linux/drivers/i2c/busses/i2c-at91-master.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  i2c Support for Atmel's AT91 Two-Wire Interface (TWI)
   4 *
   5 *  Copyright (C) 2011 Weinmann Medical GmbH
   6 *  Author: Nikolaus Voss <n.voss@weinmann.de>
   7 *
   8 *  Evolved from original work by:
   9 *  Copyright (C) 2004 Rick Bronson
  10 *  Converted to 2.6 by Andrew Victor <andrew@sanpeople.com>
  11 *
  12 *  Borrowed heavily from original work by:
  13 *  Copyright (C) 2000 Philip Edelbrock <phil@stimpy.netroedge.com>
  14 */
  15
  16#include <linux/clk.h>
  17#include <linux/completion.h>
  18#include <linux/dma-mapping.h>
  19#include <linux/dmaengine.h>
  20#include <linux/err.h>
  21#include <linux/i2c.h>
  22#include <linux/interrupt.h>
  23#include <linux/io.h>
  24#include <linux/of.h>
  25#include <linux/of_device.h>
  26#include <linux/platform_device.h>
  27#include <linux/platform_data/dma-atmel.h>
  28#include <linux/pm_runtime.h>
  29
  30#include "i2c-at91.h"
  31
  32void at91_init_twi_bus_master(struct at91_twi_dev *dev)
  33{
  34        /* FIFO should be enabled immediately after the software reset */
  35        if (dev->fifo_size)
  36                at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_FIFOEN);
  37        at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_MSEN);
  38        at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_SVDIS);
  39        at91_twi_write(dev, AT91_TWI_CWGR, dev->twi_cwgr_reg);
  40}
  41
  42/*
  43 * Calculate symmetric clock as stated in datasheet:
  44 * twi_clk = F_MAIN / (2 * (cdiv * (1 << ckdiv) + offset))
  45 */
  46static void at91_calc_twi_clock(struct at91_twi_dev *dev)
  47{
  48        int ckdiv, cdiv, div, hold = 0;
  49        struct at91_twi_pdata *pdata = dev->pdata;
  50        int offset = pdata->clk_offset;
  51        int max_ckdiv = pdata->clk_max_div;
  52        struct i2c_timings timings, *t = &timings;
  53
  54        i2c_parse_fw_timings(dev->dev, t, true);
  55
  56        div = max(0, (int)DIV_ROUND_UP(clk_get_rate(dev->clk),
  57                                       2 * t->bus_freq_hz) - offset);
  58        ckdiv = fls(div >> 8);
  59        cdiv = div >> ckdiv;
  60
  61        if (ckdiv > max_ckdiv) {
  62                dev_warn(dev->dev, "%d exceeds ckdiv max value which is %d.\n",
  63                         ckdiv, max_ckdiv);
  64                ckdiv = max_ckdiv;
  65                cdiv = 255;
  66        }
  67
  68        if (pdata->has_hold_field) {
  69                /*
  70                 * hold time = HOLD + 3 x T_peripheral_clock
  71                 * Use clk rate in kHz to prevent overflows when computing
  72                 * hold.
  73                 */
  74                hold = DIV_ROUND_UP(t->sda_hold_ns
  75                                    * (clk_get_rate(dev->clk) / 1000), 1000000);
  76                hold -= 3;
  77                if (hold < 0)
  78                        hold = 0;
  79                if (hold > AT91_TWI_CWGR_HOLD_MAX) {
  80                        dev_warn(dev->dev,
  81                                 "HOLD field set to its maximum value (%d instead of %d)\n",
  82                                 AT91_TWI_CWGR_HOLD_MAX, hold);
  83                        hold = AT91_TWI_CWGR_HOLD_MAX;
  84                }
  85        }
  86
  87        dev->twi_cwgr_reg = (ckdiv << 16) | (cdiv << 8) | cdiv
  88                            | AT91_TWI_CWGR_HOLD(hold);
  89
  90        dev_dbg(dev->dev, "cdiv %d ckdiv %d hold %d (%d ns)\n",
  91                cdiv, ckdiv, hold, t->sda_hold_ns);
  92}
  93
  94static void at91_twi_dma_cleanup(struct at91_twi_dev *dev)
  95{
  96        struct at91_twi_dma *dma = &dev->dma;
  97
  98        at91_twi_irq_save(dev);
  99
 100        if (dma->xfer_in_progress) {
 101                if (dma->direction == DMA_FROM_DEVICE)
 102                        dmaengine_terminate_all(dma->chan_rx);
 103                else
 104                        dmaengine_terminate_all(dma->chan_tx);
 105                dma->xfer_in_progress = false;
 106        }
 107        if (dma->buf_mapped) {
 108                dma_unmap_single(dev->dev, sg_dma_address(&dma->sg[0]),
 109                                 dev->buf_len, dma->direction);
 110                dma->buf_mapped = false;
 111        }
 112
 113        at91_twi_irq_restore(dev);
 114}
 115
 116static void at91_twi_write_next_byte(struct at91_twi_dev *dev)
 117{
 118        if (!dev->buf_len)
 119                return;
 120
 121        /* 8bit write works with and without FIFO */
 122        writeb_relaxed(*dev->buf, dev->base + AT91_TWI_THR);
 123
 124        /* send stop when last byte has been written */
 125        if (--dev->buf_len == 0) {
 126                if (!dev->use_alt_cmd)
 127                        at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
 128                at91_twi_write(dev, AT91_TWI_IDR, AT91_TWI_TXRDY);
 129        }
 130
 131        dev_dbg(dev->dev, "wrote 0x%x, to go %zu\n", *dev->buf, dev->buf_len);
 132
 133        ++dev->buf;
 134}
 135
 136static void at91_twi_write_data_dma_callback(void *data)
 137{
 138        struct at91_twi_dev *dev = (struct at91_twi_dev *)data;
 139
 140        dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg[0]),
 141                         dev->buf_len, DMA_TO_DEVICE);
 142
 143        /*
 144         * When this callback is called, THR/TX FIFO is likely not to be empty
 145         * yet. So we have to wait for TXCOMP or NACK bits to be set into the
 146         * Status Register to be sure that the STOP bit has been sent and the
 147         * transfer is completed. The NACK interrupt has already been enabled,
 148         * we just have to enable TXCOMP one.
 149         */
 150        at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP);
 151        if (!dev->use_alt_cmd)
 152                at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
 153}
 154
 155static void at91_twi_write_data_dma(struct at91_twi_dev *dev)
 156{
 157        dma_addr_t dma_addr;
 158        struct dma_async_tx_descriptor *txdesc;
 159        struct at91_twi_dma *dma = &dev->dma;
 160        struct dma_chan *chan_tx = dma->chan_tx;
 161        unsigned int sg_len = 1;
 162
 163        if (!dev->buf_len)
 164                return;
 165
 166        dma->direction = DMA_TO_DEVICE;
 167
 168        at91_twi_irq_save(dev);
 169        dma_addr = dma_map_single(dev->dev, dev->buf, dev->buf_len,
 170                                  DMA_TO_DEVICE);
 171        if (dma_mapping_error(dev->dev, dma_addr)) {
 172                dev_err(dev->dev, "dma map failed\n");
 173                return;
 174        }
 175        dma->buf_mapped = true;
 176        at91_twi_irq_restore(dev);
 177
 178        if (dev->fifo_size) {
 179                size_t part1_len, part2_len;
 180                struct scatterlist *sg;
 181                unsigned fifo_mr;
 182
 183                sg_len = 0;
 184
 185                part1_len = dev->buf_len & ~0x3;
 186                if (part1_len) {
 187                        sg = &dma->sg[sg_len++];
 188                        sg_dma_len(sg) = part1_len;
 189                        sg_dma_address(sg) = dma_addr;
 190                }
 191
 192                part2_len = dev->buf_len & 0x3;
 193                if (part2_len) {
 194                        sg = &dma->sg[sg_len++];
 195                        sg_dma_len(sg) = part2_len;
 196                        sg_dma_address(sg) = dma_addr + part1_len;
 197                }
 198
 199                /*
 200                 * DMA controller is triggered when at least 4 data can be
 201                 * written into the TX FIFO
 202                 */
 203                fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
 204                fifo_mr &= ~AT91_TWI_FMR_TXRDYM_MASK;
 205                fifo_mr |= AT91_TWI_FMR_TXRDYM(AT91_TWI_FOUR_DATA);
 206                at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
 207        } else {
 208                sg_dma_len(&dma->sg[0]) = dev->buf_len;
 209                sg_dma_address(&dma->sg[0]) = dma_addr;
 210        }
 211
 212        txdesc = dmaengine_prep_slave_sg(chan_tx, dma->sg, sg_len,
 213                                         DMA_MEM_TO_DEV,
 214                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 215        if (!txdesc) {
 216                dev_err(dev->dev, "dma prep slave sg failed\n");
 217                goto error;
 218        }
 219
 220        txdesc->callback = at91_twi_write_data_dma_callback;
 221        txdesc->callback_param = dev;
 222
 223        dma->xfer_in_progress = true;
 224        dmaengine_submit(txdesc);
 225        dma_async_issue_pending(chan_tx);
 226
 227        return;
 228
 229error:
 230        at91_twi_dma_cleanup(dev);
 231}
 232
 233static void at91_twi_read_next_byte(struct at91_twi_dev *dev)
 234{
 235        /*
 236         * If we are in this case, it means there is garbage data in RHR, so
 237         * delete them.
 238         */
 239        if (!dev->buf_len) {
 240                at91_twi_read(dev, AT91_TWI_RHR);
 241                return;
 242        }
 243
 244        /* 8bit read works with and without FIFO */
 245        *dev->buf = readb_relaxed(dev->base + AT91_TWI_RHR);
 246        --dev->buf_len;
 247
 248        /* return if aborting, we only needed to read RHR to clear RXRDY*/
 249        if (dev->recv_len_abort)
 250                return;
 251
 252        /* handle I2C_SMBUS_BLOCK_DATA */
 253        if (unlikely(dev->msg->flags & I2C_M_RECV_LEN)) {
 254                /* ensure length byte is a valid value */
 255                if (*dev->buf <= I2C_SMBUS_BLOCK_MAX && *dev->buf > 0) {
 256                        dev->msg->flags &= ~I2C_M_RECV_LEN;
 257                        dev->buf_len += *dev->buf;
 258                        dev->msg->len = dev->buf_len + 1;
 259                        dev_dbg(dev->dev, "received block length %zu\n",
 260                                         dev->buf_len);
 261                } else {
 262                        /* abort and send the stop by reading one more byte */
 263                        dev->recv_len_abort = true;
 264                        dev->buf_len = 1;
 265                }
 266        }
 267
 268        /* send stop if second but last byte has been read */
 269        if (!dev->use_alt_cmd && dev->buf_len == 1)
 270                at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
 271
 272        dev_dbg(dev->dev, "read 0x%x, to go %zu\n", *dev->buf, dev->buf_len);
 273
 274        ++dev->buf;
 275}
 276
 277static void at91_twi_read_data_dma_callback(void *data)
 278{
 279        struct at91_twi_dev *dev = (struct at91_twi_dev *)data;
 280        unsigned ier = AT91_TWI_TXCOMP;
 281
 282        dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg[0]),
 283                         dev->buf_len, DMA_FROM_DEVICE);
 284
 285        if (!dev->use_alt_cmd) {
 286                /* The last two bytes have to be read without using dma */
 287                dev->buf += dev->buf_len - 2;
 288                dev->buf_len = 2;
 289                ier |= AT91_TWI_RXRDY;
 290        }
 291        at91_twi_write(dev, AT91_TWI_IER, ier);
 292}
 293
 294static void at91_twi_read_data_dma(struct at91_twi_dev *dev)
 295{
 296        dma_addr_t dma_addr;
 297        struct dma_async_tx_descriptor *rxdesc;
 298        struct at91_twi_dma *dma = &dev->dma;
 299        struct dma_chan *chan_rx = dma->chan_rx;
 300        size_t buf_len;
 301
 302        buf_len = (dev->use_alt_cmd) ? dev->buf_len : dev->buf_len - 2;
 303        dma->direction = DMA_FROM_DEVICE;
 304
 305        /* Keep in mind that we won't use dma to read the last two bytes */
 306        at91_twi_irq_save(dev);
 307        dma_addr = dma_map_single(dev->dev, dev->buf, buf_len, DMA_FROM_DEVICE);
 308        if (dma_mapping_error(dev->dev, dma_addr)) {
 309                dev_err(dev->dev, "dma map failed\n");
 310                return;
 311        }
 312        dma->buf_mapped = true;
 313        at91_twi_irq_restore(dev);
 314
 315        if (dev->fifo_size && IS_ALIGNED(buf_len, 4)) {
 316                unsigned fifo_mr;
 317
 318                /*
 319                 * DMA controller is triggered when at least 4 data can be
 320                 * read from the RX FIFO
 321                 */
 322                fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
 323                fifo_mr &= ~AT91_TWI_FMR_RXRDYM_MASK;
 324                fifo_mr |= AT91_TWI_FMR_RXRDYM(AT91_TWI_FOUR_DATA);
 325                at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
 326        }
 327
 328        sg_dma_len(&dma->sg[0]) = buf_len;
 329        sg_dma_address(&dma->sg[0]) = dma_addr;
 330
 331        rxdesc = dmaengine_prep_slave_sg(chan_rx, dma->sg, 1, DMA_DEV_TO_MEM,
 332                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 333        if (!rxdesc) {
 334                dev_err(dev->dev, "dma prep slave sg failed\n");
 335                goto error;
 336        }
 337
 338        rxdesc->callback = at91_twi_read_data_dma_callback;
 339        rxdesc->callback_param = dev;
 340
 341        dma->xfer_in_progress = true;
 342        dmaengine_submit(rxdesc);
 343        dma_async_issue_pending(dma->chan_rx);
 344
 345        return;
 346
 347error:
 348        at91_twi_dma_cleanup(dev);
 349}
 350
 351static irqreturn_t atmel_twi_interrupt(int irq, void *dev_id)
 352{
 353        struct at91_twi_dev *dev = dev_id;
 354        const unsigned status = at91_twi_read(dev, AT91_TWI_SR);
 355        const unsigned irqstatus = status & at91_twi_read(dev, AT91_TWI_IMR);
 356
 357        if (!irqstatus)
 358                return IRQ_NONE;
 359        /*
 360         * In reception, the behavior of the twi device (before sama5d2) is
 361         * weird. There is some magic about RXRDY flag! When a data has been
 362         * almost received, the reception of a new one is anticipated if there
 363         * is no stop command to send. That is the reason why ask for sending
 364         * the stop command not on the last data but on the second last one.
 365         *
 366         * Unfortunately, we could still have the RXRDY flag set even if the
 367         * transfer is done and we have read the last data. It might happen
 368         * when the i2c slave device sends too quickly data after receiving the
 369         * ack from the master. The data has been almost received before having
 370         * the order to send stop. In this case, sending the stop command could
 371         * cause a RXRDY interrupt with a TXCOMP one. It is better to manage
 372         * the RXRDY interrupt first in order to not keep garbage data in the
 373         * Receive Holding Register for the next transfer.
 374         */
 375        if (irqstatus & AT91_TWI_RXRDY) {
 376                /*
 377                 * Read all available bytes at once by polling RXRDY usable w/
 378                 * and w/o FIFO. With FIFO enabled we could also read RXFL and
 379                 * avoid polling RXRDY.
 380                 */
 381                do {
 382                        at91_twi_read_next_byte(dev);
 383                } while (at91_twi_read(dev, AT91_TWI_SR) & AT91_TWI_RXRDY);
 384        }
 385
 386        /*
 387         * When a NACK condition is detected, the I2C controller sets the NACK,
 388         * TXCOMP and TXRDY bits all together in the Status Register (SR).
 389         *
 390         * 1 - Handling NACK errors with CPU write transfer.
 391         *
 392         * In such case, we should not write the next byte into the Transmit
 393         * Holding Register (THR) otherwise the I2C controller would start a new
 394         * transfer and the I2C slave is likely to reply by another NACK.
 395         *
 396         * 2 - Handling NACK errors with DMA write transfer.
 397         *
 398         * By setting the TXRDY bit in the SR, the I2C controller also triggers
 399         * the DMA controller to write the next data into the THR. Then the
 400         * result depends on the hardware version of the I2C controller.
 401         *
 402         * 2a - Without support of the Alternative Command mode.
 403         *
 404         * This is the worst case: the DMA controller is triggered to write the
 405         * next data into the THR, hence starting a new transfer: the I2C slave
 406         * is likely to reply by another NACK.
 407         * Concurrently, this interrupt handler is likely to be called to manage
 408         * the first NACK before the I2C controller detects the second NACK and
 409         * sets once again the NACK bit into the SR.
 410         * When handling the first NACK, this interrupt handler disables the I2C
 411         * controller interruptions, especially the NACK interrupt.
 412         * Hence, the NACK bit is pending into the SR. This is why we should
 413         * read the SR to clear all pending interrupts at the beginning of
 414         * at91_do_twi_transfer() before actually starting a new transfer.
 415         *
 416         * 2b - With support of the Alternative Command mode.
 417         *
 418         * When a NACK condition is detected, the I2C controller also locks the
 419         * THR (and sets the LOCK bit in the SR): even though the DMA controller
 420         * is triggered by the TXRDY bit to write the next data into the THR,
 421         * this data actually won't go on the I2C bus hence a second NACK is not
 422         * generated.
 423         */
 424        if (irqstatus & (AT91_TWI_TXCOMP | AT91_TWI_NACK)) {
 425                at91_disable_twi_interrupts(dev);
 426                complete(&dev->cmd_complete);
 427        } else if (irqstatus & AT91_TWI_TXRDY) {
 428                at91_twi_write_next_byte(dev);
 429        }
 430
 431        /* catch error flags */
 432        dev->transfer_status |= status;
 433
 434        return IRQ_HANDLED;
 435}
 436
 437static int at91_do_twi_transfer(struct at91_twi_dev *dev)
 438{
 439        int ret;
 440        unsigned long time_left;
 441        bool has_unre_flag = dev->pdata->has_unre_flag;
 442        bool has_alt_cmd = dev->pdata->has_alt_cmd;
 443
 444        /*
 445         * WARNING: the TXCOMP bit in the Status Register is NOT a clear on
 446         * read flag but shows the state of the transmission at the time the
 447         * Status Register is read. According to the programmer datasheet,
 448         * TXCOMP is set when both holding register and internal shifter are
 449         * empty and STOP condition has been sent.
 450         * Consequently, we should enable NACK interrupt rather than TXCOMP to
 451         * detect transmission failure.
 452         * Indeed let's take the case of an i2c write command using DMA.
 453         * Whenever the slave doesn't acknowledge a byte, the LOCK, NACK and
 454         * TXCOMP bits are set together into the Status Register.
 455         * LOCK is a clear on write bit, which is set to prevent the DMA
 456         * controller from sending new data on the i2c bus after a NACK
 457         * condition has happened. Once locked, this i2c peripheral stops
 458         * triggering the DMA controller for new data but it is more than
 459         * likely that a new DMA transaction is already in progress, writing
 460         * into the Transmit Holding Register. Since the peripheral is locked,
 461         * these new data won't be sent to the i2c bus but they will remain
 462         * into the Transmit Holding Register, so TXCOMP bit is cleared.
 463         * Then when the interrupt handler is called, the Status Register is
 464         * read: the TXCOMP bit is clear but NACK bit is still set. The driver
 465         * manage the error properly, without waiting for timeout.
 466         * This case can be reproduced easyly when writing into an at24 eeprom.
 467         *
 468         * Besides, the TXCOMP bit is already set before the i2c transaction
 469         * has been started. For read transactions, this bit is cleared when
 470         * writing the START bit into the Control Register. So the
 471         * corresponding interrupt can safely be enabled just after.
 472         * However for write transactions managed by the CPU, we first write
 473         * into THR, so TXCOMP is cleared. Then we can safely enable TXCOMP
 474         * interrupt. If TXCOMP interrupt were enabled before writing into THR,
 475         * the interrupt handler would be called immediately and the i2c command
 476         * would be reported as completed.
 477         * Also when a write transaction is managed by the DMA controller,
 478         * enabling the TXCOMP interrupt in this function may lead to a race
 479         * condition since we don't know whether the TXCOMP interrupt is enabled
 480         * before or after the DMA has started to write into THR. So the TXCOMP
 481         * interrupt is enabled later by at91_twi_write_data_dma_callback().
 482         * Immediately after in that DMA callback, if the alternative command
 483         * mode is not used, we still need to send the STOP condition manually
 484         * writing the corresponding bit into the Control Register.
 485         */
 486
 487        dev_dbg(dev->dev, "transfer: %s %zu bytes.\n",
 488                (dev->msg->flags & I2C_M_RD) ? "read" : "write", dev->buf_len);
 489
 490        reinit_completion(&dev->cmd_complete);
 491        dev->transfer_status = 0;
 492
 493        /* Clear pending interrupts, such as NACK. */
 494        at91_twi_read(dev, AT91_TWI_SR);
 495
 496        if (dev->fifo_size) {
 497                unsigned fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
 498
 499                /* Reset FIFO mode register */
 500                fifo_mr &= ~(AT91_TWI_FMR_TXRDYM_MASK |
 501                             AT91_TWI_FMR_RXRDYM_MASK);
 502                fifo_mr |= AT91_TWI_FMR_TXRDYM(AT91_TWI_ONE_DATA);
 503                fifo_mr |= AT91_TWI_FMR_RXRDYM(AT91_TWI_ONE_DATA);
 504                at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
 505
 506                /* Flush FIFOs */
 507                at91_twi_write(dev, AT91_TWI_CR,
 508                               AT91_TWI_THRCLR | AT91_TWI_RHRCLR);
 509        }
 510
 511        if (!dev->buf_len) {
 512                at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_QUICK);
 513                at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP);
 514        } else if (dev->msg->flags & I2C_M_RD) {
 515                unsigned start_flags = AT91_TWI_START;
 516
 517                /* if only one byte is to be read, immediately stop transfer */
 518                if (!dev->use_alt_cmd && dev->buf_len <= 1 &&
 519                    !(dev->msg->flags & I2C_M_RECV_LEN))
 520                        start_flags |= AT91_TWI_STOP;
 521                at91_twi_write(dev, AT91_TWI_CR, start_flags);
 522                /*
 523                 * When using dma without alternative command mode, the last
 524                 * byte has to be read manually in order to not send the stop
 525                 * command too late and then to receive extra data.
 526                 * In practice, there are some issues if you use the dma to
 527                 * read n-1 bytes because of latency.
 528                 * Reading n-2 bytes with dma and the two last ones manually
 529                 * seems to be the best solution.
 530                 */
 531                if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) {
 532                        at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK);
 533                        at91_twi_read_data_dma(dev);
 534                } else {
 535                        at91_twi_write(dev, AT91_TWI_IER,
 536                                       AT91_TWI_TXCOMP |
 537                                       AT91_TWI_NACK |
 538                                       AT91_TWI_RXRDY);
 539                }
 540        } else {
 541                if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) {
 542                        at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK);
 543                        at91_twi_write_data_dma(dev);
 544                } else {
 545                        at91_twi_write_next_byte(dev);
 546                        at91_twi_write(dev, AT91_TWI_IER,
 547                                       AT91_TWI_TXCOMP | AT91_TWI_NACK |
 548                                       (dev->buf_len ? AT91_TWI_TXRDY : 0));
 549                }
 550        }
 551
 552        time_left = wait_for_completion_timeout(&dev->cmd_complete,
 553                                              dev->adapter.timeout);
 554        if (time_left == 0) {
 555                dev->transfer_status |= at91_twi_read(dev, AT91_TWI_SR);
 556                dev_err(dev->dev, "controller timed out\n");
 557                at91_init_twi_bus(dev);
 558                ret = -ETIMEDOUT;
 559                goto error;
 560        }
 561        if (dev->transfer_status & AT91_TWI_NACK) {
 562                dev_dbg(dev->dev, "received nack\n");
 563                ret = -EREMOTEIO;
 564                goto error;
 565        }
 566        if (dev->transfer_status & AT91_TWI_OVRE) {
 567                dev_err(dev->dev, "overrun while reading\n");
 568                ret = -EIO;
 569                goto error;
 570        }
 571        if (has_unre_flag && dev->transfer_status & AT91_TWI_UNRE) {
 572                dev_err(dev->dev, "underrun while writing\n");
 573                ret = -EIO;
 574                goto error;
 575        }
 576        if ((has_alt_cmd || dev->fifo_size) &&
 577            (dev->transfer_status & AT91_TWI_LOCK)) {
 578                dev_err(dev->dev, "tx locked\n");
 579                ret = -EIO;
 580                goto error;
 581        }
 582        if (dev->recv_len_abort) {
 583                dev_err(dev->dev, "invalid smbus block length recvd\n");
 584                ret = -EPROTO;
 585                goto error;
 586        }
 587
 588        dev_dbg(dev->dev, "transfer complete\n");
 589
 590        return 0;
 591
 592error:
 593        /* first stop DMA transfer if still in progress */
 594        at91_twi_dma_cleanup(dev);
 595        /* then flush THR/FIFO and unlock TX if locked */
 596        if ((has_alt_cmd || dev->fifo_size) &&
 597            (dev->transfer_status & AT91_TWI_LOCK)) {
 598                dev_dbg(dev->dev, "unlock tx\n");
 599                at91_twi_write(dev, AT91_TWI_CR,
 600                               AT91_TWI_THRCLR | AT91_TWI_LOCKCLR);
 601        }
 602        return ret;
 603}
 604
 605static int at91_twi_xfer(struct i2c_adapter *adap, struct i2c_msg *msg, int num)
 606{
 607        struct at91_twi_dev *dev = i2c_get_adapdata(adap);
 608        int ret;
 609        unsigned int_addr_flag = 0;
 610        struct i2c_msg *m_start = msg;
 611        bool is_read;
 612
 613        dev_dbg(&adap->dev, "at91_xfer: processing %d messages:\n", num);
 614
 615        ret = pm_runtime_get_sync(dev->dev);
 616        if (ret < 0)
 617                goto out;
 618
 619        if (num == 2) {
 620                int internal_address = 0;
 621                int i;
 622
 623                /* 1st msg is put into the internal address, start with 2nd */
 624                m_start = &msg[1];
 625                for (i = 0; i < msg->len; ++i) {
 626                        const unsigned addr = msg->buf[msg->len - 1 - i];
 627
 628                        internal_address |= addr << (8 * i);
 629                        int_addr_flag += AT91_TWI_IADRSZ_1;
 630                }
 631                at91_twi_write(dev, AT91_TWI_IADR, internal_address);
 632        }
 633
 634        dev->use_alt_cmd = false;
 635        is_read = (m_start->flags & I2C_M_RD);
 636        if (dev->pdata->has_alt_cmd) {
 637                if (m_start->len > 0 &&
 638                    m_start->len < AT91_I2C_MAX_ALT_CMD_DATA_SIZE) {
 639                        at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_ACMEN);
 640                        at91_twi_write(dev, AT91_TWI_ACR,
 641                                       AT91_TWI_ACR_DATAL(m_start->len) |
 642                                       ((is_read) ? AT91_TWI_ACR_DIR : 0));
 643                        dev->use_alt_cmd = true;
 644                } else {
 645                        at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_ACMDIS);
 646                }
 647        }
 648
 649        at91_twi_write(dev, AT91_TWI_MMR,
 650                       (m_start->addr << 16) |
 651                       int_addr_flag |
 652                       ((!dev->use_alt_cmd && is_read) ? AT91_TWI_MREAD : 0));
 653
 654        dev->buf_len = m_start->len;
 655        dev->buf = m_start->buf;
 656        dev->msg = m_start;
 657        dev->recv_len_abort = false;
 658
 659        ret = at91_do_twi_transfer(dev);
 660
 661        ret = (ret < 0) ? ret : num;
 662out:
 663        pm_runtime_mark_last_busy(dev->dev);
 664        pm_runtime_put_autosuspend(dev->dev);
 665
 666        return ret;
 667}
 668
 669/*
 670 * The hardware can handle at most two messages concatenated by a
 671 * repeated start via it's internal address feature.
 672 */
 673static const struct i2c_adapter_quirks at91_twi_quirks = {
 674        .flags = I2C_AQ_COMB | I2C_AQ_COMB_WRITE_FIRST | I2C_AQ_COMB_SAME_ADDR,
 675        .max_comb_1st_msg_len = 3,
 676};
 677
 678static u32 at91_twi_func(struct i2c_adapter *adapter)
 679{
 680        return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL
 681                | I2C_FUNC_SMBUS_READ_BLOCK_DATA;
 682}
 683
 684static const struct i2c_algorithm at91_twi_algorithm = {
 685        .master_xfer    = at91_twi_xfer,
 686        .functionality  = at91_twi_func,
 687};
 688
 689static int at91_twi_configure_dma(struct at91_twi_dev *dev, u32 phy_addr)
 690{
 691        int ret = 0;
 692        struct dma_slave_config slave_config;
 693        struct at91_twi_dma *dma = &dev->dma;
 694        enum dma_slave_buswidth addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 695
 696        /*
 697         * The actual width of the access will be chosen in
 698         * dmaengine_prep_slave_sg():
 699         * for each buffer in the scatter-gather list, if its size is aligned
 700         * to addr_width then addr_width accesses will be performed to transfer
 701         * the buffer. On the other hand, if the buffer size is not aligned to
 702         * addr_width then the buffer is transferred using single byte accesses.
 703         * Please refer to the Atmel eXtended DMA controller driver.
 704         * When FIFOs are used, the TXRDYM threshold can always be set to
 705         * trigger the XDMAC when at least 4 data can be written into the TX
 706         * FIFO, even if single byte accesses are performed.
 707         * However the RXRDYM threshold must be set to fit the access width,
 708         * deduced from buffer length, so the XDMAC is triggered properly to
 709         * read data from the RX FIFO.
 710         */
 711        if (dev->fifo_size)
 712                addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 713
 714        memset(&slave_config, 0, sizeof(slave_config));
 715        slave_config.src_addr = (dma_addr_t)phy_addr + AT91_TWI_RHR;
 716        slave_config.src_addr_width = addr_width;
 717        slave_config.src_maxburst = 1;
 718        slave_config.dst_addr = (dma_addr_t)phy_addr + AT91_TWI_THR;
 719        slave_config.dst_addr_width = addr_width;
 720        slave_config.dst_maxburst = 1;
 721        slave_config.device_fc = false;
 722
 723        dma->chan_tx = dma_request_slave_channel_reason(dev->dev, "tx");
 724        if (IS_ERR(dma->chan_tx)) {
 725                ret = PTR_ERR(dma->chan_tx);
 726                dma->chan_tx = NULL;
 727                goto error;
 728        }
 729
 730        dma->chan_rx = dma_request_slave_channel_reason(dev->dev, "rx");
 731        if (IS_ERR(dma->chan_rx)) {
 732                ret = PTR_ERR(dma->chan_rx);
 733                dma->chan_rx = NULL;
 734                goto error;
 735        }
 736
 737        slave_config.direction = DMA_MEM_TO_DEV;
 738        if (dmaengine_slave_config(dma->chan_tx, &slave_config)) {
 739                dev_err(dev->dev, "failed to configure tx channel\n");
 740                ret = -EINVAL;
 741                goto error;
 742        }
 743
 744        slave_config.direction = DMA_DEV_TO_MEM;
 745        if (dmaengine_slave_config(dma->chan_rx, &slave_config)) {
 746                dev_err(dev->dev, "failed to configure rx channel\n");
 747                ret = -EINVAL;
 748                goto error;
 749        }
 750
 751        sg_init_table(dma->sg, 2);
 752        dma->buf_mapped = false;
 753        dma->xfer_in_progress = false;
 754        dev->use_dma = true;
 755
 756        dev_info(dev->dev, "using %s (tx) and %s (rx) for DMA transfers\n",
 757                 dma_chan_name(dma->chan_tx), dma_chan_name(dma->chan_rx));
 758
 759        return ret;
 760
 761error:
 762        if (ret != -EPROBE_DEFER)
 763                dev_info(dev->dev, "can't get DMA channel, continue without DMA support\n");
 764        if (dma->chan_rx)
 765                dma_release_channel(dma->chan_rx);
 766        if (dma->chan_tx)
 767                dma_release_channel(dma->chan_tx);
 768        return ret;
 769}
 770
 771int at91_twi_probe_master(struct platform_device *pdev,
 772                          u32 phy_addr, struct at91_twi_dev *dev)
 773{
 774        int rc;
 775
 776        init_completion(&dev->cmd_complete);
 777
 778        rc = devm_request_irq(&pdev->dev, dev->irq, atmel_twi_interrupt, 0,
 779                              dev_name(dev->dev), dev);
 780        if (rc) {
 781                dev_err(dev->dev, "Cannot get irq %d: %d\n", dev->irq, rc);
 782                return rc;
 783        }
 784
 785        if (dev->dev->of_node) {
 786                rc = at91_twi_configure_dma(dev, phy_addr);
 787                if (rc == -EPROBE_DEFER)
 788                        return rc;
 789        }
 790
 791        if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
 792                                  &dev->fifo_size)) {
 793                dev_info(dev->dev, "Using FIFO (%u data)\n", dev->fifo_size);
 794        }
 795
 796        at91_calc_twi_clock(dev);
 797
 798        dev->adapter.algo = &at91_twi_algorithm;
 799        dev->adapter.quirks = &at91_twi_quirks;
 800
 801        return 0;
 802}
 803