linux/drivers/hwmon/fschmd.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * fschmd.c
   4 *
   5 * Copyright (C) 2007 - 2009 Hans de Goede <hdegoede@redhat.com>
   6 */
   7
   8/*
   9 *  Merged Fujitsu Siemens hwmon driver, supporting the Poseidon, Hermes,
  10 *  Scylla, Heracles, Heimdall, Hades and Syleus chips
  11 *
  12 *  Based on the original 2.4 fscscy, 2.6 fscpos, 2.6 fscher and 2.6
  13 *  (candidate) fschmd drivers:
  14 *  Copyright (C) 2006 Thilo Cestonaro
  15 *                      <thilo.cestonaro.external@fujitsu-siemens.com>
  16 *  Copyright (C) 2004, 2005 Stefan Ott <stefan@desire.ch>
  17 *  Copyright (C) 2003, 2004 Reinhard Nissl <rnissl@gmx.de>
  18 *  Copyright (c) 2001 Martin Knoblauch <mkn@teraport.de, knobi@knobisoft.de>
  19 *  Copyright (C) 2000 Hermann Jung <hej@odn.de>
  20 */
  21
  22#include <linux/module.h>
  23#include <linux/init.h>
  24#include <linux/slab.h>
  25#include <linux/jiffies.h>
  26#include <linux/i2c.h>
  27#include <linux/hwmon.h>
  28#include <linux/hwmon-sysfs.h>
  29#include <linux/err.h>
  30#include <linux/mutex.h>
  31#include <linux/sysfs.h>
  32#include <linux/dmi.h>
  33#include <linux/fs.h>
  34#include <linux/watchdog.h>
  35#include <linux/miscdevice.h>
  36#include <linux/uaccess.h>
  37#include <linux/kref.h>
  38
  39/* Addresses to scan */
  40static const unsigned short normal_i2c[] = { 0x73, I2C_CLIENT_END };
  41
  42/* Insmod parameters */
  43static bool nowayout = WATCHDOG_NOWAYOUT;
  44module_param(nowayout, bool, 0);
  45MODULE_PARM_DESC(nowayout, "Watchdog cannot be stopped once started (default="
  46        __MODULE_STRING(WATCHDOG_NOWAYOUT) ")");
  47
  48enum chips { fscpos, fscher, fscscy, fschrc, fschmd, fschds, fscsyl };
  49
  50/*
  51 * The FSCHMD registers and other defines
  52 */
  53
  54/* chip identification */
  55#define FSCHMD_REG_IDENT_0              0x00
  56#define FSCHMD_REG_IDENT_1              0x01
  57#define FSCHMD_REG_IDENT_2              0x02
  58#define FSCHMD_REG_REVISION             0x03
  59
  60/* global control and status */
  61#define FSCHMD_REG_EVENT_STATE          0x04
  62#define FSCHMD_REG_CONTROL              0x05
  63
  64#define FSCHMD_CONTROL_ALERT_LED        0x01
  65
  66/* watchdog */
  67static const u8 FSCHMD_REG_WDOG_CONTROL[7] = {
  68        0x21, 0x21, 0x21, 0x21, 0x21, 0x28, 0x28 };
  69static const u8 FSCHMD_REG_WDOG_STATE[7] = {
  70        0x23, 0x23, 0x23, 0x23, 0x23, 0x29, 0x29 };
  71static const u8 FSCHMD_REG_WDOG_PRESET[7] = {
  72        0x28, 0x28, 0x28, 0x28, 0x28, 0x2a, 0x2a };
  73
  74#define FSCHMD_WDOG_CONTROL_TRIGGER     0x10
  75#define FSCHMD_WDOG_CONTROL_STARTED     0x10 /* the same as trigger */
  76#define FSCHMD_WDOG_CONTROL_STOP        0x20
  77#define FSCHMD_WDOG_CONTROL_RESOLUTION  0x40
  78
  79#define FSCHMD_WDOG_STATE_CARDRESET     0x02
  80
  81/* voltages, weird order is to keep the same order as the old drivers */
  82static const u8 FSCHMD_REG_VOLT[7][6] = {
  83        { 0x45, 0x42, 0x48 },                           /* pos */
  84        { 0x45, 0x42, 0x48 },                           /* her */
  85        { 0x45, 0x42, 0x48 },                           /* scy */
  86        { 0x45, 0x42, 0x48 },                           /* hrc */
  87        { 0x45, 0x42, 0x48 },                           /* hmd */
  88        { 0x21, 0x20, 0x22 },                           /* hds */
  89        { 0x21, 0x20, 0x22, 0x23, 0x24, 0x25 },         /* syl */
  90};
  91
  92static const int FSCHMD_NO_VOLT_SENSORS[7] = { 3, 3, 3, 3, 3, 3, 6 };
  93
  94/*
  95 * minimum pwm at which the fan is driven (pwm can be increased depending on
  96 * the temp. Notice that for the scy some fans share there minimum speed.
  97 * Also notice that with the scy the sensor order is different than with the
  98 * other chips, this order was in the 2.4 driver and kept for consistency.
  99 */
 100static const u8 FSCHMD_REG_FAN_MIN[7][7] = {
 101        { 0x55, 0x65 },                                 /* pos */
 102        { 0x55, 0x65, 0xb5 },                           /* her */
 103        { 0x65, 0x65, 0x55, 0xa5, 0x55, 0xa5 },         /* scy */
 104        { 0x55, 0x65, 0xa5, 0xb5 },                     /* hrc */
 105        { 0x55, 0x65, 0xa5, 0xb5, 0xc5 },               /* hmd */
 106        { 0x55, 0x65, 0xa5, 0xb5, 0xc5 },               /* hds */
 107        { 0x54, 0x64, 0x74, 0x84, 0x94, 0xa4, 0xb4 },   /* syl */
 108};
 109
 110/* actual fan speed */
 111static const u8 FSCHMD_REG_FAN_ACT[7][7] = {
 112        { 0x0e, 0x6b, 0xab },                           /* pos */
 113        { 0x0e, 0x6b, 0xbb },                           /* her */
 114        { 0x6b, 0x6c, 0x0e, 0xab, 0x5c, 0xbb },         /* scy */
 115        { 0x0e, 0x6b, 0xab, 0xbb },                     /* hrc */
 116        { 0x5b, 0x6b, 0xab, 0xbb, 0xcb },               /* hmd */
 117        { 0x5b, 0x6b, 0xab, 0xbb, 0xcb },               /* hds */
 118        { 0x57, 0x67, 0x77, 0x87, 0x97, 0xa7, 0xb7 },   /* syl */
 119};
 120
 121/* fan status registers */
 122static const u8 FSCHMD_REG_FAN_STATE[7][7] = {
 123        { 0x0d, 0x62, 0xa2 },                           /* pos */
 124        { 0x0d, 0x62, 0xb2 },                           /* her */
 125        { 0x62, 0x61, 0x0d, 0xa2, 0x52, 0xb2 },         /* scy */
 126        { 0x0d, 0x62, 0xa2, 0xb2 },                     /* hrc */
 127        { 0x52, 0x62, 0xa2, 0xb2, 0xc2 },               /* hmd */
 128        { 0x52, 0x62, 0xa2, 0xb2, 0xc2 },               /* hds */
 129        { 0x50, 0x60, 0x70, 0x80, 0x90, 0xa0, 0xb0 },   /* syl */
 130};
 131
 132/* fan ripple / divider registers */
 133static const u8 FSCHMD_REG_FAN_RIPPLE[7][7] = {
 134        { 0x0f, 0x6f, 0xaf },                           /* pos */
 135        { 0x0f, 0x6f, 0xbf },                           /* her */
 136        { 0x6f, 0x6f, 0x0f, 0xaf, 0x0f, 0xbf },         /* scy */
 137        { 0x0f, 0x6f, 0xaf, 0xbf },                     /* hrc */
 138        { 0x5f, 0x6f, 0xaf, 0xbf, 0xcf },               /* hmd */
 139        { 0x5f, 0x6f, 0xaf, 0xbf, 0xcf },               /* hds */
 140        { 0x56, 0x66, 0x76, 0x86, 0x96, 0xa6, 0xb6 },   /* syl */
 141};
 142
 143static const int FSCHMD_NO_FAN_SENSORS[7] = { 3, 3, 6, 4, 5, 5, 7 };
 144
 145/* Fan status register bitmasks */
 146#define FSCHMD_FAN_ALARM        0x04 /* called fault by FSC! */
 147#define FSCHMD_FAN_NOT_PRESENT  0x08
 148#define FSCHMD_FAN_DISABLED     0x80
 149
 150
 151/* actual temperature registers */
 152static const u8 FSCHMD_REG_TEMP_ACT[7][11] = {
 153        { 0x64, 0x32, 0x35 },                           /* pos */
 154        { 0x64, 0x32, 0x35 },                           /* her */
 155        { 0x64, 0xD0, 0x32, 0x35 },                     /* scy */
 156        { 0x64, 0x32, 0x35 },                           /* hrc */
 157        { 0x70, 0x80, 0x90, 0xd0, 0xe0 },               /* hmd */
 158        { 0x70, 0x80, 0x90, 0xd0, 0xe0 },               /* hds */
 159        { 0x58, 0x68, 0x78, 0x88, 0x98, 0xa8,           /* syl */
 160          0xb8, 0xc8, 0xd8, 0xe8, 0xf8 },
 161};
 162
 163/* temperature state registers */
 164static const u8 FSCHMD_REG_TEMP_STATE[7][11] = {
 165        { 0x71, 0x81, 0x91 },                           /* pos */
 166        { 0x71, 0x81, 0x91 },                           /* her */
 167        { 0x71, 0xd1, 0x81, 0x91 },                     /* scy */
 168        { 0x71, 0x81, 0x91 },                           /* hrc */
 169        { 0x71, 0x81, 0x91, 0xd1, 0xe1 },               /* hmd */
 170        { 0x71, 0x81, 0x91, 0xd1, 0xe1 },               /* hds */
 171        { 0x59, 0x69, 0x79, 0x89, 0x99, 0xa9,           /* syl */
 172          0xb9, 0xc9, 0xd9, 0xe9, 0xf9 },
 173};
 174
 175/*
 176 * temperature high limit registers, FSC does not document these. Proven to be
 177 * there with field testing on the fscher and fschrc, already supported / used
 178 * in the fscscy 2.4 driver. FSC has confirmed that the fschmd has registers
 179 * at these addresses, but doesn't want to confirm they are the same as with
 180 * the fscher??
 181 */
 182static const u8 FSCHMD_REG_TEMP_LIMIT[7][11] = {
 183        { 0, 0, 0 },                                    /* pos */
 184        { 0x76, 0x86, 0x96 },                           /* her */
 185        { 0x76, 0xd6, 0x86, 0x96 },                     /* scy */
 186        { 0x76, 0x86, 0x96 },                           /* hrc */
 187        { 0x76, 0x86, 0x96, 0xd6, 0xe6 },               /* hmd */
 188        { 0x76, 0x86, 0x96, 0xd6, 0xe6 },               /* hds */
 189        { 0x5a, 0x6a, 0x7a, 0x8a, 0x9a, 0xaa,           /* syl */
 190          0xba, 0xca, 0xda, 0xea, 0xfa },
 191};
 192
 193/*
 194 * These were found through experimenting with an fscher, currently they are
 195 * not used, but we keep them around for future reference.
 196 * On the fscsyl AUTOP1 lives at 0x#c (so 0x5c for fan1, 0x6c for fan2, etc),
 197 * AUTOP2 lives at 0x#e, and 0x#1 is a bitmask defining which temps influence
 198 * the fan speed.
 199 * static const u8 FSCHER_REG_TEMP_AUTOP1[] =   { 0x73, 0x83, 0x93 };
 200 * static const u8 FSCHER_REG_TEMP_AUTOP2[] =   { 0x75, 0x85, 0x95 };
 201 */
 202
 203static const int FSCHMD_NO_TEMP_SENSORS[7] = { 3, 3, 4, 3, 5, 5, 11 };
 204
 205/* temp status register bitmasks */
 206#define FSCHMD_TEMP_WORKING     0x01
 207#define FSCHMD_TEMP_ALERT       0x02
 208#define FSCHMD_TEMP_DISABLED    0x80
 209/* there only really is an alarm if the sensor is working and alert == 1 */
 210#define FSCHMD_TEMP_ALARM_MASK \
 211        (FSCHMD_TEMP_WORKING | FSCHMD_TEMP_ALERT)
 212
 213/*
 214 * Functions declarations
 215 */
 216
 217static int fschmd_probe(struct i2c_client *client,
 218                        const struct i2c_device_id *id);
 219static int fschmd_detect(struct i2c_client *client,
 220                         struct i2c_board_info *info);
 221static int fschmd_remove(struct i2c_client *client);
 222static struct fschmd_data *fschmd_update_device(struct device *dev);
 223
 224/*
 225 * Driver data (common to all clients)
 226 */
 227
 228static const struct i2c_device_id fschmd_id[] = {
 229        { "fscpos", fscpos },
 230        { "fscher", fscher },
 231        { "fscscy", fscscy },
 232        { "fschrc", fschrc },
 233        { "fschmd", fschmd },
 234        { "fschds", fschds },
 235        { "fscsyl", fscsyl },
 236        { }
 237};
 238MODULE_DEVICE_TABLE(i2c, fschmd_id);
 239
 240static struct i2c_driver fschmd_driver = {
 241        .class          = I2C_CLASS_HWMON,
 242        .driver = {
 243                .name   = "fschmd",
 244        },
 245        .probe          = fschmd_probe,
 246        .remove         = fschmd_remove,
 247        .id_table       = fschmd_id,
 248        .detect         = fschmd_detect,
 249        .address_list   = normal_i2c,
 250};
 251
 252/*
 253 * Client data (each client gets its own)
 254 */
 255
 256struct fschmd_data {
 257        struct i2c_client *client;
 258        struct device *hwmon_dev;
 259        struct mutex update_lock;
 260        struct mutex watchdog_lock;
 261        struct list_head list; /* member of the watchdog_data_list */
 262        struct kref kref;
 263        struct miscdevice watchdog_miscdev;
 264        enum chips kind;
 265        unsigned long watchdog_is_open;
 266        char watchdog_expect_close;
 267        char watchdog_name[10]; /* must be unique to avoid sysfs conflict */
 268        char valid; /* zero until following fields are valid */
 269        unsigned long last_updated; /* in jiffies */
 270
 271        /* register values */
 272        u8 revision;            /* chip revision */
 273        u8 global_control;      /* global control register */
 274        u8 watchdog_control;    /* watchdog control register */
 275        u8 watchdog_state;      /* watchdog status register */
 276        u8 watchdog_preset;     /* watchdog counter preset on trigger val */
 277        u8 volt[6];             /* voltage */
 278        u8 temp_act[11];        /* temperature */
 279        u8 temp_status[11];     /* status of sensor */
 280        u8 temp_max[11];        /* high temp limit, notice: undocumented! */
 281        u8 fan_act[7];          /* fans revolutions per second */
 282        u8 fan_status[7];       /* fan status */
 283        u8 fan_min[7];          /* fan min value for rps */
 284        u8 fan_ripple[7];       /* divider for rps */
 285};
 286
 287/*
 288 * Global variables to hold information read from special DMI tables, which are
 289 * available on FSC machines with an fscher or later chip. There is no need to
 290 * protect these with a lock as they are only modified from our attach function
 291 * which always gets called with the i2c-core lock held and never accessed
 292 * before the attach function is done with them.
 293 */
 294static int dmi_mult[6] = { 490, 200, 100, 100, 200, 100 };
 295static int dmi_offset[6] = { 0, 0, 0, 0, 0, 0 };
 296static int dmi_vref = -1;
 297
 298/*
 299 * Somewhat ugly :( global data pointer list with all fschmd devices, so that
 300 * we can find our device data as when using misc_register there is no other
 301 * method to get to ones device data from the open fop.
 302 */
 303static LIST_HEAD(watchdog_data_list);
 304/* Note this lock not only protect list access, but also data.kref access */
 305static DEFINE_MUTEX(watchdog_data_mutex);
 306
 307/*
 308 * Release our data struct when we're detached from the i2c client *and* all
 309 * references to our watchdog device are released
 310 */
 311static void fschmd_release_resources(struct kref *ref)
 312{
 313        struct fschmd_data *data = container_of(ref, struct fschmd_data, kref);
 314        kfree(data);
 315}
 316
 317/*
 318 * Sysfs attr show / store functions
 319 */
 320
 321static ssize_t in_value_show(struct device *dev,
 322                             struct device_attribute *devattr, char *buf)
 323{
 324        const int max_reading[3] = { 14200, 6600, 3300 };
 325        int index = to_sensor_dev_attr(devattr)->index;
 326        struct fschmd_data *data = fschmd_update_device(dev);
 327
 328        if (data->kind == fscher || data->kind >= fschrc)
 329                return sprintf(buf, "%d\n", (data->volt[index] * dmi_vref *
 330                        dmi_mult[index]) / 255 + dmi_offset[index]);
 331        else
 332                return sprintf(buf, "%d\n", (data->volt[index] *
 333                        max_reading[index] + 128) / 255);
 334}
 335
 336
 337#define TEMP_FROM_REG(val)      (((val) - 128) * 1000)
 338
 339static ssize_t temp_value_show(struct device *dev,
 340                               struct device_attribute *devattr, char *buf)
 341{
 342        int index = to_sensor_dev_attr(devattr)->index;
 343        struct fschmd_data *data = fschmd_update_device(dev);
 344
 345        return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_act[index]));
 346}
 347
 348static ssize_t temp_max_show(struct device *dev,
 349                             struct device_attribute *devattr, char *buf)
 350{
 351        int index = to_sensor_dev_attr(devattr)->index;
 352        struct fschmd_data *data = fschmd_update_device(dev);
 353
 354        return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[index]));
 355}
 356
 357static ssize_t temp_max_store(struct device *dev,
 358                              struct device_attribute *devattr,
 359                              const char *buf, size_t count)
 360{
 361        int index = to_sensor_dev_attr(devattr)->index;
 362        struct fschmd_data *data = dev_get_drvdata(dev);
 363        long v;
 364        int err;
 365
 366        err = kstrtol(buf, 10, &v);
 367        if (err)
 368                return err;
 369
 370        v = clamp_val(v / 1000, -128, 127) + 128;
 371
 372        mutex_lock(&data->update_lock);
 373        i2c_smbus_write_byte_data(to_i2c_client(dev),
 374                FSCHMD_REG_TEMP_LIMIT[data->kind][index], v);
 375        data->temp_max[index] = v;
 376        mutex_unlock(&data->update_lock);
 377
 378        return count;
 379}
 380
 381static ssize_t temp_fault_show(struct device *dev,
 382                               struct device_attribute *devattr, char *buf)
 383{
 384        int index = to_sensor_dev_attr(devattr)->index;
 385        struct fschmd_data *data = fschmd_update_device(dev);
 386
 387        /* bit 0 set means sensor working ok, so no fault! */
 388        if (data->temp_status[index] & FSCHMD_TEMP_WORKING)
 389                return sprintf(buf, "0\n");
 390        else
 391                return sprintf(buf, "1\n");
 392}
 393
 394static ssize_t temp_alarm_show(struct device *dev,
 395                               struct device_attribute *devattr, char *buf)
 396{
 397        int index = to_sensor_dev_attr(devattr)->index;
 398        struct fschmd_data *data = fschmd_update_device(dev);
 399
 400        if ((data->temp_status[index] & FSCHMD_TEMP_ALARM_MASK) ==
 401                        FSCHMD_TEMP_ALARM_MASK)
 402                return sprintf(buf, "1\n");
 403        else
 404                return sprintf(buf, "0\n");
 405}
 406
 407
 408#define RPM_FROM_REG(val)       ((val) * 60)
 409
 410static ssize_t fan_value_show(struct device *dev,
 411                              struct device_attribute *devattr, char *buf)
 412{
 413        int index = to_sensor_dev_attr(devattr)->index;
 414        struct fschmd_data *data = fschmd_update_device(dev);
 415
 416        return sprintf(buf, "%u\n", RPM_FROM_REG(data->fan_act[index]));
 417}
 418
 419static ssize_t fan_div_show(struct device *dev,
 420                            struct device_attribute *devattr, char *buf)
 421{
 422        int index = to_sensor_dev_attr(devattr)->index;
 423        struct fschmd_data *data = fschmd_update_device(dev);
 424
 425        /* bits 2..7 reserved => mask with 3 */
 426        return sprintf(buf, "%d\n", 1 << (data->fan_ripple[index] & 3));
 427}
 428
 429static ssize_t fan_div_store(struct device *dev,
 430                             struct device_attribute *devattr,
 431                             const char *buf, size_t count)
 432{
 433        u8 reg;
 434        int index = to_sensor_dev_attr(devattr)->index;
 435        struct fschmd_data *data = dev_get_drvdata(dev);
 436        /* supported values: 2, 4, 8 */
 437        unsigned long v;
 438        int err;
 439
 440        err = kstrtoul(buf, 10, &v);
 441        if (err)
 442                return err;
 443
 444        switch (v) {
 445        case 2:
 446                v = 1;
 447                break;
 448        case 4:
 449                v = 2;
 450                break;
 451        case 8:
 452                v = 3;
 453                break;
 454        default:
 455                dev_err(dev,
 456                        "fan_div value %lu not supported. Choose one of 2, 4 or 8!\n",
 457                        v);
 458                return -EINVAL;
 459        }
 460
 461        mutex_lock(&data->update_lock);
 462
 463        reg = i2c_smbus_read_byte_data(to_i2c_client(dev),
 464                FSCHMD_REG_FAN_RIPPLE[data->kind][index]);
 465
 466        /* bits 2..7 reserved => mask with 0x03 */
 467        reg &= ~0x03;
 468        reg |= v;
 469
 470        i2c_smbus_write_byte_data(to_i2c_client(dev),
 471                FSCHMD_REG_FAN_RIPPLE[data->kind][index], reg);
 472
 473        data->fan_ripple[index] = reg;
 474
 475        mutex_unlock(&data->update_lock);
 476
 477        return count;
 478}
 479
 480static ssize_t fan_alarm_show(struct device *dev,
 481                              struct device_attribute *devattr, char *buf)
 482{
 483        int index = to_sensor_dev_attr(devattr)->index;
 484        struct fschmd_data *data = fschmd_update_device(dev);
 485
 486        if (data->fan_status[index] & FSCHMD_FAN_ALARM)
 487                return sprintf(buf, "1\n");
 488        else
 489                return sprintf(buf, "0\n");
 490}
 491
 492static ssize_t fan_fault_show(struct device *dev,
 493                              struct device_attribute *devattr, char *buf)
 494{
 495        int index = to_sensor_dev_attr(devattr)->index;
 496        struct fschmd_data *data = fschmd_update_device(dev);
 497
 498        if (data->fan_status[index] & FSCHMD_FAN_NOT_PRESENT)
 499                return sprintf(buf, "1\n");
 500        else
 501                return sprintf(buf, "0\n");
 502}
 503
 504
 505static ssize_t pwm_auto_point1_pwm_show(struct device *dev,
 506                                        struct device_attribute *devattr,
 507                                        char *buf)
 508{
 509        int index = to_sensor_dev_attr(devattr)->index;
 510        struct fschmd_data *data = fschmd_update_device(dev);
 511        int val = data->fan_min[index];
 512
 513        /* 0 = allow turning off (except on the syl), 1-255 = 50-100% */
 514        if (val || data->kind == fscsyl)
 515                val = val / 2 + 128;
 516
 517        return sprintf(buf, "%d\n", val);
 518}
 519
 520static ssize_t pwm_auto_point1_pwm_store(struct device *dev,
 521                                         struct device_attribute *devattr,
 522                                         const char *buf, size_t count)
 523{
 524        int index = to_sensor_dev_attr(devattr)->index;
 525        struct fschmd_data *data = dev_get_drvdata(dev);
 526        unsigned long v;
 527        int err;
 528
 529        err = kstrtoul(buf, 10, &v);
 530        if (err)
 531                return err;
 532
 533        /* reg: 0 = allow turning off (except on the syl), 1-255 = 50-100% */
 534        if (v || data->kind == fscsyl) {
 535                v = clamp_val(v, 128, 255);
 536                v = (v - 128) * 2 + 1;
 537        }
 538
 539        mutex_lock(&data->update_lock);
 540
 541        i2c_smbus_write_byte_data(to_i2c_client(dev),
 542                FSCHMD_REG_FAN_MIN[data->kind][index], v);
 543        data->fan_min[index] = v;
 544
 545        mutex_unlock(&data->update_lock);
 546
 547        return count;
 548}
 549
 550
 551/*
 552 * The FSC hwmon family has the ability to force an attached alert led to flash
 553 * from software, we export this as an alert_led sysfs attr
 554 */
 555static ssize_t alert_led_show(struct device *dev,
 556        struct device_attribute *devattr, char *buf)
 557{
 558        struct fschmd_data *data = fschmd_update_device(dev);
 559
 560        if (data->global_control & FSCHMD_CONTROL_ALERT_LED)
 561                return sprintf(buf, "1\n");
 562        else
 563                return sprintf(buf, "0\n");
 564}
 565
 566static ssize_t alert_led_store(struct device *dev,
 567        struct device_attribute *devattr, const char *buf, size_t count)
 568{
 569        u8 reg;
 570        struct fschmd_data *data = dev_get_drvdata(dev);
 571        unsigned long v;
 572        int err;
 573
 574        err = kstrtoul(buf, 10, &v);
 575        if (err)
 576                return err;
 577
 578        mutex_lock(&data->update_lock);
 579
 580        reg = i2c_smbus_read_byte_data(to_i2c_client(dev), FSCHMD_REG_CONTROL);
 581
 582        if (v)
 583                reg |= FSCHMD_CONTROL_ALERT_LED;
 584        else
 585                reg &= ~FSCHMD_CONTROL_ALERT_LED;
 586
 587        i2c_smbus_write_byte_data(to_i2c_client(dev), FSCHMD_REG_CONTROL, reg);
 588
 589        data->global_control = reg;
 590
 591        mutex_unlock(&data->update_lock);
 592
 593        return count;
 594}
 595
 596static DEVICE_ATTR_RW(alert_led);
 597
 598static struct sensor_device_attribute fschmd_attr[] = {
 599        SENSOR_ATTR_RO(in0_input, in_value, 0),
 600        SENSOR_ATTR_RO(in1_input, in_value, 1),
 601        SENSOR_ATTR_RO(in2_input, in_value, 2),
 602        SENSOR_ATTR_RO(in3_input, in_value, 3),
 603        SENSOR_ATTR_RO(in4_input, in_value, 4),
 604        SENSOR_ATTR_RO(in5_input, in_value, 5),
 605};
 606
 607static struct sensor_device_attribute fschmd_temp_attr[] = {
 608        SENSOR_ATTR_RO(temp1_input, temp_value, 0),
 609        SENSOR_ATTR_RW(temp1_max, temp_max, 0),
 610        SENSOR_ATTR_RO(temp1_fault, temp_fault, 0),
 611        SENSOR_ATTR_RO(temp1_alarm, temp_alarm, 0),
 612        SENSOR_ATTR_RO(temp2_input, temp_value, 1),
 613        SENSOR_ATTR_RW(temp2_max, temp_max, 1),
 614        SENSOR_ATTR_RO(temp2_fault, temp_fault, 1),
 615        SENSOR_ATTR_RO(temp2_alarm, temp_alarm, 1),
 616        SENSOR_ATTR_RO(temp3_input, temp_value, 2),
 617        SENSOR_ATTR_RW(temp3_max, temp_max, 2),
 618        SENSOR_ATTR_RO(temp3_fault, temp_fault, 2),
 619        SENSOR_ATTR_RO(temp3_alarm, temp_alarm, 2),
 620        SENSOR_ATTR_RO(temp4_input, temp_value, 3),
 621        SENSOR_ATTR_RW(temp4_max, temp_max, 3),
 622        SENSOR_ATTR_RO(temp4_fault, temp_fault, 3),
 623        SENSOR_ATTR_RO(temp4_alarm, temp_alarm, 3),
 624        SENSOR_ATTR_RO(temp5_input, temp_value, 4),
 625        SENSOR_ATTR_RW(temp5_max, temp_max, 4),
 626        SENSOR_ATTR_RO(temp5_fault, temp_fault, 4),
 627        SENSOR_ATTR_RO(temp5_alarm, temp_alarm, 4),
 628        SENSOR_ATTR_RO(temp6_input, temp_value, 5),
 629        SENSOR_ATTR_RW(temp6_max, temp_max, 5),
 630        SENSOR_ATTR_RO(temp6_fault, temp_fault, 5),
 631        SENSOR_ATTR_RO(temp6_alarm, temp_alarm, 5),
 632        SENSOR_ATTR_RO(temp7_input, temp_value, 6),
 633        SENSOR_ATTR_RW(temp7_max, temp_max, 6),
 634        SENSOR_ATTR_RO(temp7_fault, temp_fault, 6),
 635        SENSOR_ATTR_RO(temp7_alarm, temp_alarm, 6),
 636        SENSOR_ATTR_RO(temp8_input, temp_value, 7),
 637        SENSOR_ATTR_RW(temp8_max, temp_max, 7),
 638        SENSOR_ATTR_RO(temp8_fault, temp_fault, 7),
 639        SENSOR_ATTR_RO(temp8_alarm, temp_alarm, 7),
 640        SENSOR_ATTR_RO(temp9_input, temp_value, 8),
 641        SENSOR_ATTR_RW(temp9_max, temp_max, 8),
 642        SENSOR_ATTR_RO(temp9_fault, temp_fault, 8),
 643        SENSOR_ATTR_RO(temp9_alarm, temp_alarm, 8),
 644        SENSOR_ATTR_RO(temp10_input, temp_value, 9),
 645        SENSOR_ATTR_RW(temp10_max, temp_max, 9),
 646        SENSOR_ATTR_RO(temp10_fault, temp_fault, 9),
 647        SENSOR_ATTR_RO(temp10_alarm, temp_alarm, 9),
 648        SENSOR_ATTR_RO(temp11_input, temp_value, 10),
 649        SENSOR_ATTR_RW(temp11_max, temp_max, 10),
 650        SENSOR_ATTR_RO(temp11_fault, temp_fault, 10),
 651        SENSOR_ATTR_RO(temp11_alarm, temp_alarm, 10),
 652};
 653
 654static struct sensor_device_attribute fschmd_fan_attr[] = {
 655        SENSOR_ATTR_RO(fan1_input, fan_value, 0),
 656        SENSOR_ATTR_RW(fan1_div, fan_div, 0),
 657        SENSOR_ATTR_RO(fan1_alarm, fan_alarm, 0),
 658        SENSOR_ATTR_RO(fan1_fault, fan_fault, 0),
 659        SENSOR_ATTR_RW(pwm1_auto_point1_pwm, pwm_auto_point1_pwm, 0),
 660        SENSOR_ATTR_RO(fan2_input, fan_value, 1),
 661        SENSOR_ATTR_RW(fan2_div, fan_div, 1),
 662        SENSOR_ATTR_RO(fan2_alarm, fan_alarm, 1),
 663        SENSOR_ATTR_RO(fan2_fault, fan_fault, 1),
 664        SENSOR_ATTR_RW(pwm2_auto_point1_pwm, pwm_auto_point1_pwm, 1),
 665        SENSOR_ATTR_RO(fan3_input, fan_value, 2),
 666        SENSOR_ATTR_RW(fan3_div, fan_div, 2),
 667        SENSOR_ATTR_RO(fan3_alarm, fan_alarm, 2),
 668        SENSOR_ATTR_RO(fan3_fault, fan_fault, 2),
 669        SENSOR_ATTR_RW(pwm3_auto_point1_pwm, pwm_auto_point1_pwm, 2),
 670        SENSOR_ATTR_RO(fan4_input, fan_value, 3),
 671        SENSOR_ATTR_RW(fan4_div, fan_div, 3),
 672        SENSOR_ATTR_RO(fan4_alarm, fan_alarm, 3),
 673        SENSOR_ATTR_RO(fan4_fault, fan_fault, 3),
 674        SENSOR_ATTR_RW(pwm4_auto_point1_pwm, pwm_auto_point1_pwm, 3),
 675        SENSOR_ATTR_RO(fan5_input, fan_value, 4),
 676        SENSOR_ATTR_RW(fan5_div, fan_div, 4),
 677        SENSOR_ATTR_RO(fan5_alarm, fan_alarm, 4),
 678        SENSOR_ATTR_RO(fan5_fault, fan_fault, 4),
 679        SENSOR_ATTR_RW(pwm5_auto_point1_pwm, pwm_auto_point1_pwm, 4),
 680        SENSOR_ATTR_RO(fan6_input, fan_value, 5),
 681        SENSOR_ATTR_RW(fan6_div, fan_div, 5),
 682        SENSOR_ATTR_RO(fan6_alarm, fan_alarm, 5),
 683        SENSOR_ATTR_RO(fan6_fault, fan_fault, 5),
 684        SENSOR_ATTR_RW(pwm6_auto_point1_pwm, pwm_auto_point1_pwm, 5),
 685        SENSOR_ATTR_RO(fan7_input, fan_value, 6),
 686        SENSOR_ATTR_RW(fan7_div, fan_div, 6),
 687        SENSOR_ATTR_RO(fan7_alarm, fan_alarm, 6),
 688        SENSOR_ATTR_RO(fan7_fault, fan_fault, 6),
 689        SENSOR_ATTR_RW(pwm7_auto_point1_pwm, pwm_auto_point1_pwm, 6),
 690};
 691
 692
 693/*
 694 * Watchdog routines
 695 */
 696
 697static int watchdog_set_timeout(struct fschmd_data *data, int timeout)
 698{
 699        int ret, resolution;
 700        int kind = data->kind + 1; /* 0-x array index -> 1-x module param */
 701
 702        /* 2 second or 60 second resolution? */
 703        if (timeout <= 510 || kind == fscpos || kind == fscscy)
 704                resolution = 2;
 705        else
 706                resolution = 60;
 707
 708        if (timeout < resolution || timeout > (resolution * 255))
 709                return -EINVAL;
 710
 711        mutex_lock(&data->watchdog_lock);
 712        if (!data->client) {
 713                ret = -ENODEV;
 714                goto leave;
 715        }
 716
 717        if (resolution == 2)
 718                data->watchdog_control &= ~FSCHMD_WDOG_CONTROL_RESOLUTION;
 719        else
 720                data->watchdog_control |= FSCHMD_WDOG_CONTROL_RESOLUTION;
 721
 722        data->watchdog_preset = DIV_ROUND_UP(timeout, resolution);
 723
 724        /* Write new timeout value */
 725        i2c_smbus_write_byte_data(data->client,
 726                FSCHMD_REG_WDOG_PRESET[data->kind], data->watchdog_preset);
 727        /* Write new control register, do not trigger! */
 728        i2c_smbus_write_byte_data(data->client,
 729                FSCHMD_REG_WDOG_CONTROL[data->kind],
 730                data->watchdog_control & ~FSCHMD_WDOG_CONTROL_TRIGGER);
 731
 732        ret = data->watchdog_preset * resolution;
 733
 734leave:
 735        mutex_unlock(&data->watchdog_lock);
 736        return ret;
 737}
 738
 739static int watchdog_get_timeout(struct fschmd_data *data)
 740{
 741        int timeout;
 742
 743        mutex_lock(&data->watchdog_lock);
 744        if (data->watchdog_control & FSCHMD_WDOG_CONTROL_RESOLUTION)
 745                timeout = data->watchdog_preset * 60;
 746        else
 747                timeout = data->watchdog_preset * 2;
 748        mutex_unlock(&data->watchdog_lock);
 749
 750        return timeout;
 751}
 752
 753static int watchdog_trigger(struct fschmd_data *data)
 754{
 755        int ret = 0;
 756
 757        mutex_lock(&data->watchdog_lock);
 758        if (!data->client) {
 759                ret = -ENODEV;
 760                goto leave;
 761        }
 762
 763        data->watchdog_control |= FSCHMD_WDOG_CONTROL_TRIGGER;
 764        i2c_smbus_write_byte_data(data->client,
 765                                  FSCHMD_REG_WDOG_CONTROL[data->kind],
 766                                  data->watchdog_control);
 767leave:
 768        mutex_unlock(&data->watchdog_lock);
 769        return ret;
 770}
 771
 772static int watchdog_stop(struct fschmd_data *data)
 773{
 774        int ret = 0;
 775
 776        mutex_lock(&data->watchdog_lock);
 777        if (!data->client) {
 778                ret = -ENODEV;
 779                goto leave;
 780        }
 781
 782        data->watchdog_control &= ~FSCHMD_WDOG_CONTROL_STARTED;
 783        /*
 784         * Don't store the stop flag in our watchdog control register copy, as
 785         * its a write only bit (read always returns 0)
 786         */
 787        i2c_smbus_write_byte_data(data->client,
 788                FSCHMD_REG_WDOG_CONTROL[data->kind],
 789                data->watchdog_control | FSCHMD_WDOG_CONTROL_STOP);
 790leave:
 791        mutex_unlock(&data->watchdog_lock);
 792        return ret;
 793}
 794
 795static int watchdog_open(struct inode *inode, struct file *filp)
 796{
 797        struct fschmd_data *pos, *data = NULL;
 798        int watchdog_is_open;
 799
 800        /*
 801         * We get called from drivers/char/misc.c with misc_mtx hold, and we
 802         * call misc_register() from fschmd_probe() with watchdog_data_mutex
 803         * hold, as misc_register() takes the misc_mtx lock, this is a possible
 804         * deadlock, so we use mutex_trylock here.
 805         */
 806        if (!mutex_trylock(&watchdog_data_mutex))
 807                return -ERESTARTSYS;
 808        list_for_each_entry(pos, &watchdog_data_list, list) {
 809                if (pos->watchdog_miscdev.minor == iminor(inode)) {
 810                        data = pos;
 811                        break;
 812                }
 813        }
 814        /* Note we can never not have found data, so we don't check for this */
 815        watchdog_is_open = test_and_set_bit(0, &data->watchdog_is_open);
 816        if (!watchdog_is_open)
 817                kref_get(&data->kref);
 818        mutex_unlock(&watchdog_data_mutex);
 819
 820        if (watchdog_is_open)
 821                return -EBUSY;
 822
 823        /* Start the watchdog */
 824        watchdog_trigger(data);
 825        filp->private_data = data;
 826
 827        return stream_open(inode, filp);
 828}
 829
 830static int watchdog_release(struct inode *inode, struct file *filp)
 831{
 832        struct fschmd_data *data = filp->private_data;
 833
 834        if (data->watchdog_expect_close) {
 835                watchdog_stop(data);
 836                data->watchdog_expect_close = 0;
 837        } else {
 838                watchdog_trigger(data);
 839                dev_crit(&data->client->dev,
 840                        "unexpected close, not stopping watchdog!\n");
 841        }
 842
 843        clear_bit(0, &data->watchdog_is_open);
 844
 845        mutex_lock(&watchdog_data_mutex);
 846        kref_put(&data->kref, fschmd_release_resources);
 847        mutex_unlock(&watchdog_data_mutex);
 848
 849        return 0;
 850}
 851
 852static ssize_t watchdog_write(struct file *filp, const char __user *buf,
 853        size_t count, loff_t *offset)
 854{
 855        int ret;
 856        struct fschmd_data *data = filp->private_data;
 857
 858        if (count) {
 859                if (!nowayout) {
 860                        size_t i;
 861
 862                        /* Clear it in case it was set with a previous write */
 863                        data->watchdog_expect_close = 0;
 864
 865                        for (i = 0; i != count; i++) {
 866                                char c;
 867                                if (get_user(c, buf + i))
 868                                        return -EFAULT;
 869                                if (c == 'V')
 870                                        data->watchdog_expect_close = 1;
 871                        }
 872                }
 873                ret = watchdog_trigger(data);
 874                if (ret < 0)
 875                        return ret;
 876        }
 877        return count;
 878}
 879
 880static long watchdog_ioctl(struct file *filp, unsigned int cmd,
 881                           unsigned long arg)
 882{
 883        struct watchdog_info ident = {
 884                .options = WDIOF_KEEPALIVEPING | WDIOF_SETTIMEOUT |
 885                                WDIOF_CARDRESET,
 886                .identity = "FSC watchdog"
 887        };
 888        int i, ret = 0;
 889        struct fschmd_data *data = filp->private_data;
 890
 891        switch (cmd) {
 892        case WDIOC_GETSUPPORT:
 893                ident.firmware_version = data->revision;
 894                if (!nowayout)
 895                        ident.options |= WDIOF_MAGICCLOSE;
 896                if (copy_to_user((void __user *)arg, &ident, sizeof(ident)))
 897                        ret = -EFAULT;
 898                break;
 899
 900        case WDIOC_GETSTATUS:
 901                ret = put_user(0, (int __user *)arg);
 902                break;
 903
 904        case WDIOC_GETBOOTSTATUS:
 905                if (data->watchdog_state & FSCHMD_WDOG_STATE_CARDRESET)
 906                        ret = put_user(WDIOF_CARDRESET, (int __user *)arg);
 907                else
 908                        ret = put_user(0, (int __user *)arg);
 909                break;
 910
 911        case WDIOC_KEEPALIVE:
 912                ret = watchdog_trigger(data);
 913                break;
 914
 915        case WDIOC_GETTIMEOUT:
 916                i = watchdog_get_timeout(data);
 917                ret = put_user(i, (int __user *)arg);
 918                break;
 919
 920        case WDIOC_SETTIMEOUT:
 921                if (get_user(i, (int __user *)arg)) {
 922                        ret = -EFAULT;
 923                        break;
 924                }
 925                ret = watchdog_set_timeout(data, i);
 926                if (ret > 0)
 927                        ret = put_user(ret, (int __user *)arg);
 928                break;
 929
 930        case WDIOC_SETOPTIONS:
 931                if (get_user(i, (int __user *)arg)) {
 932                        ret = -EFAULT;
 933                        break;
 934                }
 935
 936                if (i & WDIOS_DISABLECARD)
 937                        ret = watchdog_stop(data);
 938                else if (i & WDIOS_ENABLECARD)
 939                        ret = watchdog_trigger(data);
 940                else
 941                        ret = -EINVAL;
 942
 943                break;
 944        default:
 945                ret = -ENOTTY;
 946        }
 947        return ret;
 948}
 949
 950static const struct file_operations watchdog_fops = {
 951        .owner = THIS_MODULE,
 952        .llseek = no_llseek,
 953        .open = watchdog_open,
 954        .release = watchdog_release,
 955        .write = watchdog_write,
 956        .unlocked_ioctl = watchdog_ioctl,
 957};
 958
 959
 960/*
 961 * Detect, register, unregister and update device functions
 962 */
 963
 964/*
 965 * DMI decode routine to read voltage scaling factors from special DMI tables,
 966 * which are available on FSC machines with an fscher or later chip.
 967 */
 968static void fschmd_dmi_decode(const struct dmi_header *header, void *dummy)
 969{
 970        int i, mult[3] = { 0 }, offset[3] = { 0 }, vref = 0, found = 0;
 971
 972        /*
 973         * dmi code ugliness, we get passed the address of the contents of
 974         * a complete DMI record, but in the form of a dmi_header pointer, in
 975         * reality this address holds header->length bytes of which the header
 976         * are the first 4 bytes
 977         */
 978        u8 *dmi_data = (u8 *)header;
 979
 980        /* We are looking for OEM-specific type 185 */
 981        if (header->type != 185)
 982                return;
 983
 984        /*
 985         * we are looking for what Siemens calls "subtype" 19, the subtype
 986         * is stored in byte 5 of the dmi block
 987         */
 988        if (header->length < 5 || dmi_data[4] != 19)
 989                return;
 990
 991        /*
 992         * After the subtype comes 1 unknown byte and then blocks of 5 bytes,
 993         * consisting of what Siemens calls an "Entity" number, followed by
 994         * 2 16-bit words in LSB first order
 995         */
 996        for (i = 6; (i + 4) < header->length; i += 5) {
 997                /* entity 1 - 3: voltage multiplier and offset */
 998                if (dmi_data[i] >= 1 && dmi_data[i] <= 3) {
 999                        /* Our in sensors order and the DMI order differ */
1000                        const int shuffle[3] = { 1, 0, 2 };
1001                        int in = shuffle[dmi_data[i] - 1];
1002
1003                        /* Check for twice the same entity */
1004                        if (found & (1 << in))
1005                                return;
1006
1007                        mult[in] = dmi_data[i + 1] | (dmi_data[i + 2] << 8);
1008                        offset[in] = dmi_data[i + 3] | (dmi_data[i + 4] << 8);
1009
1010                        found |= 1 << in;
1011                }
1012
1013                /* entity 7: reference voltage */
1014                if (dmi_data[i] == 7) {
1015                        /* Check for twice the same entity */
1016                        if (found & 0x08)
1017                                return;
1018
1019                        vref = dmi_data[i + 1] | (dmi_data[i + 2] << 8);
1020
1021                        found |= 0x08;
1022                }
1023        }
1024
1025        if (found == 0x0F) {
1026                for (i = 0; i < 3; i++) {
1027                        dmi_mult[i] = mult[i] * 10;
1028                        dmi_offset[i] = offset[i] * 10;
1029                }
1030                /*
1031                 * According to the docs there should be separate dmi entries
1032                 * for the mult's and offsets of in3-5 of the syl, but on
1033                 * my test machine these are not present
1034                 */
1035                dmi_mult[3] = dmi_mult[2];
1036                dmi_mult[4] = dmi_mult[1];
1037                dmi_mult[5] = dmi_mult[2];
1038                dmi_offset[3] = dmi_offset[2];
1039                dmi_offset[4] = dmi_offset[1];
1040                dmi_offset[5] = dmi_offset[2];
1041                dmi_vref = vref;
1042        }
1043}
1044
1045static int fschmd_detect(struct i2c_client *client,
1046                         struct i2c_board_info *info)
1047{
1048        enum chips kind;
1049        struct i2c_adapter *adapter = client->adapter;
1050        char id[4];
1051
1052        if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
1053                return -ENODEV;
1054
1055        /* Detect & Identify the chip */
1056        id[0] = i2c_smbus_read_byte_data(client, FSCHMD_REG_IDENT_0);
1057        id[1] = i2c_smbus_read_byte_data(client, FSCHMD_REG_IDENT_1);
1058        id[2] = i2c_smbus_read_byte_data(client, FSCHMD_REG_IDENT_2);
1059        id[3] = '\0';
1060
1061        if (!strcmp(id, "PEG"))
1062                kind = fscpos;
1063        else if (!strcmp(id, "HER"))
1064                kind = fscher;
1065        else if (!strcmp(id, "SCY"))
1066                kind = fscscy;
1067        else if (!strcmp(id, "HRC"))
1068                kind = fschrc;
1069        else if (!strcmp(id, "HMD"))
1070                kind = fschmd;
1071        else if (!strcmp(id, "HDS"))
1072                kind = fschds;
1073        else if (!strcmp(id, "SYL"))
1074                kind = fscsyl;
1075        else
1076                return -ENODEV;
1077
1078        strlcpy(info->type, fschmd_id[kind].name, I2C_NAME_SIZE);
1079
1080        return 0;
1081}
1082
1083static int fschmd_probe(struct i2c_client *client,
1084                        const struct i2c_device_id *id)
1085{
1086        struct fschmd_data *data;
1087        const char * const names[7] = { "Poseidon", "Hermes", "Scylla",
1088                                "Heracles", "Heimdall", "Hades", "Syleus" };
1089        const int watchdog_minors[] = { WATCHDOG_MINOR, 212, 213, 214, 215 };
1090        int i, err;
1091        enum chips kind = id->driver_data;
1092
1093        data = kzalloc(sizeof(struct fschmd_data), GFP_KERNEL);
1094        if (!data)
1095                return -ENOMEM;
1096
1097        i2c_set_clientdata(client, data);
1098        mutex_init(&data->update_lock);
1099        mutex_init(&data->watchdog_lock);
1100        INIT_LIST_HEAD(&data->list);
1101        kref_init(&data->kref);
1102        /*
1103         * Store client pointer in our data struct for watchdog usage
1104         * (where the client is found through a data ptr instead of the
1105         * otherway around)
1106         */
1107        data->client = client;
1108        data->kind = kind;
1109
1110        if (kind == fscpos) {
1111                /*
1112                 * The Poseidon has hardwired temp limits, fill these
1113                 * in for the alarm resetting code
1114                 */
1115                data->temp_max[0] = 70 + 128;
1116                data->temp_max[1] = 50 + 128;
1117                data->temp_max[2] = 50 + 128;
1118        }
1119
1120        /* Read the special DMI table for fscher and newer chips */
1121        if ((kind == fscher || kind >= fschrc) && dmi_vref == -1) {
1122                dmi_walk(fschmd_dmi_decode, NULL);
1123                if (dmi_vref == -1) {
1124                        dev_warn(&client->dev,
1125                                "Couldn't get voltage scaling factors from "
1126                                "BIOS DMI table, using builtin defaults\n");
1127                        dmi_vref = 33;
1128                }
1129        }
1130
1131        /* Read in some never changing registers */
1132        data->revision = i2c_smbus_read_byte_data(client, FSCHMD_REG_REVISION);
1133        data->global_control = i2c_smbus_read_byte_data(client,
1134                                        FSCHMD_REG_CONTROL);
1135        data->watchdog_control = i2c_smbus_read_byte_data(client,
1136                                        FSCHMD_REG_WDOG_CONTROL[data->kind]);
1137        data->watchdog_state = i2c_smbus_read_byte_data(client,
1138                                        FSCHMD_REG_WDOG_STATE[data->kind]);
1139        data->watchdog_preset = i2c_smbus_read_byte_data(client,
1140                                        FSCHMD_REG_WDOG_PRESET[data->kind]);
1141
1142        err = device_create_file(&client->dev, &dev_attr_alert_led);
1143        if (err)
1144                goto exit_detach;
1145
1146        for (i = 0; i < FSCHMD_NO_VOLT_SENSORS[data->kind]; i++) {
1147                err = device_create_file(&client->dev,
1148                                        &fschmd_attr[i].dev_attr);
1149                if (err)
1150                        goto exit_detach;
1151        }
1152
1153        for (i = 0; i < (FSCHMD_NO_TEMP_SENSORS[data->kind] * 4); i++) {
1154                /* Poseidon doesn't have TEMP_LIMIT registers */
1155                if (kind == fscpos && fschmd_temp_attr[i].dev_attr.show ==
1156                                temp_max_show)
1157                        continue;
1158
1159                if (kind == fscsyl) {
1160                        if (i % 4 == 0)
1161                                data->temp_status[i / 4] =
1162                                        i2c_smbus_read_byte_data(client,
1163                                                FSCHMD_REG_TEMP_STATE
1164                                                [data->kind][i / 4]);
1165                        if (data->temp_status[i / 4] & FSCHMD_TEMP_DISABLED)
1166                                continue;
1167                }
1168
1169                err = device_create_file(&client->dev,
1170                                        &fschmd_temp_attr[i].dev_attr);
1171                if (err)
1172                        goto exit_detach;
1173        }
1174
1175        for (i = 0; i < (FSCHMD_NO_FAN_SENSORS[data->kind] * 5); i++) {
1176                /* Poseidon doesn't have a FAN_MIN register for its 3rd fan */
1177                if (kind == fscpos &&
1178                                !strcmp(fschmd_fan_attr[i].dev_attr.attr.name,
1179                                        "pwm3_auto_point1_pwm"))
1180                        continue;
1181
1182                if (kind == fscsyl) {
1183                        if (i % 5 == 0)
1184                                data->fan_status[i / 5] =
1185                                        i2c_smbus_read_byte_data(client,
1186                                                FSCHMD_REG_FAN_STATE
1187                                                [data->kind][i / 5]);
1188                        if (data->fan_status[i / 5] & FSCHMD_FAN_DISABLED)
1189                                continue;
1190                }
1191
1192                err = device_create_file(&client->dev,
1193                                        &fschmd_fan_attr[i].dev_attr);
1194                if (err)
1195                        goto exit_detach;
1196        }
1197
1198        data->hwmon_dev = hwmon_device_register(&client->dev);
1199        if (IS_ERR(data->hwmon_dev)) {
1200                err = PTR_ERR(data->hwmon_dev);
1201                data->hwmon_dev = NULL;
1202                goto exit_detach;
1203        }
1204
1205        /*
1206         * We take the data_mutex lock early so that watchdog_open() cannot
1207         * run when misc_register() has completed, but we've not yet added
1208         * our data to the watchdog_data_list (and set the default timeout)
1209         */
1210        mutex_lock(&watchdog_data_mutex);
1211        for (i = 0; i < ARRAY_SIZE(watchdog_minors); i++) {
1212                /* Register our watchdog part */
1213                snprintf(data->watchdog_name, sizeof(data->watchdog_name),
1214                        "watchdog%c", (i == 0) ? '\0' : ('0' + i));
1215                data->watchdog_miscdev.name = data->watchdog_name;
1216                data->watchdog_miscdev.fops = &watchdog_fops;
1217                data->watchdog_miscdev.minor = watchdog_minors[i];
1218                err = misc_register(&data->watchdog_miscdev);
1219                if (err == -EBUSY)
1220                        continue;
1221                if (err) {
1222                        data->watchdog_miscdev.minor = 0;
1223                        dev_err(&client->dev,
1224                                "Registering watchdog chardev: %d\n", err);
1225                        break;
1226                }
1227
1228                list_add(&data->list, &watchdog_data_list);
1229                watchdog_set_timeout(data, 60);
1230                dev_info(&client->dev,
1231                        "Registered watchdog chardev major 10, minor: %d\n",
1232                        watchdog_minors[i]);
1233                break;
1234        }
1235        if (i == ARRAY_SIZE(watchdog_minors)) {
1236                data->watchdog_miscdev.minor = 0;
1237                dev_warn(&client->dev,
1238                         "Couldn't register watchdog chardev (due to no free minor)\n");
1239        }
1240        mutex_unlock(&watchdog_data_mutex);
1241
1242        dev_info(&client->dev, "Detected FSC %s chip, revision: %d\n",
1243                names[data->kind], (int) data->revision);
1244
1245        return 0;
1246
1247exit_detach:
1248        fschmd_remove(client); /* will also free data for us */
1249        return err;
1250}
1251
1252static int fschmd_remove(struct i2c_client *client)
1253{
1254        struct fschmd_data *data = i2c_get_clientdata(client);
1255        int i;
1256
1257        /* Unregister the watchdog (if registered) */
1258        if (data->watchdog_miscdev.minor) {
1259                misc_deregister(&data->watchdog_miscdev);
1260                if (data->watchdog_is_open) {
1261                        dev_warn(&client->dev,
1262                                "i2c client detached with watchdog open! "
1263                                "Stopping watchdog.\n");
1264                        watchdog_stop(data);
1265                }
1266                mutex_lock(&watchdog_data_mutex);
1267                list_del(&data->list);
1268                mutex_unlock(&watchdog_data_mutex);
1269                /* Tell the watchdog code the client is gone */
1270                mutex_lock(&data->watchdog_lock);
1271                data->client = NULL;
1272                mutex_unlock(&data->watchdog_lock);
1273        }
1274
1275        /*
1276         * Check if registered in case we're called from fschmd_detect
1277         * to cleanup after an error
1278         */
1279        if (data->hwmon_dev)
1280                hwmon_device_unregister(data->hwmon_dev);
1281
1282        device_remove_file(&client->dev, &dev_attr_alert_led);
1283        for (i = 0; i < (FSCHMD_NO_VOLT_SENSORS[data->kind]); i++)
1284                device_remove_file(&client->dev, &fschmd_attr[i].dev_attr);
1285        for (i = 0; i < (FSCHMD_NO_TEMP_SENSORS[data->kind] * 4); i++)
1286                device_remove_file(&client->dev,
1287                                        &fschmd_temp_attr[i].dev_attr);
1288        for (i = 0; i < (FSCHMD_NO_FAN_SENSORS[data->kind] * 5); i++)
1289                device_remove_file(&client->dev,
1290                                        &fschmd_fan_attr[i].dev_attr);
1291
1292        mutex_lock(&watchdog_data_mutex);
1293        kref_put(&data->kref, fschmd_release_resources);
1294        mutex_unlock(&watchdog_data_mutex);
1295
1296        return 0;
1297}
1298
1299static struct fschmd_data *fschmd_update_device(struct device *dev)
1300{
1301        struct i2c_client *client = to_i2c_client(dev);
1302        struct fschmd_data *data = i2c_get_clientdata(client);
1303        int i;
1304
1305        mutex_lock(&data->update_lock);
1306
1307        if (time_after(jiffies, data->last_updated + 2 * HZ) || !data->valid) {
1308
1309                for (i = 0; i < FSCHMD_NO_TEMP_SENSORS[data->kind]; i++) {
1310                        data->temp_act[i] = i2c_smbus_read_byte_data(client,
1311                                        FSCHMD_REG_TEMP_ACT[data->kind][i]);
1312                        data->temp_status[i] = i2c_smbus_read_byte_data(client,
1313                                        FSCHMD_REG_TEMP_STATE[data->kind][i]);
1314
1315                        /* The fscpos doesn't have TEMP_LIMIT registers */
1316                        if (FSCHMD_REG_TEMP_LIMIT[data->kind][i])
1317                                data->temp_max[i] = i2c_smbus_read_byte_data(
1318                                        client,
1319                                        FSCHMD_REG_TEMP_LIMIT[data->kind][i]);
1320
1321                        /*
1322                         * reset alarm if the alarm condition is gone,
1323                         * the chip doesn't do this itself
1324                         */
1325                        if ((data->temp_status[i] & FSCHMD_TEMP_ALARM_MASK) ==
1326                                        FSCHMD_TEMP_ALARM_MASK &&
1327                                        data->temp_act[i] < data->temp_max[i])
1328                                i2c_smbus_write_byte_data(client,
1329                                        FSCHMD_REG_TEMP_STATE[data->kind][i],
1330                                        data->temp_status[i]);
1331                }
1332
1333                for (i = 0; i < FSCHMD_NO_FAN_SENSORS[data->kind]; i++) {
1334                        data->fan_act[i] = i2c_smbus_read_byte_data(client,
1335                                        FSCHMD_REG_FAN_ACT[data->kind][i]);
1336                        data->fan_status[i] = i2c_smbus_read_byte_data(client,
1337                                        FSCHMD_REG_FAN_STATE[data->kind][i]);
1338                        data->fan_ripple[i] = i2c_smbus_read_byte_data(client,
1339                                        FSCHMD_REG_FAN_RIPPLE[data->kind][i]);
1340
1341                        /* The fscpos third fan doesn't have a fan_min */
1342                        if (FSCHMD_REG_FAN_MIN[data->kind][i])
1343                                data->fan_min[i] = i2c_smbus_read_byte_data(
1344                                        client,
1345                                        FSCHMD_REG_FAN_MIN[data->kind][i]);
1346
1347                        /* reset fan status if speed is back to > 0 */
1348                        if ((data->fan_status[i] & FSCHMD_FAN_ALARM) &&
1349                                        data->fan_act[i])
1350                                i2c_smbus_write_byte_data(client,
1351                                        FSCHMD_REG_FAN_STATE[data->kind][i],
1352                                        data->fan_status[i]);
1353                }
1354
1355                for (i = 0; i < FSCHMD_NO_VOLT_SENSORS[data->kind]; i++)
1356                        data->volt[i] = i2c_smbus_read_byte_data(client,
1357                                               FSCHMD_REG_VOLT[data->kind][i]);
1358
1359                data->last_updated = jiffies;
1360                data->valid = 1;
1361        }
1362
1363        mutex_unlock(&data->update_lock);
1364
1365        return data;
1366}
1367
1368module_i2c_driver(fschmd_driver);
1369
1370MODULE_AUTHOR("Hans de Goede <hdegoede@redhat.com>");
1371MODULE_DESCRIPTION("FSC Poseidon, Hermes, Scylla, Heracles, Heimdall, Hades "
1372                        "and Syleus driver");
1373MODULE_LICENSE("GPL");
1374