linux/drivers/gpu/drm/ttm/ttm_page_alloc_dma.c
<<
>>
Prefs
   1/*
   2 * Copyright 2011 (c) Oracle Corp.
   3
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sub license,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the
  12 * next paragraph) shall be included in all copies or substantial portions
  13 * of the Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21 * DEALINGS IN THE SOFTWARE.
  22 *
  23 * Author: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
  24 */
  25
  26/*
  27 * A simple DMA pool losely based on dmapool.c. It has certain advantages
  28 * over the DMA pools:
  29 * - Pool collects resently freed pages for reuse (and hooks up to
  30 *   the shrinker).
  31 * - Tracks currently in use pages
  32 * - Tracks whether the page is UC, WB or cached (and reverts to WB
  33 *   when freed).
  34 */
  35
  36#if defined(CONFIG_SWIOTLB) || defined(CONFIG_INTEL_IOMMU)
  37#define pr_fmt(fmt) "[TTM] " fmt
  38
  39#include <linux/dma-mapping.h>
  40#include <linux/list.h>
  41#include <linux/seq_file.h> /* for seq_printf */
  42#include <linux/slab.h>
  43#include <linux/spinlock.h>
  44#include <linux/highmem.h>
  45#include <linux/mm_types.h>
  46#include <linux/module.h>
  47#include <linux/mm.h>
  48#include <linux/atomic.h>
  49#include <linux/device.h>
  50#include <linux/kthread.h>
  51#include <drm/ttm/ttm_bo_driver.h>
  52#include <drm/ttm/ttm_page_alloc.h>
  53#include <drm/ttm/ttm_set_memory.h>
  54
  55#define NUM_PAGES_TO_ALLOC              (PAGE_SIZE/sizeof(struct page *))
  56#define SMALL_ALLOCATION                4
  57#define FREE_ALL_PAGES                  (~0U)
  58#define VADDR_FLAG_HUGE_POOL            1UL
  59#define VADDR_FLAG_UPDATED_COUNT        2UL
  60
  61enum pool_type {
  62        IS_UNDEFINED    = 0,
  63        IS_WC           = 1 << 1,
  64        IS_UC           = 1 << 2,
  65        IS_CACHED       = 1 << 3,
  66        IS_DMA32        = 1 << 4,
  67        IS_HUGE         = 1 << 5
  68};
  69
  70/*
  71 * The pool structure. There are up to nine pools:
  72 *  - generic (not restricted to DMA32):
  73 *      - write combined, uncached, cached.
  74 *  - dma32 (up to 2^32 - so up 4GB):
  75 *      - write combined, uncached, cached.
  76 *  - huge (not restricted to DMA32):
  77 *      - write combined, uncached, cached.
  78 * for each 'struct device'. The 'cached' is for pages that are actively used.
  79 * The other ones can be shrunk by the shrinker API if neccessary.
  80 * @pools: The 'struct device->dma_pools' link.
  81 * @type: Type of the pool
  82 * @lock: Protects the free_list from concurrnet access. Must be
  83 * used with irqsave/irqrestore variants because pool allocator maybe called
  84 * from delayed work.
  85 * @free_list: Pool of pages that are free to be used. No order requirements.
  86 * @dev: The device that is associated with these pools.
  87 * @size: Size used during DMA allocation.
  88 * @npages_free: Count of available pages for re-use.
  89 * @npages_in_use: Count of pages that are in use.
  90 * @nfrees: Stats when pool is shrinking.
  91 * @nrefills: Stats when the pool is grown.
  92 * @gfp_flags: Flags to pass for alloc_page.
  93 * @name: Name of the pool.
  94 * @dev_name: Name derieved from dev - similar to how dev_info works.
  95 *   Used during shutdown as the dev_info during release is unavailable.
  96 */
  97struct dma_pool {
  98        struct list_head pools; /* The 'struct device->dma_pools link */
  99        enum pool_type type;
 100        spinlock_t lock;
 101        struct list_head free_list;
 102        struct device *dev;
 103        unsigned size;
 104        unsigned npages_free;
 105        unsigned npages_in_use;
 106        unsigned long nfrees; /* Stats when shrunk. */
 107        unsigned long nrefills; /* Stats when grown. */
 108        gfp_t gfp_flags;
 109        char name[13]; /* "cached dma32" */
 110        char dev_name[64]; /* Constructed from dev */
 111};
 112
 113/*
 114 * The accounting page keeping track of the allocated page along with
 115 * the DMA address.
 116 * @page_list: The link to the 'page_list' in 'struct dma_pool'.
 117 * @vaddr: The virtual address of the page and a flag if the page belongs to a
 118 * huge pool
 119 * @dma: The bus address of the page. If the page is not allocated
 120 *   via the DMA API, it will be -1.
 121 */
 122struct dma_page {
 123        struct list_head page_list;
 124        unsigned long vaddr;
 125        struct page *p;
 126        dma_addr_t dma;
 127};
 128
 129/*
 130 * Limits for the pool. They are handled without locks because only place where
 131 * they may change is in sysfs store. They won't have immediate effect anyway
 132 * so forcing serialization to access them is pointless.
 133 */
 134
 135struct ttm_pool_opts {
 136        unsigned        alloc_size;
 137        unsigned        max_size;
 138        unsigned        small;
 139};
 140
 141/*
 142 * Contains the list of all of the 'struct device' and their corresponding
 143 * DMA pools. Guarded by _mutex->lock.
 144 * @pools: The link to 'struct ttm_pool_manager->pools'
 145 * @dev: The 'struct device' associated with the 'pool'
 146 * @pool: The 'struct dma_pool' associated with the 'dev'
 147 */
 148struct device_pools {
 149        struct list_head pools;
 150        struct device *dev;
 151        struct dma_pool *pool;
 152};
 153
 154/*
 155 * struct ttm_pool_manager - Holds memory pools for fast allocation
 156 *
 157 * @lock: Lock used when adding/removing from pools
 158 * @pools: List of 'struct device' and 'struct dma_pool' tuples.
 159 * @options: Limits for the pool.
 160 * @npools: Total amount of pools in existence.
 161 * @shrinker: The structure used by [un|]register_shrinker
 162 */
 163struct ttm_pool_manager {
 164        struct mutex            lock;
 165        struct list_head        pools;
 166        struct ttm_pool_opts    options;
 167        unsigned                npools;
 168        struct shrinker         mm_shrink;
 169        struct kobject          kobj;
 170};
 171
 172static struct ttm_pool_manager *_manager;
 173
 174static struct attribute ttm_page_pool_max = {
 175        .name = "pool_max_size",
 176        .mode = S_IRUGO | S_IWUSR
 177};
 178static struct attribute ttm_page_pool_small = {
 179        .name = "pool_small_allocation",
 180        .mode = S_IRUGO | S_IWUSR
 181};
 182static struct attribute ttm_page_pool_alloc_size = {
 183        .name = "pool_allocation_size",
 184        .mode = S_IRUGO | S_IWUSR
 185};
 186
 187static struct attribute *ttm_pool_attrs[] = {
 188        &ttm_page_pool_max,
 189        &ttm_page_pool_small,
 190        &ttm_page_pool_alloc_size,
 191        NULL
 192};
 193
 194static void ttm_pool_kobj_release(struct kobject *kobj)
 195{
 196        struct ttm_pool_manager *m =
 197                container_of(kobj, struct ttm_pool_manager, kobj);
 198        kfree(m);
 199}
 200
 201static ssize_t ttm_pool_store(struct kobject *kobj, struct attribute *attr,
 202                              const char *buffer, size_t size)
 203{
 204        struct ttm_pool_manager *m =
 205                container_of(kobj, struct ttm_pool_manager, kobj);
 206        int chars;
 207        unsigned val;
 208
 209        chars = sscanf(buffer, "%u", &val);
 210        if (chars == 0)
 211                return size;
 212
 213        /* Convert kb to number of pages */
 214        val = val / (PAGE_SIZE >> 10);
 215
 216        if (attr == &ttm_page_pool_max) {
 217                m->options.max_size = val;
 218        } else if (attr == &ttm_page_pool_small) {
 219                m->options.small = val;
 220        } else if (attr == &ttm_page_pool_alloc_size) {
 221                if (val > NUM_PAGES_TO_ALLOC*8) {
 222                        pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n",
 223                               NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 7),
 224                               NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
 225                        return size;
 226                } else if (val > NUM_PAGES_TO_ALLOC) {
 227                        pr_warn("Setting allocation size to larger than %lu is not recommended\n",
 228                                NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
 229                }
 230                m->options.alloc_size = val;
 231        }
 232
 233        return size;
 234}
 235
 236static ssize_t ttm_pool_show(struct kobject *kobj, struct attribute *attr,
 237                             char *buffer)
 238{
 239        struct ttm_pool_manager *m =
 240                container_of(kobj, struct ttm_pool_manager, kobj);
 241        unsigned val = 0;
 242
 243        if (attr == &ttm_page_pool_max)
 244                val = m->options.max_size;
 245        else if (attr == &ttm_page_pool_small)
 246                val = m->options.small;
 247        else if (attr == &ttm_page_pool_alloc_size)
 248                val = m->options.alloc_size;
 249
 250        val = val * (PAGE_SIZE >> 10);
 251
 252        return snprintf(buffer, PAGE_SIZE, "%u\n", val);
 253}
 254
 255static const struct sysfs_ops ttm_pool_sysfs_ops = {
 256        .show = &ttm_pool_show,
 257        .store = &ttm_pool_store,
 258};
 259
 260static struct kobj_type ttm_pool_kobj_type = {
 261        .release = &ttm_pool_kobj_release,
 262        .sysfs_ops = &ttm_pool_sysfs_ops,
 263        .default_attrs = ttm_pool_attrs,
 264};
 265
 266static int ttm_set_pages_caching(struct dma_pool *pool,
 267                                 struct page **pages, unsigned cpages)
 268{
 269        int r = 0;
 270        /* Set page caching */
 271        if (pool->type & IS_UC) {
 272                r = ttm_set_pages_array_uc(pages, cpages);
 273                if (r)
 274                        pr_err("%s: Failed to set %d pages to uc!\n",
 275                               pool->dev_name, cpages);
 276        }
 277        if (pool->type & IS_WC) {
 278                r = ttm_set_pages_array_wc(pages, cpages);
 279                if (r)
 280                        pr_err("%s: Failed to set %d pages to wc!\n",
 281                               pool->dev_name, cpages);
 282        }
 283        return r;
 284}
 285
 286static void __ttm_dma_free_page(struct dma_pool *pool, struct dma_page *d_page)
 287{
 288        unsigned long attrs = 0;
 289        dma_addr_t dma = d_page->dma;
 290        d_page->vaddr &= ~VADDR_FLAG_HUGE_POOL;
 291        if (pool->type & IS_HUGE)
 292                attrs = DMA_ATTR_NO_WARN;
 293
 294        dma_free_attrs(pool->dev, pool->size, (void *)d_page->vaddr, dma, attrs);
 295
 296        kfree(d_page);
 297        d_page = NULL;
 298}
 299static struct dma_page *__ttm_dma_alloc_page(struct dma_pool *pool)
 300{
 301        struct dma_page *d_page;
 302        unsigned long attrs = 0;
 303        void *vaddr;
 304
 305        d_page = kmalloc(sizeof(struct dma_page), GFP_KERNEL);
 306        if (!d_page)
 307                return NULL;
 308
 309        if (pool->type & IS_HUGE)
 310                attrs = DMA_ATTR_NO_WARN;
 311
 312        vaddr = dma_alloc_attrs(pool->dev, pool->size, &d_page->dma,
 313                                pool->gfp_flags, attrs);
 314        if (vaddr) {
 315                if (is_vmalloc_addr(vaddr))
 316                        d_page->p = vmalloc_to_page(vaddr);
 317                else
 318                        d_page->p = virt_to_page(vaddr);
 319                d_page->vaddr = (unsigned long)vaddr;
 320                if (pool->type & IS_HUGE)
 321                        d_page->vaddr |= VADDR_FLAG_HUGE_POOL;
 322        } else {
 323                kfree(d_page);
 324                d_page = NULL;
 325        }
 326        return d_page;
 327}
 328static enum pool_type ttm_to_type(int flags, enum ttm_caching_state cstate)
 329{
 330        enum pool_type type = IS_UNDEFINED;
 331
 332        if (flags & TTM_PAGE_FLAG_DMA32)
 333                type |= IS_DMA32;
 334        if (cstate == tt_cached)
 335                type |= IS_CACHED;
 336        else if (cstate == tt_uncached)
 337                type |= IS_UC;
 338        else
 339                type |= IS_WC;
 340
 341        return type;
 342}
 343
 344static void ttm_pool_update_free_locked(struct dma_pool *pool,
 345                                        unsigned freed_pages)
 346{
 347        pool->npages_free -= freed_pages;
 348        pool->nfrees += freed_pages;
 349
 350}
 351
 352/* set memory back to wb and free the pages. */
 353static void ttm_dma_page_put(struct dma_pool *pool, struct dma_page *d_page)
 354{
 355        struct page *page = d_page->p;
 356        unsigned num_pages;
 357
 358        /* Don't set WB on WB page pool. */
 359        if (!(pool->type & IS_CACHED)) {
 360                num_pages = pool->size / PAGE_SIZE;
 361                if (ttm_set_pages_wb(page, num_pages))
 362                        pr_err("%s: Failed to set %d pages to wb!\n",
 363                               pool->dev_name, num_pages);
 364        }
 365
 366        list_del(&d_page->page_list);
 367        __ttm_dma_free_page(pool, d_page);
 368}
 369
 370static void ttm_dma_pages_put(struct dma_pool *pool, struct list_head *d_pages,
 371                              struct page *pages[], unsigned npages)
 372{
 373        struct dma_page *d_page, *tmp;
 374
 375        if (pool->type & IS_HUGE) {
 376                list_for_each_entry_safe(d_page, tmp, d_pages, page_list)
 377                        ttm_dma_page_put(pool, d_page);
 378
 379                return;
 380        }
 381
 382        /* Don't set WB on WB page pool. */
 383        if (npages && !(pool->type & IS_CACHED) &&
 384            ttm_set_pages_array_wb(pages, npages))
 385                pr_err("%s: Failed to set %d pages to wb!\n",
 386                       pool->dev_name, npages);
 387
 388        list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
 389                list_del(&d_page->page_list);
 390                __ttm_dma_free_page(pool, d_page);
 391        }
 392}
 393
 394/*
 395 * Free pages from pool.
 396 *
 397 * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
 398 * number of pages in one go.
 399 *
 400 * @pool: to free the pages from
 401 * @nr_free: If set to true will free all pages in pool
 402 * @use_static: Safe to use static buffer
 403 **/
 404static unsigned ttm_dma_page_pool_free(struct dma_pool *pool, unsigned nr_free,
 405                                       bool use_static)
 406{
 407        static struct page *static_buf[NUM_PAGES_TO_ALLOC];
 408        unsigned long irq_flags;
 409        struct dma_page *dma_p, *tmp;
 410        struct page **pages_to_free;
 411        struct list_head d_pages;
 412        unsigned freed_pages = 0,
 413                 npages_to_free = nr_free;
 414
 415        if (NUM_PAGES_TO_ALLOC < nr_free)
 416                npages_to_free = NUM_PAGES_TO_ALLOC;
 417
 418        if (use_static)
 419                pages_to_free = static_buf;
 420        else
 421                pages_to_free = kmalloc_array(npages_to_free,
 422                                              sizeof(struct page *),
 423                                              GFP_KERNEL);
 424
 425        if (!pages_to_free) {
 426                pr_debug("%s: Failed to allocate memory for pool free operation\n",
 427                       pool->dev_name);
 428                return 0;
 429        }
 430        INIT_LIST_HEAD(&d_pages);
 431restart:
 432        spin_lock_irqsave(&pool->lock, irq_flags);
 433
 434        /* We picking the oldest ones off the list */
 435        list_for_each_entry_safe_reverse(dma_p, tmp, &pool->free_list,
 436                                         page_list) {
 437                if (freed_pages >= npages_to_free)
 438                        break;
 439
 440                /* Move the dma_page from one list to another. */
 441                list_move(&dma_p->page_list, &d_pages);
 442
 443                pages_to_free[freed_pages++] = dma_p->p;
 444                /* We can only remove NUM_PAGES_TO_ALLOC at a time. */
 445                if (freed_pages >= NUM_PAGES_TO_ALLOC) {
 446
 447                        ttm_pool_update_free_locked(pool, freed_pages);
 448                        /**
 449                         * Because changing page caching is costly
 450                         * we unlock the pool to prevent stalling.
 451                         */
 452                        spin_unlock_irqrestore(&pool->lock, irq_flags);
 453
 454                        ttm_dma_pages_put(pool, &d_pages, pages_to_free,
 455                                          freed_pages);
 456
 457                        INIT_LIST_HEAD(&d_pages);
 458
 459                        if (likely(nr_free != FREE_ALL_PAGES))
 460                                nr_free -= freed_pages;
 461
 462                        if (NUM_PAGES_TO_ALLOC >= nr_free)
 463                                npages_to_free = nr_free;
 464                        else
 465                                npages_to_free = NUM_PAGES_TO_ALLOC;
 466
 467                        freed_pages = 0;
 468
 469                        /* free all so restart the processing */
 470                        if (nr_free)
 471                                goto restart;
 472
 473                        /* Not allowed to fall through or break because
 474                         * following context is inside spinlock while we are
 475                         * outside here.
 476                         */
 477                        goto out;
 478
 479                }
 480        }
 481
 482        /* remove range of pages from the pool */
 483        if (freed_pages) {
 484                ttm_pool_update_free_locked(pool, freed_pages);
 485                nr_free -= freed_pages;
 486        }
 487
 488        spin_unlock_irqrestore(&pool->lock, irq_flags);
 489
 490        if (freed_pages)
 491                ttm_dma_pages_put(pool, &d_pages, pages_to_free, freed_pages);
 492out:
 493        if (pages_to_free != static_buf)
 494                kfree(pages_to_free);
 495        return nr_free;
 496}
 497
 498static void ttm_dma_free_pool(struct device *dev, enum pool_type type)
 499{
 500        struct device_pools *p;
 501        struct dma_pool *pool;
 502
 503        if (!dev)
 504                return;
 505
 506        mutex_lock(&_manager->lock);
 507        list_for_each_entry_reverse(p, &_manager->pools, pools) {
 508                if (p->dev != dev)
 509                        continue;
 510                pool = p->pool;
 511                if (pool->type != type)
 512                        continue;
 513
 514                list_del(&p->pools);
 515                kfree(p);
 516                _manager->npools--;
 517                break;
 518        }
 519        list_for_each_entry_reverse(pool, &dev->dma_pools, pools) {
 520                if (pool->type != type)
 521                        continue;
 522                /* Takes a spinlock.. */
 523                /* OK to use static buffer since global mutex is held. */
 524                ttm_dma_page_pool_free(pool, FREE_ALL_PAGES, true);
 525                WARN_ON(((pool->npages_in_use + pool->npages_free) != 0));
 526                /* This code path is called after _all_ references to the
 527                 * struct device has been dropped - so nobody should be
 528                 * touching it. In case somebody is trying to _add_ we are
 529                 * guarded by the mutex. */
 530                list_del(&pool->pools);
 531                kfree(pool);
 532                break;
 533        }
 534        mutex_unlock(&_manager->lock);
 535}
 536
 537/*
 538 * On free-ing of the 'struct device' this deconstructor is run.
 539 * Albeit the pool might have already been freed earlier.
 540 */
 541static void ttm_dma_pool_release(struct device *dev, void *res)
 542{
 543        struct dma_pool *pool = *(struct dma_pool **)res;
 544
 545        if (pool)
 546                ttm_dma_free_pool(dev, pool->type);
 547}
 548
 549static int ttm_dma_pool_match(struct device *dev, void *res, void *match_data)
 550{
 551        return *(struct dma_pool **)res == match_data;
 552}
 553
 554static struct dma_pool *ttm_dma_pool_init(struct device *dev, gfp_t flags,
 555                                          enum pool_type type)
 556{
 557        const char *n[] = {"wc", "uc", "cached", " dma32", "huge"};
 558        enum pool_type t[] = {IS_WC, IS_UC, IS_CACHED, IS_DMA32, IS_HUGE};
 559        struct device_pools *sec_pool = NULL;
 560        struct dma_pool *pool = NULL, **ptr;
 561        unsigned i;
 562        int ret = -ENODEV;
 563        char *p;
 564
 565        if (!dev)
 566                return NULL;
 567
 568        ptr = devres_alloc(ttm_dma_pool_release, sizeof(*ptr), GFP_KERNEL);
 569        if (!ptr)
 570                return NULL;
 571
 572        ret = -ENOMEM;
 573
 574        pool = kmalloc_node(sizeof(struct dma_pool), GFP_KERNEL,
 575                            dev_to_node(dev));
 576        if (!pool)
 577                goto err_mem;
 578
 579        sec_pool = kmalloc_node(sizeof(struct device_pools), GFP_KERNEL,
 580                                dev_to_node(dev));
 581        if (!sec_pool)
 582                goto err_mem;
 583
 584        INIT_LIST_HEAD(&sec_pool->pools);
 585        sec_pool->dev = dev;
 586        sec_pool->pool =  pool;
 587
 588        INIT_LIST_HEAD(&pool->free_list);
 589        INIT_LIST_HEAD(&pool->pools);
 590        spin_lock_init(&pool->lock);
 591        pool->dev = dev;
 592        pool->npages_free = pool->npages_in_use = 0;
 593        pool->nfrees = 0;
 594        pool->gfp_flags = flags;
 595        if (type & IS_HUGE)
 596#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 597                pool->size = HPAGE_PMD_SIZE;
 598#else
 599                BUG();
 600#endif
 601        else
 602                pool->size = PAGE_SIZE;
 603        pool->type = type;
 604        pool->nrefills = 0;
 605        p = pool->name;
 606        for (i = 0; i < ARRAY_SIZE(t); i++) {
 607                if (type & t[i]) {
 608                        p += snprintf(p, sizeof(pool->name) - (p - pool->name),
 609                                      "%s", n[i]);
 610                }
 611        }
 612        *p = 0;
 613        /* We copy the name for pr_ calls b/c when dma_pool_destroy is called
 614         * - the kobj->name has already been deallocated.*/
 615        snprintf(pool->dev_name, sizeof(pool->dev_name), "%s %s",
 616                 dev_driver_string(dev), dev_name(dev));
 617        mutex_lock(&_manager->lock);
 618        /* You can get the dma_pool from either the global: */
 619        list_add(&sec_pool->pools, &_manager->pools);
 620        _manager->npools++;
 621        /* or from 'struct device': */
 622        list_add(&pool->pools, &dev->dma_pools);
 623        mutex_unlock(&_manager->lock);
 624
 625        *ptr = pool;
 626        devres_add(dev, ptr);
 627
 628        return pool;
 629err_mem:
 630        devres_free(ptr);
 631        kfree(sec_pool);
 632        kfree(pool);
 633        return ERR_PTR(ret);
 634}
 635
 636static struct dma_pool *ttm_dma_find_pool(struct device *dev,
 637                                          enum pool_type type)
 638{
 639        struct dma_pool *pool, *tmp;
 640
 641        if (type == IS_UNDEFINED)
 642                return NULL;
 643
 644        /* NB: We iterate on the 'struct dev' which has no spinlock, but
 645         * it does have a kref which we have taken. The kref is taken during
 646         * graphic driver loading - in the drm_pci_init it calls either
 647         * pci_dev_get or pci_register_driver which both end up taking a kref
 648         * on 'struct device'.
 649         *
 650         * On teardown, the graphic drivers end up quiescing the TTM (put_pages)
 651         * and calls the dev_res deconstructors: ttm_dma_pool_release. The nice
 652         * thing is at that point of time there are no pages associated with the
 653         * driver so this function will not be called.
 654         */
 655        list_for_each_entry_safe(pool, tmp, &dev->dma_pools, pools)
 656                if (pool->type == type)
 657                        return pool;
 658        return NULL;
 659}
 660
 661/*
 662 * Free pages the pages that failed to change the caching state. If there
 663 * are pages that have changed their caching state already put them to the
 664 * pool.
 665 */
 666static void ttm_dma_handle_caching_state_failure(struct dma_pool *pool,
 667                                                 struct list_head *d_pages,
 668                                                 struct page **failed_pages,
 669                                                 unsigned cpages)
 670{
 671        struct dma_page *d_page, *tmp;
 672        struct page *p;
 673        unsigned i = 0;
 674
 675        p = failed_pages[0];
 676        if (!p)
 677                return;
 678        /* Find the failed page. */
 679        list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
 680                if (d_page->p != p)
 681                        continue;
 682                /* .. and then progress over the full list. */
 683                list_del(&d_page->page_list);
 684                __ttm_dma_free_page(pool, d_page);
 685                if (++i < cpages)
 686                        p = failed_pages[i];
 687                else
 688                        break;
 689        }
 690
 691}
 692
 693/*
 694 * Allocate 'count' pages, and put 'need' number of them on the
 695 * 'pages' and as well on the 'dma_address' starting at 'dma_offset' offset.
 696 * The full list of pages should also be on 'd_pages'.
 697 * We return zero for success, and negative numbers as errors.
 698 */
 699static int ttm_dma_pool_alloc_new_pages(struct dma_pool *pool,
 700                                        struct list_head *d_pages,
 701                                        unsigned count)
 702{
 703        struct page **caching_array;
 704        struct dma_page *dma_p;
 705        struct page *p;
 706        int r = 0;
 707        unsigned i, j, npages, cpages;
 708        unsigned max_cpages = min(count,
 709                        (unsigned)(PAGE_SIZE/sizeof(struct page *)));
 710
 711        /* allocate array for page caching change */
 712        caching_array = kmalloc_array(max_cpages, sizeof(struct page *),
 713                                      GFP_KERNEL);
 714
 715        if (!caching_array) {
 716                pr_debug("%s: Unable to allocate table for new pages\n",
 717                       pool->dev_name);
 718                return -ENOMEM;
 719        }
 720
 721        if (count > 1)
 722                pr_debug("%s: (%s:%d) Getting %d pages\n",
 723                         pool->dev_name, pool->name, current->pid, count);
 724
 725        for (i = 0, cpages = 0; i < count; ++i) {
 726                dma_p = __ttm_dma_alloc_page(pool);
 727                if (!dma_p) {
 728                        pr_debug("%s: Unable to get page %u\n",
 729                                 pool->dev_name, i);
 730
 731                        /* store already allocated pages in the pool after
 732                         * setting the caching state */
 733                        if (cpages) {
 734                                r = ttm_set_pages_caching(pool, caching_array,
 735                                                          cpages);
 736                                if (r)
 737                                        ttm_dma_handle_caching_state_failure(
 738                                                pool, d_pages, caching_array,
 739                                                cpages);
 740                        }
 741                        r = -ENOMEM;
 742                        goto out;
 743                }
 744                p = dma_p->p;
 745                list_add(&dma_p->page_list, d_pages);
 746
 747#ifdef CONFIG_HIGHMEM
 748                /* gfp flags of highmem page should never be dma32 so we
 749                 * we should be fine in such case
 750                 */
 751                if (PageHighMem(p))
 752                        continue;
 753#endif
 754
 755                npages = pool->size / PAGE_SIZE;
 756                for (j = 0; j < npages; ++j) {
 757                        caching_array[cpages++] = p + j;
 758                        if (cpages == max_cpages) {
 759                                /* Note: Cannot hold the spinlock */
 760                                r = ttm_set_pages_caching(pool, caching_array,
 761                                                          cpages);
 762                                if (r) {
 763                                        ttm_dma_handle_caching_state_failure(
 764                                             pool, d_pages, caching_array,
 765                                             cpages);
 766                                        goto out;
 767                                }
 768                                cpages = 0;
 769                        }
 770                }
 771        }
 772
 773        if (cpages) {
 774                r = ttm_set_pages_caching(pool, caching_array, cpages);
 775                if (r)
 776                        ttm_dma_handle_caching_state_failure(pool, d_pages,
 777                                        caching_array, cpages);
 778        }
 779out:
 780        kfree(caching_array);
 781        return r;
 782}
 783
 784/*
 785 * @return count of pages still required to fulfill the request.
 786 */
 787static int ttm_dma_page_pool_fill_locked(struct dma_pool *pool,
 788                                         unsigned long *irq_flags)
 789{
 790        unsigned count = _manager->options.small;
 791        int r = pool->npages_free;
 792
 793        if (count > pool->npages_free) {
 794                struct list_head d_pages;
 795
 796                INIT_LIST_HEAD(&d_pages);
 797
 798                spin_unlock_irqrestore(&pool->lock, *irq_flags);
 799
 800                /* Returns how many more are neccessary to fulfill the
 801                 * request. */
 802                r = ttm_dma_pool_alloc_new_pages(pool, &d_pages, count);
 803
 804                spin_lock_irqsave(&pool->lock, *irq_flags);
 805                if (!r) {
 806                        /* Add the fresh to the end.. */
 807                        list_splice(&d_pages, &pool->free_list);
 808                        ++pool->nrefills;
 809                        pool->npages_free += count;
 810                        r = count;
 811                } else {
 812                        struct dma_page *d_page;
 813                        unsigned cpages = 0;
 814
 815                        pr_debug("%s: Failed to fill %s pool (r:%d)!\n",
 816                                 pool->dev_name, pool->name, r);
 817
 818                        list_for_each_entry(d_page, &d_pages, page_list) {
 819                                cpages++;
 820                        }
 821                        list_splice_tail(&d_pages, &pool->free_list);
 822                        pool->npages_free += cpages;
 823                        r = cpages;
 824                }
 825        }
 826        return r;
 827}
 828
 829/*
 830 * The populate list is actually a stack (not that is matters as TTM
 831 * allocates one page at a time.
 832 * return dma_page pointer if success, otherwise NULL.
 833 */
 834static struct dma_page *ttm_dma_pool_get_pages(struct dma_pool *pool,
 835                                  struct ttm_dma_tt *ttm_dma,
 836                                  unsigned index)
 837{
 838        struct dma_page *d_page = NULL;
 839        struct ttm_tt *ttm = &ttm_dma->ttm;
 840        unsigned long irq_flags;
 841        int count;
 842
 843        spin_lock_irqsave(&pool->lock, irq_flags);
 844        count = ttm_dma_page_pool_fill_locked(pool, &irq_flags);
 845        if (count) {
 846                d_page = list_first_entry(&pool->free_list, struct dma_page, page_list);
 847                ttm->pages[index] = d_page->p;
 848                ttm_dma->dma_address[index] = d_page->dma;
 849                list_move_tail(&d_page->page_list, &ttm_dma->pages_list);
 850                pool->npages_in_use += 1;
 851                pool->npages_free -= 1;
 852        }
 853        spin_unlock_irqrestore(&pool->lock, irq_flags);
 854        return d_page;
 855}
 856
 857static gfp_t ttm_dma_pool_gfp_flags(struct ttm_dma_tt *ttm_dma, bool huge)
 858{
 859        struct ttm_tt *ttm = &ttm_dma->ttm;
 860        gfp_t gfp_flags;
 861
 862        if (ttm->page_flags & TTM_PAGE_FLAG_DMA32)
 863                gfp_flags = GFP_USER | GFP_DMA32;
 864        else
 865                gfp_flags = GFP_HIGHUSER;
 866        if (ttm->page_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
 867                gfp_flags |= __GFP_ZERO;
 868
 869        if (huge) {
 870                gfp_flags |= GFP_TRANSHUGE_LIGHT | __GFP_NORETRY |
 871                        __GFP_KSWAPD_RECLAIM;
 872                gfp_flags &= ~__GFP_MOVABLE;
 873                gfp_flags &= ~__GFP_COMP;
 874        }
 875
 876        if (ttm->page_flags & TTM_PAGE_FLAG_NO_RETRY)
 877                gfp_flags |= __GFP_RETRY_MAYFAIL;
 878
 879        return gfp_flags;
 880}
 881
 882/*
 883 * On success pages list will hold count number of correctly
 884 * cached pages. On failure will hold the negative return value (-ENOMEM, etc).
 885 */
 886int ttm_dma_populate(struct ttm_dma_tt *ttm_dma, struct device *dev,
 887                        struct ttm_operation_ctx *ctx)
 888{
 889        struct ttm_tt *ttm = &ttm_dma->ttm;
 890        struct ttm_mem_global *mem_glob = ttm->bdev->glob->mem_glob;
 891        unsigned long num_pages = ttm->num_pages;
 892        struct dma_pool *pool;
 893        struct dma_page *d_page;
 894        enum pool_type type;
 895        unsigned i;
 896        int ret;
 897
 898        if (ttm->state != tt_unpopulated)
 899                return 0;
 900
 901        if (ttm_check_under_lowerlimit(mem_glob, num_pages, ctx))
 902                return -ENOMEM;
 903
 904        INIT_LIST_HEAD(&ttm_dma->pages_list);
 905        i = 0;
 906
 907        type = ttm_to_type(ttm->page_flags, ttm->caching_state);
 908
 909#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 910        if (ttm->page_flags & TTM_PAGE_FLAG_DMA32)
 911                goto skip_huge;
 912
 913        pool = ttm_dma_find_pool(dev, type | IS_HUGE);
 914        if (!pool) {
 915                gfp_t gfp_flags = ttm_dma_pool_gfp_flags(ttm_dma, true);
 916
 917                pool = ttm_dma_pool_init(dev, gfp_flags, type | IS_HUGE);
 918                if (IS_ERR_OR_NULL(pool))
 919                        goto skip_huge;
 920        }
 921
 922        while (num_pages >= HPAGE_PMD_NR) {
 923                unsigned j;
 924
 925                d_page = ttm_dma_pool_get_pages(pool, ttm_dma, i);
 926                if (!d_page)
 927                        break;
 928
 929                ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
 930                                                pool->size, ctx);
 931                if (unlikely(ret != 0)) {
 932                        ttm_dma_unpopulate(ttm_dma, dev);
 933                        return -ENOMEM;
 934                }
 935
 936                d_page->vaddr |= VADDR_FLAG_UPDATED_COUNT;
 937                for (j = i + 1; j < (i + HPAGE_PMD_NR); ++j) {
 938                        ttm->pages[j] = ttm->pages[j - 1] + 1;
 939                        ttm_dma->dma_address[j] = ttm_dma->dma_address[j - 1] +
 940                                PAGE_SIZE;
 941                }
 942
 943                i += HPAGE_PMD_NR;
 944                num_pages -= HPAGE_PMD_NR;
 945        }
 946
 947skip_huge:
 948#endif
 949
 950        pool = ttm_dma_find_pool(dev, type);
 951        if (!pool) {
 952                gfp_t gfp_flags = ttm_dma_pool_gfp_flags(ttm_dma, false);
 953
 954                pool = ttm_dma_pool_init(dev, gfp_flags, type);
 955                if (IS_ERR_OR_NULL(pool))
 956                        return -ENOMEM;
 957        }
 958
 959        while (num_pages) {
 960                d_page = ttm_dma_pool_get_pages(pool, ttm_dma, i);
 961                if (!d_page) {
 962                        ttm_dma_unpopulate(ttm_dma, dev);
 963                        return -ENOMEM;
 964                }
 965
 966                ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
 967                                                pool->size, ctx);
 968                if (unlikely(ret != 0)) {
 969                        ttm_dma_unpopulate(ttm_dma, dev);
 970                        return -ENOMEM;
 971                }
 972
 973                d_page->vaddr |= VADDR_FLAG_UPDATED_COUNT;
 974                ++i;
 975                --num_pages;
 976        }
 977
 978        if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
 979                ret = ttm_tt_swapin(ttm);
 980                if (unlikely(ret != 0)) {
 981                        ttm_dma_unpopulate(ttm_dma, dev);
 982                        return ret;
 983                }
 984        }
 985
 986        ttm->state = tt_unbound;
 987        return 0;
 988}
 989EXPORT_SYMBOL_GPL(ttm_dma_populate);
 990
 991/* Put all pages in pages list to correct pool to wait for reuse */
 992void ttm_dma_unpopulate(struct ttm_dma_tt *ttm_dma, struct device *dev)
 993{
 994        struct ttm_tt *ttm = &ttm_dma->ttm;
 995        struct ttm_mem_global *mem_glob = ttm->bdev->glob->mem_glob;
 996        struct dma_pool *pool;
 997        struct dma_page *d_page, *next;
 998        enum pool_type type;
 999        bool is_cached = false;
1000        unsigned count, i, npages = 0;
1001        unsigned long irq_flags;
1002
1003        type = ttm_to_type(ttm->page_flags, ttm->caching_state);
1004
1005#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1006        pool = ttm_dma_find_pool(dev, type | IS_HUGE);
1007        if (pool) {
1008                count = 0;
1009                list_for_each_entry_safe(d_page, next, &ttm_dma->pages_list,
1010                                         page_list) {
1011                        if (!(d_page->vaddr & VADDR_FLAG_HUGE_POOL))
1012                                continue;
1013
1014                        count++;
1015                        if (d_page->vaddr & VADDR_FLAG_UPDATED_COUNT) {
1016                                ttm_mem_global_free_page(mem_glob, d_page->p,
1017                                                         pool->size);
1018                                d_page->vaddr &= ~VADDR_FLAG_UPDATED_COUNT;
1019                        }
1020                        ttm_dma_page_put(pool, d_page);
1021                }
1022
1023                spin_lock_irqsave(&pool->lock, irq_flags);
1024                pool->npages_in_use -= count;
1025                pool->nfrees += count;
1026                spin_unlock_irqrestore(&pool->lock, irq_flags);
1027        }
1028#endif
1029
1030        pool = ttm_dma_find_pool(dev, type);
1031        if (!pool)
1032                return;
1033
1034        is_cached = (ttm_dma_find_pool(pool->dev,
1035                     ttm_to_type(ttm->page_flags, tt_cached)) == pool);
1036
1037        /* make sure pages array match list and count number of pages */
1038        count = 0;
1039        list_for_each_entry_safe(d_page, next, &ttm_dma->pages_list,
1040                                 page_list) {
1041                ttm->pages[count] = d_page->p;
1042                count++;
1043
1044                if (d_page->vaddr & VADDR_FLAG_UPDATED_COUNT) {
1045                        ttm_mem_global_free_page(mem_glob, d_page->p,
1046                                                 pool->size);
1047                        d_page->vaddr &= ~VADDR_FLAG_UPDATED_COUNT;
1048                }
1049
1050                if (is_cached)
1051                        ttm_dma_page_put(pool, d_page);
1052        }
1053
1054        spin_lock_irqsave(&pool->lock, irq_flags);
1055        pool->npages_in_use -= count;
1056        if (is_cached) {
1057                pool->nfrees += count;
1058        } else {
1059                pool->npages_free += count;
1060                list_splice(&ttm_dma->pages_list, &pool->free_list);
1061                /*
1062                 * Wait to have at at least NUM_PAGES_TO_ALLOC number of pages
1063                 * to free in order to minimize calls to set_memory_wb().
1064                 */
1065                if (pool->npages_free >= (_manager->options.max_size +
1066                                          NUM_PAGES_TO_ALLOC))
1067                        npages = pool->npages_free - _manager->options.max_size;
1068        }
1069        spin_unlock_irqrestore(&pool->lock, irq_flags);
1070
1071        INIT_LIST_HEAD(&ttm_dma->pages_list);
1072        for (i = 0; i < ttm->num_pages; i++) {
1073                ttm->pages[i] = NULL;
1074                ttm_dma->dma_address[i] = 0;
1075        }
1076
1077        /* shrink pool if necessary (only on !is_cached pools)*/
1078        if (npages)
1079                ttm_dma_page_pool_free(pool, npages, false);
1080        ttm->state = tt_unpopulated;
1081}
1082EXPORT_SYMBOL_GPL(ttm_dma_unpopulate);
1083
1084/**
1085 * Callback for mm to request pool to reduce number of page held.
1086 *
1087 * XXX: (dchinner) Deadlock warning!
1088 *
1089 * I'm getting sadder as I hear more pathetical whimpers about needing per-pool
1090 * shrinkers
1091 */
1092static unsigned long
1093ttm_dma_pool_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1094{
1095        static unsigned start_pool;
1096        unsigned idx = 0;
1097        unsigned pool_offset;
1098        unsigned shrink_pages = sc->nr_to_scan;
1099        struct device_pools *p;
1100        unsigned long freed = 0;
1101
1102        if (list_empty(&_manager->pools))
1103                return SHRINK_STOP;
1104
1105        if (!mutex_trylock(&_manager->lock))
1106                return SHRINK_STOP;
1107        if (!_manager->npools)
1108                goto out;
1109        pool_offset = ++start_pool % _manager->npools;
1110        list_for_each_entry(p, &_manager->pools, pools) {
1111                unsigned nr_free;
1112
1113                if (!p->dev)
1114                        continue;
1115                if (shrink_pages == 0)
1116                        break;
1117                /* Do it in round-robin fashion. */
1118                if (++idx < pool_offset)
1119                        continue;
1120                nr_free = shrink_pages;
1121                /* OK to use static buffer since global mutex is held. */
1122                shrink_pages = ttm_dma_page_pool_free(p->pool, nr_free, true);
1123                freed += nr_free - shrink_pages;
1124
1125                pr_debug("%s: (%s:%d) Asked to shrink %d, have %d more to go\n",
1126                         p->pool->dev_name, p->pool->name, current->pid,
1127                         nr_free, shrink_pages);
1128        }
1129out:
1130        mutex_unlock(&_manager->lock);
1131        return freed;
1132}
1133
1134static unsigned long
1135ttm_dma_pool_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1136{
1137        struct device_pools *p;
1138        unsigned long count = 0;
1139
1140        if (!mutex_trylock(&_manager->lock))
1141                return 0;
1142        list_for_each_entry(p, &_manager->pools, pools)
1143                count += p->pool->npages_free;
1144        mutex_unlock(&_manager->lock);
1145        return count;
1146}
1147
1148static int ttm_dma_pool_mm_shrink_init(struct ttm_pool_manager *manager)
1149{
1150        manager->mm_shrink.count_objects = ttm_dma_pool_shrink_count;
1151        manager->mm_shrink.scan_objects = &ttm_dma_pool_shrink_scan;
1152        manager->mm_shrink.seeks = 1;
1153        return register_shrinker(&manager->mm_shrink);
1154}
1155
1156static void ttm_dma_pool_mm_shrink_fini(struct ttm_pool_manager *manager)
1157{
1158        unregister_shrinker(&manager->mm_shrink);
1159}
1160
1161int ttm_dma_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages)
1162{
1163        int ret;
1164
1165        WARN_ON(_manager);
1166
1167        pr_info("Initializing DMA pool allocator\n");
1168
1169        _manager = kzalloc(sizeof(*_manager), GFP_KERNEL);
1170        if (!_manager)
1171                return -ENOMEM;
1172
1173        mutex_init(&_manager->lock);
1174        INIT_LIST_HEAD(&_manager->pools);
1175
1176        _manager->options.max_size = max_pages;
1177        _manager->options.small = SMALL_ALLOCATION;
1178        _manager->options.alloc_size = NUM_PAGES_TO_ALLOC;
1179
1180        /* This takes care of auto-freeing the _manager */
1181        ret = kobject_init_and_add(&_manager->kobj, &ttm_pool_kobj_type,
1182                                   &glob->kobj, "dma_pool");
1183        if (unlikely(ret != 0))
1184                goto error;
1185
1186        ret = ttm_dma_pool_mm_shrink_init(_manager);
1187        if (unlikely(ret != 0))
1188                goto error;
1189        return 0;
1190
1191error:
1192        kobject_put(&_manager->kobj);
1193        _manager = NULL;
1194        return ret;
1195}
1196
1197void ttm_dma_page_alloc_fini(void)
1198{
1199        struct device_pools *p, *t;
1200
1201        pr_info("Finalizing DMA pool allocator\n");
1202        ttm_dma_pool_mm_shrink_fini(_manager);
1203
1204        list_for_each_entry_safe_reverse(p, t, &_manager->pools, pools) {
1205                dev_dbg(p->dev, "(%s:%d) Freeing.\n", p->pool->name,
1206                        current->pid);
1207                WARN_ON(devres_destroy(p->dev, ttm_dma_pool_release,
1208                        ttm_dma_pool_match, p->pool));
1209                ttm_dma_free_pool(p->dev, p->pool->type);
1210        }
1211        kobject_put(&_manager->kobj);
1212        _manager = NULL;
1213}
1214
1215int ttm_dma_page_alloc_debugfs(struct seq_file *m, void *data)
1216{
1217        struct device_pools *p;
1218        struct dma_pool *pool = NULL;
1219
1220        if (!_manager) {
1221                seq_printf(m, "No pool allocator running.\n");
1222                return 0;
1223        }
1224        seq_printf(m, "         pool      refills   pages freed    inuse available     name\n");
1225        mutex_lock(&_manager->lock);
1226        list_for_each_entry(p, &_manager->pools, pools) {
1227                struct device *dev = p->dev;
1228                if (!dev)
1229                        continue;
1230                pool = p->pool;
1231                seq_printf(m, "%13s %12ld %13ld %8d %8d %8s\n",
1232                                pool->name, pool->nrefills,
1233                                pool->nfrees, pool->npages_in_use,
1234                                pool->npages_free,
1235                                pool->dev_name);
1236        }
1237        mutex_unlock(&_manager->lock);
1238        return 0;
1239}
1240EXPORT_SYMBOL_GPL(ttm_dma_page_alloc_debugfs);
1241
1242#endif
1243