclkout = fin * N / M / FDPLL
 109         *
 110         * NOTES
 111         *      N       : (n + 1)
 112         *      M       : (m + 1)
 113         *      FDPLL   : (fdpll + 1)
 114         *      P       : 2
 115         *      2kHz < fvco < 4096MHz
 116         *
 117         * To minimize the jitter,
 118         * N : as large as possible
 119         * M : as small as possible
 120         */
 121        for (m = 0; m < 4; m++) {
 122                for (n = 119; n > 38; n--) {
 123                        /*
 124                         * This code only runs on 64-bit architectures, the
 125                         * unsigned long type can thus be used for 64-bit
 126                         * computation. It will still compile without any
 127                         * warning on 32-bit architectures.
 128                         *
 129                         * To optimize calculations, use fout instead of fvco
 130                         * to verify the VCO frequency constraint.
 131                         */
 132                        unsigned long fout = input * (n + 1) / (m + 1);
 133
 134                        if (fout < 1000 || fout > 2048 * 1000 * 1000U)
 135                                continue;
 136
 137                        for (fdpll = 1; fdpll < 32; fdpll++) {
 138                                unsigned long output;
 139
 140                                output = fout / (fdpll + 1);
 141                                if (output >= 400 * 1000 * 1000)
 142                                        continue;
 143
 144                                diff = abs((long)output - (long)target);
 145                                if (best_diff > diff) {
 146                                        best_diff = diff;
 147                                        dpll->n = n;
 148                                        dpll->m = m;
 149                                        dpll->fdpll = fdpll;
 150                                        dpll->output = output;
 151                                }
 152
 153                                if (diff == 0)
 154                                        goto done;
 155                        }
 156                }
 157        }
 158
 159done:
 160        dev_dbg(rcrtc->dev->dev,
 161                "output:%u, fdpll:%u, n:%u, m:%u, diff:%lu\n",
 162                 dpll->output, dpll->fdpll, dpll->n, dpll->m, best_diff);
 163}
 164
 165struct du_clk_params {
 166        struct clk *clk;
 167        unsigned long rate;
 168        unsigned long diff;
 169        u32 escr;
 170};
 171
 172static void rcar_du_escr_divider(struct clk *clk, unsigned long target,
 173                                 u32 escr, struct du_clk_params *params)
 174{
 175        unsigned long rate;
 176        unsigned long diff;
 177        u32 div;
 178
 179        /*
 180         * If the target rate has already been achieved perfectly we can't do
 181         * better.
 182         */
 183        if (params->diff == 0)
 184                return;
 185
 186        /*
 187         * Compute the input clock rate and internal divisor values to obtain
 188         * the clock rate closest to the target frequency.
 189         */
 190        rate = clk_round_rate(clk, target);
 191        div = clamp(DIV_ROUND_CLOSEST(rate, target), 1UL, 64UL) - 1;
 192        diff = abs(rate / (div + 1) - target);
 193
 194        /*
 195         * Store the parameters if the resulting frequency is better than any
 196         * previously calculated value.
 197         */
 198        if (diff < params->diff) {
 199                params->clk = clk;
 200                params->rate = rate;
 201                params->diff = diff;
 202                params->escr = escr | div;
 203        }
 204}
 205
 206static const struct soc_device_attribute rcar_du_r8a7795_es1[] = {
 207        { .soc_id = "r8a7795", .revision = "ES1.*" },
 208        { /* sentinel */ }
 209};
 210
 211static void rcar_du_crtc_set_display_timing(struct rcar_du_crtc *rcrtc)
 212{
 213        const struct drm_display_mode *mode = &rcrtc->crtc.state->adjusted_mode;
 214        struct rcar_du_device *rcdu = rcrtc->dev;
 215        unsigned long mode_clock = mode->clock * 1000;
 216        u32 dsmr;
 217        u32 escr;
 218
 219        if (rcdu->info->dpll_mask & (1 << rcrtc->index)) {
 220                unsigned long target = mode_clock;
 221                struct dpll_info dpll = { 0 };
 222                unsigned long extclk;
 223                u32 dpllcr;
 224                u32 div = 0;
 225
 226                /*
 227                 * DU channels that have a display PLL can't use the internal
 228                 * system clock, and have no internal clock divider.
 229                 */
 230
 231                /*
 232                 * The H3 ES1.x exhibits dot clock duty cycle stability issues.
 233                 * We can work around them by configuring the DPLL to twice the
 234                 * desired frequency, coupled with a /2 post-divider. Restrict
 235                 * the workaround to H3 ES1.x as ES2.0 and all other SoCs have
 236                 * no post-divider when a display PLL is present (as shown by
 237                 * the workaround breaking HDMI output on M3-W during testing).
 238                 */
 239                if (soc_device_match(rcar_du_r8a7795_es1)) {
 240                        target *= 2;
 241                        div = 1;
 242                }
 243
 244                extclk = clk_get_rate(rcrtc->extclock);
 245                rcar_du_dpll_divider(rcrtc, &dpll, extclk, target);
 246
 247                dpllcr = DPLLCR_CODE | DPLLCR_CLKE
 248                       | DPLLCR_FDPLL(dpll.fdpll)
 249                       | DPLLCR_N(dpll.n) | DPLLCR_M(dpll.m)
 250                       | DPLLCR_STBY;
 251
 252                if (rcrtc->index == 1)
 253                        dpllcr |= DPLLCR_PLCS1
 254                               |  DPLLCR_INCS_DOTCLKIN1;
 255                else
 256                        dpllcr |= DPLLCR_PLCS0
 257                               |  DPLLCR_INCS_DOTCLKIN0;
 258
 259                rcar_du_group_write(rcrtc->group, DPLLCR, dpllcr);
 260
 261                escr = ESCR_DCLKSEL_DCLKIN | div;
 262        } else if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index)) {
 263                /*
 264                 * Use the LVDS PLL output as the dot clock when outputting to
 265                 * the LVDS encoder on an SoC that supports this clock routing
 266                 * option. We use the clock directly in that case, without any
 267                 * additional divider.
 268                 */
 269                escr = ESCR_DCLKSEL_DCLKIN;
 270        } else {
 271                struct du_clk_params params = { .diff = (unsigned long)-1 };
 272
 273                rcar_du_escr_divider(rcrtc->clock, mode_clock,
 274                                     ESCR_DCLKSEL_CLKS, &params);
 275                if (rcrtc->extclock)
 276                        rcar_du_escr_divider(rcrtc->extclock, mode_clock,
 277                                             ESCR_DCLKSEL_DCLKIN, &params);
 278
 279                dev_dbg(rcrtc->dev->dev, "mode clock %lu %s rate %lu\n",
 280                        mode_clock, params.clk == rcrtc->clock ? "cpg" : "ext",
 281                        params.rate);
 282
 283                clk_set_rate(params.clk, params.rate);
 284                escr = params.escr;
 285        }
 286
 287        dev_dbg(rcrtc->dev->dev, "%s: ESCR 0x%08x\n", __func__, escr);
 288
 289        rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? ESCR13 : ESCR02, escr);
 290        rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? OTAR13 : OTAR02, 0);
 291
 292        /* Signal polarities */
 293        dsmr = ((mode->flags & DRM_MODE_FLAG_PVSYNC) ? DSMR_VSL : 0)
 294             | ((mode->flags & DRM_MODE_FLAG_PHSYNC) ? DSMR_HSL : 0)
 295             | ((mode->flags & DRM_MODE_FLAG_INTERLACE) ? DSMR_ODEV : 0)
 296             | DSMR_DIPM_DISP | DSMR_CSPM;
 297        rcar_du_crtc_write(rcrtc, DSMR, dsmr);
 298
 299        /* Display timings */
 300        rcar_du_crtc_write(rcrtc, HDSR, mode->htotal - mode->hsync_start - 19);
 301        rcar_du_crtc_write(rcrtc, HDER, mode->htotal - mode->hsync_start +
 302                                        mode->hdisplay - 19);
 303        rcar_du_crtc_write(rcrtc, HSWR, mode->hsync_end -
 304                                        mode->hsync_start - 1);
 305        rcar_du_crtc_write(rcrtc, HCR,  mode->htotal - 1);
 306
 307        rcar_du_crtc_write(rcrtc, VDSR, mode->crtc_vtotal -
 308                                        mode->crtc_vsync_end - 2);
 309        rcar_du_crtc_write(rcrtc, VDER, mode->crtc_vtotal -
 310                                        mode->crtc_vsync_end +
 311                                        mode->crtc_vdisplay - 2);
 312        rcar_du_crtc_write(rcrtc, VSPR, mode->crtc_vtotal -
 313                                        mode->crtc_vsync_end +
 314                                        mode->crtc_vsync_start - 1);
 315        rcar_du_crtc_write(rcrtc, VCR,  mode->crtc_vtotal - 1);
 316
 317        rcar_du_crtc_write(rcrtc, DESR,  mode->htotal - mode->hsync_start - 1);
 318        rcar_du_crtc_write(rcrtc, DEWR,  mode->hdisplay);
 319}
 320
 321static unsigned int plane_zpos(struct rcar_du_plane *plane)
 322{
 323        return plane->plane.state->normalized_zpos;
 324}
 325
 326static const struct rcar_du_format_info *
 327plane_format(struct rcar_du_plane *plane)
 328{
 329        return to_rcar_plane_state(plane->plane.state)->format;
 330}
 331
 332static void rcar_du_crtc_update_planes(struct rcar_du_crtc *rcrtc)
 333{
 334        struct rcar_du_plane *planes[RCAR_DU_NUM_HW_PLANES];
 335        struct rcar_du_device *rcdu = rcrtc->dev;
 336        unsigned int num_planes = 0;
 337        unsigned int dptsr_planes;
 338        unsigned int hwplanes = 0;
 339        unsigned int prio = 0;
 340        unsigned int i;
 341        u32 dspr = 0;
 342
 343        for (i = 0; i < rcrtc->group->num_planes; ++i) {
 344                struct rcar_du_plane *plane = &rcrtc->group->planes[i];
 345                unsigned int j;
 346
 347                if (plane->plane.state->crtc != &rcrtc->crtc ||
 348                    !plane->plane.state->visible)
 349                        continue;
 350
 351                /* Insert the plane in the sorted planes array. */
 352                for (j = num_planes++; j > 0; --j) {
 353                        if (plane_zpos(planes[j-1]) <= plane_zpos(plane))
 354                                break;
 355                        planes[j] = planes[j-1];
 356                }
 357
 358                planes[j] = plane;
 359                prio += plane_format(plane)->planes * 4;
 360        }
 361
 362        for (i = 0; i < num_planes; ++i) {
 363                struct rcar_du_plane *plane = planes[i];
 364                struct drm_plane_state *state = plane->plane.state;
 365                unsigned int index = to_rcar_plane_state(state)->hwindex;
 366
 367                prio -= 4;
 368                dspr |= (index + 1) << prio;
 369                hwplanes |= 1 << index;
 370
 371                if (plane_format(plane)->planes == 2) {
 372                        index = (index + 1) % 8;
 373
 374                        prio -= 4;
 375                        dspr |= (index + 1) << prio;
 376                        hwplanes |= 1 << index;
 377                }
 378        }
 379
 380        /* If VSP+DU integration is enabled the plane assignment is fixed. */
 381        if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE)) {
 382                if (rcdu->info->gen < 3) {
 383                        dspr = (rcrtc->index % 2) + 1;
 384                        hwplanes = 1 << (rcrtc->index % 2);
 385                } else {
 386                        dspr = (rcrtc->index % 2) ? 3 : 1;
 387                        hwplanes = 1 << ((rcrtc->index % 2) ? 2 : 0);
 388                }
 389        }
 390
 391        /*
 392         * Update the planes to display timing and dot clock generator
 393         * associations.
 394         *
 395         * Updating the DPTSR register requires restarting the CRTC group,
 396         * resulting in visible flicker. To mitigate the issue only update the
 397         * association if needed by enabled planes. Planes being disabled will
 398         * keep their current association.
 399         */
 400        mutex_lock(&rcrtc->group->lock);
 401
 402        dptsr_planes = rcrtc->index % 2 ? rcrtc->group->dptsr_planes | hwplanes
 403                     : rcrtc->group->dptsr_planes & ~hwplanes;
 404
 405        if (dptsr_planes != rcrtc->group->dptsr_planes) {
 406                rcar_du_group_write(rcrtc->group, DPTSR,
 407                                    (dptsr_planes << 16) | dptsr_planes);
 408                rcrtc->group->dptsr_planes = dptsr_planes;
 409
 410                if (rcrtc->group->used_crtcs)
 411                        rcar_du_group_restart(rcrtc->group);
 412        }
 413
 414        /* Restart the group if plane sources have changed. */
 415        if (rcrtc->group->need_restart)
 416                rcar_du_group_restart(rcrtc->group);
 417
 418        mutex_unlock(&rcrtc->group->lock);
 419
 420        rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR,
 421                            dspr);
 422}
 423
 424/* -----------------------------------------------------------------------------
 425 * Page Flip
 426 */
 427
 428void rcar_du_crtc_finish_page_flip(struct rcar_du_crtc *rcrtc)
 429{
 430        struct drm_pending_vblank_event *event;
 431        struct drm_device *dev = rcrtc->crtc.dev;
 432        unsigned long flags;
 433
 434        spin_lock_irqsave(&dev->event_lock, flags);
 435        event = rcrtc->event;
 436        rcrtc->event = NULL;
 437        spin_unlock_irqrestore(&dev->event_lock, flags);
 438
 439        if (event == NULL)
 440                return;
 441
 442        spin_lock_irqsave(&dev->event_lock, flags);
 443        drm_crtc_send_vblank_event(&rcrtc->crtc, event);
 444        wake_up(&rcrtc->flip_wait);
 445        spin_unlock_irqrestore(&dev->event_lock, flags);
 446
 447        drm_crtc_vblank_put(&rcrtc->crtc);
 448}
 449
 450static bool rcar_du_crtc_page_flip_pending(struct rcar_du_crtc *rcrtc)
 451{
 452        struct drm_device *dev = rcrtc->crtc.dev;
 453        unsigned long flags;
 454        bool pending;
 455
 456        spin_lock_irqsave(&dev->event_lock, flags);
 457        pending = rcrtc->event != NULL;
 458        spin_unlock_irqrestore(&dev->event_lock, flags);
 459
 460        return pending;
 461}
 462
 463static void rcar_du_crtc_wait_page_flip(struct rcar_du_crtc *rcrtc)
 464{
 465        struct rcar_du_device *rcdu = rcrtc->dev;
 466
 467        if (wait_event_timeout(rcrtc->flip_wait,
 468                               !rcar_du_crtc_page_flip_pending(rcrtc),
 469                               msecs_to_jiffies(50)))
 470                return;
 471
 472        dev_warn(rcdu->dev, "page flip timeout\n");
 473
 474        rcar_du_crtc_finish_page_flip(rcrtc);
 475}
 476
 477/* -----------------------------------------------------------------------------
 478 * Start/Stop and Suspend/Resume
 479 */
 480
 481static void rcar_du_crtc_setup(struct rcar_du_crtc *rcrtc)
 482{
 483        /* Set display off and background to black */
 484        rcar_du_crtc_write(rcrtc, DOOR, DOOR_RGB(0, 0, 0));
 485        rcar_du_crtc_write(rcrtc, BPOR, BPOR_RGB(0, 0, 0));
 486
 487        /* Configure display timings and output routing */
 488        rcar_du_crtc_set_display_timing(rcrtc);
 489        rcar_du_group_set_routing(rcrtc->group);
 490
 491        /* Start with all planes disabled. */
 492        rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
 493
 494        /* Enable the VSP compositor. */
 495        if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
 496                rcar_du_vsp_enable(rcrtc);
 497
 498        /* Turn vertical blanking interrupt reporting on. */
 499        drm_crtc_vblank_on(&rcrtc->crtc);
 500}
 501
 502static int rcar_du_crtc_get(struct rcar_du_crtc *rcrtc)
 503{
 504        int ret;
 505
 506        /*
 507         * Guard against double-get, as the function is called from both the
 508         * .atomic_enable() and .atomic_begin() handlers.
 509         */
 510        if (rcrtc->initialized)
 511                return 0;
 512
 513        ret = clk_prepare_enable(rcrtc->clock);
 514        if (ret < 0)
 515                return ret;
 516
 517        ret = clk_prepare_enable(rcrtc->extclock);
 518        if (ret < 0)
 519                goto error_clock;
 520
 521        ret = rcar_du_group_get(rcrtc->group);
 522        if (ret < 0)
 523                goto error_group;
 524
 525        rcar_du_crtc_setup(rcrtc);
 526        rcrtc->initialized = true;
 527
 528        return 0;
 529
 530error_group:
 531        clk_disable_unprepare(rcrtc->extclock);
 532error_clock:
 533        clk_disable_unprepare(rcrtc->clock);
 534        return ret;
 535}
 536
 537static void rcar_du_crtc_put(struct rcar_du_crtc *rcrtc)
 538{
 539        rcar_du_group_put(rcrtc->group);
 540
 541        clk_disable_unprepare(rcrtc->extclock);
 542        clk_disable_unprepare(rcrtc->clock);
 543
 544        rcrtc->initialized = false;
 545}
 546
 547static void rcar_du_crtc_start(struct rcar_du_crtc *rcrtc)
 548{
 549        bool interlaced;
 550
 551        /*
 552         * Select master sync mode. This enables display operation in master
 553         * sync mode (with the HSYNC and VSYNC signals configured as outputs and
 554         * actively driven).
 555         */
 556        interlaced = rcrtc->crtc.mode.flags & DRM_MODE_FLAG_INTERLACE;
 557        rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK | DSYSR_SCM_MASK,
 558                                   (interlaced ? DSYSR_SCM_INT_VIDEO : 0) |
 559                                   DSYSR_TVM_MASTER);
 560
 561        rcar_du_group_start_stop(rcrtc->group, true);
 562}
 563
 564static void rcar_du_crtc_disable_planes(struct rcar_du_crtc *rcrtc)
 565{
 566        struct rcar_du_device *rcdu = rcrtc->dev;
 567        struct drm_crtc *crtc = &rcrtc->crtc;
 568        u32 status;
 569
 570        /* Make sure vblank interrupts are enabled. */
 571        drm_crtc_vblank_get(crtc);
 572
 573        /*
 574         * Disable planes and calculate how many vertical blanking interrupts we
 575         * have to wait for. If a vertical blanking interrupt has been triggered
 576         * but not processed yet, we don't know whether it occurred before or
 577         * after the planes got disabled. We thus have to wait for two vblank
 578         * interrupts in that case.
 579         */
 580        spin_lock_irq(&rcrtc->vblank_lock);
 581        rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
 582        status = rcar_du_crtc_read(rcrtc, DSSR);
 583        rcrtc->vblank_count = status & DSSR_VBK ? 2 : 1;
 584        spin_unlock_irq(&rcrtc->vblank_lock);
 585
 586        if (!wait_event_timeout(rcrtc->vblank_wait, rcrtc->vblank_count == 0,
 587                                msecs_to_jiffies(100)))
 588                dev_warn(rcdu->dev, "vertical blanking timeout\n");
 589
 590        drm_crtc_vblank_put(crtc);
 591}
 592
 593static void rcar_du_crtc_stop(struct rcar_du_crtc *rcrtc)
 594{
 595        struct drm_crtc *crtc = &rcrtc->crtc;
 596
 597        /*
 598         * Disable all planes and wait for the change to take effect. This is
 599         * required as the plane enable registers are updated on vblank, and no
 600         * vblank will occur once the CRTC is stopped. Disabling planes when
 601         * starting the CRTC thus wouldn't be enough as it would start scanning
 602         * out immediately from old frame buffers until the next vblank.
 603         *
 604         * This increases the CRTC stop delay, especially when multiple CRTCs
 605         * are stopped in one operation as we now wait for one vblank per CRTC.
 606         * Whether this can be improved needs to be researched.
 607         */
 608        rcar_du_crtc_disable_planes(rcrtc);
 609
 610        /*
 611         * Disable vertical blanking interrupt reporting. We first need to wait
 612         * for page flip completion before stopping the CRTC as userspace
 613         * expects page flips to eventually complete.
 614         */
 615        rcar_du_crtc_wait_page_flip(rcrtc);
 616        drm_crtc_vblank_off(crtc);
 617
 618        /* Disable the VSP compositor. */
 619        if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
 620                rcar_du_vsp_disable(rcrtc);
 621
 622        /*
 623         * Select switch sync mode. This stops display operation and configures
 624         * the HSYNC and VSYNC signals as inputs.
 625         *
 626         * TODO: Find another way to stop the display for DUs that don't support
 627         * TVM sync.
 628         */
 629        if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_TVM_SYNC))
 630                rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK,
 631                                           DSYSR_TVM_SWITCH);
 632
 633        rcar_du_group_start_stop(rcrtc->group, false);
 634}
 635
 636/* -----------------------------------------------------------------------------
 637 * CRTC Functions
 638 */
 639
 640static int rcar_du_crtc_atomic_check(struct drm_crtc *crtc,
 641                                     struct drm_crtc_state *state)
 642{
 643        struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(state);
 644        struct drm_encoder *encoder;
 645
 646        /* Store the routes from the CRTC output to the DU outputs. */
 647        rstate->outputs = 0;
 648
 649        drm_for_each_encoder_mask(encoder, crtc->dev, state->encoder_mask) {
 650                struct rcar_du_encoder *renc;
 651
 652                /* Skip the writeback encoder. */
 653                if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
 654                        continue;
 655
 656                renc = to_rcar_encoder(encoder);
 657                rstate->outputs |= BIT(renc->output);
 658        }
 659
 660        return 0;
 661}
 662
 663static void rcar_du_crtc_atomic_enable(struct drm_crtc *crtc,
 664                                       struct drm_crtc_state *old_state)
 665{
 666        struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 667        struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(crtc->state);
 668        struct rcar_du_device *rcdu = rcrtc->dev;
 669
 670        rcar_du_crtc_get(rcrtc);
 671
 672        /*
 673         * On D3/E3 the dot clock is provided by the LVDS encoder attached to
 674         * the DU channel. We need to enable its clock output explicitly if
 675         * the LVDS output is disabled.
 676         */
 677        if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index) &&
 678            rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0)) {
 679                struct rcar_du_encoder *encoder =
 680                        rcdu->encoders[RCAR_DU_OUTPUT_LVDS0 + rcrtc->index];
 681                const struct drm_display_mode *mode =
 682                        &crtc->state->adjusted_mode;
 683
 684                rcar_lvds_clk_enable(encoder->base.bridge,
 685                                     mode->clock * 1000);
 686        }
 687
 688        rcar_du_crtc_start(rcrtc);
 689}
 690
 691static void rcar_du_crtc_atomic_disable(struct drm_crtc *crtc,
 692                                        struct drm_crtc_state *old_state)
 693{
 694        struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 695        struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(old_state);
 696        struct rcar_du_device *rcdu = rcrtc->dev;
 697
 698        rcar_du_crtc_stop(rcrtc);
 699        rcar_du_crtc_put(rcrtc);
 700
 701        if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index) &&
 702            rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0)) {
 703                struct rcar_du_encoder *encoder =
 704                        rcdu->encoders[RCAR_DU_OUTPUT_LVDS0 + rcrtc->index];
 705
 706                /*
 707                 * Disable the LVDS clock output, see
 708                 * rcar_du_crtc_atomic_enable().
 709                 */
 710                rcar_lvds_clk_disable(encoder->base.bridge);
 711        }
 712
 713        spin_lock_irq(&crtc->dev->event_lock);
 714        if (crtc->state->event) {
 715                drm_crtc_send_vblank_event(crtc, crtc->state->event);
 716                crtc->state->event = NULL;
 717        }
 718        spin_unlock_irq(&crtc->dev->event_lock);
 719}
 720
 721static void rcar_du_crtc_atomic_begin(struct drm_crtc *crtc,
 722                                      struct drm_crtc_state *old_crtc_state)
 723{
 724        struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 725
 726        WARN_ON(!crtc->state->enable);
 727
 728        /*
 729         * If a mode set is in progress we can be called with the CRTC disabled.
 730         * We thus need to first get and setup the CRTC in order to configure
 731         * planes. We must *not* put the CRTC in .atomic_flush(), as it must be
 732         * kept awake until the .atomic_enable() call that will follow. The get
 733         * operation in .atomic_enable() will in that case be a no-op, and the
 734         * CRTC will be put later in .atomic_disable().
 735         *
 736         * If a mode set is not in progress the CRTC is enabled, and the
 737         * following get call will be a no-op. There is thus no need to balance
 738         * it in .atomic_flush() either.
 739         */
 740        rcar_du_crtc_get(rcrtc);
 741
 742        if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
 743                rcar_du_vsp_atomic_begin(rcrtc);
 744}
 745
 746static void rcar_du_crtc_atomic_flush(struct drm_crtc *crtc,
 747                                      struct drm_crtc_state *old_crtc_state)
 748{
 749        struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 750        struct drm_device *dev = rcrtc->crtc.dev;
 751        unsigned long flags;
 752
 753        rcar_du_crtc_update_planes(rcrtc);
 754
 755        if (crtc->state->event) {
 756                WARN_ON(drm_crtc_vblank_get(crtc) != 0);
 757
 758                spin_lock_irqsave(&dev->event_lock, flags);
 759                rcrtc->event = crtc->state->event;
 760                crtc->state->event = NULL;
 761                spin_unlock_irqrestore(&dev->event_lock, flags);
 762        }
 763
 764        if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
 765                rcar_du_vsp_atomic_flush(rcrtc);
 766}
 767
 768static enum drm_mode_status
 769rcar_du_crtc_mode_valid(struct drm_crtc *crtc,
 770                        const struct drm_display_mode *mode)
 771{
 772        struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 773        struct rcar_du_device *rcdu = rcrtc->dev;
 774        bool interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
 775        unsigned int vbp;
 776
 777        if (interlaced && !rcar_du_has(rcdu, RCAR_DU_FEATURE_INTERLACED))
 778                return MODE_NO_INTERLACE;
 779
 780        /*
 781         * The hardware requires a minimum combined horizontal sync and back
 782         * porch of 20 pixels and a minimum vertical back porch of 3 lines.
 783         */
 784        if (mode->htotal - mode->hsync_start < 20)
 785                return MODE_HBLANK_NARROW;
 786
 787        vbp = (mode->vtotal - mode->vsync_end) / (interlaced ? 2 : 1);
 788        if (vbp < 3)
 789                return MODE_VBLANK_NARROW;
 790
 791        return MODE_OK;
 792}
 793
 794static const struct drm_crtc_helper_funcs crtc_helper_funcs = {
 795        .atomic_check = rcar_du_crtc_atomic_check,
 796        .atomic_begin = rcar_du_crtc_atomic_begin,
 797        .atomic_flush = rcar_du_crtc_atomic_flush,
 798        .atomic_enable = rcar_du_crtc_atomic_enable,
 799        .atomic_disable = rcar_du_crtc_atomic_disable,
 800        .mode_valid = rcar_du_crtc_mode_valid,
 801};
 802
 803static void rcar_du_crtc_crc_init(struct rcar_du_crtc *rcrtc)
 804{
 805        struct rcar_du_device *rcdu = rcrtc->dev;
 806        const char **sources;
 807        unsigned int count;
 808        int i = -1;
 809
 810        /* CRC available only on Gen3 HW. */
 811        if (rcdu->info->gen < 3)
 812                return;
 813
 814        /* Reserve 1 for "auto" source. */
 815        count = rcrtc->vsp->num_planes + 1;
 816
 817        sources = kmalloc_array(count, sizeof(*sources), GFP_KERNEL);
 818        if (!sources)
 819                return;
 820
 821        sources[0] = kstrdup("auto", GFP_KERNEL);
 822        if (!sources[0])
 823                goto error;
 824
 825        for (i = 0; i < rcrtc->vsp->num_planes; ++i) {
 826                struct drm_plane *plane = &rcrtc->vsp->planes[i].plane;
 827                char name[16];
 828
 829                sprintf(name, "plane%u", plane->base.id);
 830                sources[i + 1] = kstrdup(name, GFP_KERNEL);
 831                if (!sources[i + 1])
 832                        goto error;
 833        }
 834
 835        rcrtc->sources = sources;
 836        rcrtc->sources_count = count;
 837        return;
 838
 839error:
 840        while (i >= 0) {
 841                kfree(sources[i]);
 842                i--;
 843        }
 844        kfree(sources);
 845}
 846
 847static void rcar_du_crtc_crc_cleanup(struct rcar_du_crtc *rcrtc)
 848{
 849        unsigned int i;
 850
 851        if (!rcrtc->sources)
 852                return;
 853
 854        for (i = 0; i < rcrtc->sources_count; i++)
 855                kfree(rcrtc->sources[i]);
 856        kfree(rcrtc->sources);
 857
 858        rcrtc->sources = NULL;
 859        rcrtc->sources_count = 0;
 860}
 861
 862static struct drm_crtc_state *
 863rcar_du_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
 864{
 865        struct rcar_du_crtc_state *state;
 866        struct rcar_du_crtc_state *copy;
 867
 868        if (WARN_ON(!crtc->state))
 869                return NULL;
 870
 871        state = to_rcar_crtc_state(crtc->state);
 872        copy = kmemdup(state, sizeof(*state), GFP_KERNEL);
 873        if (copy == NULL)
 874                return NULL;
 875
 876        __drm_atomic_helper_crtc_duplicate_state(crtc, &copy->state);
 877
 878        return &copy->state;
 879}
 880
 881static void rcar_du_crtc_atomic_destroy_state(struct drm_crtc *crtc,
 882                                              struct drm_crtc_state *state)
 883{
 884        __drm_atomic_helper_crtc_destroy_state(state);
 885        kfree(to_rcar_crtc_state(state));
 886}
 887
 888static void rcar_du_crtc_cleanup(struct drm_crtc *crtc)
 889{
 890        struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 891
 892        rcar_du_crtc_crc_cleanup(rcrtc);
 893
 894        return drm_crtc_cleanup(crtc);
 895}
 896
 897static void rcar_du_crtc_reset(struct drm_crtc *crtc)
 898{
 899        struct rcar_du_crtc_state *state;
 900
 901        if (crtc->state) {
 902                rcar_du_crtc_atomic_destroy_state(crtc, crtc->state);
 903                crtc->state = NULL;
 904        }
 905
 906        state = kzalloc(sizeof(*state), GFP_KERNEL);
 907        if (state == NULL)
 908                return;
 909
 910        state->crc.source = VSP1_DU_CRC_NONE;
 911        state->crc.index = 0;
 912
 913        crtc->state = &state->state;
 914        crtc->state->crtc = crtc;
 915}
 916
 917static int rcar_du_crtc_enable_vblank(struct drm_crtc *crtc)
 918{
 919        struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 920
 921        rcar_du_crtc_write(rcrtc, DSRCR, DSRCR_VBCL);
 922        rcar_du_crtc_set(rcrtc, DIER, DIER_VBE);
 923        rcrtc->vblank_enable = true;
 924
 925        return 0;
 926}
 927
 928static void rcar_du_crtc_disable_vblank(struct drm_crtc *crtc)
 929{
 930        struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 931
 932        rcar_du_crtc_clr(rcrtc, DIER, DIER_VBE);
 933        rcrtc->vblank_enable = false;
 934}
 935
 936static int rcar_du_crtc_parse_crc_source(struct rcar_du_crtc *rcrtc,
 937                                         const char *source_name,
 938                                         enum vsp1_du_crc_source *source)
 939{
 940        unsigned int index;
 941        int ret;
 942
 943        /*
 944         * Parse the source name. Supported values are "plane%u" to compute the
 945         * CRC on an input plane (%u is the plane ID), and "auto" to compute the
 946         * CRC on the composer (VSP) output.
 947         */
 948
 949        if (!source_name) {
 950                *source = VSP1_DU_CRC_NONE;
 951                return 0;
 952        } else if (!strcmp(source_name, "auto")) {
 953                *source = VSP1_DU_CRC_OUTPUT;
 954                return 0;
 955        } else if (strstarts(source_name, "plane")) {
 956                unsigned int i;
 957
 958                *source = VSP1_DU_CRC_PLANE;
 959
 960                ret = kstrtouint(source_name + strlen("plane"), 10, &index);
 961                if (ret < 0)
 962                        return ret;
 963
 964                for (i = 0; i < rcrtc->vsp->num_planes; ++i) {
 965                        if (index == rcrtc->vsp->planes[i].plane.base.id)
 966                                return i;
 967                }
 968        }
 969
 970        return -EINVAL;
 971}
 972
 973static int rcar_du_crtc_verify_crc_source(struct drm_crtc *crtc,
 974                                          const char *source_name,
 975                                          size_t *values_cnt)
 976{
 977        struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 978        enum vsp1_du_crc_source source;
 979
 980        if (rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source) < 0) {
 981                DRM_DEBUG_DRIVER("unknown source %s\n", source_name);
 982                return -EINVAL;
 983        }
 984
 985        *values_cnt = 1;
 986        return 0;
 987}
 988
 989static const char *const *
 990rcar_du_crtc_get_crc_sources(struct drm_crtc *crtc, size_t *count)
 991{
 992        struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 993
 994        *count = rcrtc->sources_count;
 995        return rcrtc->sources;
 996}
 997
 998static int rcar_du_crtc_set_crc_source(struct drm_crtc *crtc,
 999                                       const char *source_name)
1000{
1001        struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1002        struct drm_modeset_acquire_ctx ctx;
1003        struct drm_crtc_state *crtc_state;
1004        struct drm_atomic_state *state;
1005        enum vsp1_du_crc_source source;
1006        unsigned int index;
1007        int ret;
1008
1009        ret = rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source);
1010        if (ret < 0)
1011                return ret;
1012
1013        index = ret;
1014
1015        /* Perform an atomic commit to set the CRC source. */
1016        drm_modeset_acquire_init(&ctx, 0);
1017
1018        state = drm_atomic_state_alloc(crtc->dev);
1019        if (!state) {
1020                ret = -ENOMEM;
1021                goto unlock;
1022        }
1023
1024        state->acquire_ctx = &ctx;
1025
1026retry:
1027        crtc_state = drm_atomic_get_crtc_state(state, crtc);
1028        if (!IS_ERR(crtc_state)) {
1029                struct rcar_du_crtc_state *rcrtc_state;
1030
1031                rcrtc_state = to_rcar_crtc_state(crtc_state);
1032                rcrtc_state->crc.source = source;
1033                rcrtc_state->crc.index = index;
1034
1035                ret = drm_atomic_commit(state);
1036        } else {
1037                ret = PTR_ERR(crtc_state);
1038        }
1039
1040        if (ret == -EDEADLK) {
1041                drm_atomic_state_clear(state);
1042                drm_modeset_backoff(&ctx);
1043                goto retry;
1044        }
1045
1046        drm_atomic_state_put(state);
1047
1048unlock:
1049        drm_modeset_drop_locks(&ctx);
1050        drm_modeset_acquire_fini(&ctx);
1051
1052        return ret;
1053}
1054
1055static const struct drm_crtc_funcs crtc_funcs_gen2 = {
1056        .reset = rcar_du_crtc_reset,
1057        .destroy = drm_crtc_cleanup,
1058        .set_config = drm_atomic_helper_set_config,
1059        .page_flip = drm_atomic_helper_page_flip,
1060        .atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state,
1061        .atomic_destroy_state = rcar_du_crtc_atomic_destroy_state,
1062        .enable_vblank = rcar_du_crtc_enable_vblank,
1063        .disable_vblank = rcar_du_crtc_disable_vblank,
1064};
1065
1066static const struct drm_crtc_funcs crtc_funcs_gen3 = {
1067        .reset = rcar_du_crtc_reset,
1068        .destroy = rcar_du_crtc_cleanup,
1069        .set_config = drm_atomic_helper_set_config,
1070        .page_flip = drm_atomic_helper_page_flip,
1071        .atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state,
1072        .atomic_destroy_state = rcar_du_crtc_atomic_destroy_state,
1073        .enable_vblank = rcar_du_crtc_enable_vblank,
1074        .disable_vblank = rcar_du_crtc_disable_vblank,
1075        .set_crc_source = rcar_du_crtc_set_crc_source,
1076        .verify_crc_source = rcar_du_crtc_verify_crc_source,
1077        .get_crc_sources = rcar_du_crtc_get_crc_sources,
1078};
1079
1080/* -----------------------------------------------------------------------------
1081 * Interrupt Handling
1082 */
1083
1084static irqreturn_t rcar_du_crtc_irq(int irq, void *arg)
1085{
1086        struct rcar_du_crtc *rcrtc = arg;
1087        struct rcar_du_device *rcdu = rcrtc->dev;
1088        irqreturn_t ret = IRQ_NONE;
1089        u32 status;
1090
1091        spin_lock(&rcrtc->vblank_lock);
1092
1093        status = rcar_du_crtc_read(rcrtc, DSSR);
1094        rcar_du_crtc_write(rcrtc, DSRCR, status & DSRCR_MASK);
1095
1096        if (status & DSSR_VBK) {
1097                /*
1098                 * Wake up the vblank wait if the counter reaches 0. This must
1099                 * be protected by the vblank_lock to avoid races in
1100                 * rcar_du_crtc_disable_planes().
1101                 */
1102                if (rcrtc->vblank_count) {
1103                        if (--rcrtc->vblank_count == 0)
1104                                wake_up(&rcrtc->vblank_wait);
1105                }
1106        }
1107
1108        spin_unlock(&rcrtc->vblank_lock);
1109
1110        if (status & DSSR_VBK) {
1111                if (rcdu->info->gen < 3) {
1112                        drm_crtc_handle_vblank(&rcrtc->crtc);
1113                        rcar_du_crtc_finish_page_flip(rcrtc);
1114                }
1115
1116                ret = IRQ_HANDLED;
1117        }
1118
1119        return ret;
1120}
1121
1122/* -----------------------------------------------------------------------------
1123 * Initialization
1124 */
1125
1126int rcar_du_crtc_create(struct rcar_du_group *rgrp, unsigned int swindex,
1127                        unsigned int hwindex)
1128{
1129        static const unsigned int mmio_offsets[] = {
1130                DU0_REG_OFFSET, DU1_REG_OFFSET, DU2_REG_OFFSET, DU3_REG_OFFSET
1131        };
1132
1133        struct rcar_du_device *rcdu = rgrp->dev;
1134        struct platform_device *pdev = to_platform_device(rcdu->dev);
1135        struct rcar_du_crtc *rcrtc = &rcdu->crtcs[swindex];
1136        struct drm_crtc *crtc = &rcrtc->crtc;
1137        struct drm_plane *primary;
1138        unsigned int irqflags;
1139        struct clk *clk;
1140        char clk_name[9];
1141        char *name;
1142        int irq;
1143        int ret;
1144
1145        /* Get the CRTC clock and the optional external clock. */
1146        if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
1147                sprintf(clk_name, "du.%u", hwindex);
1148                name = clk_name;
1149        } else {
1150                name = NULL;
1151        }
1152
1153        rcrtc->clock = devm_clk_get(rcdu->dev, name);
1154        if (IS_ERR(rcrtc->clock)) {
1155                dev_err(rcdu->dev, "no clock for DU channel %u\n", hwindex);
1156                return PTR_ERR(rcrtc->clock);
1157        }
1158
1159        sprintf(clk_name, "dclkin.%u", hwindex);
1160        clk = devm_clk_get(rcdu->dev, clk_name);
1161        if (!IS_ERR(clk)) {
1162                rcrtc->extclock = clk;
1163        } else if (PTR_ERR(clk) == -EPROBE_DEFER) {
1164                return -EPROBE_DEFER;
1165        } else if (rcdu->info->dpll_mask & BIT(hwindex)) {
1166                /*
1167                 * DU channels that have a display PLL can't use the internal
1168                 * system clock and thus require an external clock.
1169                 */
1170                ret = PTR_ERR(clk);
1171                dev_err(rcdu->dev, "can't get dclkin.%u: %d\n", hwindex, ret);
1172                return ret;
1173        }
1174
1175        init_waitqueue_head(&rcrtc->flip_wait);
1176        init_waitqueue_head(&rcrtc->vblank_wait);
1177        spin_lock_init(&rcrtc->vblank_lock);
1178
1179        rcrtc->dev = rcdu;
1180        rcrtc->group = rgrp;
1181        rcrtc->mmio_offset = mmio_offsets[hwindex];
1182        rcrtc->index = hwindex;
1183        rcrtc->dsysr = (rcrtc->index % 2 ? 0 : DSYSR_DRES) | DSYSR_TVM_TVSYNC;
1184
1185        if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE))
1186                primary = &rcrtc->vsp->planes[rcrtc->vsp_pipe].plane;
1187        else
1188                primary = &rgrp->planes[swindex % 2].plane;
1189
1190        ret = drm_crtc_init_with_planes(rcdu->ddev, crtc, primary, NULL,
1191                                        rcdu->info->gen <= 2 ?
1192                                        &crtc_funcs_gen2 : &crtc_funcs_gen3,
1193                                        NULL);
1194        if (ret < 0)
1195                return ret;
1196
1197        drm_crtc_helper_add(crtc, &crtc_helper_funcs);
1198
1199        /* Start with vertical blanking interrupt reporting disabled. */
1200        drm_crtc_vblank_off(crtc);
1201
1202        /* Register the interrupt handler. */
1203        if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
1204                /* The IRQ's are associated with the CRTC (sw)index. */
1205                irq = platform_get_irq(pdev, swindex);
1206                irqflags = 0;
1207        } else {
1208                irq = platform_get_irq(pdev, 0);
1209                irqflags = IRQF_SHARED;
1210        }
1211
1212        if (irq < 0) {
1213                dev_err(rcdu->dev, "no IRQ for CRTC %u\n", swindex);
1214                return irq;
1215        }
1216
1217        ret = devm_request_irq(rcdu->dev, irq, rcar_du_crtc_irq, irqflags,
1218                               dev_name(rcdu->dev), rcrtc);
1219        if (ret < 0) {
1220                dev_err(rcdu->dev,
1221                        "failed to register IRQ for CRTC %u\n", swindex);
1222                return ret;
1223        }
1224
1225        rcar_du_crtc_crc_init(rcrtc);
1226
1227        return 0;
1228}
1229