linux/drivers/hwtracing/coresight/coresight-tmc-etr.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright(C) 2016 Linaro Limited. All rights reserved.
   4 * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
   5 */
   6
   7#include <linux/atomic.h>
   8#include <linux/coresight.h>
   9#include <linux/dma-mapping.h>
  10#include <linux/iommu.h>
  11#include <linux/idr.h>
  12#include <linux/mutex.h>
  13#include <linux/refcount.h>
  14#include <linux/slab.h>
  15#include <linux/types.h>
  16#include <linux/vmalloc.h>
  17#include "coresight-catu.h"
  18#include "coresight-etm-perf.h"
  19#include "coresight-priv.h"
  20#include "coresight-tmc.h"
  21
  22struct etr_flat_buf {
  23        struct device   *dev;
  24        dma_addr_t      daddr;
  25        void            *vaddr;
  26        size_t          size;
  27};
  28
  29/*
  30 * etr_perf_buffer - Perf buffer used for ETR
  31 * @drvdata             - The ETR drvdaga this buffer has been allocated for.
  32 * @etr_buf             - Actual buffer used by the ETR
  33 * @pid                 - The PID this etr_perf_buffer belongs to.
  34 * @snaphost            - Perf session mode
  35 * @head                - handle->head at the beginning of the session.
  36 * @nr_pages            - Number of pages in the ring buffer.
  37 * @pages               - Array of Pages in the ring buffer.
  38 */
  39struct etr_perf_buffer {
  40        struct tmc_drvdata      *drvdata;
  41        struct etr_buf          *etr_buf;
  42        pid_t                   pid;
  43        bool                    snapshot;
  44        unsigned long           head;
  45        int                     nr_pages;
  46        void                    **pages;
  47};
  48
  49/* Convert the perf index to an offset within the ETR buffer */
  50#define PERF_IDX2OFF(idx, buf)  ((idx) % ((buf)->nr_pages << PAGE_SHIFT))
  51
  52/* Lower limit for ETR hardware buffer */
  53#define TMC_ETR_PERF_MIN_BUF_SIZE       SZ_1M
  54
  55/*
  56 * The TMC ETR SG has a page size of 4K. The SG table contains pointers
  57 * to 4KB buffers. However, the OS may use a PAGE_SIZE different from
  58 * 4K (i.e, 16KB or 64KB). This implies that a single OS page could
  59 * contain more than one SG buffer and tables.
  60 *
  61 * A table entry has the following format:
  62 *
  63 * ---Bit31------------Bit4-------Bit1-----Bit0--
  64 * |     Address[39:12]    | SBZ |  Entry Type  |
  65 * ----------------------------------------------
  66 *
  67 * Address: Bits [39:12] of a physical page address. Bits [11:0] are
  68 *          always zero.
  69 *
  70 * Entry type:
  71 *      b00 - Reserved.
  72 *      b01 - Last entry in the tables, points to 4K page buffer.
  73 *      b10 - Normal entry, points to 4K page buffer.
  74 *      b11 - Link. The address points to the base of next table.
  75 */
  76
  77typedef u32 sgte_t;
  78
  79#define ETR_SG_PAGE_SHIFT               12
  80#define ETR_SG_PAGE_SIZE                (1UL << ETR_SG_PAGE_SHIFT)
  81#define ETR_SG_PAGES_PER_SYSPAGE        (PAGE_SIZE / ETR_SG_PAGE_SIZE)
  82#define ETR_SG_PTRS_PER_PAGE            (ETR_SG_PAGE_SIZE / sizeof(sgte_t))
  83#define ETR_SG_PTRS_PER_SYSPAGE         (PAGE_SIZE / sizeof(sgte_t))
  84
  85#define ETR_SG_ET_MASK                  0x3
  86#define ETR_SG_ET_LAST                  0x1
  87#define ETR_SG_ET_NORMAL                0x2
  88#define ETR_SG_ET_LINK                  0x3
  89
  90#define ETR_SG_ADDR_SHIFT               4
  91
  92#define ETR_SG_ENTRY(addr, type) \
  93        (sgte_t)((((addr) >> ETR_SG_PAGE_SHIFT) << ETR_SG_ADDR_SHIFT) | \
  94                 (type & ETR_SG_ET_MASK))
  95
  96#define ETR_SG_ADDR(entry) \
  97        (((dma_addr_t)(entry) >> ETR_SG_ADDR_SHIFT) << ETR_SG_PAGE_SHIFT)
  98#define ETR_SG_ET(entry)                ((entry) & ETR_SG_ET_MASK)
  99
 100/*
 101 * struct etr_sg_table : ETR SG Table
 102 * @sg_table:           Generic SG Table holding the data/table pages.
 103 * @hwaddr:             hwaddress used by the TMC, which is the base
 104 *                      address of the table.
 105 */
 106struct etr_sg_table {
 107        struct tmc_sg_table     *sg_table;
 108        dma_addr_t              hwaddr;
 109};
 110
 111/*
 112 * tmc_etr_sg_table_entries: Total number of table entries required to map
 113 * @nr_pages system pages.
 114 *
 115 * We need to map @nr_pages * ETR_SG_PAGES_PER_SYSPAGE data pages.
 116 * Each TMC page can map (ETR_SG_PTRS_PER_PAGE - 1) buffer pointers,
 117 * with the last entry pointing to another page of table entries.
 118 * If we spill over to a new page for mapping 1 entry, we could as
 119 * well replace the link entry of the previous page with the last entry.
 120 */
 121static inline unsigned long __attribute_const__
 122tmc_etr_sg_table_entries(int nr_pages)
 123{
 124        unsigned long nr_sgpages = nr_pages * ETR_SG_PAGES_PER_SYSPAGE;
 125        unsigned long nr_sglinks = nr_sgpages / (ETR_SG_PTRS_PER_PAGE - 1);
 126        /*
 127         * If we spill over to a new page for 1 entry, we could as well
 128         * make it the LAST entry in the previous page, skipping the Link
 129         * address.
 130         */
 131        if (nr_sglinks && (nr_sgpages % (ETR_SG_PTRS_PER_PAGE - 1) < 2))
 132                nr_sglinks--;
 133        return nr_sgpages + nr_sglinks;
 134}
 135
 136/*
 137 * tmc_pages_get_offset:  Go through all the pages in the tmc_pages
 138 * and map the device address @addr to an offset within the virtual
 139 * contiguous buffer.
 140 */
 141static long
 142tmc_pages_get_offset(struct tmc_pages *tmc_pages, dma_addr_t addr)
 143{
 144        int i;
 145        dma_addr_t page_start;
 146
 147        for (i = 0; i < tmc_pages->nr_pages; i++) {
 148                page_start = tmc_pages->daddrs[i];
 149                if (addr >= page_start && addr < (page_start + PAGE_SIZE))
 150                        return i * PAGE_SIZE + (addr - page_start);
 151        }
 152
 153        return -EINVAL;
 154}
 155
 156/*
 157 * tmc_pages_free : Unmap and free the pages used by tmc_pages.
 158 * If the pages were not allocated in tmc_pages_alloc(), we would
 159 * simply drop the refcount.
 160 */
 161static void tmc_pages_free(struct tmc_pages *tmc_pages,
 162                           struct device *dev, enum dma_data_direction dir)
 163{
 164        int i;
 165        struct device *real_dev = dev->parent;
 166
 167        for (i = 0; i < tmc_pages->nr_pages; i++) {
 168                if (tmc_pages->daddrs && tmc_pages->daddrs[i])
 169                        dma_unmap_page(real_dev, tmc_pages->daddrs[i],
 170                                         PAGE_SIZE, dir);
 171                if (tmc_pages->pages && tmc_pages->pages[i])
 172                        __free_page(tmc_pages->pages[i]);
 173        }
 174
 175        kfree(tmc_pages->pages);
 176        kfree(tmc_pages->daddrs);
 177        tmc_pages->pages = NULL;
 178        tmc_pages->daddrs = NULL;
 179        tmc_pages->nr_pages = 0;
 180}
 181
 182/*
 183 * tmc_pages_alloc : Allocate and map pages for a given @tmc_pages.
 184 * If @pages is not NULL, the list of page virtual addresses are
 185 * used as the data pages. The pages are then dma_map'ed for @dev
 186 * with dma_direction @dir.
 187 *
 188 * Returns 0 upon success, else the error number.
 189 */
 190static int tmc_pages_alloc(struct tmc_pages *tmc_pages,
 191                           struct device *dev, int node,
 192                           enum dma_data_direction dir, void **pages)
 193{
 194        int i, nr_pages;
 195        dma_addr_t paddr;
 196        struct page *page;
 197        struct device *real_dev = dev->parent;
 198
 199        nr_pages = tmc_pages->nr_pages;
 200        tmc_pages->daddrs = kcalloc(nr_pages, sizeof(*tmc_pages->daddrs),
 201                                         GFP_KERNEL);
 202        if (!tmc_pages->daddrs)
 203                return -ENOMEM;
 204        tmc_pages->pages = kcalloc(nr_pages, sizeof(*tmc_pages->pages),
 205                                         GFP_KERNEL);
 206        if (!tmc_pages->pages) {
 207                kfree(tmc_pages->daddrs);
 208                tmc_pages->daddrs = NULL;
 209                return -ENOMEM;
 210        }
 211
 212        for (i = 0; i < nr_pages; i++) {
 213                if (pages && pages[i]) {
 214                        page = virt_to_page(pages[i]);
 215                        /* Hold a refcount on the page */
 216                        get_page(page);
 217                } else {
 218                        page = alloc_pages_node(node,
 219                                                GFP_KERNEL | __GFP_ZERO, 0);
 220                }
 221                paddr = dma_map_page(real_dev, page, 0, PAGE_SIZE, dir);
 222                if (dma_mapping_error(real_dev, paddr))
 223                        goto err;
 224                tmc_pages->daddrs[i] = paddr;
 225                tmc_pages->pages[i] = page;
 226        }
 227        return 0;
 228err:
 229        tmc_pages_free(tmc_pages, dev, dir);
 230        return -ENOMEM;
 231}
 232
 233static inline long
 234tmc_sg_get_data_page_offset(struct tmc_sg_table *sg_table, dma_addr_t addr)
 235{
 236        return tmc_pages_get_offset(&sg_table->data_pages, addr);
 237}
 238
 239static inline void tmc_free_table_pages(struct tmc_sg_table *sg_table)
 240{
 241        if (sg_table->table_vaddr)
 242                vunmap(sg_table->table_vaddr);
 243        tmc_pages_free(&sg_table->table_pages, sg_table->dev, DMA_TO_DEVICE);
 244}
 245
 246static void tmc_free_data_pages(struct tmc_sg_table *sg_table)
 247{
 248        if (sg_table->data_vaddr)
 249                vunmap(sg_table->data_vaddr);
 250        tmc_pages_free(&sg_table->data_pages, sg_table->dev, DMA_FROM_DEVICE);
 251}
 252
 253void tmc_free_sg_table(struct tmc_sg_table *sg_table)
 254{
 255        tmc_free_table_pages(sg_table);
 256        tmc_free_data_pages(sg_table);
 257}
 258
 259/*
 260 * Alloc pages for the table. Since this will be used by the device,
 261 * allocate the pages closer to the device (i.e, dev_to_node(dev)
 262 * rather than the CPU node).
 263 */
 264static int tmc_alloc_table_pages(struct tmc_sg_table *sg_table)
 265{
 266        int rc;
 267        struct tmc_pages *table_pages = &sg_table->table_pages;
 268
 269        rc = tmc_pages_alloc(table_pages, sg_table->dev,
 270                             dev_to_node(sg_table->dev),
 271                             DMA_TO_DEVICE, NULL);
 272        if (rc)
 273                return rc;
 274        sg_table->table_vaddr = vmap(table_pages->pages,
 275                                     table_pages->nr_pages,
 276                                     VM_MAP,
 277                                     PAGE_KERNEL);
 278        if (!sg_table->table_vaddr)
 279                rc = -ENOMEM;
 280        else
 281                sg_table->table_daddr = table_pages->daddrs[0];
 282        return rc;
 283}
 284
 285static int tmc_alloc_data_pages(struct tmc_sg_table *sg_table, void **pages)
 286{
 287        int rc;
 288
 289        /* Allocate data pages on the node requested by the caller */
 290        rc = tmc_pages_alloc(&sg_table->data_pages,
 291                             sg_table->dev, sg_table->node,
 292                             DMA_FROM_DEVICE, pages);
 293        if (!rc) {
 294                sg_table->data_vaddr = vmap(sg_table->data_pages.pages,
 295                                            sg_table->data_pages.nr_pages,
 296                                            VM_MAP,
 297                                            PAGE_KERNEL);
 298                if (!sg_table->data_vaddr)
 299                        rc = -ENOMEM;
 300        }
 301        return rc;
 302}
 303
 304/*
 305 * tmc_alloc_sg_table: Allocate and setup dma pages for the TMC SG table
 306 * and data buffers. TMC writes to the data buffers and reads from the SG
 307 * Table pages.
 308 *
 309 * @dev         - Coresight device to which page should be DMA mapped.
 310 * @node        - Numa node for mem allocations
 311 * @nr_tpages   - Number of pages for the table entries.
 312 * @nr_dpages   - Number of pages for Data buffer.
 313 * @pages       - Optional list of virtual address of pages.
 314 */
 315struct tmc_sg_table *tmc_alloc_sg_table(struct device *dev,
 316                                        int node,
 317                                        int nr_tpages,
 318                                        int nr_dpages,
 319                                        void **pages)
 320{
 321        long rc;
 322        struct tmc_sg_table *sg_table;
 323
 324        sg_table = kzalloc(sizeof(*sg_table), GFP_KERNEL);
 325        if (!sg_table)
 326                return ERR_PTR(-ENOMEM);
 327        sg_table->data_pages.nr_pages = nr_dpages;
 328        sg_table->table_pages.nr_pages = nr_tpages;
 329        sg_table->node = node;
 330        sg_table->dev = dev;
 331
 332        rc  = tmc_alloc_data_pages(sg_table, pages);
 333        if (!rc)
 334                rc = tmc_alloc_table_pages(sg_table);
 335        if (rc) {
 336                tmc_free_sg_table(sg_table);
 337                kfree(sg_table);
 338                return ERR_PTR(rc);
 339        }
 340
 341        return sg_table;
 342}
 343
 344/*
 345 * tmc_sg_table_sync_data_range: Sync the data buffer written
 346 * by the device from @offset upto a @size bytes.
 347 */
 348void tmc_sg_table_sync_data_range(struct tmc_sg_table *table,
 349                                  u64 offset, u64 size)
 350{
 351        int i, index, start;
 352        int npages = DIV_ROUND_UP(size, PAGE_SIZE);
 353        struct device *real_dev = table->dev->parent;
 354        struct tmc_pages *data = &table->data_pages;
 355
 356        start = offset >> PAGE_SHIFT;
 357        for (i = start; i < (start + npages); i++) {
 358                index = i % data->nr_pages;
 359                dma_sync_single_for_cpu(real_dev, data->daddrs[index],
 360                                        PAGE_SIZE, DMA_FROM_DEVICE);
 361        }
 362}
 363
 364/* tmc_sg_sync_table: Sync the page table */
 365void tmc_sg_table_sync_table(struct tmc_sg_table *sg_table)
 366{
 367        int i;
 368        struct device *real_dev = sg_table->dev->parent;
 369        struct tmc_pages *table_pages = &sg_table->table_pages;
 370
 371        for (i = 0; i < table_pages->nr_pages; i++)
 372                dma_sync_single_for_device(real_dev, table_pages->daddrs[i],
 373                                           PAGE_SIZE, DMA_TO_DEVICE);
 374}
 375
 376/*
 377 * tmc_sg_table_get_data: Get the buffer pointer for data @offset
 378 * in the SG buffer. The @bufpp is updated to point to the buffer.
 379 * Returns :
 380 *      the length of linear data available at @offset.
 381 *      or
 382 *      <= 0 if no data is available.
 383 */
 384ssize_t tmc_sg_table_get_data(struct tmc_sg_table *sg_table,
 385                              u64 offset, size_t len, char **bufpp)
 386{
 387        size_t size;
 388        int pg_idx = offset >> PAGE_SHIFT;
 389        int pg_offset = offset & (PAGE_SIZE - 1);
 390        struct tmc_pages *data_pages = &sg_table->data_pages;
 391
 392        size = tmc_sg_table_buf_size(sg_table);
 393        if (offset >= size)
 394                return -EINVAL;
 395
 396        /* Make sure we don't go beyond the end */
 397        len = (len < (size - offset)) ? len : size - offset;
 398        /* Respect the page boundaries */
 399        len = (len < (PAGE_SIZE - pg_offset)) ? len : (PAGE_SIZE - pg_offset);
 400        if (len > 0)
 401                *bufpp = page_address(data_pages->pages[pg_idx]) + pg_offset;
 402        return len;
 403}
 404
 405#ifdef ETR_SG_DEBUG
 406/* Map a dma address to virtual address */
 407static unsigned long
 408tmc_sg_daddr_to_vaddr(struct tmc_sg_table *sg_table,
 409                      dma_addr_t addr, bool table)
 410{
 411        long offset;
 412        unsigned long base;
 413        struct tmc_pages *tmc_pages;
 414
 415        if (table) {
 416                tmc_pages = &sg_table->table_pages;
 417                base = (unsigned long)sg_table->table_vaddr;
 418        } else {
 419                tmc_pages = &sg_table->data_pages;
 420                base = (unsigned long)sg_table->data_vaddr;
 421        }
 422
 423        offset = tmc_pages_get_offset(tmc_pages, addr);
 424        if (offset < 0)
 425                return 0;
 426        return base + offset;
 427}
 428
 429/* Dump the given sg_table */
 430static void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table)
 431{
 432        sgte_t *ptr;
 433        int i = 0;
 434        dma_addr_t addr;
 435        struct tmc_sg_table *sg_table = etr_table->sg_table;
 436
 437        ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table,
 438                                              etr_table->hwaddr, true);
 439        while (ptr) {
 440                addr = ETR_SG_ADDR(*ptr);
 441                switch (ETR_SG_ET(*ptr)) {
 442                case ETR_SG_ET_NORMAL:
 443                        dev_dbg(sg_table->dev,
 444                                "%05d: %p\t:[N] 0x%llx\n", i, ptr, addr);
 445                        ptr++;
 446                        break;
 447                case ETR_SG_ET_LINK:
 448                        dev_dbg(sg_table->dev,
 449                                "%05d: *** %p\t:{L} 0x%llx ***\n",
 450                                 i, ptr, addr);
 451                        ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table,
 452                                                              addr, true);
 453                        break;
 454                case ETR_SG_ET_LAST:
 455                        dev_dbg(sg_table->dev,
 456                                "%05d: ### %p\t:[L] 0x%llx ###\n",
 457                                 i, ptr, addr);
 458                        return;
 459                default:
 460                        dev_dbg(sg_table->dev,
 461                                "%05d: xxx %p\t:[INVALID] 0x%llx xxx\n",
 462                                 i, ptr, addr);
 463                        return;
 464                }
 465                i++;
 466        }
 467        dev_dbg(sg_table->dev, "******* End of Table *****\n");
 468}
 469#else
 470static inline void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table) {}
 471#endif
 472
 473/*
 474 * Populate the SG Table page table entries from table/data
 475 * pages allocated. Each Data page has ETR_SG_PAGES_PER_SYSPAGE SG pages.
 476 * So does a Table page. So we keep track of indices of the tables
 477 * in each system page and move the pointers accordingly.
 478 */
 479#define INC_IDX_ROUND(idx, size) ((idx) = ((idx) + 1) % (size))
 480static void tmc_etr_sg_table_populate(struct etr_sg_table *etr_table)
 481{
 482        dma_addr_t paddr;
 483        int i, type, nr_entries;
 484        int tpidx = 0; /* index to the current system table_page */
 485        int sgtidx = 0; /* index to the sg_table within the current syspage */
 486        int sgtentry = 0; /* the entry within the sg_table */
 487        int dpidx = 0; /* index to the current system data_page */
 488        int spidx = 0; /* index to the SG page within the current data page */
 489        sgte_t *ptr; /* pointer to the table entry to fill */
 490        struct tmc_sg_table *sg_table = etr_table->sg_table;
 491        dma_addr_t *table_daddrs = sg_table->table_pages.daddrs;
 492        dma_addr_t *data_daddrs = sg_table->data_pages.daddrs;
 493
 494        nr_entries = tmc_etr_sg_table_entries(sg_table->data_pages.nr_pages);
 495        /*
 496         * Use the contiguous virtual address of the table to update entries.
 497         */
 498        ptr = sg_table->table_vaddr;
 499        /*
 500         * Fill all the entries, except the last entry to avoid special
 501         * checks within the loop.
 502         */
 503        for (i = 0; i < nr_entries - 1; i++) {
 504                if (sgtentry == ETR_SG_PTRS_PER_PAGE - 1) {
 505                        /*
 506                         * Last entry in a sg_table page is a link address to
 507                         * the next table page. If this sg_table is the last
 508                         * one in the system page, it links to the first
 509                         * sg_table in the next system page. Otherwise, it
 510                         * links to the next sg_table page within the system
 511                         * page.
 512                         */
 513                        if (sgtidx == ETR_SG_PAGES_PER_SYSPAGE - 1) {
 514                                paddr = table_daddrs[tpidx + 1];
 515                        } else {
 516                                paddr = table_daddrs[tpidx] +
 517                                        (ETR_SG_PAGE_SIZE * (sgtidx + 1));
 518                        }
 519                        type = ETR_SG_ET_LINK;
 520                } else {
 521                        /*
 522                         * Update the indices to the data_pages to point to the
 523                         * next sg_page in the data buffer.
 524                         */
 525                        type = ETR_SG_ET_NORMAL;
 526                        paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE;
 527                        if (!INC_IDX_ROUND(spidx, ETR_SG_PAGES_PER_SYSPAGE))
 528                                dpidx++;
 529                }
 530                *ptr++ = ETR_SG_ENTRY(paddr, type);
 531                /*
 532                 * Move to the next table pointer, moving the table page index
 533                 * if necessary
 534                 */
 535                if (!INC_IDX_ROUND(sgtentry, ETR_SG_PTRS_PER_PAGE)) {
 536                        if (!INC_IDX_ROUND(sgtidx, ETR_SG_PAGES_PER_SYSPAGE))
 537                                tpidx++;
 538                }
 539        }
 540
 541        /* Set up the last entry, which is always a data pointer */
 542        paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE;
 543        *ptr++ = ETR_SG_ENTRY(paddr, ETR_SG_ET_LAST);
 544}
 545
 546/*
 547 * tmc_init_etr_sg_table: Allocate a TMC ETR SG table, data buffer of @size and
 548 * populate the table.
 549 *
 550 * @dev         - Device pointer for the TMC
 551 * @node        - NUMA node where the memory should be allocated
 552 * @size        - Total size of the data buffer
 553 * @pages       - Optional list of page virtual address
 554 */
 555static struct etr_sg_table *
 556tmc_init_etr_sg_table(struct device *dev, int node,
 557                      unsigned long size, void **pages)
 558{
 559        int nr_entries, nr_tpages;
 560        int nr_dpages = size >> PAGE_SHIFT;
 561        struct tmc_sg_table *sg_table;
 562        struct etr_sg_table *etr_table;
 563
 564        etr_table = kzalloc(sizeof(*etr_table), GFP_KERNEL);
 565        if (!etr_table)
 566                return ERR_PTR(-ENOMEM);
 567        nr_entries = tmc_etr_sg_table_entries(nr_dpages);
 568        nr_tpages = DIV_ROUND_UP(nr_entries, ETR_SG_PTRS_PER_SYSPAGE);
 569
 570        sg_table = tmc_alloc_sg_table(dev, node, nr_tpages, nr_dpages, pages);
 571        if (IS_ERR(sg_table)) {
 572                kfree(etr_table);
 573                return ERR_CAST(sg_table);
 574        }
 575
 576        etr_table->sg_table = sg_table;
 577        /* TMC should use table base address for DBA */
 578        etr_table->hwaddr = sg_table->table_daddr;
 579        tmc_etr_sg_table_populate(etr_table);
 580        /* Sync the table pages for the HW */
 581        tmc_sg_table_sync_table(sg_table);
 582        tmc_etr_sg_table_dump(etr_table);
 583
 584        return etr_table;
 585}
 586
 587/*
 588 * tmc_etr_alloc_flat_buf: Allocate a contiguous DMA buffer.
 589 */
 590static int tmc_etr_alloc_flat_buf(struct tmc_drvdata *drvdata,
 591                                  struct etr_buf *etr_buf, int node,
 592                                  void **pages)
 593{
 594        struct etr_flat_buf *flat_buf;
 595        struct device *real_dev = drvdata->csdev->dev.parent;
 596
 597        /* We cannot reuse existing pages for flat buf */
 598        if (pages)
 599                return -EINVAL;
 600
 601        flat_buf = kzalloc(sizeof(*flat_buf), GFP_KERNEL);
 602        if (!flat_buf)
 603                return -ENOMEM;
 604
 605        flat_buf->vaddr = dma_alloc_coherent(real_dev, etr_buf->size,
 606                                             &flat_buf->daddr, GFP_KERNEL);
 607        if (!flat_buf->vaddr) {
 608                kfree(flat_buf);
 609                return -ENOMEM;
 610        }
 611
 612        flat_buf->size = etr_buf->size;
 613        flat_buf->dev = &drvdata->csdev->dev;
 614        etr_buf->hwaddr = flat_buf->daddr;
 615        etr_buf->mode = ETR_MODE_FLAT;
 616        etr_buf->private = flat_buf;
 617        return 0;
 618}
 619
 620static void tmc_etr_free_flat_buf(struct etr_buf *etr_buf)
 621{
 622        struct etr_flat_buf *flat_buf = etr_buf->private;
 623
 624        if (flat_buf && flat_buf->daddr) {
 625                struct device *real_dev = flat_buf->dev->parent;
 626
 627                dma_free_coherent(real_dev, flat_buf->size,
 628                                  flat_buf->vaddr, flat_buf->daddr);
 629        }
 630        kfree(flat_buf);
 631}
 632
 633static void tmc_etr_sync_flat_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp)
 634{
 635        /*
 636         * Adjust the buffer to point to the beginning of the trace data
 637         * and update the available trace data.
 638         */
 639        etr_buf->offset = rrp - etr_buf->hwaddr;
 640        if (etr_buf->full)
 641                etr_buf->len = etr_buf->size;
 642        else
 643                etr_buf->len = rwp - rrp;
 644}
 645
 646static ssize_t tmc_etr_get_data_flat_buf(struct etr_buf *etr_buf,
 647                                         u64 offset, size_t len, char **bufpp)
 648{
 649        struct etr_flat_buf *flat_buf = etr_buf->private;
 650
 651        *bufpp = (char *)flat_buf->vaddr + offset;
 652        /*
 653         * tmc_etr_buf_get_data already adjusts the length to handle
 654         * buffer wrapping around.
 655         */
 656        return len;
 657}
 658
 659static const struct etr_buf_operations etr_flat_buf_ops = {
 660        .alloc = tmc_etr_alloc_flat_buf,
 661        .free = tmc_etr_free_flat_buf,
 662        .sync = tmc_etr_sync_flat_buf,
 663        .get_data = tmc_etr_get_data_flat_buf,
 664};
 665
 666/*
 667 * tmc_etr_alloc_sg_buf: Allocate an SG buf @etr_buf. Setup the parameters
 668 * appropriately.
 669 */
 670static int tmc_etr_alloc_sg_buf(struct tmc_drvdata *drvdata,
 671                                struct etr_buf *etr_buf, int node,
 672                                void **pages)
 673{
 674        struct etr_sg_table *etr_table;
 675        struct device *dev = &drvdata->csdev->dev;
 676
 677        etr_table = tmc_init_etr_sg_table(dev, node,
 678                                          etr_buf->size, pages);
 679        if (IS_ERR(etr_table))
 680                return -ENOMEM;
 681        etr_buf->hwaddr = etr_table->hwaddr;
 682        etr_buf->mode = ETR_MODE_ETR_SG;
 683        etr_buf->private = etr_table;
 684        return 0;
 685}
 686
 687static void tmc_etr_free_sg_buf(struct etr_buf *etr_buf)
 688{
 689        struct etr_sg_table *etr_table = etr_buf->private;
 690
 691        if (etr_table) {
 692                tmc_free_sg_table(etr_table->sg_table);
 693                kfree(etr_table);
 694        }
 695}
 696
 697static ssize_t tmc_etr_get_data_sg_buf(struct etr_buf *etr_buf, u64 offset,
 698                                       size_t len, char **bufpp)
 699{
 700        struct etr_sg_table *etr_table = etr_buf->private;
 701
 702        return tmc_sg_table_get_data(etr_table->sg_table, offset, len, bufpp);
 703}
 704
 705static void tmc_etr_sync_sg_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp)
 706{
 707        long r_offset, w_offset;
 708        struct etr_sg_table *etr_table = etr_buf->private;
 709        struct tmc_sg_table *table = etr_table->sg_table;
 710
 711        /* Convert hw address to offset in the buffer */
 712        r_offset = tmc_sg_get_data_page_offset(table, rrp);
 713        if (r_offset < 0) {
 714                dev_warn(table->dev,
 715                         "Unable to map RRP %llx to offset\n", rrp);
 716                etr_buf->len = 0;
 717                return;
 718        }
 719
 720        w_offset = tmc_sg_get_data_page_offset(table, rwp);
 721        if (w_offset < 0) {
 722                dev_warn(table->dev,
 723                         "Unable to map RWP %llx to offset\n", rwp);
 724                etr_buf->len = 0;
 725                return;
 726        }
 727
 728        etr_buf->offset = r_offset;
 729        if (etr_buf->full)
 730                etr_buf->len = etr_buf->size;
 731        else
 732                etr_buf->len = ((w_offset < r_offset) ? etr_buf->size : 0) +
 733                                w_offset - r_offset;
 734        tmc_sg_table_sync_data_range(table, r_offset, etr_buf->len);
 735}
 736
 737static const struct etr_buf_operations etr_sg_buf_ops = {
 738        .alloc = tmc_etr_alloc_sg_buf,
 739        .free = tmc_etr_free_sg_buf,
 740        .sync = tmc_etr_sync_sg_buf,
 741        .get_data = tmc_etr_get_data_sg_buf,
 742};
 743
 744/*
 745 * TMC ETR could be connected to a CATU device, which can provide address
 746 * translation service. This is represented by the Output port of the TMC
 747 * (ETR) connected to the input port of the CATU.
 748 *
 749 * Returns      : coresight_device ptr for the CATU device if a CATU is found.
 750 *              : NULL otherwise.
 751 */
 752struct coresight_device *
 753tmc_etr_get_catu_device(struct tmc_drvdata *drvdata)
 754{
 755        int i;
 756        struct coresight_device *tmp, *etr = drvdata->csdev;
 757
 758        if (!IS_ENABLED(CONFIG_CORESIGHT_CATU))
 759                return NULL;
 760
 761        for (i = 0; i < etr->pdata->nr_outport; i++) {
 762                tmp = etr->pdata->conns[i].child_dev;
 763                if (tmp && coresight_is_catu_device(tmp))
 764                        return tmp;
 765        }
 766
 767        return NULL;
 768}
 769
 770static inline int tmc_etr_enable_catu(struct tmc_drvdata *drvdata,
 771                                      struct etr_buf *etr_buf)
 772{
 773        struct coresight_device *catu = tmc_etr_get_catu_device(drvdata);
 774
 775        if (catu && helper_ops(catu)->enable)
 776                return helper_ops(catu)->enable(catu, etr_buf);
 777        return 0;
 778}
 779
 780static inline void tmc_etr_disable_catu(struct tmc_drvdata *drvdata)
 781{
 782        struct coresight_device *catu = tmc_etr_get_catu_device(drvdata);
 783
 784        if (catu && helper_ops(catu)->disable)
 785                helper_ops(catu)->disable(catu, drvdata->etr_buf);
 786}
 787
 788static const struct etr_buf_operations *etr_buf_ops[] = {
 789        [ETR_MODE_FLAT] = &etr_flat_buf_ops,
 790        [ETR_MODE_ETR_SG] = &etr_sg_buf_ops,
 791        [ETR_MODE_CATU] = IS_ENABLED(CONFIG_CORESIGHT_CATU)
 792                                                ? &etr_catu_buf_ops : NULL,
 793};
 794
 795static inline int tmc_etr_mode_alloc_buf(int mode,
 796                                         struct tmc_drvdata *drvdata,
 797                                         struct etr_buf *etr_buf, int node,
 798                                         void **pages)
 799{
 800        int rc = -EINVAL;
 801
 802        switch (mode) {
 803        case ETR_MODE_FLAT:
 804        case ETR_MODE_ETR_SG:
 805        case ETR_MODE_CATU:
 806                if (etr_buf_ops[mode] && etr_buf_ops[mode]->alloc)
 807                        rc = etr_buf_ops[mode]->alloc(drvdata, etr_buf,
 808                                                      node, pages);
 809                if (!rc)
 810                        etr_buf->ops = etr_buf_ops[mode];
 811                return rc;
 812        default:
 813                return -EINVAL;
 814        }
 815}
 816
 817/*
 818 * tmc_alloc_etr_buf: Allocate a buffer use by ETR.
 819 * @drvdata     : ETR device details.
 820 * @size        : size of the requested buffer.
 821 * @flags       : Required properties for the buffer.
 822 * @node        : Node for memory allocations.
 823 * @pages       : An optional list of pages.
 824 */
 825static struct etr_buf *tmc_alloc_etr_buf(struct tmc_drvdata *drvdata,
 826                                         ssize_t size, int flags,
 827                                         int node, void **pages)
 828{
 829        int rc = -ENOMEM;
 830        bool has_etr_sg, has_iommu;
 831        bool has_sg, has_catu;
 832        struct etr_buf *etr_buf;
 833        struct device *dev = &drvdata->csdev->dev;
 834
 835        has_etr_sg = tmc_etr_has_cap(drvdata, TMC_ETR_SG);
 836        has_iommu = iommu_get_domain_for_dev(dev->parent);
 837        has_catu = !!tmc_etr_get_catu_device(drvdata);
 838
 839        has_sg = has_catu || has_etr_sg;
 840
 841        etr_buf = kzalloc(sizeof(*etr_buf), GFP_KERNEL);
 842        if (!etr_buf)
 843                return ERR_PTR(-ENOMEM);
 844
 845        etr_buf->size = size;
 846
 847        /*
 848         * If we have to use an existing list of pages, we cannot reliably
 849         * use a contiguous DMA memory (even if we have an IOMMU). Otherwise,
 850         * we use the contiguous DMA memory if at least one of the following
 851         * conditions is true:
 852         *  a) The ETR cannot use Scatter-Gather.
 853         *  b) we have a backing IOMMU
 854         *  c) The requested memory size is smaller (< 1M).
 855         *
 856         * Fallback to available mechanisms.
 857         *
 858         */
 859        if (!pages &&
 860            (!has_sg || has_iommu || size < SZ_1M))
 861                rc = tmc_etr_mode_alloc_buf(ETR_MODE_FLAT, drvdata,
 862                                            etr_buf, node, pages);
 863        if (rc && has_etr_sg)
 864                rc = tmc_etr_mode_alloc_buf(ETR_MODE_ETR_SG, drvdata,
 865                                            etr_buf, node, pages);
 866        if (rc && has_catu)
 867                rc = tmc_etr_mode_alloc_buf(ETR_MODE_CATU, drvdata,
 868                                            etr_buf, node, pages);
 869        if (rc) {
 870                kfree(etr_buf);
 871                return ERR_PTR(rc);
 872        }
 873
 874        dev_dbg(dev, "allocated buffer of size %ldKB in mode %d\n",
 875                (unsigned long)size >> 10, etr_buf->mode);
 876        return etr_buf;
 877}
 878
 879static void tmc_free_etr_buf(struct etr_buf *etr_buf)
 880{
 881        WARN_ON(!etr_buf->ops || !etr_buf->ops->free);
 882        etr_buf->ops->free(etr_buf);
 883        kfree(etr_buf);
 884}
 885
 886/*
 887 * tmc_etr_buf_get_data: Get the pointer the trace data at @offset
 888 * with a maximum of @len bytes.
 889 * Returns: The size of the linear data available @pos, with *bufpp
 890 * updated to point to the buffer.
 891 */
 892static ssize_t tmc_etr_buf_get_data(struct etr_buf *etr_buf,
 893                                    u64 offset, size_t len, char **bufpp)
 894{
 895        /* Adjust the length to limit this transaction to end of buffer */
 896        len = (len < (etr_buf->size - offset)) ? len : etr_buf->size - offset;
 897
 898        return etr_buf->ops->get_data(etr_buf, (u64)offset, len, bufpp);
 899}
 900
 901static inline s64
 902tmc_etr_buf_insert_barrier_packet(struct etr_buf *etr_buf, u64 offset)
 903{
 904        ssize_t len;
 905        char *bufp;
 906
 907        len = tmc_etr_buf_get_data(etr_buf, offset,
 908                                   CORESIGHT_BARRIER_PKT_SIZE, &bufp);
 909        if (WARN_ON(len < CORESIGHT_BARRIER_PKT_SIZE))
 910                return -EINVAL;
 911        coresight_insert_barrier_packet(bufp);
 912        return offset + CORESIGHT_BARRIER_PKT_SIZE;
 913}
 914
 915/*
 916 * tmc_sync_etr_buf: Sync the trace buffer availability with drvdata.
 917 * Makes sure the trace data is synced to the memory for consumption.
 918 * @etr_buf->offset will hold the offset to the beginning of the trace data
 919 * within the buffer, with @etr_buf->len bytes to consume.
 920 */
 921static void tmc_sync_etr_buf(struct tmc_drvdata *drvdata)
 922{
 923        struct etr_buf *etr_buf = drvdata->etr_buf;
 924        u64 rrp, rwp;
 925        u32 status;
 926
 927        rrp = tmc_read_rrp(drvdata);
 928        rwp = tmc_read_rwp(drvdata);
 929        status = readl_relaxed(drvdata->base + TMC_STS);
 930        etr_buf->full = status & TMC_STS_FULL;
 931
 932        WARN_ON(!etr_buf->ops || !etr_buf->ops->sync);
 933
 934        etr_buf->ops->sync(etr_buf, rrp, rwp);
 935
 936        /* Insert barrier packets at the beginning, if there was an overflow */
 937        if (etr_buf->full)
 938                tmc_etr_buf_insert_barrier_packet(etr_buf, etr_buf->offset);
 939}
 940
 941static void __tmc_etr_enable_hw(struct tmc_drvdata *drvdata)
 942{
 943        u32 axictl, sts;
 944        struct etr_buf *etr_buf = drvdata->etr_buf;
 945
 946        CS_UNLOCK(drvdata->base);
 947
 948        /* Wait for TMCSReady bit to be set */
 949        tmc_wait_for_tmcready(drvdata);
 950
 951        writel_relaxed(etr_buf->size / 4, drvdata->base + TMC_RSZ);
 952        writel_relaxed(TMC_MODE_CIRCULAR_BUFFER, drvdata->base + TMC_MODE);
 953
 954        axictl = readl_relaxed(drvdata->base + TMC_AXICTL);
 955        axictl &= ~TMC_AXICTL_CLEAR_MASK;
 956        axictl |= (TMC_AXICTL_PROT_CTL_B1 | TMC_AXICTL_WR_BURST_16);
 957        axictl |= TMC_AXICTL_AXCACHE_OS;
 958
 959        if (tmc_etr_has_cap(drvdata, TMC_ETR_AXI_ARCACHE)) {
 960                axictl &= ~TMC_AXICTL_ARCACHE_MASK;
 961                axictl |= TMC_AXICTL_ARCACHE_OS;
 962        }
 963
 964        if (etr_buf->mode == ETR_MODE_ETR_SG)
 965                axictl |= TMC_AXICTL_SCT_GAT_MODE;
 966
 967        writel_relaxed(axictl, drvdata->base + TMC_AXICTL);
 968        tmc_write_dba(drvdata, etr_buf->hwaddr);
 969        /*
 970         * If the TMC pointers must be programmed before the session,
 971         * we have to set it properly (i.e, RRP/RWP to base address and
 972         * STS to "not full").
 973         */
 974        if (tmc_etr_has_cap(drvdata, TMC_ETR_SAVE_RESTORE)) {
 975                tmc_write_rrp(drvdata, etr_buf->hwaddr);
 976                tmc_write_rwp(drvdata, etr_buf->hwaddr);
 977                sts = readl_relaxed(drvdata->base + TMC_STS) & ~TMC_STS_FULL;
 978                writel_relaxed(sts, drvdata->base + TMC_STS);
 979        }
 980
 981        writel_relaxed(TMC_FFCR_EN_FMT | TMC_FFCR_EN_TI |
 982                       TMC_FFCR_FON_FLIN | TMC_FFCR_FON_TRIG_EVT |
 983                       TMC_FFCR_TRIGON_TRIGIN,
 984                       drvdata->base + TMC_FFCR);
 985        writel_relaxed(drvdata->trigger_cntr, drvdata->base + TMC_TRG);
 986        tmc_enable_hw(drvdata);
 987
 988        CS_LOCK(drvdata->base);
 989}
 990
 991static int tmc_etr_enable_hw(struct tmc_drvdata *drvdata,
 992                             struct etr_buf *etr_buf)
 993{
 994        int rc;
 995
 996        /* Callers should provide an appropriate buffer for use */
 997        if (WARN_ON(!etr_buf))
 998                return -EINVAL;
 999
1000        if ((etr_buf->mode == ETR_MODE_ETR_SG) &&
1001            WARN_ON(!tmc_etr_has_cap(drvdata, TMC_ETR_SG)))
1002                return -EINVAL;
1003
1004        if (WARN_ON(drvdata->etr_buf))
1005                return -EBUSY;
1006
1007        /*
1008         * If this ETR is connected to a CATU, enable it before we turn
1009         * this on.
1010         */
1011        rc = tmc_etr_enable_catu(drvdata, etr_buf);
1012        if (rc)
1013                return rc;
1014        rc = coresight_claim_device(drvdata->base);
1015        if (!rc) {
1016                drvdata->etr_buf = etr_buf;
1017                __tmc_etr_enable_hw(drvdata);
1018        }
1019
1020        return rc;
1021}
1022
1023/*
1024 * Return the available trace data in the buffer (starts at etr_buf->offset,
1025 * limited by etr_buf->len) from @pos, with a maximum limit of @len,
1026 * also updating the @bufpp on where to find it. Since the trace data
1027 * starts at anywhere in the buffer, depending on the RRP, we adjust the
1028 * @len returned to handle buffer wrapping around.
1029 *
1030 * We are protected here by drvdata->reading != 0, which ensures the
1031 * sysfs_buf stays alive.
1032 */
1033ssize_t tmc_etr_get_sysfs_trace(struct tmc_drvdata *drvdata,
1034                                loff_t pos, size_t len, char **bufpp)
1035{
1036        s64 offset;
1037        ssize_t actual = len;
1038        struct etr_buf *etr_buf = drvdata->sysfs_buf;
1039
1040        if (pos + actual > etr_buf->len)
1041                actual = etr_buf->len - pos;
1042        if (actual <= 0)
1043                return actual;
1044
1045        /* Compute the offset from which we read the data */
1046        offset = etr_buf->offset + pos;
1047        if (offset >= etr_buf->size)
1048                offset -= etr_buf->size;
1049        return tmc_etr_buf_get_data(etr_buf, offset, actual, bufpp);
1050}
1051
1052static struct etr_buf *
1053tmc_etr_setup_sysfs_buf(struct tmc_drvdata *drvdata)
1054{
1055        return tmc_alloc_etr_buf(drvdata, drvdata->size,
1056                                 0, cpu_to_node(0), NULL);
1057}
1058
1059static void
1060tmc_etr_free_sysfs_buf(struct etr_buf *buf)
1061{
1062        if (buf)
1063                tmc_free_etr_buf(buf);
1064}
1065
1066static void tmc_etr_sync_sysfs_buf(struct tmc_drvdata *drvdata)
1067{
1068        struct etr_buf *etr_buf = drvdata->etr_buf;
1069
1070        if (WARN_ON(drvdata->sysfs_buf != etr_buf)) {
1071                tmc_etr_free_sysfs_buf(drvdata->sysfs_buf);
1072                drvdata->sysfs_buf = NULL;
1073        } else {
1074                tmc_sync_etr_buf(drvdata);
1075        }
1076}
1077
1078static void __tmc_etr_disable_hw(struct tmc_drvdata *drvdata)
1079{
1080        CS_UNLOCK(drvdata->base);
1081
1082        tmc_flush_and_stop(drvdata);
1083        /*
1084         * When operating in sysFS mode the content of the buffer needs to be
1085         * read before the TMC is disabled.
1086         */
1087        if (drvdata->mode == CS_MODE_SYSFS)
1088                tmc_etr_sync_sysfs_buf(drvdata);
1089
1090        tmc_disable_hw(drvdata);
1091
1092        CS_LOCK(drvdata->base);
1093
1094}
1095
1096static void tmc_etr_disable_hw(struct tmc_drvdata *drvdata)
1097{
1098        __tmc_etr_disable_hw(drvdata);
1099        /* Disable CATU device if this ETR is connected to one */
1100        tmc_etr_disable_catu(drvdata);
1101        coresight_disclaim_device(drvdata->base);
1102        /* Reset the ETR buf used by hardware */
1103        drvdata->etr_buf = NULL;
1104}
1105
1106static int tmc_enable_etr_sink_sysfs(struct coresight_device *csdev)
1107{
1108        int ret = 0;
1109        unsigned long flags;
1110        struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1111        struct etr_buf *sysfs_buf = NULL, *new_buf = NULL, *free_buf = NULL;
1112
1113        /*
1114         * If we are enabling the ETR from disabled state, we need to make
1115         * sure we have a buffer with the right size. The etr_buf is not reset
1116         * immediately after we stop the tracing in SYSFS mode as we wait for
1117         * the user to collect the data. We may be able to reuse the existing
1118         * buffer, provided the size matches. Any allocation has to be done
1119         * with the lock released.
1120         */
1121        spin_lock_irqsave(&drvdata->spinlock, flags);
1122        sysfs_buf = READ_ONCE(drvdata->sysfs_buf);
1123        if (!sysfs_buf || (sysfs_buf->size != drvdata->size)) {
1124                spin_unlock_irqrestore(&drvdata->spinlock, flags);
1125
1126                /* Allocate memory with the locks released */
1127                free_buf = new_buf = tmc_etr_setup_sysfs_buf(drvdata);
1128                if (IS_ERR(new_buf))
1129                        return PTR_ERR(new_buf);
1130
1131                /* Let's try again */
1132                spin_lock_irqsave(&drvdata->spinlock, flags);
1133        }
1134
1135        if (drvdata->reading || drvdata->mode == CS_MODE_PERF) {
1136                ret = -EBUSY;
1137                goto out;
1138        }
1139
1140        /*
1141         * In sysFS mode we can have multiple writers per sink.  Since this
1142         * sink is already enabled no memory is needed and the HW need not be
1143         * touched, even if the buffer size has changed.
1144         */
1145        if (drvdata->mode == CS_MODE_SYSFS) {
1146                atomic_inc(csdev->refcnt);
1147                goto out;
1148        }
1149
1150        /*
1151         * If we don't have a buffer or it doesn't match the requested size,
1152         * use the buffer allocated above. Otherwise reuse the existing buffer.
1153         */
1154        sysfs_buf = READ_ONCE(drvdata->sysfs_buf);
1155        if (!sysfs_buf || (new_buf && sysfs_buf->size != new_buf->size)) {
1156                free_buf = sysfs_buf;
1157                drvdata->sysfs_buf = new_buf;
1158        }
1159
1160        ret = tmc_etr_enable_hw(drvdata, drvdata->sysfs_buf);
1161        if (!ret) {
1162                drvdata->mode = CS_MODE_SYSFS;
1163                atomic_inc(csdev->refcnt);
1164        }
1165out:
1166        spin_unlock_irqrestore(&drvdata->spinlock, flags);
1167
1168        /* Free memory outside the spinlock if need be */
1169        if (free_buf)
1170                tmc_etr_free_sysfs_buf(free_buf);
1171
1172        if (!ret)
1173                dev_dbg(&csdev->dev, "TMC-ETR enabled\n");
1174
1175        return ret;
1176}
1177
1178/*
1179 * alloc_etr_buf: Allocate ETR buffer for use by perf.
1180 * The size of the hardware buffer is dependent on the size configured
1181 * via sysfs and the perf ring buffer size. We prefer to allocate the
1182 * largest possible size, scaling down the size by half until it
1183 * reaches a minimum limit (1M), beyond which we give up.
1184 */
1185static struct etr_buf *
1186alloc_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
1187              int nr_pages, void **pages, bool snapshot)
1188{
1189        int node;
1190        struct etr_buf *etr_buf;
1191        unsigned long size;
1192
1193        node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu);
1194        /*
1195         * Try to match the perf ring buffer size if it is larger
1196         * than the size requested via sysfs.
1197         */
1198        if ((nr_pages << PAGE_SHIFT) > drvdata->size) {
1199                etr_buf = tmc_alloc_etr_buf(drvdata, (nr_pages << PAGE_SHIFT),
1200                                            0, node, NULL);
1201                if (!IS_ERR(etr_buf))
1202                        goto done;
1203        }
1204
1205        /*
1206         * Else switch to configured size for this ETR
1207         * and scale down until we hit the minimum limit.
1208         */
1209        size = drvdata->size;
1210        do {
1211                etr_buf = tmc_alloc_etr_buf(drvdata, size, 0, node, NULL);
1212                if (!IS_ERR(etr_buf))
1213                        goto done;
1214                size /= 2;
1215        } while (size >= TMC_ETR_PERF_MIN_BUF_SIZE);
1216
1217        return ERR_PTR(-ENOMEM);
1218
1219done:
1220        return etr_buf;
1221}
1222
1223static struct etr_buf *
1224get_perf_etr_buf_cpu_wide(struct tmc_drvdata *drvdata,
1225                          struct perf_event *event, int nr_pages,
1226                          void **pages, bool snapshot)
1227{
1228        int ret;
1229        pid_t pid = task_pid_nr(event->owner);
1230        struct etr_buf *etr_buf;
1231
1232retry:
1233        /*
1234         * An etr_perf_buffer is associated with an event and holds a reference
1235         * to the AUX ring buffer that was created for that event.  In CPU-wide
1236         * N:1 mode multiple events (one per CPU), each with its own AUX ring
1237         * buffer, share a sink.  As such an etr_perf_buffer is created for each
1238         * event but a single etr_buf associated with the ETR is shared between
1239         * them.  The last event in a trace session will copy the content of the
1240         * etr_buf to its AUX ring buffer.  Ring buffer associated to other
1241         * events are simply not used an freed as events are destoyed.  We still
1242         * need to allocate a ring buffer for each event since we don't know
1243         * which event will be last.
1244         */
1245
1246        /*
1247         * The first thing to do here is check if an etr_buf has already been
1248         * allocated for this session.  If so it is shared with this event,
1249         * otherwise it is created.
1250         */
1251        mutex_lock(&drvdata->idr_mutex);
1252        etr_buf = idr_find(&drvdata->idr, pid);
1253        if (etr_buf) {
1254                refcount_inc(&etr_buf->refcount);
1255                mutex_unlock(&drvdata->idr_mutex);
1256                return etr_buf;
1257        }
1258
1259        /* If we made it here no buffer has been allocated, do so now. */
1260        mutex_unlock(&drvdata->idr_mutex);
1261
1262        etr_buf = alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot);
1263        if (IS_ERR(etr_buf))
1264                return etr_buf;
1265
1266        refcount_set(&etr_buf->refcount, 1);
1267
1268        /* Now that we have a buffer, add it to the IDR. */
1269        mutex_lock(&drvdata->idr_mutex);
1270        ret = idr_alloc(&drvdata->idr, etr_buf, pid, pid + 1, GFP_KERNEL);
1271        mutex_unlock(&drvdata->idr_mutex);
1272
1273        /* Another event with this session ID has allocated this buffer. */
1274        if (ret == -ENOSPC) {
1275                tmc_free_etr_buf(etr_buf);
1276                goto retry;
1277        }
1278
1279        /* The IDR can't allocate room for a new session, abandon ship. */
1280        if (ret == -ENOMEM) {
1281                tmc_free_etr_buf(etr_buf);
1282                return ERR_PTR(ret);
1283        }
1284
1285
1286        return etr_buf;
1287}
1288
1289static struct etr_buf *
1290get_perf_etr_buf_per_thread(struct tmc_drvdata *drvdata,
1291                            struct perf_event *event, int nr_pages,
1292                            void **pages, bool snapshot)
1293{
1294        struct etr_buf *etr_buf;
1295
1296        /*
1297         * In per-thread mode the etr_buf isn't shared, so just go ahead
1298         * with memory allocation.
1299         */
1300        etr_buf = alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot);
1301        if (IS_ERR(etr_buf))
1302                goto out;
1303
1304        refcount_set(&etr_buf->refcount, 1);
1305out:
1306        return etr_buf;
1307}
1308
1309static struct etr_buf *
1310get_perf_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
1311                 int nr_pages, void **pages, bool snapshot)
1312{
1313        if (event->cpu == -1)
1314                return get_perf_etr_buf_per_thread(drvdata, event, nr_pages,
1315                                                   pages, snapshot);
1316
1317        return get_perf_etr_buf_cpu_wide(drvdata, event, nr_pages,
1318                                         pages, snapshot);
1319}
1320
1321static struct etr_perf_buffer *
1322tmc_etr_setup_perf_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
1323                       int nr_pages, void **pages, bool snapshot)
1324{
1325        int node;
1326        struct etr_buf *etr_buf;
1327        struct etr_perf_buffer *etr_perf;
1328
1329        node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu);
1330
1331        etr_perf = kzalloc_node(sizeof(*etr_perf), GFP_KERNEL, node);
1332        if (!etr_perf)
1333                return ERR_PTR(-ENOMEM);
1334
1335        etr_buf = get_perf_etr_buf(drvdata, event, nr_pages, pages, snapshot);
1336        if (!IS_ERR(etr_buf))
1337                goto done;
1338
1339        kfree(etr_perf);
1340        return ERR_PTR(-ENOMEM);
1341
1342done:
1343        /*
1344         * Keep a reference to the ETR this buffer has been allocated for
1345         * in order to have access to the IDR in tmc_free_etr_buffer().
1346         */
1347        etr_perf->drvdata = drvdata;
1348        etr_perf->etr_buf = etr_buf;
1349
1350        return etr_perf;
1351}
1352
1353
1354static void *tmc_alloc_etr_buffer(struct coresight_device *csdev,
1355                                  struct perf_event *event, void **pages,
1356                                  int nr_pages, bool snapshot)
1357{
1358        struct etr_perf_buffer *etr_perf;
1359        struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1360
1361        etr_perf = tmc_etr_setup_perf_buf(drvdata, event,
1362                                          nr_pages, pages, snapshot);
1363        if (IS_ERR(etr_perf)) {
1364                dev_dbg(&csdev->dev, "Unable to allocate ETR buffer\n");
1365                return NULL;
1366        }
1367
1368        etr_perf->pid = task_pid_nr(event->owner);
1369        etr_perf->snapshot = snapshot;
1370        etr_perf->nr_pages = nr_pages;
1371        etr_perf->pages = pages;
1372
1373        return etr_perf;
1374}
1375
1376static void tmc_free_etr_buffer(void *config)
1377{
1378        struct etr_perf_buffer *etr_perf = config;
1379        struct tmc_drvdata *drvdata = etr_perf->drvdata;
1380        struct etr_buf *buf, *etr_buf = etr_perf->etr_buf;
1381
1382        if (!etr_buf)
1383                goto free_etr_perf_buffer;
1384
1385        mutex_lock(&drvdata->idr_mutex);
1386        /* If we are not the last one to use the buffer, don't touch it. */
1387        if (!refcount_dec_and_test(&etr_buf->refcount)) {
1388                mutex_unlock(&drvdata->idr_mutex);
1389                goto free_etr_perf_buffer;
1390        }
1391
1392        /* We are the last one, remove from the IDR and free the buffer. */
1393        buf = idr_remove(&drvdata->idr, etr_perf->pid);
1394        mutex_unlock(&drvdata->idr_mutex);
1395
1396        /*
1397         * Something went very wrong if the buffer associated with this ID
1398         * is not the same in the IDR.  Leak to avoid use after free.
1399         */
1400        if (buf && WARN_ON(buf != etr_buf))
1401                goto free_etr_perf_buffer;
1402
1403        tmc_free_etr_buf(etr_perf->etr_buf);
1404
1405free_etr_perf_buffer:
1406        kfree(etr_perf);
1407}
1408
1409/*
1410 * tmc_etr_sync_perf_buffer: Copy the actual trace data from the hardware
1411 * buffer to the perf ring buffer.
1412 */
1413static void tmc_etr_sync_perf_buffer(struct etr_perf_buffer *etr_perf)
1414{
1415        long bytes, to_copy;
1416        long pg_idx, pg_offset, src_offset;
1417        unsigned long head = etr_perf->head;
1418        char **dst_pages, *src_buf;
1419        struct etr_buf *etr_buf = etr_perf->etr_buf;
1420
1421        head = etr_perf->head;
1422        pg_idx = head >> PAGE_SHIFT;
1423        pg_offset = head & (PAGE_SIZE - 1);
1424        dst_pages = (char **)etr_perf->pages;
1425        src_offset = etr_buf->offset;
1426        to_copy = etr_buf->len;
1427
1428        while (to_copy > 0) {
1429                /*
1430                 * In one iteration, we can copy minimum of :
1431                 *  1) what is available in the source buffer,
1432                 *  2) what is available in the source buffer, before it
1433                 *     wraps around.
1434                 *  3) what is available in the destination page.
1435                 * in one iteration.
1436                 */
1437                bytes = tmc_etr_buf_get_data(etr_buf, src_offset, to_copy,
1438                                             &src_buf);
1439                if (WARN_ON_ONCE(bytes <= 0))
1440                        break;
1441                bytes = min(bytes, (long)(PAGE_SIZE - pg_offset));
1442
1443                memcpy(dst_pages[pg_idx] + pg_offset, src_buf, bytes);
1444
1445                to_copy -= bytes;
1446
1447                /* Move destination pointers */
1448                pg_offset += bytes;
1449                if (pg_offset == PAGE_SIZE) {
1450                        pg_offset = 0;
1451                        if (++pg_idx == etr_perf->nr_pages)
1452                                pg_idx = 0;
1453                }
1454
1455                /* Move source pointers */
1456                src_offset += bytes;
1457                if (src_offset >= etr_buf->size)
1458                        src_offset -= etr_buf->size;
1459        }
1460}
1461
1462/*
1463 * tmc_update_etr_buffer : Update the perf ring buffer with the
1464 * available trace data. We use software double buffering at the moment.
1465 *
1466 * TODO: Add support for reusing the perf ring buffer.
1467 */
1468static unsigned long
1469tmc_update_etr_buffer(struct coresight_device *csdev,
1470                      struct perf_output_handle *handle,
1471                      void *config)
1472{
1473        bool lost = false;
1474        unsigned long flags, size = 0;
1475        struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1476        struct etr_perf_buffer *etr_perf = config;
1477        struct etr_buf *etr_buf = etr_perf->etr_buf;
1478
1479        spin_lock_irqsave(&drvdata->spinlock, flags);
1480
1481        /* Don't do anything if another tracer is using this sink */
1482        if (atomic_read(csdev->refcnt) != 1) {
1483                spin_unlock_irqrestore(&drvdata->spinlock, flags);
1484                goto out;
1485        }
1486
1487        if (WARN_ON(drvdata->perf_data != etr_perf)) {
1488                lost = true;
1489                spin_unlock_irqrestore(&drvdata->spinlock, flags);
1490                goto out;
1491        }
1492
1493        CS_UNLOCK(drvdata->base);
1494
1495        tmc_flush_and_stop(drvdata);
1496        tmc_sync_etr_buf(drvdata);
1497
1498        CS_LOCK(drvdata->base);
1499        /* Reset perf specific data */
1500        drvdata->perf_data = NULL;
1501        spin_unlock_irqrestore(&drvdata->spinlock, flags);
1502
1503        size = etr_buf->len;
1504        tmc_etr_sync_perf_buffer(etr_perf);
1505
1506        /*
1507         * In snapshot mode we simply increment the head by the number of byte
1508         * that were written.  User space function  cs_etm_find_snapshot() will
1509         * figure out how many bytes to get from the AUX buffer based on the
1510         * position of the head.
1511         */
1512        if (etr_perf->snapshot)
1513                handle->head += size;
1514
1515        lost |= etr_buf->full;
1516out:
1517        /*
1518         * Don't set the TRUNCATED flag in snapshot mode because 1) the
1519         * captured buffer is expected to be truncated and 2) a full buffer
1520         * prevents the event from being re-enabled by the perf core,
1521         * resulting in stale data being send to user space.
1522         */
1523        if (!etr_perf->snapshot && lost)
1524                perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
1525        return size;
1526}
1527
1528static int tmc_enable_etr_sink_perf(struct coresight_device *csdev, void *data)
1529{
1530        int rc = 0;
1531        pid_t pid;
1532        unsigned long flags;
1533        struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1534        struct perf_output_handle *handle = data;
1535        struct etr_perf_buffer *etr_perf = etm_perf_sink_config(handle);
1536
1537        spin_lock_irqsave(&drvdata->spinlock, flags);
1538         /* Don't use this sink if it is already claimed by sysFS */
1539        if (drvdata->mode == CS_MODE_SYSFS) {
1540                rc = -EBUSY;
1541                goto unlock_out;
1542        }
1543
1544        if (WARN_ON(!etr_perf || !etr_perf->etr_buf)) {
1545                rc = -EINVAL;
1546                goto unlock_out;
1547        }
1548
1549        /* Get a handle on the pid of the process to monitor */
1550        pid = etr_perf->pid;
1551
1552        /* Do not proceed if this device is associated with another session */
1553        if (drvdata->pid != -1 && drvdata->pid != pid) {
1554                rc = -EBUSY;
1555                goto unlock_out;
1556        }
1557
1558        etr_perf->head = PERF_IDX2OFF(handle->head, etr_perf);
1559        drvdata->perf_data = etr_perf;
1560
1561        /*
1562         * No HW configuration is needed if the sink is already in
1563         * use for this session.
1564         */
1565        if (drvdata->pid == pid) {
1566                atomic_inc(csdev->refcnt);
1567                goto unlock_out;
1568        }
1569
1570        rc = tmc_etr_enable_hw(drvdata, etr_perf->etr_buf);
1571        if (!rc) {
1572                /* Associate with monitored process. */
1573                drvdata->pid = pid;
1574                drvdata->mode = CS_MODE_PERF;
1575                atomic_inc(csdev->refcnt);
1576        }
1577
1578unlock_out:
1579        spin_unlock_irqrestore(&drvdata->spinlock, flags);
1580        return rc;
1581}
1582
1583static int tmc_enable_etr_sink(struct coresight_device *csdev,
1584                               u32 mode, void *data)
1585{
1586        switch (mode) {
1587        case CS_MODE_SYSFS:
1588                return tmc_enable_etr_sink_sysfs(csdev);
1589        case CS_MODE_PERF:
1590                return tmc_enable_etr_sink_perf(csdev, data);
1591        }
1592
1593        /* We shouldn't be here */
1594        return -EINVAL;
1595}
1596
1597static int tmc_disable_etr_sink(struct coresight_device *csdev)
1598{
1599        unsigned long flags;
1600        struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1601
1602        spin_lock_irqsave(&drvdata->spinlock, flags);
1603
1604        if (drvdata->reading) {
1605                spin_unlock_irqrestore(&drvdata->spinlock, flags);
1606                return -EBUSY;
1607        }
1608
1609        if (atomic_dec_return(csdev->refcnt)) {
1610                spin_unlock_irqrestore(&drvdata->spinlock, flags);
1611                return -EBUSY;
1612        }
1613
1614        /* Complain if we (somehow) got out of sync */
1615        WARN_ON_ONCE(drvdata->mode == CS_MODE_DISABLED);
1616        tmc_etr_disable_hw(drvdata);
1617        /* Dissociate from monitored process. */
1618        drvdata->pid = -1;
1619        drvdata->mode = CS_MODE_DISABLED;
1620
1621        spin_unlock_irqrestore(&drvdata->spinlock, flags);
1622
1623        dev_dbg(&csdev->dev, "TMC-ETR disabled\n");
1624        return 0;
1625}
1626
1627static const struct coresight_ops_sink tmc_etr_sink_ops = {
1628        .enable         = tmc_enable_etr_sink,
1629        .disable        = tmc_disable_etr_sink,
1630        .alloc_buffer   = tmc_alloc_etr_buffer,
1631        .update_buffer  = tmc_update_etr_buffer,
1632        .free_buffer    = tmc_free_etr_buffer,
1633};
1634
1635const struct coresight_ops tmc_etr_cs_ops = {
1636        .sink_ops       = &tmc_etr_sink_ops,
1637};
1638
1639int tmc_read_prepare_etr(struct tmc_drvdata *drvdata)
1640{
1641        int ret = 0;
1642        unsigned long flags;
1643
1644        /* config types are set a boot time and never change */
1645        if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR))
1646                return -EINVAL;
1647
1648        spin_lock_irqsave(&drvdata->spinlock, flags);
1649        if (drvdata->reading) {
1650                ret = -EBUSY;
1651                goto out;
1652        }
1653
1654        /*
1655         * We can safely allow reads even if the ETR is operating in PERF mode,
1656         * since the sysfs session is captured in mode specific data.
1657         * If drvdata::sysfs_data is NULL the trace data has been read already.
1658         */
1659        if (!drvdata->sysfs_buf) {
1660                ret = -EINVAL;
1661                goto out;
1662        }
1663
1664        /* Disable the TMC if we are trying to read from a running session. */
1665        if (drvdata->mode == CS_MODE_SYSFS)
1666                __tmc_etr_disable_hw(drvdata);
1667
1668        drvdata->reading = true;
1669out:
1670        spin_unlock_irqrestore(&drvdata->spinlock, flags);
1671
1672        return ret;
1673}
1674
1675int tmc_read_unprepare_etr(struct tmc_drvdata *drvdata)
1676{
1677        unsigned long flags;
1678        struct etr_buf *sysfs_buf = NULL;
1679
1680        /* config types are set a boot time and never change */
1681        if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR))
1682                return -EINVAL;
1683
1684        spin_lock_irqsave(&drvdata->spinlock, flags);
1685
1686        /* RE-enable the TMC if need be */
1687        if (drvdata->mode == CS_MODE_SYSFS) {
1688                /*
1689                 * The trace run will continue with the same allocated trace
1690                 * buffer. Since the tracer is still enabled drvdata::buf can't
1691                 * be NULL.
1692                 */
1693                __tmc_etr_enable_hw(drvdata);
1694        } else {
1695                /*
1696                 * The ETR is not tracing and the buffer was just read.
1697                 * As such prepare to free the trace buffer.
1698                 */
1699                sysfs_buf = drvdata->sysfs_buf;
1700                drvdata->sysfs_buf = NULL;
1701        }
1702
1703        drvdata->reading = false;
1704        spin_unlock_irqrestore(&drvdata->spinlock, flags);
1705
1706        /* Free allocated memory out side of the spinlock */
1707        if (sysfs_buf)
1708                tmc_etr_free_sysfs_buf(sysfs_buf);
1709
1710        return 0;
1711}
1712