linux/drivers/gpu/drm/vc4/vc4_crtc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2015 Broadcom
   4 */
   5
   6/**
   7 * DOC: VC4 CRTC module
   8 *
   9 * In VC4, the Pixel Valve is what most closely corresponds to the
  10 * DRM's concept of a CRTC.  The PV generates video timings from the
  11 * encoder's clock plus its configuration.  It pulls scaled pixels from
  12 * the HVS at that timing, and feeds it to the encoder.
  13 *
  14 * However, the DRM CRTC also collects the configuration of all the
  15 * DRM planes attached to it.  As a result, the CRTC is also
  16 * responsible for writing the display list for the HVS channel that
  17 * the CRTC will use.
  18 *
  19 * The 2835 has 3 different pixel valves.  pv0 in the audio power
  20 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
  21 * image domain can feed either HDMI or the SDTV controller.  The
  22 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
  23 * SDTV, etc.) according to which output type is chosen in the mux.
  24 *
  25 * For power management, the pixel valve's registers are all clocked
  26 * by the AXI clock, while the timings and FIFOs make use of the
  27 * output-specific clock.  Since the encoders also directly consume
  28 * the CPRMAN clocks, and know what timings they need, they are the
  29 * ones that set the clock.
  30 */
  31
  32#include <drm/drm_atomic.h>
  33#include <drm/drm_atomic_helper.h>
  34#include <drm/drm_atomic_uapi.h>
  35#include <drm/drm_print.h>
  36#include <drm/drm_probe_helper.h>
  37#include <linux/clk.h>
  38#include <drm/drm_fb_cma_helper.h>
  39#include <linux/component.h>
  40#include <linux/of_device.h>
  41#include "vc4_drv.h"
  42#include "vc4_regs.h"
  43
  44struct vc4_crtc_state {
  45        struct drm_crtc_state base;
  46        /* Dlist area for this CRTC configuration. */
  47        struct drm_mm_node mm;
  48        bool feed_txp;
  49        bool txp_armed;
  50
  51        struct {
  52                unsigned int left;
  53                unsigned int right;
  54                unsigned int top;
  55                unsigned int bottom;
  56        } margins;
  57};
  58
  59static inline struct vc4_crtc_state *
  60to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
  61{
  62        return (struct vc4_crtc_state *)crtc_state;
  63}
  64
  65#define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
  66#define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
  67
  68static const struct debugfs_reg32 crtc_regs[] = {
  69        VC4_REG32(PV_CONTROL),
  70        VC4_REG32(PV_V_CONTROL),
  71        VC4_REG32(PV_VSYNCD_EVEN),
  72        VC4_REG32(PV_HORZA),
  73        VC4_REG32(PV_HORZB),
  74        VC4_REG32(PV_VERTA),
  75        VC4_REG32(PV_VERTB),
  76        VC4_REG32(PV_VERTA_EVEN),
  77        VC4_REG32(PV_VERTB_EVEN),
  78        VC4_REG32(PV_INTEN),
  79        VC4_REG32(PV_INTSTAT),
  80        VC4_REG32(PV_STAT),
  81        VC4_REG32(PV_HACT_ACT),
  82};
  83
  84bool vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
  85                             bool in_vblank_irq, int *vpos, int *hpos,
  86                             ktime_t *stime, ktime_t *etime,
  87                             const struct drm_display_mode *mode)
  88{
  89        struct vc4_dev *vc4 = to_vc4_dev(dev);
  90        struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
  91        struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  92        u32 val;
  93        int fifo_lines;
  94        int vblank_lines;
  95        bool ret = false;
  96
  97        /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
  98
  99        /* Get optional system timestamp before query. */
 100        if (stime)
 101                *stime = ktime_get();
 102
 103        /*
 104         * Read vertical scanline which is currently composed for our
 105         * pixelvalve by the HVS, and also the scaler status.
 106         */
 107        val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
 108
 109        /* Get optional system timestamp after query. */
 110        if (etime)
 111                *etime = ktime_get();
 112
 113        /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
 114
 115        /* Vertical position of hvs composed scanline. */
 116        *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
 117        *hpos = 0;
 118
 119        if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
 120                *vpos /= 2;
 121
 122                /* Use hpos to correct for field offset in interlaced mode. */
 123                if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
 124                        *hpos += mode->crtc_htotal / 2;
 125        }
 126
 127        /* This is the offset we need for translating hvs -> pv scanout pos. */
 128        fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
 129
 130        if (fifo_lines > 0)
 131                ret = true;
 132
 133        /* HVS more than fifo_lines into frame for compositing? */
 134        if (*vpos > fifo_lines) {
 135                /*
 136                 * We are in active scanout and can get some meaningful results
 137                 * from HVS. The actual PV scanout can not trail behind more
 138                 * than fifo_lines as that is the fifo's capacity. Assume that
 139                 * in active scanout the HVS and PV work in lockstep wrt. HVS
 140                 * refilling the fifo and PV consuming from the fifo, ie.
 141                 * whenever the PV consumes and frees up a scanline in the
 142                 * fifo, the HVS will immediately refill it, therefore
 143                 * incrementing vpos. Therefore we choose HVS read position -
 144                 * fifo size in scanlines as a estimate of the real scanout
 145                 * position of the PV.
 146                 */
 147                *vpos -= fifo_lines + 1;
 148
 149                return ret;
 150        }
 151
 152        /*
 153         * Less: This happens when we are in vblank and the HVS, after getting
 154         * the VSTART restart signal from the PV, just started refilling its
 155         * fifo with new lines from the top-most lines of the new framebuffers.
 156         * The PV does not scan out in vblank, so does not remove lines from
 157         * the fifo, so the fifo will be full quickly and the HVS has to pause.
 158         * We can't get meaningful readings wrt. scanline position of the PV
 159         * and need to make things up in a approximative but consistent way.
 160         */
 161        vblank_lines = mode->vtotal - mode->vdisplay;
 162
 163        if (in_vblank_irq) {
 164                /*
 165                 * Assume the irq handler got called close to first
 166                 * line of vblank, so PV has about a full vblank
 167                 * scanlines to go, and as a base timestamp use the
 168                 * one taken at entry into vblank irq handler, so it
 169                 * is not affected by random delays due to lock
 170                 * contention on event_lock or vblank_time lock in
 171                 * the core.
 172                 */
 173                *vpos = -vblank_lines;
 174
 175                if (stime)
 176                        *stime = vc4_crtc->t_vblank;
 177                if (etime)
 178                        *etime = vc4_crtc->t_vblank;
 179
 180                /*
 181                 * If the HVS fifo is not yet full then we know for certain
 182                 * we are at the very beginning of vblank, as the hvs just
 183                 * started refilling, and the stime and etime timestamps
 184                 * truly correspond to start of vblank.
 185                 *
 186                 * Unfortunately there's no way to report this to upper levels
 187                 * and make it more useful.
 188                 */
 189        } else {
 190                /*
 191                 * No clue where we are inside vblank. Return a vpos of zero,
 192                 * which will cause calling code to just return the etime
 193                 * timestamp uncorrected. At least this is no worse than the
 194                 * standard fallback.
 195                 */
 196                *vpos = 0;
 197        }
 198
 199        return ret;
 200}
 201
 202static void vc4_crtc_destroy(struct drm_crtc *crtc)
 203{
 204        drm_crtc_cleanup(crtc);
 205}
 206
 207static void
 208vc4_crtc_lut_load(struct drm_crtc *crtc)
 209{
 210        struct drm_device *dev = crtc->dev;
 211        struct vc4_dev *vc4 = to_vc4_dev(dev);
 212        struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 213        u32 i;
 214
 215        /* The LUT memory is laid out with each HVS channel in order,
 216         * each of which takes 256 writes for R, 256 for G, then 256
 217         * for B.
 218         */
 219        HVS_WRITE(SCALER_GAMADDR,
 220                  SCALER_GAMADDR_AUTOINC |
 221                  (vc4_crtc->channel * 3 * crtc->gamma_size));
 222
 223        for (i = 0; i < crtc->gamma_size; i++)
 224                HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
 225        for (i = 0; i < crtc->gamma_size; i++)
 226                HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
 227        for (i = 0; i < crtc->gamma_size; i++)
 228                HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
 229}
 230
 231static void
 232vc4_crtc_update_gamma_lut(struct drm_crtc *crtc)
 233{
 234        struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 235        struct drm_color_lut *lut = crtc->state->gamma_lut->data;
 236        u32 length = drm_color_lut_size(crtc->state->gamma_lut);
 237        u32 i;
 238
 239        for (i = 0; i < length; i++) {
 240                vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8);
 241                vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8);
 242                vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8);
 243        }
 244
 245        vc4_crtc_lut_load(crtc);
 246}
 247
 248static u32 vc4_get_fifo_full_level(u32 format)
 249{
 250        static const u32 fifo_len_bytes = 64;
 251        static const u32 hvs_latency_pix = 6;
 252
 253        switch (format) {
 254        case PV_CONTROL_FORMAT_DSIV_16:
 255        case PV_CONTROL_FORMAT_DSIC_16:
 256                return fifo_len_bytes - 2 * hvs_latency_pix;
 257        case PV_CONTROL_FORMAT_DSIV_18:
 258                return fifo_len_bytes - 14;
 259        case PV_CONTROL_FORMAT_24:
 260        case PV_CONTROL_FORMAT_DSIV_24:
 261        default:
 262                return fifo_len_bytes - 3 * hvs_latency_pix;
 263        }
 264}
 265
 266/*
 267 * Returns the encoder attached to the CRTC.
 268 *
 269 * VC4 can only scan out to one encoder at a time, while the DRM core
 270 * allows drivers to push pixels to more than one encoder from the
 271 * same CRTC.
 272 */
 273static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
 274{
 275        struct drm_connector *connector;
 276        struct drm_connector_list_iter conn_iter;
 277
 278        drm_connector_list_iter_begin(crtc->dev, &conn_iter);
 279        drm_for_each_connector_iter(connector, &conn_iter) {
 280                if (connector->state->crtc == crtc) {
 281                        drm_connector_list_iter_end(&conn_iter);
 282                        return connector->encoder;
 283                }
 284        }
 285        drm_connector_list_iter_end(&conn_iter);
 286
 287        return NULL;
 288}
 289
 290static void vc4_crtc_config_pv(struct drm_crtc *crtc)
 291{
 292        struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
 293        struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
 294        struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 295        struct drm_crtc_state *state = crtc->state;
 296        struct drm_display_mode *mode = &state->adjusted_mode;
 297        bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
 298        u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
 299        bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
 300                       vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
 301        u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
 302
 303        /* Reset the PV fifo. */
 304        CRTC_WRITE(PV_CONTROL, 0);
 305        CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
 306        CRTC_WRITE(PV_CONTROL, 0);
 307
 308        CRTC_WRITE(PV_HORZA,
 309                   VC4_SET_FIELD((mode->htotal -
 310                                  mode->hsync_end) * pixel_rep,
 311                                 PV_HORZA_HBP) |
 312                   VC4_SET_FIELD((mode->hsync_end -
 313                                  mode->hsync_start) * pixel_rep,
 314                                 PV_HORZA_HSYNC));
 315        CRTC_WRITE(PV_HORZB,
 316                   VC4_SET_FIELD((mode->hsync_start -
 317                                  mode->hdisplay) * pixel_rep,
 318                                 PV_HORZB_HFP) |
 319                   VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
 320
 321        CRTC_WRITE(PV_VERTA,
 322                   VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
 323                                 PV_VERTA_VBP) |
 324                   VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
 325                                 PV_VERTA_VSYNC));
 326        CRTC_WRITE(PV_VERTB,
 327                   VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
 328                                 PV_VERTB_VFP) |
 329                   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
 330
 331        if (interlace) {
 332                CRTC_WRITE(PV_VERTA_EVEN,
 333                           VC4_SET_FIELD(mode->crtc_vtotal -
 334                                         mode->crtc_vsync_end - 1,
 335                                         PV_VERTA_VBP) |
 336                           VC4_SET_FIELD(mode->crtc_vsync_end -
 337                                         mode->crtc_vsync_start,
 338                                         PV_VERTA_VSYNC));
 339                CRTC_WRITE(PV_VERTB_EVEN,
 340                           VC4_SET_FIELD(mode->crtc_vsync_start -
 341                                         mode->crtc_vdisplay,
 342                                         PV_VERTB_VFP) |
 343                           VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
 344
 345                /* We set up first field even mode for HDMI.  VEC's
 346                 * NTSC mode would want first field odd instead, once
 347                 * we support it (to do so, set ODD_FIRST and put the
 348                 * delay in VSYNCD_EVEN instead).
 349                 */
 350                CRTC_WRITE(PV_V_CONTROL,
 351                           PV_VCONTROL_CONTINUOUS |
 352                           (is_dsi ? PV_VCONTROL_DSI : 0) |
 353                           PV_VCONTROL_INTERLACE |
 354                           VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
 355                                         PV_VCONTROL_ODD_DELAY));
 356                CRTC_WRITE(PV_VSYNCD_EVEN, 0);
 357        } else {
 358                CRTC_WRITE(PV_V_CONTROL,
 359                           PV_VCONTROL_CONTINUOUS |
 360                           (is_dsi ? PV_VCONTROL_DSI : 0));
 361        }
 362
 363        CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
 364
 365        CRTC_WRITE(PV_CONTROL,
 366                   VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
 367                   VC4_SET_FIELD(vc4_get_fifo_full_level(format),
 368                                 PV_CONTROL_FIFO_LEVEL) |
 369                   VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
 370                   PV_CONTROL_CLR_AT_START |
 371                   PV_CONTROL_TRIGGER_UNDERFLOW |
 372                   PV_CONTROL_WAIT_HSTART |
 373                   VC4_SET_FIELD(vc4_encoder->clock_select,
 374                                 PV_CONTROL_CLK_SELECT) |
 375                   PV_CONTROL_FIFO_CLR |
 376                   PV_CONTROL_EN);
 377}
 378
 379static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
 380{
 381        struct drm_device *dev = crtc->dev;
 382        struct vc4_dev *vc4 = to_vc4_dev(dev);
 383        struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 384        struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
 385        struct drm_display_mode *mode = &crtc->state->adjusted_mode;
 386        bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
 387        bool debug_dump_regs = false;
 388
 389        if (debug_dump_regs) {
 390                struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
 391                dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
 392                         drm_crtc_index(crtc));
 393                drm_print_regset32(&p, &vc4_crtc->regset);
 394        }
 395
 396        if (vc4_crtc->channel == 2) {
 397                u32 dispctrl;
 398                u32 dsp3_mux;
 399
 400                /*
 401                 * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to
 402                 * FIFO X'.
 403                 * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'.
 404                 *
 405                 * DSP3 is connected to FIFO2 unless the transposer is
 406                 * enabled. In this case, FIFO 2 is directly accessed by the
 407                 * TXP IP, and we need to disable the FIFO2 -> pixelvalve1
 408                 * route.
 409                 */
 410                if (vc4_state->feed_txp)
 411                        dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX);
 412                else
 413                        dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
 414
 415                dispctrl = HVS_READ(SCALER_DISPCTRL) &
 416                           ~SCALER_DISPCTRL_DSP3_MUX_MASK;
 417                HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux);
 418        }
 419
 420        if (!vc4_state->feed_txp)
 421                vc4_crtc_config_pv(crtc);
 422
 423        HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
 424                  SCALER_DISPBKGND_AUTOHS |
 425                  SCALER_DISPBKGND_GAMMA |
 426                  (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
 427
 428        /* Reload the LUT, since the SRAMs would have been disabled if
 429         * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
 430         */
 431        vc4_crtc_lut_load(crtc);
 432
 433        if (debug_dump_regs) {
 434                struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
 435                dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
 436                         drm_crtc_index(crtc));
 437                drm_print_regset32(&p, &vc4_crtc->regset);
 438        }
 439}
 440
 441static void require_hvs_enabled(struct drm_device *dev)
 442{
 443        struct vc4_dev *vc4 = to_vc4_dev(dev);
 444
 445        WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
 446                     SCALER_DISPCTRL_ENABLE);
 447}
 448
 449static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
 450                                    struct drm_crtc_state *old_state)
 451{
 452        struct drm_device *dev = crtc->dev;
 453        struct vc4_dev *vc4 = to_vc4_dev(dev);
 454        struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 455        u32 chan = vc4_crtc->channel;
 456        int ret;
 457        require_hvs_enabled(dev);
 458
 459        /* Disable vblank irq handling before crtc is disabled. */
 460        drm_crtc_vblank_off(crtc);
 461
 462        CRTC_WRITE(PV_V_CONTROL,
 463                   CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
 464        ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
 465        WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
 466
 467        if (HVS_READ(SCALER_DISPCTRLX(chan)) &
 468            SCALER_DISPCTRLX_ENABLE) {
 469                HVS_WRITE(SCALER_DISPCTRLX(chan),
 470                          SCALER_DISPCTRLX_RESET);
 471
 472                /* While the docs say that reset is self-clearing, it
 473                 * seems it doesn't actually.
 474                 */
 475                HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
 476        }
 477
 478        /* Once we leave, the scaler should be disabled and its fifo empty. */
 479
 480        WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
 481
 482        WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
 483                                   SCALER_DISPSTATX_MODE) !=
 484                     SCALER_DISPSTATX_MODE_DISABLED);
 485
 486        WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
 487                      (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
 488                     SCALER_DISPSTATX_EMPTY);
 489
 490        /*
 491         * Make sure we issue a vblank event after disabling the CRTC if
 492         * someone was waiting it.
 493         */
 494        if (crtc->state->event) {
 495                unsigned long flags;
 496
 497                spin_lock_irqsave(&dev->event_lock, flags);
 498                drm_crtc_send_vblank_event(crtc, crtc->state->event);
 499                crtc->state->event = NULL;
 500                spin_unlock_irqrestore(&dev->event_lock, flags);
 501        }
 502}
 503
 504void vc4_crtc_txp_armed(struct drm_crtc_state *state)
 505{
 506        struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
 507
 508        vc4_state->txp_armed = true;
 509}
 510
 511static void vc4_crtc_update_dlist(struct drm_crtc *crtc)
 512{
 513        struct drm_device *dev = crtc->dev;
 514        struct vc4_dev *vc4 = to_vc4_dev(dev);
 515        struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 516        struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
 517
 518        if (crtc->state->event) {
 519                unsigned long flags;
 520
 521                crtc->state->event->pipe = drm_crtc_index(crtc);
 522
 523                WARN_ON(drm_crtc_vblank_get(crtc) != 0);
 524
 525                spin_lock_irqsave(&dev->event_lock, flags);
 526
 527                if (!vc4_state->feed_txp || vc4_state->txp_armed) {
 528                        vc4_crtc->event = crtc->state->event;
 529                        crtc->state->event = NULL;
 530                }
 531
 532                HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
 533                          vc4_state->mm.start);
 534
 535                spin_unlock_irqrestore(&dev->event_lock, flags);
 536        } else {
 537                HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
 538                          vc4_state->mm.start);
 539        }
 540}
 541
 542static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
 543                                   struct drm_crtc_state *old_state)
 544{
 545        struct drm_device *dev = crtc->dev;
 546        struct vc4_dev *vc4 = to_vc4_dev(dev);
 547        struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 548        struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
 549        struct drm_display_mode *mode = &crtc->state->adjusted_mode;
 550
 551        require_hvs_enabled(dev);
 552
 553        /* Enable vblank irq handling before crtc is started otherwise
 554         * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
 555         */
 556        drm_crtc_vblank_on(crtc);
 557        vc4_crtc_update_dlist(crtc);
 558
 559        /* Turn on the scaler, which will wait for vstart to start
 560         * compositing.
 561         * When feeding the transposer, we should operate in oneshot
 562         * mode.
 563         */
 564        HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
 565                  VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
 566                  VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
 567                  SCALER_DISPCTRLX_ENABLE |
 568                  (vc4_state->feed_txp ? SCALER_DISPCTRLX_ONESHOT : 0));
 569
 570        /* When feeding the transposer block the pixelvalve is unneeded and
 571         * should not be enabled.
 572         */
 573        if (!vc4_state->feed_txp)
 574                CRTC_WRITE(PV_V_CONTROL,
 575                           CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
 576}
 577
 578static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
 579                                                const struct drm_display_mode *mode)
 580{
 581        /* Do not allow doublescan modes from user space */
 582        if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
 583                DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
 584                              crtc->base.id);
 585                return MODE_NO_DBLESCAN;
 586        }
 587
 588        return MODE_OK;
 589}
 590
 591void vc4_crtc_get_margins(struct drm_crtc_state *state,
 592                          unsigned int *left, unsigned int *right,
 593                          unsigned int *top, unsigned int *bottom)
 594{
 595        struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
 596        struct drm_connector_state *conn_state;
 597        struct drm_connector *conn;
 598        int i;
 599
 600        *left = vc4_state->margins.left;
 601        *right = vc4_state->margins.right;
 602        *top = vc4_state->margins.top;
 603        *bottom = vc4_state->margins.bottom;
 604
 605        /* We have to interate over all new connector states because
 606         * vc4_crtc_get_margins() might be called before
 607         * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
 608         * might be outdated.
 609         */
 610        for_each_new_connector_in_state(state->state, conn, conn_state, i) {
 611                if (conn_state->crtc != state->crtc)
 612                        continue;
 613
 614                *left = conn_state->tv.margins.left;
 615                *right = conn_state->tv.margins.right;
 616                *top = conn_state->tv.margins.top;
 617                *bottom = conn_state->tv.margins.bottom;
 618                break;
 619        }
 620}
 621
 622static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
 623                                 struct drm_crtc_state *state)
 624{
 625        struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
 626        struct drm_device *dev = crtc->dev;
 627        struct vc4_dev *vc4 = to_vc4_dev(dev);
 628        struct drm_plane *plane;
 629        unsigned long flags;
 630        const struct drm_plane_state *plane_state;
 631        struct drm_connector *conn;
 632        struct drm_connector_state *conn_state;
 633        u32 dlist_count = 0;
 634        int ret, i;
 635
 636        /* The pixelvalve can only feed one encoder (and encoders are
 637         * 1:1 with connectors.)
 638         */
 639        if (hweight32(state->connector_mask) > 1)
 640                return -EINVAL;
 641
 642        drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
 643                dlist_count += vc4_plane_dlist_size(plane_state);
 644
 645        dlist_count++; /* Account for SCALER_CTL0_END. */
 646
 647        spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
 648        ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
 649                                 dlist_count);
 650        spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
 651        if (ret)
 652                return ret;
 653
 654        for_each_new_connector_in_state(state->state, conn, conn_state, i) {
 655                if (conn_state->crtc != crtc)
 656                        continue;
 657
 658                /* The writeback connector is implemented using the transposer
 659                 * block which is directly taking its data from the HVS FIFO.
 660                 */
 661                if (conn->connector_type == DRM_MODE_CONNECTOR_WRITEBACK) {
 662                        state->no_vblank = true;
 663                        vc4_state->feed_txp = true;
 664                } else {
 665                        state->no_vblank = false;
 666                        vc4_state->feed_txp = false;
 667                }
 668
 669                vc4_state->margins.left = conn_state->tv.margins.left;
 670                vc4_state->margins.right = conn_state->tv.margins.right;
 671                vc4_state->margins.top = conn_state->tv.margins.top;
 672                vc4_state->margins.bottom = conn_state->tv.margins.bottom;
 673                break;
 674        }
 675
 676        return 0;
 677}
 678
 679static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
 680                                  struct drm_crtc_state *old_state)
 681{
 682        struct drm_device *dev = crtc->dev;
 683        struct vc4_dev *vc4 = to_vc4_dev(dev);
 684        struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 685        struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
 686        struct drm_plane *plane;
 687        struct vc4_plane_state *vc4_plane_state;
 688        bool debug_dump_regs = false;
 689        bool enable_bg_fill = false;
 690        u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
 691        u32 __iomem *dlist_next = dlist_start;
 692
 693        if (debug_dump_regs) {
 694                DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
 695                vc4_hvs_dump_state(dev);
 696        }
 697
 698        /* Copy all the active planes' dlist contents to the hardware dlist. */
 699        drm_atomic_crtc_for_each_plane(plane, crtc) {
 700                /* Is this the first active plane? */
 701                if (dlist_next == dlist_start) {
 702                        /* We need to enable background fill when a plane
 703                         * could be alpha blending from the background, i.e.
 704                         * where no other plane is underneath. It suffices to
 705                         * consider the first active plane here since we set
 706                         * needs_bg_fill such that either the first plane
 707                         * already needs it or all planes on top blend from
 708                         * the first or a lower plane.
 709                         */
 710                        vc4_plane_state = to_vc4_plane_state(plane->state);
 711                        enable_bg_fill = vc4_plane_state->needs_bg_fill;
 712                }
 713
 714                dlist_next += vc4_plane_write_dlist(plane, dlist_next);
 715        }
 716
 717        writel(SCALER_CTL0_END, dlist_next);
 718        dlist_next++;
 719
 720        WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
 721
 722        if (enable_bg_fill)
 723                /* This sets a black background color fill, as is the case
 724                 * with other DRM drivers.
 725                 */
 726                HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
 727                          HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel)) |
 728                          SCALER_DISPBKGND_FILL);
 729
 730        /* Only update DISPLIST if the CRTC was already running and is not
 731         * being disabled.
 732         * vc4_crtc_enable() takes care of updating the dlist just after
 733         * re-enabling VBLANK interrupts and before enabling the engine.
 734         * If the CRTC is being disabled, there's no point in updating this
 735         * information.
 736         */
 737        if (crtc->state->active && old_state->active)
 738                vc4_crtc_update_dlist(crtc);
 739
 740        if (crtc->state->color_mgmt_changed) {
 741                u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel));
 742
 743                if (crtc->state->gamma_lut) {
 744                        vc4_crtc_update_gamma_lut(crtc);
 745                        dispbkgndx |= SCALER_DISPBKGND_GAMMA;
 746                } else {
 747                        /* Unsetting DISPBKGND_GAMMA skips the gamma lut step
 748                         * in hardware, which is the same as a linear lut that
 749                         * DRM expects us to use in absence of a user lut.
 750                         */
 751                        dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
 752                }
 753                HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), dispbkgndx);
 754        }
 755
 756        if (debug_dump_regs) {
 757                DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
 758                vc4_hvs_dump_state(dev);
 759        }
 760}
 761
 762static int vc4_enable_vblank(struct drm_crtc *crtc)
 763{
 764        struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 765
 766        CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
 767
 768        return 0;
 769}
 770
 771static void vc4_disable_vblank(struct drm_crtc *crtc)
 772{
 773        struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 774
 775        CRTC_WRITE(PV_INTEN, 0);
 776}
 777
 778static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
 779{
 780        struct drm_crtc *crtc = &vc4_crtc->base;
 781        struct drm_device *dev = crtc->dev;
 782        struct vc4_dev *vc4 = to_vc4_dev(dev);
 783        struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
 784        u32 chan = vc4_crtc->channel;
 785        unsigned long flags;
 786
 787        spin_lock_irqsave(&dev->event_lock, flags);
 788        if (vc4_crtc->event &&
 789            (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)) ||
 790             vc4_state->feed_txp)) {
 791                drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
 792                vc4_crtc->event = NULL;
 793                drm_crtc_vblank_put(crtc);
 794
 795                /* Wait for the page flip to unmask the underrun to ensure that
 796                 * the display list was updated by the hardware. Before that
 797                 * happens, the HVS will be using the previous display list with
 798                 * the CRTC and encoder already reconfigured, leading to
 799                 * underruns. This can be seen when reconfiguring the CRTC.
 800                 */
 801                vc4_hvs_unmask_underrun(dev, vc4_crtc->channel);
 802        }
 803        spin_unlock_irqrestore(&dev->event_lock, flags);
 804}
 805
 806void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
 807{
 808        crtc->t_vblank = ktime_get();
 809        drm_crtc_handle_vblank(&crtc->base);
 810        vc4_crtc_handle_page_flip(crtc);
 811}
 812
 813static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
 814{
 815        struct vc4_crtc *vc4_crtc = data;
 816        u32 stat = CRTC_READ(PV_INTSTAT);
 817        irqreturn_t ret = IRQ_NONE;
 818
 819        if (stat & PV_INT_VFP_START) {
 820                CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
 821                vc4_crtc_handle_vblank(vc4_crtc);
 822                ret = IRQ_HANDLED;
 823        }
 824
 825        return ret;
 826}
 827
 828struct vc4_async_flip_state {
 829        struct drm_crtc *crtc;
 830        struct drm_framebuffer *fb;
 831        struct drm_framebuffer *old_fb;
 832        struct drm_pending_vblank_event *event;
 833
 834        struct vc4_seqno_cb cb;
 835};
 836
 837/* Called when the V3D execution for the BO being flipped to is done, so that
 838 * we can actually update the plane's address to point to it.
 839 */
 840static void
 841vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
 842{
 843        struct vc4_async_flip_state *flip_state =
 844                container_of(cb, struct vc4_async_flip_state, cb);
 845        struct drm_crtc *crtc = flip_state->crtc;
 846        struct drm_device *dev = crtc->dev;
 847        struct vc4_dev *vc4 = to_vc4_dev(dev);
 848        struct drm_plane *plane = crtc->primary;
 849
 850        vc4_plane_async_set_fb(plane, flip_state->fb);
 851        if (flip_state->event) {
 852                unsigned long flags;
 853
 854                spin_lock_irqsave(&dev->event_lock, flags);
 855                drm_crtc_send_vblank_event(crtc, flip_state->event);
 856                spin_unlock_irqrestore(&dev->event_lock, flags);
 857        }
 858
 859        drm_crtc_vblank_put(crtc);
 860        drm_framebuffer_put(flip_state->fb);
 861
 862        /* Decrement the BO usecnt in order to keep the inc/dec calls balanced
 863         * when the planes are updated through the async update path.
 864         * FIXME: we should move to generic async-page-flip when it's
 865         * available, so that we can get rid of this hand-made cleanup_fb()
 866         * logic.
 867         */
 868        if (flip_state->old_fb) {
 869                struct drm_gem_cma_object *cma_bo;
 870                struct vc4_bo *bo;
 871
 872                cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
 873                bo = to_vc4_bo(&cma_bo->base);
 874                vc4_bo_dec_usecnt(bo);
 875                drm_framebuffer_put(flip_state->old_fb);
 876        }
 877
 878        kfree(flip_state);
 879
 880        up(&vc4->async_modeset);
 881}
 882
 883/* Implements async (non-vblank-synced) page flips.
 884 *
 885 * The page flip ioctl needs to return immediately, so we grab the
 886 * modeset semaphore on the pipe, and queue the address update for
 887 * when V3D is done with the BO being flipped to.
 888 */
 889static int vc4_async_page_flip(struct drm_crtc *crtc,
 890                               struct drm_framebuffer *fb,
 891                               struct drm_pending_vblank_event *event,
 892                               uint32_t flags)
 893{
 894        struct drm_device *dev = crtc->dev;
 895        struct vc4_dev *vc4 = to_vc4_dev(dev);
 896        struct drm_plane *plane = crtc->primary;
 897        int ret = 0;
 898        struct vc4_async_flip_state *flip_state;
 899        struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
 900        struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
 901
 902        /* Increment the BO usecnt here, so that we never end up with an
 903         * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
 904         * plane is later updated through the non-async path.
 905         * FIXME: we should move to generic async-page-flip when it's
 906         * available, so that we can get rid of this hand-made prepare_fb()
 907         * logic.
 908         */
 909        ret = vc4_bo_inc_usecnt(bo);
 910        if (ret)
 911                return ret;
 912
 913        flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
 914        if (!flip_state) {
 915                vc4_bo_dec_usecnt(bo);
 916                return -ENOMEM;
 917        }
 918
 919        drm_framebuffer_get(fb);
 920        flip_state->fb = fb;
 921        flip_state->crtc = crtc;
 922        flip_state->event = event;
 923
 924        /* Make sure all other async modesetes have landed. */
 925        ret = down_interruptible(&vc4->async_modeset);
 926        if (ret) {
 927                drm_framebuffer_put(fb);
 928                vc4_bo_dec_usecnt(bo);
 929                kfree(flip_state);
 930                return ret;
 931        }
 932
 933        /* Save the current FB before it's replaced by the new one in
 934         * drm_atomic_set_fb_for_plane(). We'll need the old FB in
 935         * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
 936         * it consistent.
 937         * FIXME: we should move to generic async-page-flip when it's
 938         * available, so that we can get rid of this hand-made cleanup_fb()
 939         * logic.
 940         */
 941        flip_state->old_fb = plane->state->fb;
 942        if (flip_state->old_fb)
 943                drm_framebuffer_get(flip_state->old_fb);
 944
 945        WARN_ON(drm_crtc_vblank_get(crtc) != 0);
 946
 947        /* Immediately update the plane's legacy fb pointer, so that later
 948         * modeset prep sees the state that will be present when the semaphore
 949         * is released.
 950         */
 951        drm_atomic_set_fb_for_plane(plane->state, fb);
 952
 953        vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
 954                           vc4_async_page_flip_complete);
 955
 956        /* Driver takes ownership of state on successful async commit. */
 957        return 0;
 958}
 959
 960static int vc4_page_flip(struct drm_crtc *crtc,
 961                         struct drm_framebuffer *fb,
 962                         struct drm_pending_vblank_event *event,
 963                         uint32_t flags,
 964                         struct drm_modeset_acquire_ctx *ctx)
 965{
 966        if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
 967                return vc4_async_page_flip(crtc, fb, event, flags);
 968        else
 969                return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
 970}
 971
 972static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
 973{
 974        struct vc4_crtc_state *vc4_state, *old_vc4_state;
 975
 976        vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
 977        if (!vc4_state)
 978                return NULL;
 979
 980        old_vc4_state = to_vc4_crtc_state(crtc->state);
 981        vc4_state->feed_txp = old_vc4_state->feed_txp;
 982        vc4_state->margins = old_vc4_state->margins;
 983
 984        __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
 985        return &vc4_state->base;
 986}
 987
 988static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
 989                                   struct drm_crtc_state *state)
 990{
 991        struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
 992        struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
 993
 994        if (vc4_state->mm.allocated) {
 995                unsigned long flags;
 996
 997                spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
 998                drm_mm_remove_node(&vc4_state->mm);
 999                spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
1000
1001        }
1002
1003        drm_atomic_helper_crtc_destroy_state(crtc, state);
1004}
1005
1006static void
1007vc4_crtc_reset(struct drm_crtc *crtc)
1008{
1009        if (crtc->state)
1010                vc4_crtc_destroy_state(crtc, crtc->state);
1011
1012        crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL);
1013        if (crtc->state)
1014                crtc->state->crtc = crtc;
1015}
1016
1017static const struct drm_crtc_funcs vc4_crtc_funcs = {
1018        .set_config = drm_atomic_helper_set_config,
1019        .destroy = vc4_crtc_destroy,
1020        .page_flip = vc4_page_flip,
1021        .set_property = NULL,
1022        .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
1023        .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
1024        .reset = vc4_crtc_reset,
1025        .atomic_duplicate_state = vc4_crtc_duplicate_state,
1026        .atomic_destroy_state = vc4_crtc_destroy_state,
1027        .gamma_set = drm_atomic_helper_legacy_gamma_set,
1028        .enable_vblank = vc4_enable_vblank,
1029        .disable_vblank = vc4_disable_vblank,
1030};
1031
1032static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
1033        .mode_set_nofb = vc4_crtc_mode_set_nofb,
1034        .mode_valid = vc4_crtc_mode_valid,
1035        .atomic_check = vc4_crtc_atomic_check,
1036        .atomic_flush = vc4_crtc_atomic_flush,
1037        .atomic_enable = vc4_crtc_atomic_enable,
1038        .atomic_disable = vc4_crtc_atomic_disable,
1039};
1040
1041static const struct vc4_crtc_data pv0_data = {
1042        .hvs_channel = 0,
1043        .debugfs_name = "crtc0_regs",
1044        .encoder_types = {
1045                [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
1046                [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
1047        },
1048};
1049
1050static const struct vc4_crtc_data pv1_data = {
1051        .hvs_channel = 2,
1052        .debugfs_name = "crtc1_regs",
1053        .encoder_types = {
1054                [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
1055                [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
1056        },
1057};
1058
1059static const struct vc4_crtc_data pv2_data = {
1060        .hvs_channel = 1,
1061        .debugfs_name = "crtc2_regs",
1062        .encoder_types = {
1063                [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
1064                [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1065        },
1066};
1067
1068static const struct of_device_id vc4_crtc_dt_match[] = {
1069        { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
1070        { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
1071        { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
1072        {}
1073};
1074
1075static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1076                                        struct drm_crtc *crtc)
1077{
1078        struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1079        const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
1080        const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
1081        struct drm_encoder *encoder;
1082
1083        drm_for_each_encoder(encoder, drm) {
1084                struct vc4_encoder *vc4_encoder;
1085                int i;
1086
1087                /* HVS FIFO2 can feed the TXP IP. */
1088                if (crtc_data->hvs_channel == 2 &&
1089                    encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL) {
1090                        encoder->possible_crtcs |= drm_crtc_mask(crtc);
1091                        continue;
1092                }
1093
1094                vc4_encoder = to_vc4_encoder(encoder);
1095                for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
1096                        if (vc4_encoder->type == encoder_types[i]) {
1097                                vc4_encoder->clock_select = i;
1098                                encoder->possible_crtcs |= drm_crtc_mask(crtc);
1099                                break;
1100                        }
1101                }
1102        }
1103}
1104
1105static void
1106vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
1107{
1108        struct drm_device *drm = vc4_crtc->base.dev;
1109        struct vc4_dev *vc4 = to_vc4_dev(drm);
1110        u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
1111        /* Top/base are supposed to be 4-pixel aligned, but the
1112         * Raspberry Pi firmware fills the low bits (which are
1113         * presumably ignored).
1114         */
1115        u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
1116        u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
1117
1118        vc4_crtc->cob_size = top - base + 4;
1119}
1120
1121static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1122{
1123        struct platform_device *pdev = to_platform_device(dev);
1124        struct drm_device *drm = dev_get_drvdata(master);
1125        struct vc4_crtc *vc4_crtc;
1126        struct drm_crtc *crtc;
1127        struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
1128        const struct of_device_id *match;
1129        int ret, i;
1130
1131        vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
1132        if (!vc4_crtc)
1133                return -ENOMEM;
1134        crtc = &vc4_crtc->base;
1135
1136        match = of_match_device(vc4_crtc_dt_match, dev);
1137        if (!match)
1138                return -ENODEV;
1139        vc4_crtc->data = match->data;
1140        vc4_crtc->pdev = pdev;
1141
1142        vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1143        if (IS_ERR(vc4_crtc->regs))
1144                return PTR_ERR(vc4_crtc->regs);
1145
1146        vc4_crtc->regset.base = vc4_crtc->regs;
1147        vc4_crtc->regset.regs = crtc_regs;
1148        vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1149
1150        /* For now, we create just the primary and the legacy cursor
1151         * planes.  We should be able to stack more planes on easily,
1152         * but to do that we would need to compute the bandwidth
1153         * requirement of the plane configuration, and reject ones
1154         * that will take too much.
1155         */
1156        primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
1157        if (IS_ERR(primary_plane)) {
1158                dev_err(dev, "failed to construct primary plane\n");
1159                ret = PTR_ERR(primary_plane);
1160                goto err;
1161        }
1162
1163        drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1164                                  &vc4_crtc_funcs, NULL);
1165        drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
1166        vc4_crtc->channel = vc4_crtc->data->hvs_channel;
1167        drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1168        drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1169
1170        /* We support CTM, but only for one CRTC at a time. It's therefore
1171         * implemented as private driver state in vc4_kms, not here.
1172         */
1173        drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1174
1175        /* Set up some arbitrary number of planes.  We're not limited
1176         * by a set number of physical registers, just the space in
1177         * the HVS (16k) and how small an plane can be (28 bytes).
1178         * However, each plane we set up takes up some memory, and
1179         * increases the cost of looping over planes, which atomic
1180         * modesetting does quite a bit.  As a result, we pick a
1181         * modest number of planes to expose, that should hopefully
1182         * still cover any sane usecase.
1183         */
1184        for (i = 0; i < 8; i++) {
1185                struct drm_plane *plane =
1186                        vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
1187
1188                if (IS_ERR(plane))
1189                        continue;
1190
1191                plane->possible_crtcs = drm_crtc_mask(crtc);
1192        }
1193
1194        /* Set up the legacy cursor after overlay initialization,
1195         * since we overlay planes on the CRTC in the order they were
1196         * initialized.
1197         */
1198        cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
1199        if (!IS_ERR(cursor_plane)) {
1200                cursor_plane->possible_crtcs = drm_crtc_mask(crtc);
1201                crtc->cursor = cursor_plane;
1202        }
1203
1204        vc4_crtc_get_cob_allocation(vc4_crtc);
1205
1206        CRTC_WRITE(PV_INTEN, 0);
1207        CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1208        ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1209                               vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
1210        if (ret)
1211                goto err_destroy_planes;
1212
1213        vc4_set_crtc_possible_masks(drm, crtc);
1214
1215        for (i = 0; i < crtc->gamma_size; i++) {
1216                vc4_crtc->lut_r[i] = i;
1217                vc4_crtc->lut_g[i] = i;
1218                vc4_crtc->lut_b[i] = i;
1219        }
1220
1221        platform_set_drvdata(pdev, vc4_crtc);
1222
1223        vc4_debugfs_add_regset32(drm, vc4_crtc->data->debugfs_name,
1224                                 &vc4_crtc->regset);
1225
1226        return 0;
1227
1228err_destroy_planes:
1229        list_for_each_entry_safe(destroy_plane, temp,
1230                                 &drm->mode_config.plane_list, head) {
1231                if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
1232                    destroy_plane->funcs->destroy(destroy_plane);
1233        }
1234err:
1235        return ret;
1236}
1237
1238static void vc4_crtc_unbind(struct device *dev, struct device *master,
1239                            void *data)
1240{
1241        struct platform_device *pdev = to_platform_device(dev);
1242        struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1243
1244        vc4_crtc_destroy(&vc4_crtc->base);
1245
1246        CRTC_WRITE(PV_INTEN, 0);
1247
1248        platform_set_drvdata(pdev, NULL);
1249}
1250
1251static const struct component_ops vc4_crtc_ops = {
1252        .bind   = vc4_crtc_bind,
1253        .unbind = vc4_crtc_unbind,
1254};
1255
1256static int vc4_crtc_dev_probe(struct platform_device *pdev)
1257{
1258        return component_add(&pdev->dev, &vc4_crtc_ops);
1259}
1260
1261static int vc4_crtc_dev_remove(struct platform_device *pdev)
1262{
1263        component_del(&pdev->dev, &vc4_crtc_ops);
1264        return 0;
1265}
1266
1267struct platform_driver vc4_crtc_driver = {
1268        .probe = vc4_crtc_dev_probe,
1269        .remove = vc4_crtc_dev_remove,
1270        .driver = {
1271                .name = "vc4_crtc",
1272                .of_match_table = vc4_crtc_dt_match,
1273        },
1274};
1275