linux/drivers/hwmon/fam15h_power.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * fam15h_power.c - AMD Family 15h processor power monitoring
   4 *
   5 * Copyright (c) 2011-2016 Advanced Micro Devices, Inc.
   6 * Author: Andreas Herrmann <herrmann.der.user@googlemail.com>
   7 */
   8
   9#include <linux/err.h>
  10#include <linux/hwmon.h>
  11#include <linux/hwmon-sysfs.h>
  12#include <linux/init.h>
  13#include <linux/module.h>
  14#include <linux/pci.h>
  15#include <linux/bitops.h>
  16#include <linux/cpu.h>
  17#include <linux/cpumask.h>
  18#include <linux/time.h>
  19#include <linux/sched.h>
  20#include <asm/processor.h>
  21#include <asm/msr.h>
  22
  23MODULE_DESCRIPTION("AMD Family 15h CPU processor power monitor");
  24MODULE_AUTHOR("Andreas Herrmann <herrmann.der.user@googlemail.com>");
  25MODULE_LICENSE("GPL");
  26
  27/* D18F3 */
  28#define REG_NORTHBRIDGE_CAP             0xe8
  29
  30/* D18F4 */
  31#define REG_PROCESSOR_TDP               0x1b8
  32
  33/* D18F5 */
  34#define REG_TDP_RUNNING_AVERAGE         0xe0
  35#define REG_TDP_LIMIT3                  0xe8
  36
  37#define FAM15H_MIN_NUM_ATTRS            2
  38#define FAM15H_NUM_GROUPS               2
  39#define MAX_CUS                         8
  40
  41/* set maximum interval as 1 second */
  42#define MAX_INTERVAL                    1000
  43
  44#define MSR_F15H_CU_PWR_ACCUMULATOR     0xc001007a
  45#define MSR_F15H_CU_MAX_PWR_ACCUMULATOR 0xc001007b
  46#define MSR_F15H_PTSC                   0xc0010280
  47
  48#define PCI_DEVICE_ID_AMD_15H_M70H_NB_F4 0x15b4
  49
  50struct fam15h_power_data {
  51        struct pci_dev *pdev;
  52        unsigned int tdp_to_watts;
  53        unsigned int base_tdp;
  54        unsigned int processor_pwr_watts;
  55        unsigned int cpu_pwr_sample_ratio;
  56        const struct attribute_group *groups[FAM15H_NUM_GROUPS];
  57        struct attribute_group group;
  58        /* maximum accumulated power of a compute unit */
  59        u64 max_cu_acc_power;
  60        /* accumulated power of the compute units */
  61        u64 cu_acc_power[MAX_CUS];
  62        /* performance timestamp counter */
  63        u64 cpu_sw_pwr_ptsc[MAX_CUS];
  64        /* online/offline status of current compute unit */
  65        int cu_on[MAX_CUS];
  66        unsigned long power_period;
  67};
  68
  69static bool is_carrizo_or_later(void)
  70{
  71        return boot_cpu_data.x86 == 0x15 && boot_cpu_data.x86_model >= 0x60;
  72}
  73
  74static ssize_t power1_input_show(struct device *dev,
  75                                 struct device_attribute *attr, char *buf)
  76{
  77        u32 val, tdp_limit, running_avg_range;
  78        s32 running_avg_capture;
  79        u64 curr_pwr_watts;
  80        struct fam15h_power_data *data = dev_get_drvdata(dev);
  81        struct pci_dev *f4 = data->pdev;
  82
  83        pci_bus_read_config_dword(f4->bus, PCI_DEVFN(PCI_SLOT(f4->devfn), 5),
  84                                  REG_TDP_RUNNING_AVERAGE, &val);
  85
  86        /*
  87         * On Carrizo and later platforms, TdpRunAvgAccCap bit field
  88         * is extended to 4:31 from 4:25.
  89         */
  90        if (is_carrizo_or_later()) {
  91                running_avg_capture = val >> 4;
  92                running_avg_capture = sign_extend32(running_avg_capture, 27);
  93        } else {
  94                running_avg_capture = (val >> 4) & 0x3fffff;
  95                running_avg_capture = sign_extend32(running_avg_capture, 21);
  96        }
  97
  98        running_avg_range = (val & 0xf) + 1;
  99
 100        pci_bus_read_config_dword(f4->bus, PCI_DEVFN(PCI_SLOT(f4->devfn), 5),
 101                                  REG_TDP_LIMIT3, &val);
 102
 103        /*
 104         * On Carrizo and later platforms, ApmTdpLimit bit field
 105         * is extended to 16:31 from 16:28.
 106         */
 107        if (is_carrizo_or_later())
 108                tdp_limit = val >> 16;
 109        else
 110                tdp_limit = (val >> 16) & 0x1fff;
 111
 112        curr_pwr_watts = ((u64)(tdp_limit +
 113                                data->base_tdp)) << running_avg_range;
 114        curr_pwr_watts -= running_avg_capture;
 115        curr_pwr_watts *= data->tdp_to_watts;
 116
 117        /*
 118         * Convert to microWatt
 119         *
 120         * power is in Watt provided as fixed point integer with
 121         * scaling factor 1/(2^16).  For conversion we use
 122         * (10^6)/(2^16) = 15625/(2^10)
 123         */
 124        curr_pwr_watts = (curr_pwr_watts * 15625) >> (10 + running_avg_range);
 125        return sprintf(buf, "%u\n", (unsigned int) curr_pwr_watts);
 126}
 127static DEVICE_ATTR_RO(power1_input);
 128
 129static ssize_t power1_crit_show(struct device *dev,
 130                                struct device_attribute *attr, char *buf)
 131{
 132        struct fam15h_power_data *data = dev_get_drvdata(dev);
 133
 134        return sprintf(buf, "%u\n", data->processor_pwr_watts);
 135}
 136static DEVICE_ATTR_RO(power1_crit);
 137
 138static void do_read_registers_on_cu(void *_data)
 139{
 140        struct fam15h_power_data *data = _data;
 141        int cpu, cu;
 142
 143        cpu = smp_processor_id();
 144
 145        /*
 146         * With the new x86 topology modelling, cpu core id actually
 147         * is compute unit id.
 148         */
 149        cu = cpu_data(cpu).cpu_core_id;
 150
 151        rdmsrl_safe(MSR_F15H_CU_PWR_ACCUMULATOR, &data->cu_acc_power[cu]);
 152        rdmsrl_safe(MSR_F15H_PTSC, &data->cpu_sw_pwr_ptsc[cu]);
 153
 154        data->cu_on[cu] = 1;
 155}
 156
 157/*
 158 * This function is only able to be called when CPUID
 159 * Fn8000_0007:EDX[12] is set.
 160 */
 161static int read_registers(struct fam15h_power_data *data)
 162{
 163        int core, this_core;
 164        cpumask_var_t mask;
 165        int ret, cpu;
 166
 167        ret = zalloc_cpumask_var(&mask, GFP_KERNEL);
 168        if (!ret)
 169                return -ENOMEM;
 170
 171        memset(data->cu_on, 0, sizeof(int) * MAX_CUS);
 172
 173        get_online_cpus();
 174
 175        /*
 176         * Choose the first online core of each compute unit, and then
 177         * read their MSR value of power and ptsc in a single IPI,
 178         * because the MSR value of CPU core represent the compute
 179         * unit's.
 180         */
 181        core = -1;
 182
 183        for_each_online_cpu(cpu) {
 184                this_core = topology_core_id(cpu);
 185
 186                if (this_core == core)
 187                        continue;
 188
 189                core = this_core;
 190
 191                /* get any CPU on this compute unit */
 192                cpumask_set_cpu(cpumask_any(topology_sibling_cpumask(cpu)), mask);
 193        }
 194
 195        on_each_cpu_mask(mask, do_read_registers_on_cu, data, true);
 196
 197        put_online_cpus();
 198        free_cpumask_var(mask);
 199
 200        return 0;
 201}
 202
 203static ssize_t power1_average_show(struct device *dev,
 204                                   struct device_attribute *attr, char *buf)
 205{
 206        struct fam15h_power_data *data = dev_get_drvdata(dev);
 207        u64 prev_cu_acc_power[MAX_CUS], prev_ptsc[MAX_CUS],
 208            jdelta[MAX_CUS];
 209        u64 tdelta, avg_acc;
 210        int cu, cu_num, ret;
 211        signed long leftover;
 212
 213        /*
 214         * With the new x86 topology modelling, x86_max_cores is the
 215         * compute unit number.
 216         */
 217        cu_num = boot_cpu_data.x86_max_cores;
 218
 219        ret = read_registers(data);
 220        if (ret)
 221                return 0;
 222
 223        for (cu = 0; cu < cu_num; cu++) {
 224                prev_cu_acc_power[cu] = data->cu_acc_power[cu];
 225                prev_ptsc[cu] = data->cpu_sw_pwr_ptsc[cu];
 226        }
 227
 228        leftover = schedule_timeout_interruptible(msecs_to_jiffies(data->power_period));
 229        if (leftover)
 230                return 0;
 231
 232        ret = read_registers(data);
 233        if (ret)
 234                return 0;
 235
 236        for (cu = 0, avg_acc = 0; cu < cu_num; cu++) {
 237                /* check if current compute unit is online */
 238                if (data->cu_on[cu] == 0)
 239                        continue;
 240
 241                if (data->cu_acc_power[cu] < prev_cu_acc_power[cu]) {
 242                        jdelta[cu] = data->max_cu_acc_power + data->cu_acc_power[cu];
 243                        jdelta[cu] -= prev_cu_acc_power[cu];
 244                } else {
 245                        jdelta[cu] = data->cu_acc_power[cu] - prev_cu_acc_power[cu];
 246                }
 247                tdelta = data->cpu_sw_pwr_ptsc[cu] - prev_ptsc[cu];
 248                jdelta[cu] *= data->cpu_pwr_sample_ratio * 1000;
 249                do_div(jdelta[cu], tdelta);
 250
 251                /* the unit is microWatt */
 252                avg_acc += jdelta[cu];
 253        }
 254
 255        return sprintf(buf, "%llu\n", (unsigned long long)avg_acc);
 256}
 257static DEVICE_ATTR_RO(power1_average);
 258
 259static ssize_t power1_average_interval_show(struct device *dev,
 260                                            struct device_attribute *attr,
 261                                            char *buf)
 262{
 263        struct fam15h_power_data *data = dev_get_drvdata(dev);
 264
 265        return sprintf(buf, "%lu\n", data->power_period);
 266}
 267
 268static ssize_t power1_average_interval_store(struct device *dev,
 269                                             struct device_attribute *attr,
 270                                             const char *buf, size_t count)
 271{
 272        struct fam15h_power_data *data = dev_get_drvdata(dev);
 273        unsigned long temp;
 274        int ret;
 275
 276        ret = kstrtoul(buf, 10, &temp);
 277        if (ret)
 278                return ret;
 279
 280        if (temp > MAX_INTERVAL)
 281                return -EINVAL;
 282
 283        /* the interval value should be greater than 0 */
 284        if (temp <= 0)
 285                return -EINVAL;
 286
 287        data->power_period = temp;
 288
 289        return count;
 290}
 291static DEVICE_ATTR_RW(power1_average_interval);
 292
 293static int fam15h_power_init_attrs(struct pci_dev *pdev,
 294                                   struct fam15h_power_data *data)
 295{
 296        int n = FAM15H_MIN_NUM_ATTRS;
 297        struct attribute **fam15h_power_attrs;
 298        struct cpuinfo_x86 *c = &boot_cpu_data;
 299
 300        if (c->x86 == 0x15 &&
 301            (c->x86_model <= 0xf ||
 302             (c->x86_model >= 0x60 && c->x86_model <= 0x7f)))
 303                n += 1;
 304
 305        /* check if processor supports accumulated power */
 306        if (boot_cpu_has(X86_FEATURE_ACC_POWER))
 307                n += 2;
 308
 309        fam15h_power_attrs = devm_kcalloc(&pdev->dev, n,
 310                                          sizeof(*fam15h_power_attrs),
 311                                          GFP_KERNEL);
 312
 313        if (!fam15h_power_attrs)
 314                return -ENOMEM;
 315
 316        n = 0;
 317        fam15h_power_attrs[n++] = &dev_attr_power1_crit.attr;
 318        if (c->x86 == 0x15 &&
 319            (c->x86_model <= 0xf ||
 320             (c->x86_model >= 0x60 && c->x86_model <= 0x7f)))
 321                fam15h_power_attrs[n++] = &dev_attr_power1_input.attr;
 322
 323        if (boot_cpu_has(X86_FEATURE_ACC_POWER)) {
 324                fam15h_power_attrs[n++] = &dev_attr_power1_average.attr;
 325                fam15h_power_attrs[n++] = &dev_attr_power1_average_interval.attr;
 326        }
 327
 328        data->group.attrs = fam15h_power_attrs;
 329
 330        return 0;
 331}
 332
 333static bool should_load_on_this_node(struct pci_dev *f4)
 334{
 335        u32 val;
 336
 337        pci_bus_read_config_dword(f4->bus, PCI_DEVFN(PCI_SLOT(f4->devfn), 3),
 338                                  REG_NORTHBRIDGE_CAP, &val);
 339        if ((val & BIT(29)) && ((val >> 30) & 3))
 340                return false;
 341
 342        return true;
 343}
 344
 345/*
 346 * Newer BKDG versions have an updated recommendation on how to properly
 347 * initialize the running average range (was: 0xE, now: 0x9). This avoids
 348 * counter saturations resulting in bogus power readings.
 349 * We correct this value ourselves to cope with older BIOSes.
 350 */
 351static const struct pci_device_id affected_device[] = {
 352        { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_NB_F4) },
 353        { 0 }
 354};
 355
 356static void tweak_runavg_range(struct pci_dev *pdev)
 357{
 358        u32 val;
 359
 360        /*
 361         * let this quirk apply only to the current version of the
 362         * northbridge, since future versions may change the behavior
 363         */
 364        if (!pci_match_id(affected_device, pdev))
 365                return;
 366
 367        pci_bus_read_config_dword(pdev->bus,
 368                PCI_DEVFN(PCI_SLOT(pdev->devfn), 5),
 369                REG_TDP_RUNNING_AVERAGE, &val);
 370        if ((val & 0xf) != 0xe)
 371                return;
 372
 373        val &= ~0xf;
 374        val |=  0x9;
 375        pci_bus_write_config_dword(pdev->bus,
 376                PCI_DEVFN(PCI_SLOT(pdev->devfn), 5),
 377                REG_TDP_RUNNING_AVERAGE, val);
 378}
 379
 380#ifdef CONFIG_PM
 381static int fam15h_power_resume(struct pci_dev *pdev)
 382{
 383        tweak_runavg_range(pdev);
 384        return 0;
 385}
 386#else
 387#define fam15h_power_resume NULL
 388#endif
 389
 390static int fam15h_power_init_data(struct pci_dev *f4,
 391                                  struct fam15h_power_data *data)
 392{
 393        u32 val;
 394        u64 tmp;
 395        int ret;
 396
 397        pci_read_config_dword(f4, REG_PROCESSOR_TDP, &val);
 398        data->base_tdp = val >> 16;
 399        tmp = val & 0xffff;
 400
 401        pci_bus_read_config_dword(f4->bus, PCI_DEVFN(PCI_SLOT(f4->devfn), 5),
 402                                  REG_TDP_LIMIT3, &val);
 403
 404        data->tdp_to_watts = ((val & 0x3ff) << 6) | ((val >> 10) & 0x3f);
 405        tmp *= data->tdp_to_watts;
 406
 407        /* result not allowed to be >= 256W */
 408        if ((tmp >> 16) >= 256)
 409                dev_warn(&f4->dev,
 410                         "Bogus value for ProcessorPwrWatts (processor_pwr_watts>=%u)\n",
 411                         (unsigned int) (tmp >> 16));
 412
 413        /* convert to microWatt */
 414        data->processor_pwr_watts = (tmp * 15625) >> 10;
 415
 416        ret = fam15h_power_init_attrs(f4, data);
 417        if (ret)
 418                return ret;
 419
 420
 421        /* CPUID Fn8000_0007:EDX[12] indicates to support accumulated power */
 422        if (!boot_cpu_has(X86_FEATURE_ACC_POWER))
 423                return 0;
 424
 425        /*
 426         * determine the ratio of the compute unit power accumulator
 427         * sample period to the PTSC counter period by executing CPUID
 428         * Fn8000_0007:ECX
 429         */
 430        data->cpu_pwr_sample_ratio = cpuid_ecx(0x80000007);
 431
 432        if (rdmsrl_safe(MSR_F15H_CU_MAX_PWR_ACCUMULATOR, &tmp)) {
 433                pr_err("Failed to read max compute unit power accumulator MSR\n");
 434                return -ENODEV;
 435        }
 436
 437        data->max_cu_acc_power = tmp;
 438
 439        /*
 440         * Milliseconds are a reasonable interval for the measurement.
 441         * But it shouldn't set too long here, because several seconds
 442         * would cause the read function to hang. So set default
 443         * interval as 10 ms.
 444         */
 445        data->power_period = 10;
 446
 447        return read_registers(data);
 448}
 449
 450static int fam15h_power_probe(struct pci_dev *pdev,
 451                              const struct pci_device_id *id)
 452{
 453        struct fam15h_power_data *data;
 454        struct device *dev = &pdev->dev;
 455        struct device *hwmon_dev;
 456        int ret;
 457
 458        /*
 459         * though we ignore every other northbridge, we still have to
 460         * do the tweaking on _each_ node in MCM processors as the counters
 461         * are working hand-in-hand
 462         */
 463        tweak_runavg_range(pdev);
 464
 465        if (!should_load_on_this_node(pdev))
 466                return -ENODEV;
 467
 468        data = devm_kzalloc(dev, sizeof(struct fam15h_power_data), GFP_KERNEL);
 469        if (!data)
 470                return -ENOMEM;
 471
 472        ret = fam15h_power_init_data(pdev, data);
 473        if (ret)
 474                return ret;
 475
 476        data->pdev = pdev;
 477
 478        data->groups[0] = &data->group;
 479
 480        hwmon_dev = devm_hwmon_device_register_with_groups(dev, "fam15h_power",
 481                                                           data,
 482                                                           &data->groups[0]);
 483        return PTR_ERR_OR_ZERO(hwmon_dev);
 484}
 485
 486static const struct pci_device_id fam15h_power_id_table[] = {
 487        { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_NB_F4) },
 488        { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_M30H_NB_F4) },
 489        { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_M60H_NB_F4) },
 490        { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_M70H_NB_F4) },
 491        { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_16H_NB_F4) },
 492        { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_16H_M30H_NB_F4) },
 493        {}
 494};
 495MODULE_DEVICE_TABLE(pci, fam15h_power_id_table);
 496
 497static struct pci_driver fam15h_power_driver = {
 498        .name = "fam15h_power",
 499        .id_table = fam15h_power_id_table,
 500        .probe = fam15h_power_probe,
 501        .resume = fam15h_power_resume,
 502};
 503
 504module_pci_driver(fam15h_power_driver);
 505