linux/drivers/gpu/drm/vc4/vc4_dsi.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2016 Broadcom
   4 */
   5
   6/**
   7 * DOC: VC4 DSI0/DSI1 module
   8 *
   9 * BCM2835 contains two DSI modules, DSI0 and DSI1.  DSI0 is a
  10 * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI
  11 * controller.
  12 *
  13 * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector,
  14 * while the compute module brings both DSI0 and DSI1 out.
  15 *
  16 * This driver has been tested for DSI1 video-mode display only
  17 * currently, with most of the information necessary for DSI0
  18 * hopefully present.
  19 */
  20
  21#include <drm/drm_atomic_helper.h>
  22#include <drm/drm_edid.h>
  23#include <drm/drm_mipi_dsi.h>
  24#include <drm/drm_of.h>
  25#include <drm/drm_panel.h>
  26#include <drm/drm_probe_helper.h>
  27#include <linux/clk.h>
  28#include <linux/clk-provider.h>
  29#include <linux/completion.h>
  30#include <linux/component.h>
  31#include <linux/dmaengine.h>
  32#include <linux/i2c.h>
  33#include <linux/io.h>
  34#include <linux/of_address.h>
  35#include <linux/of_platform.h>
  36#include <linux/pm_runtime.h>
  37#include "vc4_drv.h"
  38#include "vc4_regs.h"
  39
  40#define DSI_CMD_FIFO_DEPTH  16
  41#define DSI_PIX_FIFO_DEPTH 256
  42#define DSI_PIX_FIFO_WIDTH   4
  43
  44#define DSI0_CTRL               0x00
  45
  46/* Command packet control. */
  47#define DSI0_TXPKT1C            0x04 /* AKA PKTC */
  48#define DSI1_TXPKT1C            0x04
  49# define DSI_TXPKT1C_TRIG_CMD_MASK      VC4_MASK(31, 24)
  50# define DSI_TXPKT1C_TRIG_CMD_SHIFT     24
  51# define DSI_TXPKT1C_CMD_REPEAT_MASK    VC4_MASK(23, 10)
  52# define DSI_TXPKT1C_CMD_REPEAT_SHIFT   10
  53
  54# define DSI_TXPKT1C_DISPLAY_NO_MASK    VC4_MASK(9, 8)
  55# define DSI_TXPKT1C_DISPLAY_NO_SHIFT   8
  56/* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */
  57# define DSI_TXPKT1C_DISPLAY_NO_SHORT           0
  58/* Primary display where cmdfifo provides part of the payload and
  59 * pixelvalve the rest.
  60 */
  61# define DSI_TXPKT1C_DISPLAY_NO_PRIMARY         1
  62/* Secondary display where cmdfifo provides part of the payload and
  63 * pixfifo the rest.
  64 */
  65# define DSI_TXPKT1C_DISPLAY_NO_SECONDARY       2
  66
  67# define DSI_TXPKT1C_CMD_TX_TIME_MASK   VC4_MASK(7, 6)
  68# define DSI_TXPKT1C_CMD_TX_TIME_SHIFT  6
  69
  70# define DSI_TXPKT1C_CMD_CTRL_MASK      VC4_MASK(5, 4)
  71# define DSI_TXPKT1C_CMD_CTRL_SHIFT     4
  72/* Command only.  Uses TXPKT1H and DISPLAY_NO */
  73# define DSI_TXPKT1C_CMD_CTRL_TX        0
  74/* Command with BTA for either ack or read data. */
  75# define DSI_TXPKT1C_CMD_CTRL_RX        1
  76/* Trigger according to TRIG_CMD */
  77# define DSI_TXPKT1C_CMD_CTRL_TRIG      2
  78/* BTA alone for getting error status after a command, or a TE trigger
  79 * without a previous command.
  80 */
  81# define DSI_TXPKT1C_CMD_CTRL_BTA       3
  82
  83# define DSI_TXPKT1C_CMD_MODE_LP        BIT(3)
  84# define DSI_TXPKT1C_CMD_TYPE_LONG      BIT(2)
  85# define DSI_TXPKT1C_CMD_TE_EN          BIT(1)
  86# define DSI_TXPKT1C_CMD_EN             BIT(0)
  87
  88/* Command packet header. */
  89#define DSI0_TXPKT1H            0x08 /* AKA PKTH */
  90#define DSI1_TXPKT1H            0x08
  91# define DSI_TXPKT1H_BC_CMDFIFO_MASK    VC4_MASK(31, 24)
  92# define DSI_TXPKT1H_BC_CMDFIFO_SHIFT   24
  93# define DSI_TXPKT1H_BC_PARAM_MASK      VC4_MASK(23, 8)
  94# define DSI_TXPKT1H_BC_PARAM_SHIFT     8
  95# define DSI_TXPKT1H_BC_DT_MASK         VC4_MASK(7, 0)
  96# define DSI_TXPKT1H_BC_DT_SHIFT        0
  97
  98#define DSI0_RXPKT1H            0x0c /* AKA RX1_PKTH */
  99#define DSI1_RXPKT1H            0x14
 100# define DSI_RXPKT1H_CRC_ERR            BIT(31)
 101# define DSI_RXPKT1H_DET_ERR            BIT(30)
 102# define DSI_RXPKT1H_ECC_ERR            BIT(29)
 103# define DSI_RXPKT1H_COR_ERR            BIT(28)
 104# define DSI_RXPKT1H_INCOMP_PKT         BIT(25)
 105# define DSI_RXPKT1H_PKT_TYPE_LONG      BIT(24)
 106/* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */
 107# define DSI_RXPKT1H_BC_PARAM_MASK      VC4_MASK(23, 8)
 108# define DSI_RXPKT1H_BC_PARAM_SHIFT     8
 109/* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */
 110# define DSI_RXPKT1H_SHORT_1_MASK       VC4_MASK(23, 16)
 111# define DSI_RXPKT1H_SHORT_1_SHIFT      16
 112# define DSI_RXPKT1H_SHORT_0_MASK       VC4_MASK(15, 8)
 113# define DSI_RXPKT1H_SHORT_0_SHIFT      8
 114# define DSI_RXPKT1H_DT_LP_CMD_MASK     VC4_MASK(7, 0)
 115# define DSI_RXPKT1H_DT_LP_CMD_SHIFT    0
 116
 117#define DSI0_RXPKT2H            0x10 /* AKA RX2_PKTH */
 118#define DSI1_RXPKT2H            0x18
 119# define DSI_RXPKT1H_DET_ERR            BIT(30)
 120# define DSI_RXPKT1H_ECC_ERR            BIT(29)
 121# define DSI_RXPKT1H_COR_ERR            BIT(28)
 122# define DSI_RXPKT1H_INCOMP_PKT         BIT(25)
 123# define DSI_RXPKT1H_BC_PARAM_MASK      VC4_MASK(23, 8)
 124# define DSI_RXPKT1H_BC_PARAM_SHIFT     8
 125# define DSI_RXPKT1H_DT_MASK            VC4_MASK(7, 0)
 126# define DSI_RXPKT1H_DT_SHIFT           0
 127
 128#define DSI0_TXPKT_CMD_FIFO     0x14 /* AKA CMD_DATAF */
 129#define DSI1_TXPKT_CMD_FIFO     0x1c
 130
 131#define DSI0_DISP0_CTRL         0x18
 132# define DSI_DISP0_PIX_CLK_DIV_MASK     VC4_MASK(21, 13)
 133# define DSI_DISP0_PIX_CLK_DIV_SHIFT    13
 134# define DSI_DISP0_LP_STOP_CTRL_MASK    VC4_MASK(12, 11)
 135# define DSI_DISP0_LP_STOP_CTRL_SHIFT   11
 136# define DSI_DISP0_LP_STOP_DISABLE      0
 137# define DSI_DISP0_LP_STOP_PERLINE      1
 138# define DSI_DISP0_LP_STOP_PERFRAME     2
 139
 140/* Transmit RGB pixels and null packets only during HACTIVE, instead
 141 * of going to LP-STOP.
 142 */
 143# define DSI_DISP_HACTIVE_NULL          BIT(10)
 144/* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */
 145# define DSI_DISP_VBLP_CTRL             BIT(9)
 146/* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */
 147# define DSI_DISP_HFP_CTRL              BIT(8)
 148/* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */
 149# define DSI_DISP_HBP_CTRL              BIT(7)
 150# define DSI_DISP0_CHANNEL_MASK         VC4_MASK(6, 5)
 151# define DSI_DISP0_CHANNEL_SHIFT        5
 152/* Enables end events for HSYNC/VSYNC, not just start events. */
 153# define DSI_DISP0_ST_END               BIT(4)
 154# define DSI_DISP0_PFORMAT_MASK         VC4_MASK(3, 2)
 155# define DSI_DISP0_PFORMAT_SHIFT        2
 156# define DSI_PFORMAT_RGB565             0
 157# define DSI_PFORMAT_RGB666_PACKED      1
 158# define DSI_PFORMAT_RGB666             2
 159# define DSI_PFORMAT_RGB888             3
 160/* Default is VIDEO mode. */
 161# define DSI_DISP0_COMMAND_MODE         BIT(1)
 162# define DSI_DISP0_ENABLE               BIT(0)
 163
 164#define DSI0_DISP1_CTRL         0x1c
 165#define DSI1_DISP1_CTRL         0x2c
 166/* Format of the data written to TXPKT_PIX_FIFO. */
 167# define DSI_DISP1_PFORMAT_MASK         VC4_MASK(2, 1)
 168# define DSI_DISP1_PFORMAT_SHIFT        1
 169# define DSI_DISP1_PFORMAT_16BIT        0
 170# define DSI_DISP1_PFORMAT_24BIT        1
 171# define DSI_DISP1_PFORMAT_32BIT_LE     2
 172# define DSI_DISP1_PFORMAT_32BIT_BE     3
 173
 174/* DISP1 is always command mode. */
 175# define DSI_DISP1_ENABLE               BIT(0)
 176
 177#define DSI0_TXPKT_PIX_FIFO             0x20 /* AKA PIX_FIFO */
 178
 179#define DSI0_INT_STAT           0x24
 180#define DSI0_INT_EN             0x28
 181# define DSI1_INT_PHY_D3_ULPS           BIT(30)
 182# define DSI1_INT_PHY_D3_STOP           BIT(29)
 183# define DSI1_INT_PHY_D2_ULPS           BIT(28)
 184# define DSI1_INT_PHY_D2_STOP           BIT(27)
 185# define DSI1_INT_PHY_D1_ULPS           BIT(26)
 186# define DSI1_INT_PHY_D1_STOP           BIT(25)
 187# define DSI1_INT_PHY_D0_ULPS           BIT(24)
 188# define DSI1_INT_PHY_D0_STOP           BIT(23)
 189# define DSI1_INT_FIFO_ERR              BIT(22)
 190# define DSI1_INT_PHY_DIR_RTF           BIT(21)
 191# define DSI1_INT_PHY_RXLPDT            BIT(20)
 192# define DSI1_INT_PHY_RXTRIG            BIT(19)
 193# define DSI1_INT_PHY_D0_LPDT           BIT(18)
 194# define DSI1_INT_PHY_DIR_FTR           BIT(17)
 195
 196/* Signaled when the clock lane enters the given state. */
 197# define DSI1_INT_PHY_CLOCK_ULPS        BIT(16)
 198# define DSI1_INT_PHY_CLOCK_HS          BIT(15)
 199# define DSI1_INT_PHY_CLOCK_STOP        BIT(14)
 200
 201/* Signaled on timeouts */
 202# define DSI1_INT_PR_TO                 BIT(13)
 203# define DSI1_INT_TA_TO                 BIT(12)
 204# define DSI1_INT_LPRX_TO               BIT(11)
 205# define DSI1_INT_HSTX_TO               BIT(10)
 206
 207/* Contention on a line when trying to drive the line low */
 208# define DSI1_INT_ERR_CONT_LP1          BIT(9)
 209# define DSI1_INT_ERR_CONT_LP0          BIT(8)
 210
 211/* Control error: incorrect line state sequence on data lane 0. */
 212# define DSI1_INT_ERR_CONTROL           BIT(7)
 213/* LPDT synchronization error (bits received not a multiple of 8. */
 214
 215# define DSI1_INT_ERR_SYNC_ESC          BIT(6)
 216/* Signaled after receiving an error packet from the display in
 217 * response to a read.
 218 */
 219# define DSI1_INT_RXPKT2                BIT(5)
 220/* Signaled after receiving a packet.  The header and optional short
 221 * response will be in RXPKT1H, and a long response will be in the
 222 * RXPKT_FIFO.
 223 */
 224# define DSI1_INT_RXPKT1                BIT(4)
 225# define DSI1_INT_TXPKT2_DONE           BIT(3)
 226# define DSI1_INT_TXPKT2_END            BIT(2)
 227/* Signaled after all repeats of TXPKT1 are transferred. */
 228# define DSI1_INT_TXPKT1_DONE           BIT(1)
 229/* Signaled after each TXPKT1 repeat is scheduled. */
 230# define DSI1_INT_TXPKT1_END            BIT(0)
 231
 232#define DSI1_INTERRUPTS_ALWAYS_ENABLED  (DSI1_INT_ERR_SYNC_ESC | \
 233                                         DSI1_INT_ERR_CONTROL |  \
 234                                         DSI1_INT_ERR_CONT_LP0 | \
 235                                         DSI1_INT_ERR_CONT_LP1 | \
 236                                         DSI1_INT_HSTX_TO |      \
 237                                         DSI1_INT_LPRX_TO |      \
 238                                         DSI1_INT_TA_TO |        \
 239                                         DSI1_INT_PR_TO)
 240
 241#define DSI0_STAT               0x2c
 242#define DSI0_HSTX_TO_CNT        0x30
 243#define DSI0_LPRX_TO_CNT        0x34
 244#define DSI0_TA_TO_CNT          0x38
 245#define DSI0_PR_TO_CNT          0x3c
 246#define DSI0_PHYC               0x40
 247# define DSI1_PHYC_ESC_CLK_LPDT_MASK    VC4_MASK(25, 20)
 248# define DSI1_PHYC_ESC_CLK_LPDT_SHIFT   20
 249# define DSI1_PHYC_HS_CLK_CONTINUOUS    BIT(18)
 250# define DSI0_PHYC_ESC_CLK_LPDT_MASK    VC4_MASK(17, 12)
 251# define DSI0_PHYC_ESC_CLK_LPDT_SHIFT   12
 252# define DSI1_PHYC_CLANE_ULPS           BIT(17)
 253# define DSI1_PHYC_CLANE_ENABLE         BIT(16)
 254# define DSI_PHYC_DLANE3_ULPS           BIT(13)
 255# define DSI_PHYC_DLANE3_ENABLE         BIT(12)
 256# define DSI0_PHYC_HS_CLK_CONTINUOUS    BIT(10)
 257# define DSI0_PHYC_CLANE_ULPS           BIT(9)
 258# define DSI_PHYC_DLANE2_ULPS           BIT(9)
 259# define DSI0_PHYC_CLANE_ENABLE         BIT(8)
 260# define DSI_PHYC_DLANE2_ENABLE         BIT(8)
 261# define DSI_PHYC_DLANE1_ULPS           BIT(5)
 262# define DSI_PHYC_DLANE1_ENABLE         BIT(4)
 263# define DSI_PHYC_DLANE0_FORCE_STOP     BIT(2)
 264# define DSI_PHYC_DLANE0_ULPS           BIT(1)
 265# define DSI_PHYC_DLANE0_ENABLE         BIT(0)
 266
 267#define DSI0_HS_CLT0            0x44
 268#define DSI0_HS_CLT1            0x48
 269#define DSI0_HS_CLT2            0x4c
 270#define DSI0_HS_DLT3            0x50
 271#define DSI0_HS_DLT4            0x54
 272#define DSI0_HS_DLT5            0x58
 273#define DSI0_HS_DLT6            0x5c
 274#define DSI0_HS_DLT7            0x60
 275
 276#define DSI0_PHY_AFEC0          0x64
 277# define DSI0_PHY_AFEC0_DDR2CLK_EN              BIT(26)
 278# define DSI0_PHY_AFEC0_DDRCLK_EN               BIT(25)
 279# define DSI0_PHY_AFEC0_LATCH_ULPS              BIT(24)
 280# define DSI1_PHY_AFEC0_IDR_DLANE3_MASK         VC4_MASK(31, 29)
 281# define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT        29
 282# define DSI1_PHY_AFEC0_IDR_DLANE2_MASK         VC4_MASK(28, 26)
 283# define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT        26
 284# define DSI1_PHY_AFEC0_IDR_DLANE1_MASK         VC4_MASK(27, 23)
 285# define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT        23
 286# define DSI1_PHY_AFEC0_IDR_DLANE0_MASK         VC4_MASK(22, 20)
 287# define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT        20
 288# define DSI1_PHY_AFEC0_IDR_CLANE_MASK          VC4_MASK(19, 17)
 289# define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT         17
 290# define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK       VC4_MASK(23, 20)
 291# define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT      20
 292# define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK       VC4_MASK(19, 16)
 293# define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT      16
 294# define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK        VC4_MASK(15, 12)
 295# define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT       12
 296# define DSI1_PHY_AFEC0_DDR2CLK_EN              BIT(16)
 297# define DSI1_PHY_AFEC0_DDRCLK_EN               BIT(15)
 298# define DSI1_PHY_AFEC0_LATCH_ULPS              BIT(14)
 299# define DSI1_PHY_AFEC0_RESET                   BIT(13)
 300# define DSI1_PHY_AFEC0_PD                      BIT(12)
 301# define DSI0_PHY_AFEC0_RESET                   BIT(11)
 302# define DSI1_PHY_AFEC0_PD_BG                   BIT(11)
 303# define DSI0_PHY_AFEC0_PD                      BIT(10)
 304# define DSI1_PHY_AFEC0_PD_DLANE3               BIT(10)
 305# define DSI0_PHY_AFEC0_PD_BG                   BIT(9)
 306# define DSI1_PHY_AFEC0_PD_DLANE2               BIT(9)
 307# define DSI0_PHY_AFEC0_PD_DLANE1               BIT(8)
 308# define DSI1_PHY_AFEC0_PD_DLANE1               BIT(8)
 309# define DSI_PHY_AFEC0_PTATADJ_MASK             VC4_MASK(7, 4)
 310# define DSI_PHY_AFEC0_PTATADJ_SHIFT            4
 311# define DSI_PHY_AFEC0_CTATADJ_MASK             VC4_MASK(3, 0)
 312# define DSI_PHY_AFEC0_CTATADJ_SHIFT            0
 313
 314#define DSI0_PHY_AFEC1          0x68
 315# define DSI0_PHY_AFEC1_IDR_DLANE1_MASK         VC4_MASK(10, 8)
 316# define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT        8
 317# define DSI0_PHY_AFEC1_IDR_DLANE0_MASK         VC4_MASK(6, 4)
 318# define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT        4
 319# define DSI0_PHY_AFEC1_IDR_CLANE_MASK          VC4_MASK(2, 0)
 320# define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT         0
 321
 322#define DSI0_TST_SEL            0x6c
 323#define DSI0_TST_MON            0x70
 324#define DSI0_ID                 0x74
 325# define DSI_ID_VALUE           0x00647369
 326
 327#define DSI1_CTRL               0x00
 328# define DSI_CTRL_HS_CLKC_MASK          VC4_MASK(15, 14)
 329# define DSI_CTRL_HS_CLKC_SHIFT         14
 330# define DSI_CTRL_HS_CLKC_BYTE          0
 331# define DSI_CTRL_HS_CLKC_DDR2          1
 332# define DSI_CTRL_HS_CLKC_DDR           2
 333
 334# define DSI_CTRL_RX_LPDT_EOT_DISABLE   BIT(13)
 335# define DSI_CTRL_LPDT_EOT_DISABLE      BIT(12)
 336# define DSI_CTRL_HSDT_EOT_DISABLE      BIT(11)
 337# define DSI_CTRL_SOFT_RESET_CFG        BIT(10)
 338# define DSI_CTRL_CAL_BYTE              BIT(9)
 339# define DSI_CTRL_INV_BYTE              BIT(8)
 340# define DSI_CTRL_CLR_LDF               BIT(7)
 341# define DSI0_CTRL_CLR_PBCF             BIT(6)
 342# define DSI1_CTRL_CLR_RXF              BIT(6)
 343# define DSI0_CTRL_CLR_CPBCF            BIT(5)
 344# define DSI1_CTRL_CLR_PDF              BIT(5)
 345# define DSI0_CTRL_CLR_PDF              BIT(4)
 346# define DSI1_CTRL_CLR_CDF              BIT(4)
 347# define DSI0_CTRL_CLR_CDF              BIT(3)
 348# define DSI0_CTRL_CTRL2                BIT(2)
 349# define DSI1_CTRL_DISABLE_DISP_CRCC    BIT(2)
 350# define DSI0_CTRL_CTRL1                BIT(1)
 351# define DSI1_CTRL_DISABLE_DISP_ECCC    BIT(1)
 352# define DSI0_CTRL_CTRL0                BIT(0)
 353# define DSI1_CTRL_EN                   BIT(0)
 354# define DSI0_CTRL_RESET_FIFOS          (DSI_CTRL_CLR_LDF | \
 355                                         DSI0_CTRL_CLR_PBCF | \
 356                                         DSI0_CTRL_CLR_CPBCF |  \
 357                                         DSI0_CTRL_CLR_PDF | \
 358                                         DSI0_CTRL_CLR_CDF)
 359# define DSI1_CTRL_RESET_FIFOS          (DSI_CTRL_CLR_LDF | \
 360                                         DSI1_CTRL_CLR_RXF | \
 361                                         DSI1_CTRL_CLR_PDF | \
 362                                         DSI1_CTRL_CLR_CDF)
 363
 364#define DSI1_TXPKT2C            0x0c
 365#define DSI1_TXPKT2H            0x10
 366#define DSI1_TXPKT_PIX_FIFO     0x20
 367#define DSI1_RXPKT_FIFO         0x24
 368#define DSI1_DISP0_CTRL         0x28
 369#define DSI1_INT_STAT           0x30
 370#define DSI1_INT_EN             0x34
 371/* State reporting bits.  These mostly behave like INT_STAT, where
 372 * writing a 1 clears the bit.
 373 */
 374#define DSI1_STAT               0x38
 375# define DSI1_STAT_PHY_D3_ULPS          BIT(31)
 376# define DSI1_STAT_PHY_D3_STOP          BIT(30)
 377# define DSI1_STAT_PHY_D2_ULPS          BIT(29)
 378# define DSI1_STAT_PHY_D2_STOP          BIT(28)
 379# define DSI1_STAT_PHY_D1_ULPS          BIT(27)
 380# define DSI1_STAT_PHY_D1_STOP          BIT(26)
 381# define DSI1_STAT_PHY_D0_ULPS          BIT(25)
 382# define DSI1_STAT_PHY_D0_STOP          BIT(24)
 383# define DSI1_STAT_FIFO_ERR             BIT(23)
 384# define DSI1_STAT_PHY_RXLPDT           BIT(22)
 385# define DSI1_STAT_PHY_RXTRIG           BIT(21)
 386# define DSI1_STAT_PHY_D0_LPDT          BIT(20)
 387/* Set when in forward direction */
 388# define DSI1_STAT_PHY_DIR              BIT(19)
 389# define DSI1_STAT_PHY_CLOCK_ULPS       BIT(18)
 390# define DSI1_STAT_PHY_CLOCK_HS         BIT(17)
 391# define DSI1_STAT_PHY_CLOCK_STOP       BIT(16)
 392# define DSI1_STAT_PR_TO                BIT(15)
 393# define DSI1_STAT_TA_TO                BIT(14)
 394# define DSI1_STAT_LPRX_TO              BIT(13)
 395# define DSI1_STAT_HSTX_TO              BIT(12)
 396# define DSI1_STAT_ERR_CONT_LP1         BIT(11)
 397# define DSI1_STAT_ERR_CONT_LP0         BIT(10)
 398# define DSI1_STAT_ERR_CONTROL          BIT(9)
 399# define DSI1_STAT_ERR_SYNC_ESC         BIT(8)
 400# define DSI1_STAT_RXPKT2               BIT(7)
 401# define DSI1_STAT_RXPKT1               BIT(6)
 402# define DSI1_STAT_TXPKT2_BUSY          BIT(5)
 403# define DSI1_STAT_TXPKT2_DONE          BIT(4)
 404# define DSI1_STAT_TXPKT2_END           BIT(3)
 405# define DSI1_STAT_TXPKT1_BUSY          BIT(2)
 406# define DSI1_STAT_TXPKT1_DONE          BIT(1)
 407# define DSI1_STAT_TXPKT1_END           BIT(0)
 408
 409#define DSI1_HSTX_TO_CNT        0x3c
 410#define DSI1_LPRX_TO_CNT        0x40
 411#define DSI1_TA_TO_CNT          0x44
 412#define DSI1_PR_TO_CNT          0x48
 413#define DSI1_PHYC               0x4c
 414
 415#define DSI1_HS_CLT0            0x50
 416# define DSI_HS_CLT0_CZERO_MASK         VC4_MASK(26, 18)
 417# define DSI_HS_CLT0_CZERO_SHIFT        18
 418# define DSI_HS_CLT0_CPRE_MASK          VC4_MASK(17, 9)
 419# define DSI_HS_CLT0_CPRE_SHIFT         9
 420# define DSI_HS_CLT0_CPREP_MASK         VC4_MASK(8, 0)
 421# define DSI_HS_CLT0_CPREP_SHIFT        0
 422
 423#define DSI1_HS_CLT1            0x54
 424# define DSI_HS_CLT1_CTRAIL_MASK        VC4_MASK(17, 9)
 425# define DSI_HS_CLT1_CTRAIL_SHIFT       9
 426# define DSI_HS_CLT1_CPOST_MASK         VC4_MASK(8, 0)
 427# define DSI_HS_CLT1_CPOST_SHIFT        0
 428
 429#define DSI1_HS_CLT2            0x58
 430# define DSI_HS_CLT2_WUP_MASK           VC4_MASK(23, 0)
 431# define DSI_HS_CLT2_WUP_SHIFT          0
 432
 433#define DSI1_HS_DLT3            0x5c
 434# define DSI_HS_DLT3_EXIT_MASK          VC4_MASK(26, 18)
 435# define DSI_HS_DLT3_EXIT_SHIFT         18
 436# define DSI_HS_DLT3_ZERO_MASK          VC4_MASK(17, 9)
 437# define DSI_HS_DLT3_ZERO_SHIFT         9
 438# define DSI_HS_DLT3_PRE_MASK           VC4_MASK(8, 0)
 439# define DSI_HS_DLT3_PRE_SHIFT          0
 440
 441#define DSI1_HS_DLT4            0x60
 442# define DSI_HS_DLT4_ANLAT_MASK         VC4_MASK(22, 18)
 443# define DSI_HS_DLT4_ANLAT_SHIFT        18
 444# define DSI_HS_DLT4_TRAIL_MASK         VC4_MASK(17, 9)
 445# define DSI_HS_DLT4_TRAIL_SHIFT        9
 446# define DSI_HS_DLT4_LPX_MASK           VC4_MASK(8, 0)
 447# define DSI_HS_DLT4_LPX_SHIFT          0
 448
 449#define DSI1_HS_DLT5            0x64
 450# define DSI_HS_DLT5_INIT_MASK          VC4_MASK(23, 0)
 451# define DSI_HS_DLT5_INIT_SHIFT         0
 452
 453#define DSI1_HS_DLT6            0x68
 454# define DSI_HS_DLT6_TA_GET_MASK        VC4_MASK(31, 24)
 455# define DSI_HS_DLT6_TA_GET_SHIFT       24
 456# define DSI_HS_DLT6_TA_SURE_MASK       VC4_MASK(23, 16)
 457# define DSI_HS_DLT6_TA_SURE_SHIFT      16
 458# define DSI_HS_DLT6_TA_GO_MASK         VC4_MASK(15, 8)
 459# define DSI_HS_DLT6_TA_GO_SHIFT        8
 460# define DSI_HS_DLT6_LP_LPX_MASK        VC4_MASK(7, 0)
 461# define DSI_HS_DLT6_LP_LPX_SHIFT       0
 462
 463#define DSI1_HS_DLT7            0x6c
 464# define DSI_HS_DLT7_LP_WUP_MASK        VC4_MASK(23, 0)
 465# define DSI_HS_DLT7_LP_WUP_SHIFT       0
 466
 467#define DSI1_PHY_AFEC0          0x70
 468
 469#define DSI1_PHY_AFEC1          0x74
 470# define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK       VC4_MASK(19, 16)
 471# define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT      16
 472# define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK       VC4_MASK(15, 12)
 473# define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT      12
 474# define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK       VC4_MASK(11, 8)
 475# define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT      8
 476# define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK       VC4_MASK(7, 4)
 477# define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT      4
 478# define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK        VC4_MASK(3, 0)
 479# define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT       0
 480
 481#define DSI1_TST_SEL            0x78
 482#define DSI1_TST_MON            0x7c
 483#define DSI1_PHY_TST1           0x80
 484#define DSI1_PHY_TST2           0x84
 485#define DSI1_PHY_FIFO_STAT      0x88
 486/* Actually, all registers in the range that aren't otherwise claimed
 487 * will return the ID.
 488 */
 489#define DSI1_ID                 0x8c
 490
 491/* General DSI hardware state. */
 492struct vc4_dsi {
 493        struct platform_device *pdev;
 494
 495        struct mipi_dsi_host dsi_host;
 496        struct drm_encoder *encoder;
 497        struct drm_bridge *bridge;
 498
 499        void __iomem *regs;
 500
 501        struct dma_chan *reg_dma_chan;
 502        dma_addr_t reg_dma_paddr;
 503        u32 *reg_dma_mem;
 504        dma_addr_t reg_paddr;
 505
 506        /* Whether we're on bcm2835's DSI0 or DSI1. */
 507        int port;
 508
 509        /* DSI channel for the panel we're connected to. */
 510        u32 channel;
 511        u32 lanes;
 512        u32 format;
 513        u32 divider;
 514        u32 mode_flags;
 515
 516        /* Input clock from CPRMAN to the digital PHY, for the DSI
 517         * escape clock.
 518         */
 519        struct clk *escape_clock;
 520
 521        /* Input clock to the analog PHY, used to generate the DSI bit
 522         * clock.
 523         */
 524        struct clk *pll_phy_clock;
 525
 526        /* HS Clocks generated within the DSI analog PHY. */
 527        struct clk_fixed_factor phy_clocks[3];
 528
 529        struct clk_hw_onecell_data *clk_onecell;
 530
 531        /* Pixel clock output to the pixelvalve, generated from the HS
 532         * clock.
 533         */
 534        struct clk *pixel_clock;
 535
 536        struct completion xfer_completion;
 537        int xfer_result;
 538
 539        struct debugfs_regset32 regset;
 540};
 541
 542#define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host)
 543
 544static inline void
 545dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val)
 546{
 547        struct dma_chan *chan = dsi->reg_dma_chan;
 548        struct dma_async_tx_descriptor *tx;
 549        dma_cookie_t cookie;
 550        int ret;
 551
 552        /* DSI0 should be able to write normally. */
 553        if (!chan) {
 554                writel(val, dsi->regs + offset);
 555                return;
 556        }
 557
 558        *dsi->reg_dma_mem = val;
 559
 560        tx = chan->device->device_prep_dma_memcpy(chan,
 561                                                  dsi->reg_paddr + offset,
 562                                                  dsi->reg_dma_paddr,
 563                                                  4, 0);
 564        if (!tx) {
 565                DRM_ERROR("Failed to set up DMA register write\n");
 566                return;
 567        }
 568
 569        cookie = tx->tx_submit(tx);
 570        ret = dma_submit_error(cookie);
 571        if (ret) {
 572                DRM_ERROR("Failed to submit DMA: %d\n", ret);
 573                return;
 574        }
 575        ret = dma_sync_wait(chan, cookie);
 576        if (ret)
 577                DRM_ERROR("Failed to wait for DMA: %d\n", ret);
 578}
 579
 580#define DSI_READ(offset) readl(dsi->regs + (offset))
 581#define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val)
 582#define DSI_PORT_READ(offset) \
 583        DSI_READ(dsi->port ? DSI1_##offset : DSI0_##offset)
 584#define DSI_PORT_WRITE(offset, val) \
 585        DSI_WRITE(dsi->port ? DSI1_##offset : DSI0_##offset, val)
 586#define DSI_PORT_BIT(bit) (dsi->port ? DSI1_##bit : DSI0_##bit)
 587
 588/* VC4 DSI encoder KMS struct */
 589struct vc4_dsi_encoder {
 590        struct vc4_encoder base;
 591        struct vc4_dsi *dsi;
 592};
 593
 594static inline struct vc4_dsi_encoder *
 595to_vc4_dsi_encoder(struct drm_encoder *encoder)
 596{
 597        return container_of(encoder, struct vc4_dsi_encoder, base.base);
 598}
 599
 600static const struct debugfs_reg32 dsi0_regs[] = {
 601        VC4_REG32(DSI0_CTRL),
 602        VC4_REG32(DSI0_STAT),
 603        VC4_REG32(DSI0_HSTX_TO_CNT),
 604        VC4_REG32(DSI0_LPRX_TO_CNT),
 605        VC4_REG32(DSI0_TA_TO_CNT),
 606        VC4_REG32(DSI0_PR_TO_CNT),
 607        VC4_REG32(DSI0_DISP0_CTRL),
 608        VC4_REG32(DSI0_DISP1_CTRL),
 609        VC4_REG32(DSI0_INT_STAT),
 610        VC4_REG32(DSI0_INT_EN),
 611        VC4_REG32(DSI0_PHYC),
 612        VC4_REG32(DSI0_HS_CLT0),
 613        VC4_REG32(DSI0_HS_CLT1),
 614        VC4_REG32(DSI0_HS_CLT2),
 615        VC4_REG32(DSI0_HS_DLT3),
 616        VC4_REG32(DSI0_HS_DLT4),
 617        VC4_REG32(DSI0_HS_DLT5),
 618        VC4_REG32(DSI0_HS_DLT6),
 619        VC4_REG32(DSI0_HS_DLT7),
 620        VC4_REG32(DSI0_PHY_AFEC0),
 621        VC4_REG32(DSI0_PHY_AFEC1),
 622        VC4_REG32(DSI0_ID),
 623};
 624
 625static const struct debugfs_reg32 dsi1_regs[] = {
 626        VC4_REG32(DSI1_CTRL),
 627        VC4_REG32(DSI1_STAT),
 628        VC4_REG32(DSI1_HSTX_TO_CNT),
 629        VC4_REG32(DSI1_LPRX_TO_CNT),
 630        VC4_REG32(DSI1_TA_TO_CNT),
 631        VC4_REG32(DSI1_PR_TO_CNT),
 632        VC4_REG32(DSI1_DISP0_CTRL),
 633        VC4_REG32(DSI1_DISP1_CTRL),
 634        VC4_REG32(DSI1_INT_STAT),
 635        VC4_REG32(DSI1_INT_EN),
 636        VC4_REG32(DSI1_PHYC),
 637        VC4_REG32(DSI1_HS_CLT0),
 638        VC4_REG32(DSI1_HS_CLT1),
 639        VC4_REG32(DSI1_HS_CLT2),
 640        VC4_REG32(DSI1_HS_DLT3),
 641        VC4_REG32(DSI1_HS_DLT4),
 642        VC4_REG32(DSI1_HS_DLT5),
 643        VC4_REG32(DSI1_HS_DLT6),
 644        VC4_REG32(DSI1_HS_DLT7),
 645        VC4_REG32(DSI1_PHY_AFEC0),
 646        VC4_REG32(DSI1_PHY_AFEC1),
 647        VC4_REG32(DSI1_ID),
 648};
 649
 650static void vc4_dsi_encoder_destroy(struct drm_encoder *encoder)
 651{
 652        drm_encoder_cleanup(encoder);
 653}
 654
 655static const struct drm_encoder_funcs vc4_dsi_encoder_funcs = {
 656        .destroy = vc4_dsi_encoder_destroy,
 657};
 658
 659static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch)
 660{
 661        u32 afec0 = DSI_PORT_READ(PHY_AFEC0);
 662
 663        if (latch)
 664                afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
 665        else
 666                afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
 667
 668        DSI_PORT_WRITE(PHY_AFEC0, afec0);
 669}
 670
 671/* Enters or exits Ultra Low Power State. */
 672static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps)
 673{
 674        bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS;
 675        u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) |
 676                         DSI_PHYC_DLANE0_ULPS |
 677                         (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) |
 678                         (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) |
 679                         (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0));
 680        u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) |
 681                         DSI1_STAT_PHY_D0_ULPS |
 682                         (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) |
 683                         (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) |
 684                         (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0));
 685        u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) |
 686                         DSI1_STAT_PHY_D0_STOP |
 687                         (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) |
 688                         (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) |
 689                         (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0));
 690        int ret;
 691        bool ulps_currently_enabled = (DSI_PORT_READ(PHY_AFEC0) &
 692                                       DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS));
 693
 694        if (ulps == ulps_currently_enabled)
 695                return;
 696
 697        DSI_PORT_WRITE(STAT, stat_ulps);
 698        DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps);
 699        ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200);
 700        if (ret) {
 701                dev_warn(&dsi->pdev->dev,
 702                         "Timeout waiting for DSI ULPS entry: STAT 0x%08x",
 703                         DSI_PORT_READ(STAT));
 704                DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
 705                vc4_dsi_latch_ulps(dsi, false);
 706                return;
 707        }
 708
 709        /* The DSI module can't be disabled while the module is
 710         * generating ULPS state.  So, to be able to disable the
 711         * module, we have the AFE latch the ULPS state and continue
 712         * on to having the module enter STOP.
 713         */
 714        vc4_dsi_latch_ulps(dsi, ulps);
 715
 716        DSI_PORT_WRITE(STAT, stat_stop);
 717        DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
 718        ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200);
 719        if (ret) {
 720                dev_warn(&dsi->pdev->dev,
 721                         "Timeout waiting for DSI STOP entry: STAT 0x%08x",
 722                         DSI_PORT_READ(STAT));
 723                DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
 724                return;
 725        }
 726}
 727
 728static u32
 729dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui)
 730{
 731        /* The HS timings have to be rounded up to a multiple of 8
 732         * because we're using the byte clock.
 733         */
 734        return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8);
 735}
 736
 737/* ESC always runs at 100Mhz. */
 738#define ESC_TIME_NS 10
 739
 740static u32
 741dsi_esc_timing(u32 ns)
 742{
 743        return DIV_ROUND_UP(ns, ESC_TIME_NS);
 744}
 745
 746static void vc4_dsi_encoder_disable(struct drm_encoder *encoder)
 747{
 748        struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
 749        struct vc4_dsi *dsi = vc4_encoder->dsi;
 750        struct device *dev = &dsi->pdev->dev;
 751
 752        drm_bridge_disable(dsi->bridge);
 753        vc4_dsi_ulps(dsi, true);
 754        drm_bridge_post_disable(dsi->bridge);
 755
 756        clk_disable_unprepare(dsi->pll_phy_clock);
 757        clk_disable_unprepare(dsi->escape_clock);
 758        clk_disable_unprepare(dsi->pixel_clock);
 759
 760        pm_runtime_put(dev);
 761}
 762
 763/* Extends the mode's blank intervals to handle BCM2835's integer-only
 764 * DSI PLL divider.
 765 *
 766 * On 2835, PLLD is set to 2Ghz, and may not be changed by the display
 767 * driver since most peripherals are hanging off of the PLLD_PER
 768 * divider.  PLLD_DSI1, which drives our DSI bit clock (and therefore
 769 * the pixel clock), only has an integer divider off of DSI.
 770 *
 771 * To get our panel mode to refresh at the expected 60Hz, we need to
 772 * extend the horizontal blank time.  This means we drive a
 773 * higher-than-expected clock rate to the panel, but that's what the
 774 * firmware does too.
 775 */
 776static bool vc4_dsi_encoder_mode_fixup(struct drm_encoder *encoder,
 777                                       const struct drm_display_mode *mode,
 778                                       struct drm_display_mode *adjusted_mode)
 779{
 780        struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
 781        struct vc4_dsi *dsi = vc4_encoder->dsi;
 782        struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock);
 783        unsigned long parent_rate = clk_get_rate(phy_parent);
 784        unsigned long pixel_clock_hz = mode->clock * 1000;
 785        unsigned long pll_clock = pixel_clock_hz * dsi->divider;
 786        int divider;
 787
 788        /* Find what divider gets us a faster clock than the requested
 789         * pixel clock.
 790         */
 791        for (divider = 1; divider < 8; divider++) {
 792                if (parent_rate / divider < pll_clock) {
 793                        divider--;
 794                        break;
 795                }
 796        }
 797
 798        /* Now that we've picked a PLL divider, calculate back to its
 799         * pixel clock.
 800         */
 801        pll_clock = parent_rate / divider;
 802        pixel_clock_hz = pll_clock / dsi->divider;
 803
 804        adjusted_mode->clock = pixel_clock_hz / 1000;
 805
 806        /* Given the new pixel clock, adjust HFP to keep vrefresh the same. */
 807        adjusted_mode->htotal = adjusted_mode->clock * mode->htotal /
 808                                mode->clock;
 809        adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal;
 810        adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal;
 811
 812        return true;
 813}
 814
 815static void vc4_dsi_encoder_enable(struct drm_encoder *encoder)
 816{
 817        struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode;
 818        struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
 819        struct vc4_dsi *dsi = vc4_encoder->dsi;
 820        struct device *dev = &dsi->pdev->dev;
 821        bool debug_dump_regs = false;
 822        unsigned long hs_clock;
 823        u32 ui_ns;
 824        /* Minimum LP state duration in escape clock cycles. */
 825        u32 lpx = dsi_esc_timing(60);
 826        unsigned long pixel_clock_hz = mode->clock * 1000;
 827        unsigned long dsip_clock;
 828        unsigned long phy_clock;
 829        int ret;
 830
 831        ret = pm_runtime_get_sync(dev);
 832        if (ret) {
 833                DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->port);
 834                return;
 835        }
 836
 837        if (debug_dump_regs) {
 838                struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
 839                dev_info(&dsi->pdev->dev, "DSI regs before:\n");
 840                drm_print_regset32(&p, &dsi->regset);
 841        }
 842
 843        /* Round up the clk_set_rate() request slightly, since
 844         * PLLD_DSI1 is an integer divider and its rate selection will
 845         * never round up.
 846         */
 847        phy_clock = (pixel_clock_hz + 1000) * dsi->divider;
 848        ret = clk_set_rate(dsi->pll_phy_clock, phy_clock);
 849        if (ret) {
 850                dev_err(&dsi->pdev->dev,
 851                        "Failed to set phy clock to %ld: %d\n", phy_clock, ret);
 852        }
 853
 854        /* Reset the DSI and all its fifos. */
 855        DSI_PORT_WRITE(CTRL,
 856                       DSI_CTRL_SOFT_RESET_CFG |
 857                       DSI_PORT_BIT(CTRL_RESET_FIFOS));
 858
 859        DSI_PORT_WRITE(CTRL,
 860                       DSI_CTRL_HSDT_EOT_DISABLE |
 861                       DSI_CTRL_RX_LPDT_EOT_DISABLE);
 862
 863        /* Clear all stat bits so we see what has happened during enable. */
 864        DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT));
 865
 866        /* Set AFE CTR00/CTR1 to release powerdown of analog. */
 867        if (dsi->port == 0) {
 868                u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
 869                             VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ));
 870
 871                if (dsi->lanes < 2)
 872                        afec0 |= DSI0_PHY_AFEC0_PD_DLANE1;
 873
 874                if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO))
 875                        afec0 |= DSI0_PHY_AFEC0_RESET;
 876
 877                DSI_PORT_WRITE(PHY_AFEC0, afec0);
 878
 879                DSI_PORT_WRITE(PHY_AFEC1,
 880                               VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_DLANE1) |
 881                               VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_DLANE0) |
 882                               VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_CLANE));
 883        } else {
 884                u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
 885                             VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) |
 886                             VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) |
 887                             VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) |
 888                             VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) |
 889                             VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) |
 890                             VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3));
 891
 892                if (dsi->lanes < 4)
 893                        afec0 |= DSI1_PHY_AFEC0_PD_DLANE3;
 894                if (dsi->lanes < 3)
 895                        afec0 |= DSI1_PHY_AFEC0_PD_DLANE2;
 896                if (dsi->lanes < 2)
 897                        afec0 |= DSI1_PHY_AFEC0_PD_DLANE1;
 898
 899                afec0 |= DSI1_PHY_AFEC0_RESET;
 900
 901                DSI_PORT_WRITE(PHY_AFEC0, afec0);
 902
 903                DSI_PORT_WRITE(PHY_AFEC1, 0);
 904
 905                /* AFEC reset hold time */
 906                mdelay(1);
 907        }
 908
 909        ret = clk_prepare_enable(dsi->escape_clock);
 910        if (ret) {
 911                DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret);
 912                return;
 913        }
 914
 915        ret = clk_prepare_enable(dsi->pll_phy_clock);
 916        if (ret) {
 917                DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret);
 918                return;
 919        }
 920
 921        hs_clock = clk_get_rate(dsi->pll_phy_clock);
 922
 923        /* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate,
 924         * not the pixel clock rate.  DSIxP take from the APHY's byte,
 925         * DDR2, or DDR4 clock (we use byte) and feed into the PV at
 926         * that rate.  Separately, a value derived from PIX_CLK_DIV
 927         * and HS_CLKC is fed into the PV to divide down to the actual
 928         * pixel clock for pushing pixels into DSI.
 929         */
 930        dsip_clock = phy_clock / 8;
 931        ret = clk_set_rate(dsi->pixel_clock, dsip_clock);
 932        if (ret) {
 933                dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n",
 934                        dsip_clock, ret);
 935        }
 936
 937        ret = clk_prepare_enable(dsi->pixel_clock);
 938        if (ret) {
 939                DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret);
 940                return;
 941        }
 942
 943        /* How many ns one DSI unit interval is.  Note that the clock
 944         * is DDR, so there's an extra divide by 2.
 945         */
 946        ui_ns = DIV_ROUND_UP(500000000, hs_clock);
 947
 948        DSI_PORT_WRITE(HS_CLT0,
 949                       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0),
 950                                     DSI_HS_CLT0_CZERO) |
 951                       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8),
 952                                     DSI_HS_CLT0_CPRE) |
 953                       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0),
 954                                     DSI_HS_CLT0_CPREP));
 955
 956        DSI_PORT_WRITE(HS_CLT1,
 957                       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0),
 958                                     DSI_HS_CLT1_CTRAIL) |
 959                       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52),
 960                                     DSI_HS_CLT1_CPOST));
 961
 962        DSI_PORT_WRITE(HS_CLT2,
 963                       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0),
 964                                     DSI_HS_CLT2_WUP));
 965
 966        DSI_PORT_WRITE(HS_DLT3,
 967                       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0),
 968                                     DSI_HS_DLT3_EXIT) |
 969                       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6),
 970                                     DSI_HS_DLT3_ZERO) |
 971                       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4),
 972                                     DSI_HS_DLT3_PRE));
 973
 974        DSI_PORT_WRITE(HS_DLT4,
 975                       VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0),
 976                                     DSI_HS_DLT4_LPX) |
 977                       VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8),
 978                                         dsi_hs_timing(ui_ns, 60, 4)),
 979                                     DSI_HS_DLT4_TRAIL) |
 980                       VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT));
 981
 982        /* T_INIT is how long STOP is driven after power-up to
 983         * indicate to the slave (also coming out of power-up) that
 984         * master init is complete, and should be greater than the
 985         * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE.  The
 986         * D-PHY spec gives a minimum 100us for T_INIT,MASTER and
 987         * T_INIT,SLAVE, while allowing protocols on top of it to give
 988         * greater minimums.  The vc4 firmware uses an extremely
 989         * conservative 5ms, and we maintain that here.
 990         */
 991        DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns,
 992                                                            5 * 1000 * 1000, 0),
 993                                              DSI_HS_DLT5_INIT));
 994
 995        DSI_PORT_WRITE(HS_DLT6,
 996                       VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) |
 997                       VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) |
 998                       VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) |
 999                       VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX));
1000
1001        DSI_PORT_WRITE(HS_DLT7,
1002                       VC4_SET_FIELD(dsi_esc_timing(1000000),
1003                                     DSI_HS_DLT7_LP_WUP));
1004
1005        DSI_PORT_WRITE(PHYC,
1006                       DSI_PHYC_DLANE0_ENABLE |
1007                       (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) |
1008                       (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) |
1009                       (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) |
1010                       DSI_PORT_BIT(PHYC_CLANE_ENABLE) |
1011                       ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ?
1012                        0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) |
1013                       (dsi->port == 0 ?
1014                        VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) :
1015                        VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT)));
1016
1017        DSI_PORT_WRITE(CTRL,
1018                       DSI_PORT_READ(CTRL) |
1019                       DSI_CTRL_CAL_BYTE);
1020
1021        /* HS timeout in HS clock cycles: disabled. */
1022        DSI_PORT_WRITE(HSTX_TO_CNT, 0);
1023        /* LP receive timeout in HS clocks. */
1024        DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff);
1025        /* Bus turnaround timeout */
1026        DSI_PORT_WRITE(TA_TO_CNT, 100000);
1027        /* Display reset sequence timeout */
1028        DSI_PORT_WRITE(PR_TO_CNT, 100000);
1029
1030        /* Set up DISP1 for transferring long command payloads through
1031         * the pixfifo.
1032         */
1033        DSI_PORT_WRITE(DISP1_CTRL,
1034                       VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE,
1035                                     DSI_DISP1_PFORMAT) |
1036                       DSI_DISP1_ENABLE);
1037
1038        /* Ungate the block. */
1039        if (dsi->port == 0)
1040                DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0);
1041        else
1042                DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN);
1043
1044        /* Bring AFE out of reset. */
1045        if (dsi->port == 0) {
1046        } else {
1047                DSI_PORT_WRITE(PHY_AFEC0,
1048                               DSI_PORT_READ(PHY_AFEC0) &
1049                               ~DSI1_PHY_AFEC0_RESET);
1050        }
1051
1052        vc4_dsi_ulps(dsi, false);
1053
1054        drm_bridge_pre_enable(dsi->bridge);
1055
1056        if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
1057                DSI_PORT_WRITE(DISP0_CTRL,
1058                               VC4_SET_FIELD(dsi->divider,
1059                                             DSI_DISP0_PIX_CLK_DIV) |
1060                               VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) |
1061                               VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME,
1062                                             DSI_DISP0_LP_STOP_CTRL) |
1063                               DSI_DISP0_ST_END |
1064                               DSI_DISP0_ENABLE);
1065        } else {
1066                DSI_PORT_WRITE(DISP0_CTRL,
1067                               DSI_DISP0_COMMAND_MODE |
1068                               DSI_DISP0_ENABLE);
1069        }
1070
1071        drm_bridge_enable(dsi->bridge);
1072
1073        if (debug_dump_regs) {
1074                struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
1075                dev_info(&dsi->pdev->dev, "DSI regs after:\n");
1076                drm_print_regset32(&p, &dsi->regset);
1077        }
1078}
1079
1080static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host,
1081                                     const struct mipi_dsi_msg *msg)
1082{
1083        struct vc4_dsi *dsi = host_to_dsi(host);
1084        struct mipi_dsi_packet packet;
1085        u32 pkth = 0, pktc = 0;
1086        int i, ret;
1087        bool is_long = mipi_dsi_packet_format_is_long(msg->type);
1088        u32 cmd_fifo_len = 0, pix_fifo_len = 0;
1089
1090        mipi_dsi_create_packet(&packet, msg);
1091
1092        pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT);
1093        pkth |= VC4_SET_FIELD(packet.header[1] |
1094                              (packet.header[2] << 8),
1095                              DSI_TXPKT1H_BC_PARAM);
1096        if (is_long) {
1097                /* Divide data across the various FIFOs we have available.
1098                 * The command FIFO takes byte-oriented data, but is of
1099                 * limited size. The pixel FIFO (never actually used for
1100                 * pixel data in reality) is word oriented, and substantially
1101                 * larger. So, we use the pixel FIFO for most of the data,
1102                 * sending the residual bytes in the command FIFO at the start.
1103                 *
1104                 * With this arrangement, the command FIFO will never get full.
1105                 */
1106                if (packet.payload_length <= 16) {
1107                        cmd_fifo_len = packet.payload_length;
1108                        pix_fifo_len = 0;
1109                } else {
1110                        cmd_fifo_len = (packet.payload_length %
1111                                        DSI_PIX_FIFO_WIDTH);
1112                        pix_fifo_len = ((packet.payload_length - cmd_fifo_len) /
1113                                        DSI_PIX_FIFO_WIDTH);
1114                }
1115
1116                WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH);
1117
1118                pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO);
1119        }
1120
1121        if (msg->rx_len) {
1122                pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX,
1123                                      DSI_TXPKT1C_CMD_CTRL);
1124        } else {
1125                pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX,
1126                                      DSI_TXPKT1C_CMD_CTRL);
1127        }
1128
1129        for (i = 0; i < cmd_fifo_len; i++)
1130                DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]);
1131        for (i = 0; i < pix_fifo_len; i++) {
1132                const u8 *pix = packet.payload + cmd_fifo_len + i * 4;
1133
1134                DSI_PORT_WRITE(TXPKT_PIX_FIFO,
1135                               pix[0] |
1136                               pix[1] << 8 |
1137                               pix[2] << 16 |
1138                               pix[3] << 24);
1139        }
1140
1141        if (msg->flags & MIPI_DSI_MSG_USE_LPM)
1142                pktc |= DSI_TXPKT1C_CMD_MODE_LP;
1143        if (is_long)
1144                pktc |= DSI_TXPKT1C_CMD_TYPE_LONG;
1145
1146        /* Send one copy of the packet.  Larger repeats are used for pixel
1147         * data in command mode.
1148         */
1149        pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT);
1150
1151        pktc |= DSI_TXPKT1C_CMD_EN;
1152        if (pix_fifo_len) {
1153                pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY,
1154                                      DSI_TXPKT1C_DISPLAY_NO);
1155        } else {
1156                pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT,
1157                                      DSI_TXPKT1C_DISPLAY_NO);
1158        }
1159
1160        /* Enable the appropriate interrupt for the transfer completion. */
1161        dsi->xfer_result = 0;
1162        reinit_completion(&dsi->xfer_completion);
1163        DSI_PORT_WRITE(INT_STAT, DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF);
1164        if (msg->rx_len) {
1165                DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1166                                        DSI1_INT_PHY_DIR_RTF));
1167        } else {
1168                DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1169                                        DSI1_INT_TXPKT1_DONE));
1170        }
1171
1172        /* Send the packet. */
1173        DSI_PORT_WRITE(TXPKT1H, pkth);
1174        DSI_PORT_WRITE(TXPKT1C, pktc);
1175
1176        if (!wait_for_completion_timeout(&dsi->xfer_completion,
1177                                         msecs_to_jiffies(1000))) {
1178                dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout");
1179                dev_err(&dsi->pdev->dev, "instat: 0x%08x\n",
1180                        DSI_PORT_READ(INT_STAT));
1181                ret = -ETIMEDOUT;
1182        } else {
1183                ret = dsi->xfer_result;
1184        }
1185
1186        DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1187
1188        if (ret)
1189                goto reset_fifo_and_return;
1190
1191        if (ret == 0 && msg->rx_len) {
1192                u32 rxpkt1h = DSI_PORT_READ(RXPKT1H);
1193                u8 *msg_rx = msg->rx_buf;
1194
1195                if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) {
1196                        u32 rxlen = VC4_GET_FIELD(rxpkt1h,
1197                                                  DSI_RXPKT1H_BC_PARAM);
1198
1199                        if (rxlen != msg->rx_len) {
1200                                DRM_ERROR("DSI returned %db, expecting %db\n",
1201                                          rxlen, (int)msg->rx_len);
1202                                ret = -ENXIO;
1203                                goto reset_fifo_and_return;
1204                        }
1205
1206                        for (i = 0; i < msg->rx_len; i++)
1207                                msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO);
1208                } else {
1209                        /* FINISHME: Handle AWER */
1210
1211                        msg_rx[0] = VC4_GET_FIELD(rxpkt1h,
1212                                                  DSI_RXPKT1H_SHORT_0);
1213                        if (msg->rx_len > 1) {
1214                                msg_rx[1] = VC4_GET_FIELD(rxpkt1h,
1215                                                          DSI_RXPKT1H_SHORT_1);
1216                        }
1217                }
1218        }
1219
1220        return ret;
1221
1222reset_fifo_and_return:
1223        DRM_ERROR("DSI transfer failed, resetting: %d\n", ret);
1224
1225        DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN);
1226        udelay(1);
1227        DSI_PORT_WRITE(CTRL,
1228                       DSI_PORT_READ(CTRL) |
1229                       DSI_PORT_BIT(CTRL_RESET_FIFOS));
1230
1231        DSI_PORT_WRITE(TXPKT1C, 0);
1232        DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1233        return ret;
1234}
1235
1236static int vc4_dsi_host_attach(struct mipi_dsi_host *host,
1237                               struct mipi_dsi_device *device)
1238{
1239        struct vc4_dsi *dsi = host_to_dsi(host);
1240
1241        dsi->lanes = device->lanes;
1242        dsi->channel = device->channel;
1243        dsi->mode_flags = device->mode_flags;
1244
1245        switch (device->format) {
1246        case MIPI_DSI_FMT_RGB888:
1247                dsi->format = DSI_PFORMAT_RGB888;
1248                dsi->divider = 24 / dsi->lanes;
1249                break;
1250        case MIPI_DSI_FMT_RGB666:
1251                dsi->format = DSI_PFORMAT_RGB666;
1252                dsi->divider = 24 / dsi->lanes;
1253                break;
1254        case MIPI_DSI_FMT_RGB666_PACKED:
1255                dsi->format = DSI_PFORMAT_RGB666_PACKED;
1256                dsi->divider = 18 / dsi->lanes;
1257                break;
1258        case MIPI_DSI_FMT_RGB565:
1259                dsi->format = DSI_PFORMAT_RGB565;
1260                dsi->divider = 16 / dsi->lanes;
1261                break;
1262        default:
1263                dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n",
1264                        dsi->format);
1265                return 0;
1266        }
1267
1268        if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) {
1269                dev_err(&dsi->pdev->dev,
1270                        "Only VIDEO mode panels supported currently.\n");
1271                return 0;
1272        }
1273
1274        return 0;
1275}
1276
1277static int vc4_dsi_host_detach(struct mipi_dsi_host *host,
1278                               struct mipi_dsi_device *device)
1279{
1280        return 0;
1281}
1282
1283static const struct mipi_dsi_host_ops vc4_dsi_host_ops = {
1284        .attach = vc4_dsi_host_attach,
1285        .detach = vc4_dsi_host_detach,
1286        .transfer = vc4_dsi_host_transfer,
1287};
1288
1289static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = {
1290        .disable = vc4_dsi_encoder_disable,
1291        .enable = vc4_dsi_encoder_enable,
1292        .mode_fixup = vc4_dsi_encoder_mode_fixup,
1293};
1294
1295static const struct of_device_id vc4_dsi_dt_match[] = {
1296        { .compatible = "brcm,bcm2835-dsi1", (void *)(uintptr_t)1 },
1297        {}
1298};
1299
1300static void dsi_handle_error(struct vc4_dsi *dsi,
1301                             irqreturn_t *ret, u32 stat, u32 bit,
1302                             const char *type)
1303{
1304        if (!(stat & bit))
1305                return;
1306
1307        DRM_ERROR("DSI%d: %s error\n", dsi->port, type);
1308        *ret = IRQ_HANDLED;
1309}
1310
1311/*
1312 * Initial handler for port 1 where we need the reg_dma workaround.
1313 * The register DMA writes sleep, so we can't do it in the top half.
1314 * Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the
1315 * parent interrupt contrller until our interrupt thread is done.
1316 */
1317static irqreturn_t vc4_dsi_irq_defer_to_thread_handler(int irq, void *data)
1318{
1319        struct vc4_dsi *dsi = data;
1320        u32 stat = DSI_PORT_READ(INT_STAT);
1321
1322        if (!stat)
1323                return IRQ_NONE;
1324
1325        return IRQ_WAKE_THREAD;
1326}
1327
1328/*
1329 * Normal IRQ handler for port 0, or the threaded IRQ handler for port
1330 * 1 where we need the reg_dma workaround.
1331 */
1332static irqreturn_t vc4_dsi_irq_handler(int irq, void *data)
1333{
1334        struct vc4_dsi *dsi = data;
1335        u32 stat = DSI_PORT_READ(INT_STAT);
1336        irqreturn_t ret = IRQ_NONE;
1337
1338        DSI_PORT_WRITE(INT_STAT, stat);
1339
1340        dsi_handle_error(dsi, &ret, stat,
1341                         DSI1_INT_ERR_SYNC_ESC, "LPDT sync");
1342        dsi_handle_error(dsi, &ret, stat,
1343                         DSI1_INT_ERR_CONTROL, "data lane 0 sequence");
1344        dsi_handle_error(dsi, &ret, stat,
1345                         DSI1_INT_ERR_CONT_LP0, "LP0 contention");
1346        dsi_handle_error(dsi, &ret, stat,
1347                         DSI1_INT_ERR_CONT_LP1, "LP1 contention");
1348        dsi_handle_error(dsi, &ret, stat,
1349                         DSI1_INT_HSTX_TO, "HSTX timeout");
1350        dsi_handle_error(dsi, &ret, stat,
1351                         DSI1_INT_LPRX_TO, "LPRX timeout");
1352        dsi_handle_error(dsi, &ret, stat,
1353                         DSI1_INT_TA_TO, "turnaround timeout");
1354        dsi_handle_error(dsi, &ret, stat,
1355                         DSI1_INT_PR_TO, "peripheral reset timeout");
1356
1357        if (stat & (DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF)) {
1358                complete(&dsi->xfer_completion);
1359                ret = IRQ_HANDLED;
1360        } else if (stat & DSI1_INT_HSTX_TO) {
1361                complete(&dsi->xfer_completion);
1362                dsi->xfer_result = -ETIMEDOUT;
1363                ret = IRQ_HANDLED;
1364        }
1365
1366        return ret;
1367}
1368
1369/**
1370 * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog
1371 * PHY that are consumed by CPRMAN (clk-bcm2835.c).
1372 * @dsi: DSI encoder
1373 */
1374static int
1375vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi)
1376{
1377        struct device *dev = &dsi->pdev->dev;
1378        const char *parent_name = __clk_get_name(dsi->pll_phy_clock);
1379        static const struct {
1380                const char *dsi0_name, *dsi1_name;
1381                int div;
1382        } phy_clocks[] = {
1383                { "dsi0_byte", "dsi1_byte", 8 },
1384                { "dsi0_ddr2", "dsi1_ddr2", 4 },
1385                { "dsi0_ddr", "dsi1_ddr", 2 },
1386        };
1387        int i;
1388
1389        dsi->clk_onecell = devm_kzalloc(dev,
1390                                        sizeof(*dsi->clk_onecell) +
1391                                        ARRAY_SIZE(phy_clocks) *
1392                                        sizeof(struct clk_hw *),
1393                                        GFP_KERNEL);
1394        if (!dsi->clk_onecell)
1395                return -ENOMEM;
1396        dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks);
1397
1398        for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) {
1399                struct clk_fixed_factor *fix = &dsi->phy_clocks[i];
1400                struct clk_init_data init;
1401                int ret;
1402
1403                /* We just use core fixed factor clock ops for the PHY
1404                 * clocks.  The clocks are actually gated by the
1405                 * PHY_AFEC0_DDRCLK_EN bits, which we should be
1406                 * setting if we use the DDR/DDR2 clocks.  However,
1407                 * vc4_dsi_encoder_enable() is setting up both AFEC0,
1408                 * setting both our parent DSI PLL's rate and this
1409                 * clock's rate, so it knows if DDR/DDR2 are going to
1410                 * be used and could enable the gates itself.
1411                 */
1412                fix->mult = 1;
1413                fix->div = phy_clocks[i].div;
1414                fix->hw.init = &init;
1415
1416                memset(&init, 0, sizeof(init));
1417                init.parent_names = &parent_name;
1418                init.num_parents = 1;
1419                if (dsi->port == 1)
1420                        init.name = phy_clocks[i].dsi1_name;
1421                else
1422                        init.name = phy_clocks[i].dsi0_name;
1423                init.ops = &clk_fixed_factor_ops;
1424
1425                ret = devm_clk_hw_register(dev, &fix->hw);
1426                if (ret)
1427                        return ret;
1428
1429                dsi->clk_onecell->hws[i] = &fix->hw;
1430        }
1431
1432        return of_clk_add_hw_provider(dev->of_node,
1433                                      of_clk_hw_onecell_get,
1434                                      dsi->clk_onecell);
1435}
1436
1437static int vc4_dsi_bind(struct device *dev, struct device *master, void *data)
1438{
1439        struct platform_device *pdev = to_platform_device(dev);
1440        struct drm_device *drm = dev_get_drvdata(master);
1441        struct vc4_dev *vc4 = to_vc4_dev(drm);
1442        struct vc4_dsi *dsi = dev_get_drvdata(dev);
1443        struct vc4_dsi_encoder *vc4_dsi_encoder;
1444        struct drm_panel *panel;
1445        const struct of_device_id *match;
1446        dma_cap_mask_t dma_mask;
1447        int ret;
1448
1449        match = of_match_device(vc4_dsi_dt_match, dev);
1450        if (!match)
1451                return -ENODEV;
1452
1453        dsi->port = (uintptr_t)match->data;
1454
1455        vc4_dsi_encoder = devm_kzalloc(dev, sizeof(*vc4_dsi_encoder),
1456                                       GFP_KERNEL);
1457        if (!vc4_dsi_encoder)
1458                return -ENOMEM;
1459        vc4_dsi_encoder->base.type = VC4_ENCODER_TYPE_DSI1;
1460        vc4_dsi_encoder->dsi = dsi;
1461        dsi->encoder = &vc4_dsi_encoder->base.base;
1462
1463        dsi->regs = vc4_ioremap_regs(pdev, 0);
1464        if (IS_ERR(dsi->regs))
1465                return PTR_ERR(dsi->regs);
1466
1467        dsi->regset.base = dsi->regs;
1468        if (dsi->port == 0) {
1469                dsi->regset.regs = dsi0_regs;
1470                dsi->regset.nregs = ARRAY_SIZE(dsi0_regs);
1471        } else {
1472                dsi->regset.regs = dsi1_regs;
1473                dsi->regset.nregs = ARRAY_SIZE(dsi1_regs);
1474        }
1475
1476        if (DSI_PORT_READ(ID) != DSI_ID_VALUE) {
1477                dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n",
1478                        DSI_PORT_READ(ID), DSI_ID_VALUE);
1479                return -ENODEV;
1480        }
1481
1482        /* DSI1 has a broken AXI slave that doesn't respond to writes
1483         * from the ARM.  It does handle writes from the DMA engine,
1484         * so set up a channel for talking to it.
1485         */
1486        if (dsi->port == 1) {
1487                dsi->reg_dma_mem = dma_alloc_coherent(dev, 4,
1488                                                      &dsi->reg_dma_paddr,
1489                                                      GFP_KERNEL);
1490                if (!dsi->reg_dma_mem) {
1491                        DRM_ERROR("Failed to get DMA memory\n");
1492                        return -ENOMEM;
1493                }
1494
1495                dma_cap_zero(dma_mask);
1496                dma_cap_set(DMA_MEMCPY, dma_mask);
1497                dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask);
1498                if (IS_ERR(dsi->reg_dma_chan)) {
1499                        ret = PTR_ERR(dsi->reg_dma_chan);
1500                        if (ret != -EPROBE_DEFER)
1501                                DRM_ERROR("Failed to get DMA channel: %d\n",
1502                                          ret);
1503                        return ret;
1504                }
1505
1506                /* Get the physical address of the device's registers.  The
1507                 * struct resource for the regs gives us the bus address
1508                 * instead.
1509                 */
1510                dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node,
1511                                                             0, NULL, NULL));
1512        }
1513
1514        init_completion(&dsi->xfer_completion);
1515        /* At startup enable error-reporting interrupts and nothing else. */
1516        DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1517        /* Clear any existing interrupt state. */
1518        DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT));
1519
1520        if (dsi->reg_dma_mem)
1521                ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0),
1522                                                vc4_dsi_irq_defer_to_thread_handler,
1523                                                vc4_dsi_irq_handler,
1524                                                IRQF_ONESHOT,
1525                                                "vc4 dsi", dsi);
1526        else
1527                ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1528                                       vc4_dsi_irq_handler, 0, "vc4 dsi", dsi);
1529        if (ret) {
1530                if (ret != -EPROBE_DEFER)
1531                        dev_err(dev, "Failed to get interrupt: %d\n", ret);
1532                return ret;
1533        }
1534
1535        dsi->escape_clock = devm_clk_get(dev, "escape");
1536        if (IS_ERR(dsi->escape_clock)) {
1537                ret = PTR_ERR(dsi->escape_clock);
1538                if (ret != -EPROBE_DEFER)
1539                        dev_err(dev, "Failed to get escape clock: %d\n", ret);
1540                return ret;
1541        }
1542
1543        dsi->pll_phy_clock = devm_clk_get(dev, "phy");
1544        if (IS_ERR(dsi->pll_phy_clock)) {
1545                ret = PTR_ERR(dsi->pll_phy_clock);
1546                if (ret != -EPROBE_DEFER)
1547                        dev_err(dev, "Failed to get phy clock: %d\n", ret);
1548                return ret;
1549        }
1550
1551        dsi->pixel_clock = devm_clk_get(dev, "pixel");
1552        if (IS_ERR(dsi->pixel_clock)) {
1553                ret = PTR_ERR(dsi->pixel_clock);
1554                if (ret != -EPROBE_DEFER)
1555                        dev_err(dev, "Failed to get pixel clock: %d\n", ret);
1556                return ret;
1557        }
1558
1559        ret = drm_of_find_panel_or_bridge(dev->of_node, 0, 0,
1560                                          &panel, &dsi->bridge);
1561        if (ret) {
1562                /* If the bridge or panel pointed by dev->of_node is not
1563                 * enabled, just return 0 here so that we don't prevent the DRM
1564                 * dev from being registered. Of course that means the DSI
1565                 * encoder won't be exposed, but that's not a problem since
1566                 * nothing is connected to it.
1567                 */
1568                if (ret == -ENODEV)
1569                        return 0;
1570
1571                return ret;
1572        }
1573
1574        if (panel) {
1575                dsi->bridge = devm_drm_panel_bridge_add(dev, panel,
1576                                                        DRM_MODE_CONNECTOR_DSI);
1577                if (IS_ERR(dsi->bridge))
1578                        return PTR_ERR(dsi->bridge);
1579        }
1580
1581        /* The esc clock rate is supposed to always be 100Mhz. */
1582        ret = clk_set_rate(dsi->escape_clock, 100 * 1000000);
1583        if (ret) {
1584                dev_err(dev, "Failed to set esc clock: %d\n", ret);
1585                return ret;
1586        }
1587
1588        ret = vc4_dsi_init_phy_clocks(dsi);
1589        if (ret)
1590                return ret;
1591
1592        if (dsi->port == 1)
1593                vc4->dsi1 = dsi;
1594
1595        drm_encoder_init(drm, dsi->encoder, &vc4_dsi_encoder_funcs,
1596                         DRM_MODE_ENCODER_DSI, NULL);
1597        drm_encoder_helper_add(dsi->encoder, &vc4_dsi_encoder_helper_funcs);
1598
1599        ret = drm_bridge_attach(dsi->encoder, dsi->bridge, NULL);
1600        if (ret) {
1601                dev_err(dev, "bridge attach failed: %d\n", ret);
1602                return ret;
1603        }
1604        /* Disable the atomic helper calls into the bridge.  We
1605         * manually call the bridge pre_enable / enable / etc. calls
1606         * from our driver, since we need to sequence them within the
1607         * encoder's enable/disable paths.
1608         */
1609        dsi->encoder->bridge = NULL;
1610
1611        if (dsi->port == 0)
1612                vc4_debugfs_add_regset32(drm, "dsi0_regs", &dsi->regset);
1613        else
1614                vc4_debugfs_add_regset32(drm, "dsi1_regs", &dsi->regset);
1615
1616        pm_runtime_enable(dev);
1617
1618        return 0;
1619}
1620
1621static void vc4_dsi_unbind(struct device *dev, struct device *master,
1622                           void *data)
1623{
1624        struct drm_device *drm = dev_get_drvdata(master);
1625        struct vc4_dev *vc4 = to_vc4_dev(drm);
1626        struct vc4_dsi *dsi = dev_get_drvdata(dev);
1627
1628        if (dsi->bridge)
1629                pm_runtime_disable(dev);
1630
1631        vc4_dsi_encoder_destroy(dsi->encoder);
1632
1633        if (dsi->port == 1)
1634                vc4->dsi1 = NULL;
1635}
1636
1637static const struct component_ops vc4_dsi_ops = {
1638        .bind   = vc4_dsi_bind,
1639        .unbind = vc4_dsi_unbind,
1640};
1641
1642static int vc4_dsi_dev_probe(struct platform_device *pdev)
1643{
1644        struct device *dev = &pdev->dev;
1645        struct vc4_dsi *dsi;
1646        int ret;
1647
1648        dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
1649        if (!dsi)
1650                return -ENOMEM;
1651        dev_set_drvdata(dev, dsi);
1652
1653        dsi->pdev = pdev;
1654
1655        /* Note, the initialization sequence for DSI and panels is
1656         * tricky.  The component bind above won't get past its
1657         * -EPROBE_DEFER until the panel/bridge probes.  The
1658         * panel/bridge will return -EPROBE_DEFER until it has a
1659         * mipi_dsi_host to register its device to.  So, we register
1660         * the host during pdev probe time, so vc4 as a whole can then
1661         * -EPROBE_DEFER its component bind process until the panel
1662         * successfully attaches.
1663         */
1664        dsi->dsi_host.ops = &vc4_dsi_host_ops;
1665        dsi->dsi_host.dev = dev;
1666        mipi_dsi_host_register(&dsi->dsi_host);
1667
1668        ret = component_add(&pdev->dev, &vc4_dsi_ops);
1669        if (ret) {
1670                mipi_dsi_host_unregister(&dsi->dsi_host);
1671                return ret;
1672        }
1673
1674        return 0;
1675}
1676
1677static int vc4_dsi_dev_remove(struct platform_device *pdev)
1678{
1679        struct device *dev = &pdev->dev;
1680        struct vc4_dsi *dsi = dev_get_drvdata(dev);
1681
1682        component_del(&pdev->dev, &vc4_dsi_ops);
1683        mipi_dsi_host_unregister(&dsi->dsi_host);
1684
1685        return 0;
1686}
1687
1688struct platform_driver vc4_dsi_driver = {
1689        .probe = vc4_dsi_dev_probe,
1690        .remove = vc4_dsi_dev_remove,
1691        .driver = {
1692                .name = "vc4_dsi",
1693                .of_match_table = vc4_dsi_dt_match,
1694        },
1695};
1696