linux/drivers/hid/hid-core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  HID support for Linux
   4 *
   5 *  Copyright (c) 1999 Andreas Gal
   6 *  Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
   7 *  Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
   8 *  Copyright (c) 2006-2012 Jiri Kosina
   9 */
  10
  11/*
  12 */
  13
  14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  15
  16#include <linux/module.h>
  17#include <linux/slab.h>
  18#include <linux/init.h>
  19#include <linux/kernel.h>
  20#include <linux/list.h>
  21#include <linux/mm.h>
  22#include <linux/spinlock.h>
  23#include <asm/unaligned.h>
  24#include <asm/byteorder.h>
  25#include <linux/input.h>
  26#include <linux/wait.h>
  27#include <linux/vmalloc.h>
  28#include <linux/sched.h>
  29#include <linux/semaphore.h>
  30
  31#include <linux/hid.h>
  32#include <linux/hiddev.h>
  33#include <linux/hid-debug.h>
  34#include <linux/hidraw.h>
  35
  36#include "hid-ids.h"
  37
  38/*
  39 * Version Information
  40 */
  41
  42#define DRIVER_DESC "HID core driver"
  43
  44int hid_debug = 0;
  45module_param_named(debug, hid_debug, int, 0600);
  46MODULE_PARM_DESC(debug, "toggle HID debugging messages");
  47EXPORT_SYMBOL_GPL(hid_debug);
  48
  49static int hid_ignore_special_drivers = 0;
  50module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
  51MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
  52
  53/*
  54 * Register a new report for a device.
  55 */
  56
  57struct hid_report *hid_register_report(struct hid_device *device,
  58                                       unsigned int type, unsigned int id,
  59                                       unsigned int application)
  60{
  61        struct hid_report_enum *report_enum = device->report_enum + type;
  62        struct hid_report *report;
  63
  64        if (id >= HID_MAX_IDS)
  65                return NULL;
  66        if (report_enum->report_id_hash[id])
  67                return report_enum->report_id_hash[id];
  68
  69        report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
  70        if (!report)
  71                return NULL;
  72
  73        if (id != 0)
  74                report_enum->numbered = 1;
  75
  76        report->id = id;
  77        report->type = type;
  78        report->size = 0;
  79        report->device = device;
  80        report->application = application;
  81        report_enum->report_id_hash[id] = report;
  82
  83        list_add_tail(&report->list, &report_enum->report_list);
  84
  85        return report;
  86}
  87EXPORT_SYMBOL_GPL(hid_register_report);
  88
  89/*
  90 * Register a new field for this report.
  91 */
  92
  93static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
  94{
  95        struct hid_field *field;
  96
  97        if (report->maxfield == HID_MAX_FIELDS) {
  98                hid_err(report->device, "too many fields in report\n");
  99                return NULL;
 100        }
 101
 102        field = kzalloc((sizeof(struct hid_field) +
 103                         usages * sizeof(struct hid_usage) +
 104                         values * sizeof(unsigned)), GFP_KERNEL);
 105        if (!field)
 106                return NULL;
 107
 108        field->index = report->maxfield++;
 109        report->field[field->index] = field;
 110        field->usage = (struct hid_usage *)(field + 1);
 111        field->value = (s32 *)(field->usage + usages);
 112        field->report = report;
 113
 114        return field;
 115}
 116
 117/*
 118 * Open a collection. The type/usage is pushed on the stack.
 119 */
 120
 121static int open_collection(struct hid_parser *parser, unsigned type)
 122{
 123        struct hid_collection *collection;
 124        unsigned usage;
 125        int collection_index;
 126
 127        usage = parser->local.usage[0];
 128
 129        if (parser->collection_stack_ptr == parser->collection_stack_size) {
 130                unsigned int *collection_stack;
 131                unsigned int new_size = parser->collection_stack_size +
 132                                        HID_COLLECTION_STACK_SIZE;
 133
 134                collection_stack = krealloc(parser->collection_stack,
 135                                            new_size * sizeof(unsigned int),
 136                                            GFP_KERNEL);
 137                if (!collection_stack)
 138                        return -ENOMEM;
 139
 140                parser->collection_stack = collection_stack;
 141                parser->collection_stack_size = new_size;
 142        }
 143
 144        if (parser->device->maxcollection == parser->device->collection_size) {
 145                collection = kmalloc(
 146                                array3_size(sizeof(struct hid_collection),
 147                                            parser->device->collection_size,
 148                                            2),
 149                                GFP_KERNEL);
 150                if (collection == NULL) {
 151                        hid_err(parser->device, "failed to reallocate collection array\n");
 152                        return -ENOMEM;
 153                }
 154                memcpy(collection, parser->device->collection,
 155                        sizeof(struct hid_collection) *
 156                        parser->device->collection_size);
 157                memset(collection + parser->device->collection_size, 0,
 158                        sizeof(struct hid_collection) *
 159                        parser->device->collection_size);
 160                kfree(parser->device->collection);
 161                parser->device->collection = collection;
 162                parser->device->collection_size *= 2;
 163        }
 164
 165        parser->collection_stack[parser->collection_stack_ptr++] =
 166                parser->device->maxcollection;
 167
 168        collection_index = parser->device->maxcollection++;
 169        collection = parser->device->collection + collection_index;
 170        collection->type = type;
 171        collection->usage = usage;
 172        collection->level = parser->collection_stack_ptr - 1;
 173        collection->parent_idx = (collection->level == 0) ? -1 :
 174                parser->collection_stack[collection->level - 1];
 175
 176        if (type == HID_COLLECTION_APPLICATION)
 177                parser->device->maxapplication++;
 178
 179        return 0;
 180}
 181
 182/*
 183 * Close a collection.
 184 */
 185
 186static int close_collection(struct hid_parser *parser)
 187{
 188        if (!parser->collection_stack_ptr) {
 189                hid_err(parser->device, "collection stack underflow\n");
 190                return -EINVAL;
 191        }
 192        parser->collection_stack_ptr--;
 193        return 0;
 194}
 195
 196/*
 197 * Climb up the stack, search for the specified collection type
 198 * and return the usage.
 199 */
 200
 201static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
 202{
 203        struct hid_collection *collection = parser->device->collection;
 204        int n;
 205
 206        for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
 207                unsigned index = parser->collection_stack[n];
 208                if (collection[index].type == type)
 209                        return collection[index].usage;
 210        }
 211        return 0; /* we know nothing about this usage type */
 212}
 213
 214/*
 215 * Add a usage to the temporary parser table.
 216 */
 217
 218static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size)
 219{
 220        if (parser->local.usage_index >= HID_MAX_USAGES) {
 221                hid_err(parser->device, "usage index exceeded\n");
 222                return -1;
 223        }
 224        parser->local.usage[parser->local.usage_index] = usage;
 225        parser->local.usage_size[parser->local.usage_index] = size;
 226        parser->local.collection_index[parser->local.usage_index] =
 227                parser->collection_stack_ptr ?
 228                parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
 229        parser->local.usage_index++;
 230        return 0;
 231}
 232
 233/*
 234 * Register a new field for this report.
 235 */
 236
 237static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
 238{
 239        struct hid_report *report;
 240        struct hid_field *field;
 241        unsigned int usages;
 242        unsigned int offset;
 243        unsigned int i;
 244        unsigned int application;
 245
 246        application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
 247
 248        report = hid_register_report(parser->device, report_type,
 249                                     parser->global.report_id, application);
 250        if (!report) {
 251                hid_err(parser->device, "hid_register_report failed\n");
 252                return -1;
 253        }
 254
 255        /* Handle both signed and unsigned cases properly */
 256        if ((parser->global.logical_minimum < 0 &&
 257                parser->global.logical_maximum <
 258                parser->global.logical_minimum) ||
 259                (parser->global.logical_minimum >= 0 &&
 260                (__u32)parser->global.logical_maximum <
 261                (__u32)parser->global.logical_minimum)) {
 262                dbg_hid("logical range invalid 0x%x 0x%x\n",
 263                        parser->global.logical_minimum,
 264                        parser->global.logical_maximum);
 265                return -1;
 266        }
 267
 268        offset = report->size;
 269        report->size += parser->global.report_size * parser->global.report_count;
 270
 271        if (!parser->local.usage_index) /* Ignore padding fields */
 272                return 0;
 273
 274        usages = max_t(unsigned, parser->local.usage_index,
 275                                 parser->global.report_count);
 276
 277        field = hid_register_field(report, usages, parser->global.report_count);
 278        if (!field)
 279                return 0;
 280
 281        field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
 282        field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
 283        field->application = application;
 284
 285        for (i = 0; i < usages; i++) {
 286                unsigned j = i;
 287                /* Duplicate the last usage we parsed if we have excess values */
 288                if (i >= parser->local.usage_index)
 289                        j = parser->local.usage_index - 1;
 290                field->usage[i].hid = parser->local.usage[j];
 291                field->usage[i].collection_index =
 292                        parser->local.collection_index[j];
 293                field->usage[i].usage_index = i;
 294                field->usage[i].resolution_multiplier = 1;
 295        }
 296
 297        field->maxusage = usages;
 298        field->flags = flags;
 299        field->report_offset = offset;
 300        field->report_type = report_type;
 301        field->report_size = parser->global.report_size;
 302        field->report_count = parser->global.report_count;
 303        field->logical_minimum = parser->global.logical_minimum;
 304        field->logical_maximum = parser->global.logical_maximum;
 305        field->physical_minimum = parser->global.physical_minimum;
 306        field->physical_maximum = parser->global.physical_maximum;
 307        field->unit_exponent = parser->global.unit_exponent;
 308        field->unit = parser->global.unit;
 309
 310        return 0;
 311}
 312
 313/*
 314 * Read data value from item.
 315 */
 316
 317static u32 item_udata(struct hid_item *item)
 318{
 319        switch (item->size) {
 320        case 1: return item->data.u8;
 321        case 2: return item->data.u16;
 322        case 4: return item->data.u32;
 323        }
 324        return 0;
 325}
 326
 327static s32 item_sdata(struct hid_item *item)
 328{
 329        switch (item->size) {
 330        case 1: return item->data.s8;
 331        case 2: return item->data.s16;
 332        case 4: return item->data.s32;
 333        }
 334        return 0;
 335}
 336
 337/*
 338 * Process a global item.
 339 */
 340
 341static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
 342{
 343        __s32 raw_value;
 344        switch (item->tag) {
 345        case HID_GLOBAL_ITEM_TAG_PUSH:
 346
 347                if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
 348                        hid_err(parser->device, "global environment stack overflow\n");
 349                        return -1;
 350                }
 351
 352                memcpy(parser->global_stack + parser->global_stack_ptr++,
 353                        &parser->global, sizeof(struct hid_global));
 354                return 0;
 355
 356        case HID_GLOBAL_ITEM_TAG_POP:
 357
 358                if (!parser->global_stack_ptr) {
 359                        hid_err(parser->device, "global environment stack underflow\n");
 360                        return -1;
 361                }
 362
 363                memcpy(&parser->global, parser->global_stack +
 364                        --parser->global_stack_ptr, sizeof(struct hid_global));
 365                return 0;
 366
 367        case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
 368                parser->global.usage_page = item_udata(item);
 369                return 0;
 370
 371        case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
 372                parser->global.logical_minimum = item_sdata(item);
 373                return 0;
 374
 375        case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
 376                if (parser->global.logical_minimum < 0)
 377                        parser->global.logical_maximum = item_sdata(item);
 378                else
 379                        parser->global.logical_maximum = item_udata(item);
 380                return 0;
 381
 382        case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
 383                parser->global.physical_minimum = item_sdata(item);
 384                return 0;
 385
 386        case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
 387                if (parser->global.physical_minimum < 0)
 388                        parser->global.physical_maximum = item_sdata(item);
 389                else
 390                        parser->global.physical_maximum = item_udata(item);
 391                return 0;
 392
 393        case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
 394                /* Many devices provide unit exponent as a two's complement
 395                 * nibble due to the common misunderstanding of HID
 396                 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
 397                 * both this and the standard encoding. */
 398                raw_value = item_sdata(item);
 399                if (!(raw_value & 0xfffffff0))
 400                        parser->global.unit_exponent = hid_snto32(raw_value, 4);
 401                else
 402                        parser->global.unit_exponent = raw_value;
 403                return 0;
 404
 405        case HID_GLOBAL_ITEM_TAG_UNIT:
 406                parser->global.unit = item_udata(item);
 407                return 0;
 408
 409        case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
 410                parser->global.report_size = item_udata(item);
 411                if (parser->global.report_size > 256) {
 412                        hid_err(parser->device, "invalid report_size %d\n",
 413                                        parser->global.report_size);
 414                        return -1;
 415                }
 416                return 0;
 417
 418        case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
 419                parser->global.report_count = item_udata(item);
 420                if (parser->global.report_count > HID_MAX_USAGES) {
 421                        hid_err(parser->device, "invalid report_count %d\n",
 422                                        parser->global.report_count);
 423                        return -1;
 424                }
 425                return 0;
 426
 427        case HID_GLOBAL_ITEM_TAG_REPORT_ID:
 428                parser->global.report_id = item_udata(item);
 429                if (parser->global.report_id == 0 ||
 430                    parser->global.report_id >= HID_MAX_IDS) {
 431                        hid_err(parser->device, "report_id %u is invalid\n",
 432                                parser->global.report_id);
 433                        return -1;
 434                }
 435                return 0;
 436
 437        default:
 438                hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
 439                return -1;
 440        }
 441}
 442
 443/*
 444 * Process a local item.
 445 */
 446
 447static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
 448{
 449        __u32 data;
 450        unsigned n;
 451        __u32 count;
 452
 453        data = item_udata(item);
 454
 455        switch (item->tag) {
 456        case HID_LOCAL_ITEM_TAG_DELIMITER:
 457
 458                if (data) {
 459                        /*
 460                         * We treat items before the first delimiter
 461                         * as global to all usage sets (branch 0).
 462                         * In the moment we process only these global
 463                         * items and the first delimiter set.
 464                         */
 465                        if (parser->local.delimiter_depth != 0) {
 466                                hid_err(parser->device, "nested delimiters\n");
 467                                return -1;
 468                        }
 469                        parser->local.delimiter_depth++;
 470                        parser->local.delimiter_branch++;
 471                } else {
 472                        if (parser->local.delimiter_depth < 1) {
 473                                hid_err(parser->device, "bogus close delimiter\n");
 474                                return -1;
 475                        }
 476                        parser->local.delimiter_depth--;
 477                }
 478                return 0;
 479
 480        case HID_LOCAL_ITEM_TAG_USAGE:
 481
 482                if (parser->local.delimiter_branch > 1) {
 483                        dbg_hid("alternative usage ignored\n");
 484                        return 0;
 485                }
 486
 487                return hid_add_usage(parser, data, item->size);
 488
 489        case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
 490
 491                if (parser->local.delimiter_branch > 1) {
 492                        dbg_hid("alternative usage ignored\n");
 493                        return 0;
 494                }
 495
 496                parser->local.usage_minimum = data;
 497                return 0;
 498
 499        case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
 500
 501                if (parser->local.delimiter_branch > 1) {
 502                        dbg_hid("alternative usage ignored\n");
 503                        return 0;
 504                }
 505
 506                count = data - parser->local.usage_minimum;
 507                if (count + parser->local.usage_index >= HID_MAX_USAGES) {
 508                        /*
 509                         * We do not warn if the name is not set, we are
 510                         * actually pre-scanning the device.
 511                         */
 512                        if (dev_name(&parser->device->dev))
 513                                hid_warn(parser->device,
 514                                         "ignoring exceeding usage max\n");
 515                        data = HID_MAX_USAGES - parser->local.usage_index +
 516                                parser->local.usage_minimum - 1;
 517                        if (data <= 0) {
 518                                hid_err(parser->device,
 519                                        "no more usage index available\n");
 520                                return -1;
 521                        }
 522                }
 523
 524                for (n = parser->local.usage_minimum; n <= data; n++)
 525                        if (hid_add_usage(parser, n, item->size)) {
 526                                dbg_hid("hid_add_usage failed\n");
 527                                return -1;
 528                        }
 529                return 0;
 530
 531        default:
 532
 533                dbg_hid("unknown local item tag 0x%x\n", item->tag);
 534                return 0;
 535        }
 536        return 0;
 537}
 538
 539/*
 540 * Concatenate Usage Pages into Usages where relevant:
 541 * As per specification, 6.2.2.8: "When the parser encounters a main item it
 542 * concatenates the last declared Usage Page with a Usage to form a complete
 543 * usage value."
 544 */
 545
 546static void hid_concatenate_usage_page(struct hid_parser *parser)
 547{
 548        int i;
 549
 550        for (i = 0; i < parser->local.usage_index; i++)
 551                if (parser->local.usage_size[i] <= 2)
 552                        parser->local.usage[i] += parser->global.usage_page << 16;
 553}
 554
 555/*
 556 * Process a main item.
 557 */
 558
 559static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
 560{
 561        __u32 data;
 562        int ret;
 563
 564        hid_concatenate_usage_page(parser);
 565
 566        data = item_udata(item);
 567
 568        switch (item->tag) {
 569        case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
 570                ret = open_collection(parser, data & 0xff);
 571                break;
 572        case HID_MAIN_ITEM_TAG_END_COLLECTION:
 573                ret = close_collection(parser);
 574                break;
 575        case HID_MAIN_ITEM_TAG_INPUT:
 576                ret = hid_add_field(parser, HID_INPUT_REPORT, data);
 577                break;
 578        case HID_MAIN_ITEM_TAG_OUTPUT:
 579                ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
 580                break;
 581        case HID_MAIN_ITEM_TAG_FEATURE:
 582                ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
 583                break;
 584        default:
 585                hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
 586                ret = 0;
 587        }
 588
 589        memset(&parser->local, 0, sizeof(parser->local));       /* Reset the local parser environment */
 590
 591        return ret;
 592}
 593
 594/*
 595 * Process a reserved item.
 596 */
 597
 598static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
 599{
 600        dbg_hid("reserved item type, tag 0x%x\n", item->tag);
 601        return 0;
 602}
 603
 604/*
 605 * Free a report and all registered fields. The field->usage and
 606 * field->value table's are allocated behind the field, so we need
 607 * only to free(field) itself.
 608 */
 609
 610static void hid_free_report(struct hid_report *report)
 611{
 612        unsigned n;
 613
 614        for (n = 0; n < report->maxfield; n++)
 615                kfree(report->field[n]);
 616        kfree(report);
 617}
 618
 619/*
 620 * Close report. This function returns the device
 621 * state to the point prior to hid_open_report().
 622 */
 623static void hid_close_report(struct hid_device *device)
 624{
 625        unsigned i, j;
 626
 627        for (i = 0; i < HID_REPORT_TYPES; i++) {
 628                struct hid_report_enum *report_enum = device->report_enum + i;
 629
 630                for (j = 0; j < HID_MAX_IDS; j++) {
 631                        struct hid_report *report = report_enum->report_id_hash[j];
 632                        if (report)
 633                                hid_free_report(report);
 634                }
 635                memset(report_enum, 0, sizeof(*report_enum));
 636                INIT_LIST_HEAD(&report_enum->report_list);
 637        }
 638
 639        kfree(device->rdesc);
 640        device->rdesc = NULL;
 641        device->rsize = 0;
 642
 643        kfree(device->collection);
 644        device->collection = NULL;
 645        device->collection_size = 0;
 646        device->maxcollection = 0;
 647        device->maxapplication = 0;
 648
 649        device->status &= ~HID_STAT_PARSED;
 650}
 651
 652/*
 653 * Free a device structure, all reports, and all fields.
 654 */
 655
 656static void hid_device_release(struct device *dev)
 657{
 658        struct hid_device *hid = to_hid_device(dev);
 659
 660        hid_close_report(hid);
 661        kfree(hid->dev_rdesc);
 662        kfree(hid);
 663}
 664
 665/*
 666 * Fetch a report description item from the data stream. We support long
 667 * items, though they are not used yet.
 668 */
 669
 670static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
 671{
 672        u8 b;
 673
 674        if ((end - start) <= 0)
 675                return NULL;
 676
 677        b = *start++;
 678
 679        item->type = (b >> 2) & 3;
 680        item->tag  = (b >> 4) & 15;
 681
 682        if (item->tag == HID_ITEM_TAG_LONG) {
 683
 684                item->format = HID_ITEM_FORMAT_LONG;
 685
 686                if ((end - start) < 2)
 687                        return NULL;
 688
 689                item->size = *start++;
 690                item->tag  = *start++;
 691
 692                if ((end - start) < item->size)
 693                        return NULL;
 694
 695                item->data.longdata = start;
 696                start += item->size;
 697                return start;
 698        }
 699
 700        item->format = HID_ITEM_FORMAT_SHORT;
 701        item->size = b & 3;
 702
 703        switch (item->size) {
 704        case 0:
 705                return start;
 706
 707        case 1:
 708                if ((end - start) < 1)
 709                        return NULL;
 710                item->data.u8 = *start++;
 711                return start;
 712
 713        case 2:
 714                if ((end - start) < 2)
 715                        return NULL;
 716                item->data.u16 = get_unaligned_le16(start);
 717                start = (__u8 *)((__le16 *)start + 1);
 718                return start;
 719
 720        case 3:
 721                item->size++;
 722                if ((end - start) < 4)
 723                        return NULL;
 724                item->data.u32 = get_unaligned_le32(start);
 725                start = (__u8 *)((__le32 *)start + 1);
 726                return start;
 727        }
 728
 729        return NULL;
 730}
 731
 732static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
 733{
 734        struct hid_device *hid = parser->device;
 735
 736        if (usage == HID_DG_CONTACTID)
 737                hid->group = HID_GROUP_MULTITOUCH;
 738}
 739
 740static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
 741{
 742        if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
 743            parser->global.report_size == 8)
 744                parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
 745}
 746
 747static void hid_scan_collection(struct hid_parser *parser, unsigned type)
 748{
 749        struct hid_device *hid = parser->device;
 750        int i;
 751
 752        if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
 753            type == HID_COLLECTION_PHYSICAL)
 754                hid->group = HID_GROUP_SENSOR_HUB;
 755
 756        if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
 757            hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
 758            hid->group == HID_GROUP_MULTITOUCH)
 759                hid->group = HID_GROUP_GENERIC;
 760
 761        if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
 762                for (i = 0; i < parser->local.usage_index; i++)
 763                        if (parser->local.usage[i] == HID_GD_POINTER)
 764                                parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
 765
 766        if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
 767                parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
 768}
 769
 770static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
 771{
 772        __u32 data;
 773        int i;
 774
 775        hid_concatenate_usage_page(parser);
 776
 777        data = item_udata(item);
 778
 779        switch (item->tag) {
 780        case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
 781                hid_scan_collection(parser, data & 0xff);
 782                break;
 783        case HID_MAIN_ITEM_TAG_END_COLLECTION:
 784                break;
 785        case HID_MAIN_ITEM_TAG_INPUT:
 786                /* ignore constant inputs, they will be ignored by hid-input */
 787                if (data & HID_MAIN_ITEM_CONSTANT)
 788                        break;
 789                for (i = 0; i < parser->local.usage_index; i++)
 790                        hid_scan_input_usage(parser, parser->local.usage[i]);
 791                break;
 792        case HID_MAIN_ITEM_TAG_OUTPUT:
 793                break;
 794        case HID_MAIN_ITEM_TAG_FEATURE:
 795                for (i = 0; i < parser->local.usage_index; i++)
 796                        hid_scan_feature_usage(parser, parser->local.usage[i]);
 797                break;
 798        }
 799
 800        /* Reset the local parser environment */
 801        memset(&parser->local, 0, sizeof(parser->local));
 802
 803        return 0;
 804}
 805
 806/*
 807 * Scan a report descriptor before the device is added to the bus.
 808 * Sets device groups and other properties that determine what driver
 809 * to load.
 810 */
 811static int hid_scan_report(struct hid_device *hid)
 812{
 813        struct hid_parser *parser;
 814        struct hid_item item;
 815        __u8 *start = hid->dev_rdesc;
 816        __u8 *end = start + hid->dev_rsize;
 817        static int (*dispatch_type[])(struct hid_parser *parser,
 818                                      struct hid_item *item) = {
 819                hid_scan_main,
 820                hid_parser_global,
 821                hid_parser_local,
 822                hid_parser_reserved
 823        };
 824
 825        parser = vzalloc(sizeof(struct hid_parser));
 826        if (!parser)
 827                return -ENOMEM;
 828
 829        parser->device = hid;
 830        hid->group = HID_GROUP_GENERIC;
 831
 832        /*
 833         * The parsing is simpler than the one in hid_open_report() as we should
 834         * be robust against hid errors. Those errors will be raised by
 835         * hid_open_report() anyway.
 836         */
 837        while ((start = fetch_item(start, end, &item)) != NULL)
 838                dispatch_type[item.type](parser, &item);
 839
 840        /*
 841         * Handle special flags set during scanning.
 842         */
 843        if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
 844            (hid->group == HID_GROUP_MULTITOUCH))
 845                hid->group = HID_GROUP_MULTITOUCH_WIN_8;
 846
 847        /*
 848         * Vendor specific handlings
 849         */
 850        switch (hid->vendor) {
 851        case USB_VENDOR_ID_WACOM:
 852                hid->group = HID_GROUP_WACOM;
 853                break;
 854        case USB_VENDOR_ID_SYNAPTICS:
 855                if (hid->group == HID_GROUP_GENERIC)
 856                        if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
 857                            && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
 858                                /*
 859                                 * hid-rmi should take care of them,
 860                                 * not hid-generic
 861                                 */
 862                                hid->group = HID_GROUP_RMI;
 863                break;
 864        }
 865
 866        kfree(parser->collection_stack);
 867        vfree(parser);
 868        return 0;
 869}
 870
 871/**
 872 * hid_parse_report - parse device report
 873 *
 874 * @device: hid device
 875 * @start: report start
 876 * @size: report size
 877 *
 878 * Allocate the device report as read by the bus driver. This function should
 879 * only be called from parse() in ll drivers.
 880 */
 881int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
 882{
 883        hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
 884        if (!hid->dev_rdesc)
 885                return -ENOMEM;
 886        hid->dev_rsize = size;
 887        return 0;
 888}
 889EXPORT_SYMBOL_GPL(hid_parse_report);
 890
 891static const char * const hid_report_names[] = {
 892        "HID_INPUT_REPORT",
 893        "HID_OUTPUT_REPORT",
 894        "HID_FEATURE_REPORT",
 895};
 896/**
 897 * hid_validate_values - validate existing device report's value indexes
 898 *
 899 * @device: hid device
 900 * @type: which report type to examine
 901 * @id: which report ID to examine (0 for first)
 902 * @field_index: which report field to examine
 903 * @report_counts: expected number of values
 904 *
 905 * Validate the number of values in a given field of a given report, after
 906 * parsing.
 907 */
 908struct hid_report *hid_validate_values(struct hid_device *hid,
 909                                       unsigned int type, unsigned int id,
 910                                       unsigned int field_index,
 911                                       unsigned int report_counts)
 912{
 913        struct hid_report *report;
 914
 915        if (type > HID_FEATURE_REPORT) {
 916                hid_err(hid, "invalid HID report type %u\n", type);
 917                return NULL;
 918        }
 919
 920        if (id >= HID_MAX_IDS) {
 921                hid_err(hid, "invalid HID report id %u\n", id);
 922                return NULL;
 923        }
 924
 925        /*
 926         * Explicitly not using hid_get_report() here since it depends on
 927         * ->numbered being checked, which may not always be the case when
 928         * drivers go to access report values.
 929         */
 930        if (id == 0) {
 931                /*
 932                 * Validating on id 0 means we should examine the first
 933                 * report in the list.
 934                 */
 935                report = list_entry(
 936                                hid->report_enum[type].report_list.next,
 937                                struct hid_report, list);
 938        } else {
 939                report = hid->report_enum[type].report_id_hash[id];
 940        }
 941        if (!report) {
 942                hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
 943                return NULL;
 944        }
 945        if (report->maxfield <= field_index) {
 946                hid_err(hid, "not enough fields in %s %u\n",
 947                        hid_report_names[type], id);
 948                return NULL;
 949        }
 950        if (report->field[field_index]->report_count < report_counts) {
 951                hid_err(hid, "not enough values in %s %u field %u\n",
 952                        hid_report_names[type], id, field_index);
 953                return NULL;
 954        }
 955        return report;
 956}
 957EXPORT_SYMBOL_GPL(hid_validate_values);
 958
 959static int hid_calculate_multiplier(struct hid_device *hid,
 960                                     struct hid_field *multiplier)
 961{
 962        int m;
 963        __s32 v = *multiplier->value;
 964        __s32 lmin = multiplier->logical_minimum;
 965        __s32 lmax = multiplier->logical_maximum;
 966        __s32 pmin = multiplier->physical_minimum;
 967        __s32 pmax = multiplier->physical_maximum;
 968
 969        /*
 970         * "Because OS implementations will generally divide the control's
 971         * reported count by the Effective Resolution Multiplier, designers
 972         * should take care not to establish a potential Effective
 973         * Resolution Multiplier of zero."
 974         * HID Usage Table, v1.12, Section 4.3.1, p31
 975         */
 976        if (lmax - lmin == 0)
 977                return 1;
 978        /*
 979         * Handling the unit exponent is left as an exercise to whoever
 980         * finds a device where that exponent is not 0.
 981         */
 982        m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin);
 983        if (unlikely(multiplier->unit_exponent != 0)) {
 984                hid_warn(hid,
 985                         "unsupported Resolution Multiplier unit exponent %d\n",
 986                         multiplier->unit_exponent);
 987        }
 988
 989        /* There are no devices with an effective multiplier > 255 */
 990        if (unlikely(m == 0 || m > 255 || m < -255)) {
 991                hid_warn(hid, "unsupported Resolution Multiplier %d\n", m);
 992                m = 1;
 993        }
 994
 995        return m;
 996}
 997
 998static void hid_apply_multiplier_to_field(struct hid_device *hid,
 999                                          struct hid_field *field,
1000                                          struct hid_collection *multiplier_collection,
1001                                          int effective_multiplier)
1002{
1003        struct hid_collection *collection;
1004        struct hid_usage *usage;
1005        int i;
1006
1007        /*
1008         * If multiplier_collection is NULL, the multiplier applies
1009         * to all fields in the report.
1010         * Otherwise, it is the Logical Collection the multiplier applies to
1011         * but our field may be in a subcollection of that collection.
1012         */
1013        for (i = 0; i < field->maxusage; i++) {
1014                usage = &field->usage[i];
1015
1016                collection = &hid->collection[usage->collection_index];
1017                while (collection->parent_idx != -1 &&
1018                       collection != multiplier_collection)
1019                        collection = &hid->collection[collection->parent_idx];
1020
1021                if (collection->parent_idx != -1 ||
1022                    multiplier_collection == NULL)
1023                        usage->resolution_multiplier = effective_multiplier;
1024
1025        }
1026}
1027
1028static void hid_apply_multiplier(struct hid_device *hid,
1029                                 struct hid_field *multiplier)
1030{
1031        struct hid_report_enum *rep_enum;
1032        struct hid_report *rep;
1033        struct hid_field *field;
1034        struct hid_collection *multiplier_collection;
1035        int effective_multiplier;
1036        int i;
1037
1038        /*
1039         * "The Resolution Multiplier control must be contained in the same
1040         * Logical Collection as the control(s) to which it is to be applied.
1041         * If no Resolution Multiplier is defined, then the Resolution
1042         * Multiplier defaults to 1.  If more than one control exists in a
1043         * Logical Collection, the Resolution Multiplier is associated with
1044         * all controls in the collection. If no Logical Collection is
1045         * defined, the Resolution Multiplier is associated with all
1046         * controls in the report."
1047         * HID Usage Table, v1.12, Section 4.3.1, p30
1048         *
1049         * Thus, search from the current collection upwards until we find a
1050         * logical collection. Then search all fields for that same parent
1051         * collection. Those are the fields the multiplier applies to.
1052         *
1053         * If we have more than one multiplier, it will overwrite the
1054         * applicable fields later.
1055         */
1056        multiplier_collection = &hid->collection[multiplier->usage->collection_index];
1057        while (multiplier_collection->parent_idx != -1 &&
1058               multiplier_collection->type != HID_COLLECTION_LOGICAL)
1059                multiplier_collection = &hid->collection[multiplier_collection->parent_idx];
1060
1061        effective_multiplier = hid_calculate_multiplier(hid, multiplier);
1062
1063        rep_enum = &hid->report_enum[HID_INPUT_REPORT];
1064        list_for_each_entry(rep, &rep_enum->report_list, list) {
1065                for (i = 0; i < rep->maxfield; i++) {
1066                        field = rep->field[i];
1067                        hid_apply_multiplier_to_field(hid, field,
1068                                                      multiplier_collection,
1069                                                      effective_multiplier);
1070                }
1071        }
1072}
1073
1074/*
1075 * hid_setup_resolution_multiplier - set up all resolution multipliers
1076 *
1077 * @device: hid device
1078 *
1079 * Search for all Resolution Multiplier Feature Reports and apply their
1080 * value to all matching Input items. This only updates the internal struct
1081 * fields.
1082 *
1083 * The Resolution Multiplier is applied by the hardware. If the multiplier
1084 * is anything other than 1, the hardware will send pre-multiplied events
1085 * so that the same physical interaction generates an accumulated
1086 *      accumulated_value = value * * multiplier
1087 * This may be achieved by sending
1088 * - "value * multiplier" for each event, or
1089 * - "value" but "multiplier" times as frequently, or
1090 * - a combination of the above
1091 * The only guarantee is that the same physical interaction always generates
1092 * an accumulated 'value * multiplier'.
1093 *
1094 * This function must be called before any event processing and after
1095 * any SetRequest to the Resolution Multiplier.
1096 */
1097void hid_setup_resolution_multiplier(struct hid_device *hid)
1098{
1099        struct hid_report_enum *rep_enum;
1100        struct hid_report *rep;
1101        struct hid_usage *usage;
1102        int i, j;
1103
1104        rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
1105        list_for_each_entry(rep, &rep_enum->report_list, list) {
1106                for (i = 0; i < rep->maxfield; i++) {
1107                        /* Ignore if report count is out of bounds. */
1108                        if (rep->field[i]->report_count < 1)
1109                                continue;
1110
1111                        for (j = 0; j < rep->field[i]->maxusage; j++) {
1112                                usage = &rep->field[i]->usage[j];
1113                                if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER)
1114                                        hid_apply_multiplier(hid,
1115                                                             rep->field[i]);
1116                        }
1117                }
1118        }
1119}
1120EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier);
1121
1122/**
1123 * hid_open_report - open a driver-specific device report
1124 *
1125 * @device: hid device
1126 *
1127 * Parse a report description into a hid_device structure. Reports are
1128 * enumerated, fields are attached to these reports.
1129 * 0 returned on success, otherwise nonzero error value.
1130 *
1131 * This function (or the equivalent hid_parse() macro) should only be
1132 * called from probe() in drivers, before starting the device.
1133 */
1134int hid_open_report(struct hid_device *device)
1135{
1136        struct hid_parser *parser;
1137        struct hid_item item;
1138        unsigned int size;
1139        __u8 *start;
1140        __u8 *buf;
1141        __u8 *end;
1142        int ret;
1143        static int (*dispatch_type[])(struct hid_parser *parser,
1144                                      struct hid_item *item) = {
1145                hid_parser_main,
1146                hid_parser_global,
1147                hid_parser_local,
1148                hid_parser_reserved
1149        };
1150
1151        if (WARN_ON(device->status & HID_STAT_PARSED))
1152                return -EBUSY;
1153
1154        start = device->dev_rdesc;
1155        if (WARN_ON(!start))
1156                return -ENODEV;
1157        size = device->dev_rsize;
1158
1159        buf = kmemdup(start, size, GFP_KERNEL);
1160        if (buf == NULL)
1161                return -ENOMEM;
1162
1163        if (device->driver->report_fixup)
1164                start = device->driver->report_fixup(device, buf, &size);
1165        else
1166                start = buf;
1167
1168        start = kmemdup(start, size, GFP_KERNEL);
1169        kfree(buf);
1170        if (start == NULL)
1171                return -ENOMEM;
1172
1173        device->rdesc = start;
1174        device->rsize = size;
1175
1176        parser = vzalloc(sizeof(struct hid_parser));
1177        if (!parser) {
1178                ret = -ENOMEM;
1179                goto alloc_err;
1180        }
1181
1182        parser->device = device;
1183
1184        end = start + size;
1185
1186        device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1187                                     sizeof(struct hid_collection), GFP_KERNEL);
1188        if (!device->collection) {
1189                ret = -ENOMEM;
1190                goto err;
1191        }
1192        device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1193
1194        ret = -EINVAL;
1195        while ((start = fetch_item(start, end, &item)) != NULL) {
1196
1197                if (item.format != HID_ITEM_FORMAT_SHORT) {
1198                        hid_err(device, "unexpected long global item\n");
1199                        goto err;
1200                }
1201
1202                if (dispatch_type[item.type](parser, &item)) {
1203                        hid_err(device, "item %u %u %u %u parsing failed\n",
1204                                item.format, (unsigned)item.size,
1205                                (unsigned)item.type, (unsigned)item.tag);
1206                        goto err;
1207                }
1208
1209                if (start == end) {
1210                        if (parser->collection_stack_ptr) {
1211                                hid_err(device, "unbalanced collection at end of report description\n");
1212                                goto err;
1213                        }
1214                        if (parser->local.delimiter_depth) {
1215                                hid_err(device, "unbalanced delimiter at end of report description\n");
1216                                goto err;
1217                        }
1218
1219                        /*
1220                         * fetch initial values in case the device's
1221                         * default multiplier isn't the recommended 1
1222                         */
1223                        hid_setup_resolution_multiplier(device);
1224
1225                        kfree(parser->collection_stack);
1226                        vfree(parser);
1227                        device->status |= HID_STAT_PARSED;
1228
1229                        return 0;
1230                }
1231        }
1232
1233        hid_err(device, "item fetching failed at offset %d\n", (int)(end - start));
1234err:
1235        kfree(parser->collection_stack);
1236alloc_err:
1237        vfree(parser);
1238        hid_close_report(device);
1239        return ret;
1240}
1241EXPORT_SYMBOL_GPL(hid_open_report);
1242
1243/*
1244 * Convert a signed n-bit integer to signed 32-bit integer. Common
1245 * cases are done through the compiler, the screwed things has to be
1246 * done by hand.
1247 */
1248
1249static s32 snto32(__u32 value, unsigned n)
1250{
1251        switch (n) {
1252        case 8:  return ((__s8)value);
1253        case 16: return ((__s16)value);
1254        case 32: return ((__s32)value);
1255        }
1256        return value & (1 << (n - 1)) ? value | (~0U << n) : value;
1257}
1258
1259s32 hid_snto32(__u32 value, unsigned n)
1260{
1261        return snto32(value, n);
1262}
1263EXPORT_SYMBOL_GPL(hid_snto32);
1264
1265/*
1266 * Convert a signed 32-bit integer to a signed n-bit integer.
1267 */
1268
1269static u32 s32ton(__s32 value, unsigned n)
1270{
1271        s32 a = value >> (n - 1);
1272        if (a && a != -1)
1273                return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1274        return value & ((1 << n) - 1);
1275}
1276
1277/*
1278 * Extract/implement a data field from/to a little endian report (bit array).
1279 *
1280 * Code sort-of follows HID spec:
1281 *     http://www.usb.org/developers/hidpage/HID1_11.pdf
1282 *
1283 * While the USB HID spec allows unlimited length bit fields in "report
1284 * descriptors", most devices never use more than 16 bits.
1285 * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1286 * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1287 */
1288
1289static u32 __extract(u8 *report, unsigned offset, int n)
1290{
1291        unsigned int idx = offset / 8;
1292        unsigned int bit_nr = 0;
1293        unsigned int bit_shift = offset % 8;
1294        int bits_to_copy = 8 - bit_shift;
1295        u32 value = 0;
1296        u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1297
1298        while (n > 0) {
1299                value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1300                n -= bits_to_copy;
1301                bit_nr += bits_to_copy;
1302                bits_to_copy = 8;
1303                bit_shift = 0;
1304                idx++;
1305        }
1306
1307        return value & mask;
1308}
1309
1310u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1311                        unsigned offset, unsigned n)
1312{
1313        if (n > 32) {
1314                hid_warn(hid, "hid_field_extract() called with n (%d) > 32! (%s)\n",
1315                         n, current->comm);
1316                n = 32;
1317        }
1318
1319        return __extract(report, offset, n);
1320}
1321EXPORT_SYMBOL_GPL(hid_field_extract);
1322
1323/*
1324 * "implement" : set bits in a little endian bit stream.
1325 * Same concepts as "extract" (see comments above).
1326 * The data mangled in the bit stream remains in little endian
1327 * order the whole time. It make more sense to talk about
1328 * endianness of register values by considering a register
1329 * a "cached" copy of the little endian bit stream.
1330 */
1331
1332static void __implement(u8 *report, unsigned offset, int n, u32 value)
1333{
1334        unsigned int idx = offset / 8;
1335        unsigned int bit_shift = offset % 8;
1336        int bits_to_set = 8 - bit_shift;
1337
1338        while (n - bits_to_set >= 0) {
1339                report[idx] &= ~(0xff << bit_shift);
1340                report[idx] |= value << bit_shift;
1341                value >>= bits_to_set;
1342                n -= bits_to_set;
1343                bits_to_set = 8;
1344                bit_shift = 0;
1345                idx++;
1346        }
1347
1348        /* last nibble */
1349        if (n) {
1350                u8 bit_mask = ((1U << n) - 1);
1351                report[idx] &= ~(bit_mask << bit_shift);
1352                report[idx] |= value << bit_shift;
1353        }
1354}
1355
1356static void implement(const struct hid_device *hid, u8 *report,
1357                      unsigned offset, unsigned n, u32 value)
1358{
1359        if (unlikely(n > 32)) {
1360                hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1361                         __func__, n, current->comm);
1362                n = 32;
1363        } else if (n < 32) {
1364                u32 m = (1U << n) - 1;
1365
1366                if (unlikely(value > m)) {
1367                        hid_warn(hid,
1368                                 "%s() called with too large value %d (n: %d)! (%s)\n",
1369                                 __func__, value, n, current->comm);
1370                        WARN_ON(1);
1371                        value &= m;
1372                }
1373        }
1374
1375        __implement(report, offset, n, value);
1376}
1377
1378/*
1379 * Search an array for a value.
1380 */
1381
1382static int search(__s32 *array, __s32 value, unsigned n)
1383{
1384        while (n--) {
1385                if (*array++ == value)
1386                        return 0;
1387        }
1388        return -1;
1389}
1390
1391/**
1392 * hid_match_report - check if driver's raw_event should be called
1393 *
1394 * @hid: hid device
1395 * @report_type: type to match against
1396 *
1397 * compare hid->driver->report_table->report_type to report->type
1398 */
1399static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1400{
1401        const struct hid_report_id *id = hid->driver->report_table;
1402
1403        if (!id) /* NULL means all */
1404                return 1;
1405
1406        for (; id->report_type != HID_TERMINATOR; id++)
1407                if (id->report_type == HID_ANY_ID ||
1408                                id->report_type == report->type)
1409                        return 1;
1410        return 0;
1411}
1412
1413/**
1414 * hid_match_usage - check if driver's event should be called
1415 *
1416 * @hid: hid device
1417 * @usage: usage to match against
1418 *
1419 * compare hid->driver->usage_table->usage_{type,code} to
1420 * usage->usage_{type,code}
1421 */
1422static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1423{
1424        const struct hid_usage_id *id = hid->driver->usage_table;
1425
1426        if (!id) /* NULL means all */
1427                return 1;
1428
1429        for (; id->usage_type != HID_ANY_ID - 1; id++)
1430                if ((id->usage_hid == HID_ANY_ID ||
1431                                id->usage_hid == usage->hid) &&
1432                                (id->usage_type == HID_ANY_ID ||
1433                                id->usage_type == usage->type) &&
1434                                (id->usage_code == HID_ANY_ID ||
1435                                 id->usage_code == usage->code))
1436                        return 1;
1437        return 0;
1438}
1439
1440static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1441                struct hid_usage *usage, __s32 value, int interrupt)
1442{
1443        struct hid_driver *hdrv = hid->driver;
1444        int ret;
1445
1446        if (!list_empty(&hid->debug_list))
1447                hid_dump_input(hid, usage, value);
1448
1449        if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1450                ret = hdrv->event(hid, field, usage, value);
1451                if (ret != 0) {
1452                        if (ret < 0)
1453                                hid_err(hid, "%s's event failed with %d\n",
1454                                                hdrv->name, ret);
1455                        return;
1456                }
1457        }
1458
1459        if (hid->claimed & HID_CLAIMED_INPUT)
1460                hidinput_hid_event(hid, field, usage, value);
1461        if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1462                hid->hiddev_hid_event(hid, field, usage, value);
1463}
1464
1465/*
1466 * Analyse a received field, and fetch the data from it. The field
1467 * content is stored for next report processing (we do differential
1468 * reporting to the layer).
1469 */
1470
1471static void hid_input_field(struct hid_device *hid, struct hid_field *field,
1472                            __u8 *data, int interrupt)
1473{
1474        unsigned n;
1475        unsigned count = field->report_count;
1476        unsigned offset = field->report_offset;
1477        unsigned size = field->report_size;
1478        __s32 min = field->logical_minimum;
1479        __s32 max = field->logical_maximum;
1480        __s32 *value;
1481
1482        value = kmalloc_array(count, sizeof(__s32), GFP_ATOMIC);
1483        if (!value)
1484                return;
1485
1486        for (n = 0; n < count; n++) {
1487
1488                value[n] = min < 0 ?
1489                        snto32(hid_field_extract(hid, data, offset + n * size,
1490                               size), size) :
1491                        hid_field_extract(hid, data, offset + n * size, size);
1492
1493                /* Ignore report if ErrorRollOver */
1494                if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1495                    value[n] >= min && value[n] <= max &&
1496                    value[n] - min < field->maxusage &&
1497                    field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
1498                        goto exit;
1499        }
1500
1501        for (n = 0; n < count; n++) {
1502
1503                if (HID_MAIN_ITEM_VARIABLE & field->flags) {
1504                        hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
1505                        continue;
1506                }
1507
1508                if (field->value[n] >= min && field->value[n] <= max
1509                        && field->value[n] - min < field->maxusage
1510                        && field->usage[field->value[n] - min].hid
1511                        && search(value, field->value[n], count))
1512                                hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
1513
1514                if (value[n] >= min && value[n] <= max
1515                        && value[n] - min < field->maxusage
1516                        && field->usage[value[n] - min].hid
1517                        && search(field->value, value[n], count))
1518                                hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
1519        }
1520
1521        memcpy(field->value, value, count * sizeof(__s32));
1522exit:
1523        kfree(value);
1524}
1525
1526/*
1527 * Output the field into the report.
1528 */
1529
1530static void hid_output_field(const struct hid_device *hid,
1531                             struct hid_field *field, __u8 *data)
1532{
1533        unsigned count = field->report_count;
1534        unsigned offset = field->report_offset;
1535        unsigned size = field->report_size;
1536        unsigned n;
1537
1538        for (n = 0; n < count; n++) {
1539                if (field->logical_minimum < 0) /* signed values */
1540                        implement(hid, data, offset + n * size, size,
1541                                  s32ton(field->value[n], size));
1542                else                            /* unsigned values */
1543                        implement(hid, data, offset + n * size, size,
1544                                  field->value[n]);
1545        }
1546}
1547
1548/*
1549 * Create a report. 'data' has to be allocated using
1550 * hid_alloc_report_buf() so that it has proper size.
1551 */
1552
1553void hid_output_report(struct hid_report *report, __u8 *data)
1554{
1555        unsigned n;
1556
1557        if (report->id > 0)
1558                *data++ = report->id;
1559
1560        memset(data, 0, ((report->size - 1) >> 3) + 1);
1561        for (n = 0; n < report->maxfield; n++)
1562                hid_output_field(report->device, report->field[n], data);
1563}
1564EXPORT_SYMBOL_GPL(hid_output_report);
1565
1566/*
1567 * Allocator for buffer that is going to be passed to hid_output_report()
1568 */
1569u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1570{
1571        /*
1572         * 7 extra bytes are necessary to achieve proper functionality
1573         * of implement() working on 8 byte chunks
1574         */
1575
1576        u32 len = hid_report_len(report) + 7;
1577
1578        return kmalloc(len, flags);
1579}
1580EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1581
1582/*
1583 * Set a field value. The report this field belongs to has to be
1584 * created and transferred to the device, to set this value in the
1585 * device.
1586 */
1587
1588int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1589{
1590        unsigned size;
1591
1592        if (!field)
1593                return -1;
1594
1595        size = field->report_size;
1596
1597        hid_dump_input(field->report->device, field->usage + offset, value);
1598
1599        if (offset >= field->report_count) {
1600                hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1601                                offset, field->report_count);
1602                return -1;
1603        }
1604        if (field->logical_minimum < 0) {
1605                if (value != snto32(s32ton(value, size), size)) {
1606                        hid_err(field->report->device, "value %d is out of range\n", value);
1607                        return -1;
1608                }
1609        }
1610        field->value[offset] = value;
1611        return 0;
1612}
1613EXPORT_SYMBOL_GPL(hid_set_field);
1614
1615static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1616                const u8 *data)
1617{
1618        struct hid_report *report;
1619        unsigned int n = 0;     /* Normally report number is 0 */
1620
1621        /* Device uses numbered reports, data[0] is report number */
1622        if (report_enum->numbered)
1623                n = *data;
1624
1625        report = report_enum->report_id_hash[n];
1626        if (report == NULL)
1627                dbg_hid("undefined report_id %u received\n", n);
1628
1629        return report;
1630}
1631
1632/*
1633 * Implement a generic .request() callback, using .raw_request()
1634 * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1635 */
1636int __hid_request(struct hid_device *hid, struct hid_report *report,
1637                int reqtype)
1638{
1639        char *buf;
1640        int ret;
1641        u32 len;
1642
1643        buf = hid_alloc_report_buf(report, GFP_KERNEL);
1644        if (!buf)
1645                return -ENOMEM;
1646
1647        len = hid_report_len(report);
1648
1649        if (reqtype == HID_REQ_SET_REPORT)
1650                hid_output_report(report, buf);
1651
1652        ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1653                                          report->type, reqtype);
1654        if (ret < 0) {
1655                dbg_hid("unable to complete request: %d\n", ret);
1656                goto out;
1657        }
1658
1659        if (reqtype == HID_REQ_GET_REPORT)
1660                hid_input_report(hid, report->type, buf, ret, 0);
1661
1662        ret = 0;
1663
1664out:
1665        kfree(buf);
1666        return ret;
1667}
1668EXPORT_SYMBOL_GPL(__hid_request);
1669
1670int hid_report_raw_event(struct hid_device *hid, int type, u8 *data, u32 size,
1671                int interrupt)
1672{
1673        struct hid_report_enum *report_enum = hid->report_enum + type;
1674        struct hid_report *report;
1675        struct hid_driver *hdrv;
1676        unsigned int a;
1677        u32 rsize, csize = size;
1678        u8 *cdata = data;
1679        int ret = 0;
1680
1681        report = hid_get_report(report_enum, data);
1682        if (!report)
1683                goto out;
1684
1685        if (report_enum->numbered) {
1686                cdata++;
1687                csize--;
1688        }
1689
1690        rsize = ((report->size - 1) >> 3) + 1;
1691
1692        if (rsize > HID_MAX_BUFFER_SIZE)
1693                rsize = HID_MAX_BUFFER_SIZE;
1694
1695        if (csize < rsize) {
1696                dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1697                                csize, rsize);
1698                memset(cdata + csize, 0, rsize - csize);
1699        }
1700
1701        if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
1702                hid->hiddev_report_event(hid, report);
1703        if (hid->claimed & HID_CLAIMED_HIDRAW) {
1704                ret = hidraw_report_event(hid, data, size);
1705                if (ret)
1706                        goto out;
1707        }
1708
1709        if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
1710                for (a = 0; a < report->maxfield; a++)
1711                        hid_input_field(hid, report->field[a], cdata, interrupt);
1712                hdrv = hid->driver;
1713                if (hdrv && hdrv->report)
1714                        hdrv->report(hid, report);
1715        }
1716
1717        if (hid->claimed & HID_CLAIMED_INPUT)
1718                hidinput_report_event(hid, report);
1719out:
1720        return ret;
1721}
1722EXPORT_SYMBOL_GPL(hid_report_raw_event);
1723
1724/**
1725 * hid_input_report - report data from lower layer (usb, bt...)
1726 *
1727 * @hid: hid device
1728 * @type: HID report type (HID_*_REPORT)
1729 * @data: report contents
1730 * @size: size of data parameter
1731 * @interrupt: distinguish between interrupt and control transfers
1732 *
1733 * This is data entry for lower layers.
1734 */
1735int hid_input_report(struct hid_device *hid, int type, u8 *data, u32 size, int interrupt)
1736{
1737        struct hid_report_enum *report_enum;
1738        struct hid_driver *hdrv;
1739        struct hid_report *report;
1740        int ret = 0;
1741
1742        if (!hid)
1743                return -ENODEV;
1744
1745        if (down_trylock(&hid->driver_input_lock))
1746                return -EBUSY;
1747
1748        if (!hid->driver) {
1749                ret = -ENODEV;
1750                goto unlock;
1751        }
1752        report_enum = hid->report_enum + type;
1753        hdrv = hid->driver;
1754
1755        if (!size) {
1756                dbg_hid("empty report\n");
1757                ret = -1;
1758                goto unlock;
1759        }
1760
1761        /* Avoid unnecessary overhead if debugfs is disabled */
1762        if (!list_empty(&hid->debug_list))
1763                hid_dump_report(hid, type, data, size);
1764
1765        report = hid_get_report(report_enum, data);
1766
1767        if (!report) {
1768                ret = -1;
1769                goto unlock;
1770        }
1771
1772        if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
1773                ret = hdrv->raw_event(hid, report, data, size);
1774                if (ret < 0)
1775                        goto unlock;
1776        }
1777
1778        ret = hid_report_raw_event(hid, type, data, size, interrupt);
1779
1780unlock:
1781        up(&hid->driver_input_lock);
1782        return ret;
1783}
1784EXPORT_SYMBOL_GPL(hid_input_report);
1785
1786bool hid_match_one_id(const struct hid_device *hdev,
1787                      const struct hid_device_id *id)
1788{
1789        return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
1790                (id->group == HID_GROUP_ANY || id->group == hdev->group) &&
1791                (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
1792                (id->product == HID_ANY_ID || id->product == hdev->product);
1793}
1794
1795const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
1796                const struct hid_device_id *id)
1797{
1798        for (; id->bus; id++)
1799                if (hid_match_one_id(hdev, id))
1800                        return id;
1801
1802        return NULL;
1803}
1804
1805static const struct hid_device_id hid_hiddev_list[] = {
1806        { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
1807        { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
1808        { }
1809};
1810
1811static bool hid_hiddev(struct hid_device *hdev)
1812{
1813        return !!hid_match_id(hdev, hid_hiddev_list);
1814}
1815
1816
1817static ssize_t
1818read_report_descriptor(struct file *filp, struct kobject *kobj,
1819                struct bin_attribute *attr,
1820                char *buf, loff_t off, size_t count)
1821{
1822        struct device *dev = kobj_to_dev(kobj);
1823        struct hid_device *hdev = to_hid_device(dev);
1824
1825        if (off >= hdev->rsize)
1826                return 0;
1827
1828        if (off + count > hdev->rsize)
1829                count = hdev->rsize - off;
1830
1831        memcpy(buf, hdev->rdesc + off, count);
1832
1833        return count;
1834}
1835
1836static ssize_t
1837show_country(struct device *dev, struct device_attribute *attr,
1838                char *buf)
1839{
1840        struct hid_device *hdev = to_hid_device(dev);
1841
1842        return sprintf(buf, "%02x\n", hdev->country & 0xff);
1843}
1844
1845static struct bin_attribute dev_bin_attr_report_desc = {
1846        .attr = { .name = "report_descriptor", .mode = 0444 },
1847        .read = read_report_descriptor,
1848        .size = HID_MAX_DESCRIPTOR_SIZE,
1849};
1850
1851static const struct device_attribute dev_attr_country = {
1852        .attr = { .name = "country", .mode = 0444 },
1853        .show = show_country,
1854};
1855
1856int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
1857{
1858        static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
1859                "Joystick", "Gamepad", "Keyboard", "Keypad",
1860                "Multi-Axis Controller"
1861        };
1862        const char *type, *bus;
1863        char buf[64] = "";
1864        unsigned int i;
1865        int len;
1866        int ret;
1867
1868        if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
1869                connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
1870        if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
1871                connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
1872        if (hdev->bus != BUS_USB)
1873                connect_mask &= ~HID_CONNECT_HIDDEV;
1874        if (hid_hiddev(hdev))
1875                connect_mask |= HID_CONNECT_HIDDEV_FORCE;
1876
1877        if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
1878                                connect_mask & HID_CONNECT_HIDINPUT_FORCE))
1879                hdev->claimed |= HID_CLAIMED_INPUT;
1880
1881        if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
1882                        !hdev->hiddev_connect(hdev,
1883                                connect_mask & HID_CONNECT_HIDDEV_FORCE))
1884                hdev->claimed |= HID_CLAIMED_HIDDEV;
1885        if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
1886                hdev->claimed |= HID_CLAIMED_HIDRAW;
1887
1888        if (connect_mask & HID_CONNECT_DRIVER)
1889                hdev->claimed |= HID_CLAIMED_DRIVER;
1890
1891        /* Drivers with the ->raw_event callback set are not required to connect
1892         * to any other listener. */
1893        if (!hdev->claimed && !hdev->driver->raw_event) {
1894                hid_err(hdev, "device has no listeners, quitting\n");
1895                return -ENODEV;
1896        }
1897
1898        if ((hdev->claimed & HID_CLAIMED_INPUT) &&
1899                        (connect_mask & HID_CONNECT_FF) && hdev->ff_init)
1900                hdev->ff_init(hdev);
1901
1902        len = 0;
1903        if (hdev->claimed & HID_CLAIMED_INPUT)
1904                len += sprintf(buf + len, "input");
1905        if (hdev->claimed & HID_CLAIMED_HIDDEV)
1906                len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
1907                                ((struct hiddev *)hdev->hiddev)->minor);
1908        if (hdev->claimed & HID_CLAIMED_HIDRAW)
1909                len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
1910                                ((struct hidraw *)hdev->hidraw)->minor);
1911
1912        type = "Device";
1913        for (i = 0; i < hdev->maxcollection; i++) {
1914                struct hid_collection *col = &hdev->collection[i];
1915                if (col->type == HID_COLLECTION_APPLICATION &&
1916                   (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
1917                   (col->usage & 0xffff) < ARRAY_SIZE(types)) {
1918                        type = types[col->usage & 0xffff];
1919                        break;
1920                }
1921        }
1922
1923        switch (hdev->bus) {
1924        case BUS_USB:
1925                bus = "USB";
1926                break;
1927        case BUS_BLUETOOTH:
1928                bus = "BLUETOOTH";
1929                break;
1930        case BUS_I2C:
1931                bus = "I2C";
1932                break;
1933        default:
1934                bus = "<UNKNOWN>";
1935        }
1936
1937        ret = device_create_file(&hdev->dev, &dev_attr_country);
1938        if (ret)
1939                hid_warn(hdev,
1940                         "can't create sysfs country code attribute err: %d\n", ret);
1941
1942        hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
1943                 buf, bus, hdev->version >> 8, hdev->version & 0xff,
1944                 type, hdev->name, hdev->phys);
1945
1946        return 0;
1947}
1948EXPORT_SYMBOL_GPL(hid_connect);
1949
1950void hid_disconnect(struct hid_device *hdev)
1951{
1952        device_remove_file(&hdev->dev, &dev_attr_country);
1953        if (hdev->claimed & HID_CLAIMED_INPUT)
1954                hidinput_disconnect(hdev);
1955        if (hdev->claimed & HID_CLAIMED_HIDDEV)
1956                hdev->hiddev_disconnect(hdev);
1957        if (hdev->claimed & HID_CLAIMED_HIDRAW)
1958                hidraw_disconnect(hdev);
1959        hdev->claimed = 0;
1960}
1961EXPORT_SYMBOL_GPL(hid_disconnect);
1962
1963/**
1964 * hid_hw_start - start underlying HW
1965 * @hdev: hid device
1966 * @connect_mask: which outputs to connect, see HID_CONNECT_*
1967 *
1968 * Call this in probe function *after* hid_parse. This will setup HW
1969 * buffers and start the device (if not defeirred to device open).
1970 * hid_hw_stop must be called if this was successful.
1971 */
1972int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
1973{
1974        int error;
1975
1976        error = hdev->ll_driver->start(hdev);
1977        if (error)
1978                return error;
1979
1980        if (connect_mask) {
1981                error = hid_connect(hdev, connect_mask);
1982                if (error) {
1983                        hdev->ll_driver->stop(hdev);
1984                        return error;
1985                }
1986        }
1987
1988        return 0;
1989}
1990EXPORT_SYMBOL_GPL(hid_hw_start);
1991
1992/**
1993 * hid_hw_stop - stop underlying HW
1994 * @hdev: hid device
1995 *
1996 * This is usually called from remove function or from probe when something
1997 * failed and hid_hw_start was called already.
1998 */
1999void hid_hw_stop(struct hid_device *hdev)
2000{
2001        hid_disconnect(hdev);
2002        hdev->ll_driver->stop(hdev);
2003}
2004EXPORT_SYMBOL_GPL(hid_hw_stop);
2005
2006/**
2007 * hid_hw_open - signal underlying HW to start delivering events
2008 * @hdev: hid device
2009 *
2010 * Tell underlying HW to start delivering events from the device.
2011 * This function should be called sometime after successful call
2012 * to hid_hw_start().
2013 */
2014int hid_hw_open(struct hid_device *hdev)
2015{
2016        int ret;
2017
2018        ret = mutex_lock_killable(&hdev->ll_open_lock);
2019        if (ret)
2020                return ret;
2021
2022        if (!hdev->ll_open_count++) {
2023                ret = hdev->ll_driver->open(hdev);
2024                if (ret)
2025                        hdev->ll_open_count--;
2026        }
2027
2028        mutex_unlock(&hdev->ll_open_lock);
2029        return ret;
2030}
2031EXPORT_SYMBOL_GPL(hid_hw_open);
2032
2033/**
2034 * hid_hw_close - signal underlaying HW to stop delivering events
2035 *
2036 * @hdev: hid device
2037 *
2038 * This function indicates that we are not interested in the events
2039 * from this device anymore. Delivery of events may or may not stop,
2040 * depending on the number of users still outstanding.
2041 */
2042void hid_hw_close(struct hid_device *hdev)
2043{
2044        mutex_lock(&hdev->ll_open_lock);
2045        if (!--hdev->ll_open_count)
2046                hdev->ll_driver->close(hdev);
2047        mutex_unlock(&hdev->ll_open_lock);
2048}
2049EXPORT_SYMBOL_GPL(hid_hw_close);
2050
2051struct hid_dynid {
2052        struct list_head list;
2053        struct hid_device_id id;
2054};
2055
2056/**
2057 * store_new_id - add a new HID device ID to this driver and re-probe devices
2058 * @driver: target device driver
2059 * @buf: buffer for scanning device ID data
2060 * @count: input size
2061 *
2062 * Adds a new dynamic hid device ID to this driver,
2063 * and causes the driver to probe for all devices again.
2064 */
2065static ssize_t new_id_store(struct device_driver *drv, const char *buf,
2066                size_t count)
2067{
2068        struct hid_driver *hdrv = to_hid_driver(drv);
2069        struct hid_dynid *dynid;
2070        __u32 bus, vendor, product;
2071        unsigned long driver_data = 0;
2072        int ret;
2073
2074        ret = sscanf(buf, "%x %x %x %lx",
2075                        &bus, &vendor, &product, &driver_data);
2076        if (ret < 3)
2077                return -EINVAL;
2078
2079        dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
2080        if (!dynid)
2081                return -ENOMEM;
2082
2083        dynid->id.bus = bus;
2084        dynid->id.group = HID_GROUP_ANY;
2085        dynid->id.vendor = vendor;
2086        dynid->id.product = product;
2087        dynid->id.driver_data = driver_data;
2088
2089        spin_lock(&hdrv->dyn_lock);
2090        list_add_tail(&dynid->list, &hdrv->dyn_list);
2091        spin_unlock(&hdrv->dyn_lock);
2092
2093        ret = driver_attach(&hdrv->driver);
2094
2095        return ret ? : count;
2096}
2097static DRIVER_ATTR_WO(new_id);
2098
2099static struct attribute *hid_drv_attrs[] = {
2100        &driver_attr_new_id.attr,
2101        NULL,
2102};
2103ATTRIBUTE_GROUPS(hid_drv);
2104
2105static void hid_free_dynids(struct hid_driver *hdrv)
2106{
2107        struct hid_dynid *dynid, *n;
2108
2109        spin_lock(&hdrv->dyn_lock);
2110        list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
2111                list_del(&dynid->list);
2112                kfree(dynid);
2113        }
2114        spin_unlock(&hdrv->dyn_lock);
2115}
2116
2117const struct hid_device_id *hid_match_device(struct hid_device *hdev,
2118                                             struct hid_driver *hdrv)
2119{
2120        struct hid_dynid *dynid;
2121
2122        spin_lock(&hdrv->dyn_lock);
2123        list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2124                if (hid_match_one_id(hdev, &dynid->id)) {
2125                        spin_unlock(&hdrv->dyn_lock);
2126                        return &dynid->id;
2127                }
2128        }
2129        spin_unlock(&hdrv->dyn_lock);
2130
2131        return hid_match_id(hdev, hdrv->id_table);
2132}
2133EXPORT_SYMBOL_GPL(hid_match_device);
2134
2135static int hid_bus_match(struct device *dev, struct device_driver *drv)
2136{
2137        struct hid_driver *hdrv = to_hid_driver(drv);
2138        struct hid_device *hdev = to_hid_device(dev);
2139
2140        return hid_match_device(hdev, hdrv) != NULL;
2141}
2142
2143/**
2144 * hid_compare_device_paths - check if both devices share the same path
2145 * @hdev_a: hid device
2146 * @hdev_b: hid device
2147 * @separator: char to use as separator
2148 *
2149 * Check if two devices share the same path up to the last occurrence of
2150 * the separator char. Both paths must exist (i.e., zero-length paths
2151 * don't match).
2152 */
2153bool hid_compare_device_paths(struct hid_device *hdev_a,
2154                              struct hid_device *hdev_b, char separator)
2155{
2156        int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
2157        int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
2158
2159        if (n1 != n2 || n1 <= 0 || n2 <= 0)
2160                return false;
2161
2162        return !strncmp(hdev_a->phys, hdev_b->phys, n1);
2163}
2164EXPORT_SYMBOL_GPL(hid_compare_device_paths);
2165
2166static int hid_device_probe(struct device *dev)
2167{
2168        struct hid_driver *hdrv = to_hid_driver(dev->driver);
2169        struct hid_device *hdev = to_hid_device(dev);
2170        const struct hid_device_id *id;
2171        int ret = 0;
2172
2173        if (down_interruptible(&hdev->driver_input_lock)) {
2174                ret = -EINTR;
2175                goto end;
2176        }
2177        hdev->io_started = false;
2178
2179        clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
2180
2181        if (!hdev->driver) {
2182                id = hid_match_device(hdev, hdrv);
2183                if (id == NULL) {
2184                        ret = -ENODEV;
2185                        goto unlock;
2186                }
2187
2188                if (hdrv->match) {
2189                        if (!hdrv->match(hdev, hid_ignore_special_drivers)) {
2190                                ret = -ENODEV;
2191                                goto unlock;
2192                        }
2193                } else {
2194                        /*
2195                         * hid-generic implements .match(), so if
2196                         * hid_ignore_special_drivers is set, we can safely
2197                         * return.
2198                         */
2199                        if (hid_ignore_special_drivers) {
2200                                ret = -ENODEV;
2201                                goto unlock;
2202                        }
2203                }
2204
2205                /* reset the quirks that has been previously set */
2206                hdev->quirks = hid_lookup_quirk(hdev);
2207                hdev->driver = hdrv;
2208                if (hdrv->probe) {
2209                        ret = hdrv->probe(hdev, id);
2210                } else { /* default probe */
2211                        ret = hid_open_report(hdev);
2212                        if (!ret)
2213                                ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2214                }
2215                if (ret) {
2216                        hid_close_report(hdev);
2217                        hdev->driver = NULL;
2218                }
2219        }
2220unlock:
2221        if (!hdev->io_started)
2222                up(&hdev->driver_input_lock);
2223end:
2224        return ret;
2225}
2226
2227static int hid_device_remove(struct device *dev)
2228{
2229        struct hid_device *hdev = to_hid_device(dev);
2230        struct hid_driver *hdrv;
2231        int ret = 0;
2232
2233        if (down_interruptible(&hdev->driver_input_lock)) {
2234                ret = -EINTR;
2235                goto end;
2236        }
2237        hdev->io_started = false;
2238
2239        hdrv = hdev->driver;
2240        if (hdrv) {
2241                if (hdrv->remove)
2242                        hdrv->remove(hdev);
2243                else /* default remove */
2244                        hid_hw_stop(hdev);
2245                hid_close_report(hdev);
2246                hdev->driver = NULL;
2247        }
2248
2249        if (!hdev->io_started)
2250                up(&hdev->driver_input_lock);
2251end:
2252        return ret;
2253}
2254
2255static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2256                             char *buf)
2257{
2258        struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2259
2260        return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2261                         hdev->bus, hdev->group, hdev->vendor, hdev->product);
2262}
2263static DEVICE_ATTR_RO(modalias);
2264
2265static struct attribute *hid_dev_attrs[] = {
2266        &dev_attr_modalias.attr,
2267        NULL,
2268};
2269static struct bin_attribute *hid_dev_bin_attrs[] = {
2270        &dev_bin_attr_report_desc,
2271        NULL
2272};
2273static const struct attribute_group hid_dev_group = {
2274        .attrs = hid_dev_attrs,
2275        .bin_attrs = hid_dev_bin_attrs,
2276};
2277__ATTRIBUTE_GROUPS(hid_dev);
2278
2279static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
2280{
2281        struct hid_device *hdev = to_hid_device(dev);
2282
2283        if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2284                        hdev->bus, hdev->vendor, hdev->product))
2285                return -ENOMEM;
2286
2287        if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2288                return -ENOMEM;
2289
2290        if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2291                return -ENOMEM;
2292
2293        if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2294                return -ENOMEM;
2295
2296        if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2297                           hdev->bus, hdev->group, hdev->vendor, hdev->product))
2298                return -ENOMEM;
2299
2300        return 0;
2301}
2302
2303struct bus_type hid_bus_type = {
2304        .name           = "hid",
2305        .dev_groups     = hid_dev_groups,
2306        .drv_groups     = hid_drv_groups,
2307        .match          = hid_bus_match,
2308        .probe          = hid_device_probe,
2309        .remove         = hid_device_remove,
2310        .uevent         = hid_uevent,
2311};
2312EXPORT_SYMBOL(hid_bus_type);
2313
2314int hid_add_device(struct hid_device *hdev)
2315{
2316        static atomic_t id = ATOMIC_INIT(0);
2317        int ret;
2318
2319        if (WARN_ON(hdev->status & HID_STAT_ADDED))
2320                return -EBUSY;
2321
2322        hdev->quirks = hid_lookup_quirk(hdev);
2323
2324        /* we need to kill them here, otherwise they will stay allocated to
2325         * wait for coming driver */
2326        if (hid_ignore(hdev))
2327                return -ENODEV;
2328
2329        /*
2330         * Check for the mandatory transport channel.
2331         */
2332         if (!hdev->ll_driver->raw_request) {
2333                hid_err(hdev, "transport driver missing .raw_request()\n");
2334                return -EINVAL;
2335         }
2336
2337        /*
2338         * Read the device report descriptor once and use as template
2339         * for the driver-specific modifications.
2340         */
2341        ret = hdev->ll_driver->parse(hdev);
2342        if (ret)
2343                return ret;
2344        if (!hdev->dev_rdesc)
2345                return -ENODEV;
2346
2347        /*
2348         * Scan generic devices for group information
2349         */
2350        if (hid_ignore_special_drivers) {
2351                hdev->group = HID_GROUP_GENERIC;
2352        } else if (!hdev->group &&
2353                   !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2354                ret = hid_scan_report(hdev);
2355                if (ret)
2356                        hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2357        }
2358
2359        /* XXX hack, any other cleaner solution after the driver core
2360         * is converted to allow more than 20 bytes as the device name? */
2361        dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2362                     hdev->vendor, hdev->product, atomic_inc_return(&id));
2363
2364        hid_debug_register(hdev, dev_name(&hdev->dev));
2365        ret = device_add(&hdev->dev);
2366        if (!ret)
2367                hdev->status |= HID_STAT_ADDED;
2368        else
2369                hid_debug_unregister(hdev);
2370
2371        return ret;
2372}
2373EXPORT_SYMBOL_GPL(hid_add_device);
2374
2375/**
2376 * hid_allocate_device - allocate new hid device descriptor
2377 *
2378 * Allocate and initialize hid device, so that hid_destroy_device might be
2379 * used to free it.
2380 *
2381 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2382 * error value.
2383 */
2384struct hid_device *hid_allocate_device(void)
2385{
2386        struct hid_device *hdev;
2387        int ret = -ENOMEM;
2388
2389        hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2390        if (hdev == NULL)
2391                return ERR_PTR(ret);
2392
2393        device_initialize(&hdev->dev);
2394        hdev->dev.release = hid_device_release;
2395        hdev->dev.bus = &hid_bus_type;
2396        device_enable_async_suspend(&hdev->dev);
2397
2398        hid_close_report(hdev);
2399
2400        init_waitqueue_head(&hdev->debug_wait);
2401        INIT_LIST_HEAD(&hdev->debug_list);
2402        spin_lock_init(&hdev->debug_list_lock);
2403        sema_init(&hdev->driver_input_lock, 1);
2404        mutex_init(&hdev->ll_open_lock);
2405
2406        return hdev;
2407}
2408EXPORT_SYMBOL_GPL(hid_allocate_device);
2409
2410static void hid_remove_device(struct hid_device *hdev)
2411{
2412        if (hdev->status & HID_STAT_ADDED) {
2413                device_del(&hdev->dev);
2414                hid_debug_unregister(hdev);
2415                hdev->status &= ~HID_STAT_ADDED;
2416        }
2417        kfree(hdev->dev_rdesc);
2418        hdev->dev_rdesc = NULL;
2419        hdev->dev_rsize = 0;
2420}
2421
2422/**
2423 * hid_destroy_device - free previously allocated device
2424 *
2425 * @hdev: hid device
2426 *
2427 * If you allocate hid_device through hid_allocate_device, you should ever
2428 * free by this function.
2429 */
2430void hid_destroy_device(struct hid_device *hdev)
2431{
2432        hid_remove_device(hdev);
2433        put_device(&hdev->dev);
2434}
2435EXPORT_SYMBOL_GPL(hid_destroy_device);
2436
2437
2438static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2439{
2440        struct hid_driver *hdrv = data;
2441        struct hid_device *hdev = to_hid_device(dev);
2442
2443        if (hdev->driver == hdrv &&
2444            !hdrv->match(hdev, hid_ignore_special_drivers) &&
2445            !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
2446                return device_reprobe(dev);
2447
2448        return 0;
2449}
2450
2451static int __hid_bus_driver_added(struct device_driver *drv, void *data)
2452{
2453        struct hid_driver *hdrv = to_hid_driver(drv);
2454
2455        if (hdrv->match) {
2456                bus_for_each_dev(&hid_bus_type, NULL, hdrv,
2457                                 __hid_bus_reprobe_drivers);
2458        }
2459
2460        return 0;
2461}
2462
2463static int __bus_removed_driver(struct device_driver *drv, void *data)
2464{
2465        return bus_rescan_devices(&hid_bus_type);
2466}
2467
2468int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2469                const char *mod_name)
2470{
2471        int ret;
2472
2473        hdrv->driver.name = hdrv->name;
2474        hdrv->driver.bus = &hid_bus_type;
2475        hdrv->driver.owner = owner;
2476        hdrv->driver.mod_name = mod_name;
2477
2478        INIT_LIST_HEAD(&hdrv->dyn_list);
2479        spin_lock_init(&hdrv->dyn_lock);
2480
2481        ret = driver_register(&hdrv->driver);
2482
2483        if (ret == 0)
2484                bus_for_each_drv(&hid_bus_type, NULL, NULL,
2485                                 __hid_bus_driver_added);
2486
2487        return ret;
2488}
2489EXPORT_SYMBOL_GPL(__hid_register_driver);
2490
2491void hid_unregister_driver(struct hid_driver *hdrv)
2492{
2493        driver_unregister(&hdrv->driver);
2494        hid_free_dynids(hdrv);
2495
2496        bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
2497}
2498EXPORT_SYMBOL_GPL(hid_unregister_driver);
2499
2500int hid_check_keys_pressed(struct hid_device *hid)
2501{
2502        struct hid_input *hidinput;
2503        int i;
2504
2505        if (!(hid->claimed & HID_CLAIMED_INPUT))
2506                return 0;
2507
2508        list_for_each_entry(hidinput, &hid->inputs, list) {
2509                for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2510                        if (hidinput->input->key[i])
2511                                return 1;
2512        }
2513
2514        return 0;
2515}
2516
2517EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2518
2519static int __init hid_init(void)
2520{
2521        int ret;
2522
2523        if (hid_debug)
2524                pr_warn("hid_debug is now used solely for parser and driver debugging.\n"
2525                        "debugfs is now used for inspecting the device (report descriptor, reports)\n");
2526
2527        ret = bus_register(&hid_bus_type);
2528        if (ret) {
2529                pr_err("can't register hid bus\n");
2530                goto err;
2531        }
2532
2533        ret = hidraw_init();
2534        if (ret)
2535                goto err_bus;
2536
2537        hid_debug_init();
2538
2539        return 0;
2540err_bus:
2541        bus_unregister(&hid_bus_type);
2542err:
2543        return ret;
2544}
2545
2546static void __exit hid_exit(void)
2547{
2548        hid_debug_exit();
2549        hidraw_exit();
2550        bus_unregister(&hid_bus_type);
2551        hid_quirks_exit(HID_BUS_ANY);
2552}
2553
2554module_init(hid_init);
2555module_exit(hid_exit);
2556
2557MODULE_AUTHOR("Andreas Gal");
2558MODULE_AUTHOR("Vojtech Pavlik");
2559MODULE_AUTHOR("Jiri Kosina");
2560MODULE_LICENSE("GPL");
2561