linux/drivers/i2c/busses/i2c-rk3x.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Driver for I2C adapter in Rockchip RK3xxx SoC
   4 *
   5 * Max Schwarz <max.schwarz@online.de>
   6 * based on the patches by Rockchip Inc.
   7 */
   8
   9#include <linux/kernel.h>
  10#include <linux/module.h>
  11#include <linux/i2c.h>
  12#include <linux/interrupt.h>
  13#include <linux/errno.h>
  14#include <linux/err.h>
  15#include <linux/platform_device.h>
  16#include <linux/io.h>
  17#include <linux/of_address.h>
  18#include <linux/of_irq.h>
  19#include <linux/spinlock.h>
  20#include <linux/clk.h>
  21#include <linux/wait.h>
  22#include <linux/mfd/syscon.h>
  23#include <linux/regmap.h>
  24#include <linux/math64.h>
  25
  26
  27/* Register Map */
  28#define REG_CON        0x00 /* control register */
  29#define REG_CLKDIV     0x04 /* clock divisor register */
  30#define REG_MRXADDR    0x08 /* slave address for REGISTER_TX */
  31#define REG_MRXRADDR   0x0c /* slave register address for REGISTER_TX */
  32#define REG_MTXCNT     0x10 /* number of bytes to be transmitted */
  33#define REG_MRXCNT     0x14 /* number of bytes to be received */
  34#define REG_IEN        0x18 /* interrupt enable */
  35#define REG_IPD        0x1c /* interrupt pending */
  36#define REG_FCNT       0x20 /* finished count */
  37
  38/* Data buffer offsets */
  39#define TXBUFFER_BASE 0x100
  40#define RXBUFFER_BASE 0x200
  41
  42/* REG_CON bits */
  43#define REG_CON_EN        BIT(0)
  44enum {
  45        REG_CON_MOD_TX = 0,      /* transmit data */
  46        REG_CON_MOD_REGISTER_TX, /* select register and restart */
  47        REG_CON_MOD_RX,          /* receive data */
  48        REG_CON_MOD_REGISTER_RX, /* broken: transmits read addr AND writes
  49                                  * register addr */
  50};
  51#define REG_CON_MOD(mod)  ((mod) << 1)
  52#define REG_CON_MOD_MASK  (BIT(1) | BIT(2))
  53#define REG_CON_START     BIT(3)
  54#define REG_CON_STOP      BIT(4)
  55#define REG_CON_LASTACK   BIT(5) /* 1: send NACK after last received byte */
  56#define REG_CON_ACTACK    BIT(6) /* 1: stop if NACK is received */
  57
  58#define REG_CON_TUNING_MASK GENMASK_ULL(15, 8)
  59
  60#define REG_CON_SDA_CFG(cfg) ((cfg) << 8)
  61#define REG_CON_STA_CFG(cfg) ((cfg) << 12)
  62#define REG_CON_STO_CFG(cfg) ((cfg) << 14)
  63
  64/* REG_MRXADDR bits */
  65#define REG_MRXADDR_VALID(x) BIT(24 + (x)) /* [x*8+7:x*8] of MRX[R]ADDR valid */
  66
  67/* REG_IEN/REG_IPD bits */
  68#define REG_INT_BTF       BIT(0) /* a byte was transmitted */
  69#define REG_INT_BRF       BIT(1) /* a byte was received */
  70#define REG_INT_MBTF      BIT(2) /* master data transmit finished */
  71#define REG_INT_MBRF      BIT(3) /* master data receive finished */
  72#define REG_INT_START     BIT(4) /* START condition generated */
  73#define REG_INT_STOP      BIT(5) /* STOP condition generated */
  74#define REG_INT_NAKRCV    BIT(6) /* NACK received */
  75#define REG_INT_ALL       0x7f
  76
  77/* Constants */
  78#define WAIT_TIMEOUT      1000 /* ms */
  79#define DEFAULT_SCL_RATE  (100 * 1000) /* Hz */
  80
  81/**
  82 * struct i2c_spec_values:
  83 * @min_hold_start_ns: min hold time (repeated) START condition
  84 * @min_low_ns: min LOW period of the SCL clock
  85 * @min_high_ns: min HIGH period of the SCL cloc
  86 * @min_setup_start_ns: min set-up time for a repeated START conditio
  87 * @max_data_hold_ns: max data hold time
  88 * @min_data_setup_ns: min data set-up time
  89 * @min_setup_stop_ns: min set-up time for STOP condition
  90 * @min_hold_buffer_ns: min bus free time between a STOP and
  91 * START condition
  92 */
  93struct i2c_spec_values {
  94        unsigned long min_hold_start_ns;
  95        unsigned long min_low_ns;
  96        unsigned long min_high_ns;
  97        unsigned long min_setup_start_ns;
  98        unsigned long max_data_hold_ns;
  99        unsigned long min_data_setup_ns;
 100        unsigned long min_setup_stop_ns;
 101        unsigned long min_hold_buffer_ns;
 102};
 103
 104static const struct i2c_spec_values standard_mode_spec = {
 105        .min_hold_start_ns = 4000,
 106        .min_low_ns = 4700,
 107        .min_high_ns = 4000,
 108        .min_setup_start_ns = 4700,
 109        .max_data_hold_ns = 3450,
 110        .min_data_setup_ns = 250,
 111        .min_setup_stop_ns = 4000,
 112        .min_hold_buffer_ns = 4700,
 113};
 114
 115static const struct i2c_spec_values fast_mode_spec = {
 116        .min_hold_start_ns = 600,
 117        .min_low_ns = 1300,
 118        .min_high_ns = 600,
 119        .min_setup_start_ns = 600,
 120        .max_data_hold_ns = 900,
 121        .min_data_setup_ns = 100,
 122        .min_setup_stop_ns = 600,
 123        .min_hold_buffer_ns = 1300,
 124};
 125
 126static const struct i2c_spec_values fast_mode_plus_spec = {
 127        .min_hold_start_ns = 260,
 128        .min_low_ns = 500,
 129        .min_high_ns = 260,
 130        .min_setup_start_ns = 260,
 131        .max_data_hold_ns = 400,
 132        .min_data_setup_ns = 50,
 133        .min_setup_stop_ns = 260,
 134        .min_hold_buffer_ns = 500,
 135};
 136
 137/**
 138 * struct rk3x_i2c_calced_timings:
 139 * @div_low: Divider output for low
 140 * @div_high: Divider output for high
 141 * @tuning: Used to adjust setup/hold data time,
 142 * setup/hold start time and setup stop time for
 143 * v1's calc_timings, the tuning should all be 0
 144 * for old hardware anyone using v0's calc_timings.
 145 */
 146struct rk3x_i2c_calced_timings {
 147        unsigned long div_low;
 148        unsigned long div_high;
 149        unsigned int tuning;
 150};
 151
 152enum rk3x_i2c_state {
 153        STATE_IDLE,
 154        STATE_START,
 155        STATE_READ,
 156        STATE_WRITE,
 157        STATE_STOP
 158};
 159
 160/**
 161 * struct rk3x_i2c_soc_data:
 162 * @grf_offset: offset inside the grf regmap for setting the i2c type
 163 * @calc_timings: Callback function for i2c timing information calculated
 164 */
 165struct rk3x_i2c_soc_data {
 166        int grf_offset;
 167        int (*calc_timings)(unsigned long, struct i2c_timings *,
 168                            struct rk3x_i2c_calced_timings *);
 169};
 170
 171/**
 172 * struct rk3x_i2c - private data of the controller
 173 * @adap: corresponding I2C adapter
 174 * @dev: device for this controller
 175 * @soc_data: related soc data struct
 176 * @regs: virtual memory area
 177 * @clk: function clk for rk3399 or function & Bus clks for others
 178 * @pclk: Bus clk for rk3399
 179 * @clk_rate_nb: i2c clk rate change notify
 180 * @t: I2C known timing information
 181 * @lock: spinlock for the i2c bus
 182 * @wait: the waitqueue to wait for i2c transfer
 183 * @busy: the condition for the event to wait for
 184 * @msg: current i2c message
 185 * @addr: addr of i2c slave device
 186 * @mode: mode of i2c transfer
 187 * @is_last_msg: flag determines whether it is the last msg in this transfer
 188 * @state: state of i2c transfer
 189 * @processed: byte length which has been send or received
 190 * @error: error code for i2c transfer
 191 */
 192struct rk3x_i2c {
 193        struct i2c_adapter adap;
 194        struct device *dev;
 195        const struct rk3x_i2c_soc_data *soc_data;
 196
 197        /* Hardware resources */
 198        void __iomem *regs;
 199        struct clk *clk;
 200        struct clk *pclk;
 201        struct notifier_block clk_rate_nb;
 202
 203        /* Settings */
 204        struct i2c_timings t;
 205
 206        /* Synchronization & notification */
 207        spinlock_t lock;
 208        wait_queue_head_t wait;
 209        bool busy;
 210
 211        /* Current message */
 212        struct i2c_msg *msg;
 213        u8 addr;
 214        unsigned int mode;
 215        bool is_last_msg;
 216
 217        /* I2C state machine */
 218        enum rk3x_i2c_state state;
 219        unsigned int processed;
 220        int error;
 221};
 222
 223static inline void i2c_writel(struct rk3x_i2c *i2c, u32 value,
 224                              unsigned int offset)
 225{
 226        writel(value, i2c->regs + offset);
 227}
 228
 229static inline u32 i2c_readl(struct rk3x_i2c *i2c, unsigned int offset)
 230{
 231        return readl(i2c->regs + offset);
 232}
 233
 234/* Reset all interrupt pending bits */
 235static inline void rk3x_i2c_clean_ipd(struct rk3x_i2c *i2c)
 236{
 237        i2c_writel(i2c, REG_INT_ALL, REG_IPD);
 238}
 239
 240/**
 241 * Generate a START condition, which triggers a REG_INT_START interrupt.
 242 */
 243static void rk3x_i2c_start(struct rk3x_i2c *i2c)
 244{
 245        u32 val = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK;
 246
 247        i2c_writel(i2c, REG_INT_START, REG_IEN);
 248
 249        /* enable adapter with correct mode, send START condition */
 250        val |= REG_CON_EN | REG_CON_MOD(i2c->mode) | REG_CON_START;
 251
 252        /* if we want to react to NACK, set ACTACK bit */
 253        if (!(i2c->msg->flags & I2C_M_IGNORE_NAK))
 254                val |= REG_CON_ACTACK;
 255
 256        i2c_writel(i2c, val, REG_CON);
 257}
 258
 259/**
 260 * Generate a STOP condition, which triggers a REG_INT_STOP interrupt.
 261 *
 262 * @error: Error code to return in rk3x_i2c_xfer
 263 */
 264static void rk3x_i2c_stop(struct rk3x_i2c *i2c, int error)
 265{
 266        unsigned int ctrl;
 267
 268        i2c->processed = 0;
 269        i2c->msg = NULL;
 270        i2c->error = error;
 271
 272        if (i2c->is_last_msg) {
 273                /* Enable stop interrupt */
 274                i2c_writel(i2c, REG_INT_STOP, REG_IEN);
 275
 276                i2c->state = STATE_STOP;
 277
 278                ctrl = i2c_readl(i2c, REG_CON);
 279                ctrl |= REG_CON_STOP;
 280                i2c_writel(i2c, ctrl, REG_CON);
 281        } else {
 282                /* Signal rk3x_i2c_xfer to start the next message. */
 283                i2c->busy = false;
 284                i2c->state = STATE_IDLE;
 285
 286                /*
 287                 * The HW is actually not capable of REPEATED START. But we can
 288                 * get the intended effect by resetting its internal state
 289                 * and issuing an ordinary START.
 290                 */
 291                ctrl = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK;
 292                i2c_writel(i2c, ctrl, REG_CON);
 293
 294                /* signal that we are finished with the current msg */
 295                wake_up(&i2c->wait);
 296        }
 297}
 298
 299/**
 300 * Setup a read according to i2c->msg
 301 */
 302static void rk3x_i2c_prepare_read(struct rk3x_i2c *i2c)
 303{
 304        unsigned int len = i2c->msg->len - i2c->processed;
 305        u32 con;
 306
 307        con = i2c_readl(i2c, REG_CON);
 308
 309        /*
 310         * The hw can read up to 32 bytes at a time. If we need more than one
 311         * chunk, send an ACK after the last byte of the current chunk.
 312         */
 313        if (len > 32) {
 314                len = 32;
 315                con &= ~REG_CON_LASTACK;
 316        } else {
 317                con |= REG_CON_LASTACK;
 318        }
 319
 320        /* make sure we are in plain RX mode if we read a second chunk */
 321        if (i2c->processed != 0) {
 322                con &= ~REG_CON_MOD_MASK;
 323                con |= REG_CON_MOD(REG_CON_MOD_RX);
 324        }
 325
 326        i2c_writel(i2c, con, REG_CON);
 327        i2c_writel(i2c, len, REG_MRXCNT);
 328}
 329
 330/**
 331 * Fill the transmit buffer with data from i2c->msg
 332 */
 333static void rk3x_i2c_fill_transmit_buf(struct rk3x_i2c *i2c)
 334{
 335        unsigned int i, j;
 336        u32 cnt = 0;
 337        u32 val;
 338        u8 byte;
 339
 340        for (i = 0; i < 8; ++i) {
 341                val = 0;
 342                for (j = 0; j < 4; ++j) {
 343                        if ((i2c->processed == i2c->msg->len) && (cnt != 0))
 344                                break;
 345
 346                        if (i2c->processed == 0 && cnt == 0)
 347                                byte = (i2c->addr & 0x7f) << 1;
 348                        else
 349                                byte = i2c->msg->buf[i2c->processed++];
 350
 351                        val |= byte << (j * 8);
 352                        cnt++;
 353                }
 354
 355                i2c_writel(i2c, val, TXBUFFER_BASE + 4 * i);
 356
 357                if (i2c->processed == i2c->msg->len)
 358                        break;
 359        }
 360
 361        i2c_writel(i2c, cnt, REG_MTXCNT);
 362}
 363
 364
 365/* IRQ handlers for individual states */
 366
 367static void rk3x_i2c_handle_start(struct rk3x_i2c *i2c, unsigned int ipd)
 368{
 369        if (!(ipd & REG_INT_START)) {
 370                rk3x_i2c_stop(i2c, -EIO);
 371                dev_warn(i2c->dev, "unexpected irq in START: 0x%x\n", ipd);
 372                rk3x_i2c_clean_ipd(i2c);
 373                return;
 374        }
 375
 376        /* ack interrupt */
 377        i2c_writel(i2c, REG_INT_START, REG_IPD);
 378
 379        /* disable start bit */
 380        i2c_writel(i2c, i2c_readl(i2c, REG_CON) & ~REG_CON_START, REG_CON);
 381
 382        /* enable appropriate interrupts and transition */
 383        if (i2c->mode == REG_CON_MOD_TX) {
 384                i2c_writel(i2c, REG_INT_MBTF | REG_INT_NAKRCV, REG_IEN);
 385                i2c->state = STATE_WRITE;
 386                rk3x_i2c_fill_transmit_buf(i2c);
 387        } else {
 388                /* in any other case, we are going to be reading. */
 389                i2c_writel(i2c, REG_INT_MBRF | REG_INT_NAKRCV, REG_IEN);
 390                i2c->state = STATE_READ;
 391                rk3x_i2c_prepare_read(i2c);
 392        }
 393}
 394
 395static void rk3x_i2c_handle_write(struct rk3x_i2c *i2c, unsigned int ipd)
 396{
 397        if (!(ipd & REG_INT_MBTF)) {
 398                rk3x_i2c_stop(i2c, -EIO);
 399                dev_err(i2c->dev, "unexpected irq in WRITE: 0x%x\n", ipd);
 400                rk3x_i2c_clean_ipd(i2c);
 401                return;
 402        }
 403
 404        /* ack interrupt */
 405        i2c_writel(i2c, REG_INT_MBTF, REG_IPD);
 406
 407        /* are we finished? */
 408        if (i2c->processed == i2c->msg->len)
 409                rk3x_i2c_stop(i2c, i2c->error);
 410        else
 411                rk3x_i2c_fill_transmit_buf(i2c);
 412}
 413
 414static void rk3x_i2c_handle_read(struct rk3x_i2c *i2c, unsigned int ipd)
 415{
 416        unsigned int i;
 417        unsigned int len = i2c->msg->len - i2c->processed;
 418        u32 uninitialized_var(val);
 419        u8 byte;
 420
 421        /* we only care for MBRF here. */
 422        if (!(ipd & REG_INT_MBRF))
 423                return;
 424
 425        /* ack interrupt */
 426        i2c_writel(i2c, REG_INT_MBRF, REG_IPD);
 427
 428        /* Can only handle a maximum of 32 bytes at a time */
 429        if (len > 32)
 430                len = 32;
 431
 432        /* read the data from receive buffer */
 433        for (i = 0; i < len; ++i) {
 434                if (i % 4 == 0)
 435                        val = i2c_readl(i2c, RXBUFFER_BASE + (i / 4) * 4);
 436
 437                byte = (val >> ((i % 4) * 8)) & 0xff;
 438                i2c->msg->buf[i2c->processed++] = byte;
 439        }
 440
 441        /* are we finished? */
 442        if (i2c->processed == i2c->msg->len)
 443                rk3x_i2c_stop(i2c, i2c->error);
 444        else
 445                rk3x_i2c_prepare_read(i2c);
 446}
 447
 448static void rk3x_i2c_handle_stop(struct rk3x_i2c *i2c, unsigned int ipd)
 449{
 450        unsigned int con;
 451
 452        if (!(ipd & REG_INT_STOP)) {
 453                rk3x_i2c_stop(i2c, -EIO);
 454                dev_err(i2c->dev, "unexpected irq in STOP: 0x%x\n", ipd);
 455                rk3x_i2c_clean_ipd(i2c);
 456                return;
 457        }
 458
 459        /* ack interrupt */
 460        i2c_writel(i2c, REG_INT_STOP, REG_IPD);
 461
 462        /* disable STOP bit */
 463        con = i2c_readl(i2c, REG_CON);
 464        con &= ~REG_CON_STOP;
 465        i2c_writel(i2c, con, REG_CON);
 466
 467        i2c->busy = false;
 468        i2c->state = STATE_IDLE;
 469
 470        /* signal rk3x_i2c_xfer that we are finished */
 471        wake_up(&i2c->wait);
 472}
 473
 474static irqreturn_t rk3x_i2c_irq(int irqno, void *dev_id)
 475{
 476        struct rk3x_i2c *i2c = dev_id;
 477        unsigned int ipd;
 478
 479        spin_lock(&i2c->lock);
 480
 481        ipd = i2c_readl(i2c, REG_IPD);
 482        if (i2c->state == STATE_IDLE) {
 483                dev_warn(i2c->dev, "irq in STATE_IDLE, ipd = 0x%x\n", ipd);
 484                rk3x_i2c_clean_ipd(i2c);
 485                goto out;
 486        }
 487
 488        dev_dbg(i2c->dev, "IRQ: state %d, ipd: %x\n", i2c->state, ipd);
 489
 490        /* Clean interrupt bits we don't care about */
 491        ipd &= ~(REG_INT_BRF | REG_INT_BTF);
 492
 493        if (ipd & REG_INT_NAKRCV) {
 494                /*
 495                 * We got a NACK in the last operation. Depending on whether
 496                 * IGNORE_NAK is set, we have to stop the operation and report
 497                 * an error.
 498                 */
 499                i2c_writel(i2c, REG_INT_NAKRCV, REG_IPD);
 500
 501                ipd &= ~REG_INT_NAKRCV;
 502
 503                if (!(i2c->msg->flags & I2C_M_IGNORE_NAK))
 504                        rk3x_i2c_stop(i2c, -ENXIO);
 505        }
 506
 507        /* is there anything left to handle? */
 508        if ((ipd & REG_INT_ALL) == 0)
 509                goto out;
 510
 511        switch (i2c->state) {
 512        case STATE_START:
 513                rk3x_i2c_handle_start(i2c, ipd);
 514                break;
 515        case STATE_WRITE:
 516                rk3x_i2c_handle_write(i2c, ipd);
 517                break;
 518        case STATE_READ:
 519                rk3x_i2c_handle_read(i2c, ipd);
 520                break;
 521        case STATE_STOP:
 522                rk3x_i2c_handle_stop(i2c, ipd);
 523                break;
 524        case STATE_IDLE:
 525                break;
 526        }
 527
 528out:
 529        spin_unlock(&i2c->lock);
 530        return IRQ_HANDLED;
 531}
 532
 533/**
 534 * Get timing values of I2C specification
 535 *
 536 * @speed: Desired SCL frequency
 537 *
 538 * Returns: Matched i2c spec values.
 539 */
 540static const struct i2c_spec_values *rk3x_i2c_get_spec(unsigned int speed)
 541{
 542        if (speed <= 100000)
 543                return &standard_mode_spec;
 544        else if (speed <= 400000)
 545                return &fast_mode_spec;
 546        else
 547                return &fast_mode_plus_spec;
 548}
 549
 550/**
 551 * Calculate divider values for desired SCL frequency
 552 *
 553 * @clk_rate: I2C input clock rate
 554 * @t: Known I2C timing information
 555 * @t_calc: Caculated rk3x private timings that would be written into regs
 556 *
 557 * Returns: 0 on success, -EINVAL if the goal SCL rate is too slow. In that case
 558 * a best-effort divider value is returned in divs. If the target rate is
 559 * too high, we silently use the highest possible rate.
 560 */
 561static int rk3x_i2c_v0_calc_timings(unsigned long clk_rate,
 562                                    struct i2c_timings *t,
 563                                    struct rk3x_i2c_calced_timings *t_calc)
 564{
 565        unsigned long min_low_ns, min_high_ns;
 566        unsigned long max_low_ns, min_total_ns;
 567
 568        unsigned long clk_rate_khz, scl_rate_khz;
 569
 570        unsigned long min_low_div, min_high_div;
 571        unsigned long max_low_div;
 572
 573        unsigned long min_div_for_hold, min_total_div;
 574        unsigned long extra_div, extra_low_div, ideal_low_div;
 575
 576        unsigned long data_hold_buffer_ns = 50;
 577        const struct i2c_spec_values *spec;
 578        int ret = 0;
 579
 580        /* Only support standard-mode and fast-mode */
 581        if (WARN_ON(t->bus_freq_hz > 400000))
 582                t->bus_freq_hz = 400000;
 583
 584        /* prevent scl_rate_khz from becoming 0 */
 585        if (WARN_ON(t->bus_freq_hz < 1000))
 586                t->bus_freq_hz = 1000;
 587
 588        /*
 589         * min_low_ns:  The minimum number of ns we need to hold low to
 590         *              meet I2C specification, should include fall time.
 591         * min_high_ns: The minimum number of ns we need to hold high to
 592         *              meet I2C specification, should include rise time.
 593         * max_low_ns:  The maximum number of ns we can hold low to meet
 594         *              I2C specification.
 595         *
 596         * Note: max_low_ns should be (maximum data hold time * 2 - buffer)
 597         *       This is because the i2c host on Rockchip holds the data line
 598         *       for half the low time.
 599         */
 600        spec = rk3x_i2c_get_spec(t->bus_freq_hz);
 601        min_high_ns = t->scl_rise_ns + spec->min_high_ns;
 602
 603        /*
 604         * Timings for repeated start:
 605         * - controller appears to drop SDA at .875x (7/8) programmed clk high.
 606         * - controller appears to keep SCL high for 2x programmed clk high.
 607         *
 608         * We need to account for those rules in picking our "high" time so
 609         * we meet tSU;STA and tHD;STA times.
 610         */
 611        min_high_ns = max(min_high_ns, DIV_ROUND_UP(
 612                (t->scl_rise_ns + spec->min_setup_start_ns) * 1000, 875));
 613        min_high_ns = max(min_high_ns, DIV_ROUND_UP(
 614                (t->scl_rise_ns + spec->min_setup_start_ns + t->sda_fall_ns +
 615                spec->min_high_ns), 2));
 616
 617        min_low_ns = t->scl_fall_ns + spec->min_low_ns;
 618        max_low_ns =  spec->max_data_hold_ns * 2 - data_hold_buffer_ns;
 619        min_total_ns = min_low_ns + min_high_ns;
 620
 621        /* Adjust to avoid overflow */
 622        clk_rate_khz = DIV_ROUND_UP(clk_rate, 1000);
 623        scl_rate_khz = t->bus_freq_hz / 1000;
 624
 625        /*
 626         * We need the total div to be >= this number
 627         * so we don't clock too fast.
 628         */
 629        min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * 8);
 630
 631        /* These are the min dividers needed for min hold times. */
 632        min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 8 * 1000000);
 633        min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, 8 * 1000000);
 634        min_div_for_hold = (min_low_div + min_high_div);
 635
 636        /*
 637         * This is the maximum divider so we don't go over the maximum.
 638         * We don't round up here (we round down) since this is a maximum.
 639         */
 640        max_low_div = clk_rate_khz * max_low_ns / (8 * 1000000);
 641
 642        if (min_low_div > max_low_div) {
 643                WARN_ONCE(true,
 644                          "Conflicting, min_low_div %lu, max_low_div %lu\n",
 645                          min_low_div, max_low_div);
 646                max_low_div = min_low_div;
 647        }
 648
 649        if (min_div_for_hold > min_total_div) {
 650                /*
 651                 * Time needed to meet hold requirements is important.
 652                 * Just use that.
 653                 */
 654                t_calc->div_low = min_low_div;
 655                t_calc->div_high = min_high_div;
 656        } else {
 657                /*
 658                 * We've got to distribute some time among the low and high
 659                 * so we don't run too fast.
 660                 */
 661                extra_div = min_total_div - min_div_for_hold;
 662
 663                /*
 664                 * We'll try to split things up perfectly evenly,
 665                 * biasing slightly towards having a higher div
 666                 * for low (spend more time low).
 667                 */
 668                ideal_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns,
 669                                             scl_rate_khz * 8 * min_total_ns);
 670
 671                /* Don't allow it to go over the maximum */
 672                if (ideal_low_div > max_low_div)
 673                        ideal_low_div = max_low_div;
 674
 675                /*
 676                 * Handle when the ideal low div is going to take up
 677                 * more than we have.
 678                 */
 679                if (ideal_low_div > min_low_div + extra_div)
 680                        ideal_low_div = min_low_div + extra_div;
 681
 682                /* Give low the "ideal" and give high whatever extra is left */
 683                extra_low_div = ideal_low_div - min_low_div;
 684                t_calc->div_low = ideal_low_div;
 685                t_calc->div_high = min_high_div + (extra_div - extra_low_div);
 686        }
 687
 688        /*
 689         * Adjust to the fact that the hardware has an implicit "+1".
 690         * NOTE: Above calculations always produce div_low > 0 and div_high > 0.
 691         */
 692        t_calc->div_low--;
 693        t_calc->div_high--;
 694
 695        /* Give the tuning value 0, that would not update con register */
 696        t_calc->tuning = 0;
 697        /* Maximum divider supported by hw is 0xffff */
 698        if (t_calc->div_low > 0xffff) {
 699                t_calc->div_low = 0xffff;
 700                ret = -EINVAL;
 701        }
 702
 703        if (t_calc->div_high > 0xffff) {
 704                t_calc->div_high = 0xffff;
 705                ret = -EINVAL;
 706        }
 707
 708        return ret;
 709}
 710
 711/**
 712 * Calculate timing values for desired SCL frequency
 713 *
 714 * @clk_rate: I2C input clock rate
 715 * @t: Known I2C timing information
 716 * @t_calc: Caculated rk3x private timings that would be written into regs
 717 *
 718 * Returns: 0 on success, -EINVAL if the goal SCL rate is too slow. In that case
 719 * a best-effort divider value is returned in divs. If the target rate is
 720 * too high, we silently use the highest possible rate.
 721 * The following formulas are v1's method to calculate timings.
 722 *
 723 * l = divl + 1;
 724 * h = divh + 1;
 725 * s = sda_update_config + 1;
 726 * u = start_setup_config + 1;
 727 * p = stop_setup_config + 1;
 728 * T = Tclk_i2c;
 729 *
 730 * tHigh = 8 * h * T;
 731 * tLow = 8 * l * T;
 732 *
 733 * tHD;sda = (l * s + 1) * T;
 734 * tSU;sda = [(8 - s) * l + 1] * T;
 735 * tI2C = 8 * (l + h) * T;
 736 *
 737 * tSU;sta = (8h * u + 1) * T;
 738 * tHD;sta = [8h * (u + 1) - 1] * T;
 739 * tSU;sto = (8h * p + 1) * T;
 740 */
 741static int rk3x_i2c_v1_calc_timings(unsigned long clk_rate,
 742                                    struct i2c_timings *t,
 743                                    struct rk3x_i2c_calced_timings *t_calc)
 744{
 745        unsigned long min_low_ns, min_high_ns;
 746        unsigned long min_setup_start_ns, min_setup_data_ns;
 747        unsigned long min_setup_stop_ns, max_hold_data_ns;
 748
 749        unsigned long clk_rate_khz, scl_rate_khz;
 750
 751        unsigned long min_low_div, min_high_div;
 752
 753        unsigned long min_div_for_hold, min_total_div;
 754        unsigned long extra_div, extra_low_div;
 755        unsigned long sda_update_cfg, stp_sta_cfg, stp_sto_cfg;
 756
 757        const struct i2c_spec_values *spec;
 758        int ret = 0;
 759
 760        /* Support standard-mode, fast-mode and fast-mode plus */
 761        if (WARN_ON(t->bus_freq_hz > 1000000))
 762                t->bus_freq_hz = 1000000;
 763
 764        /* prevent scl_rate_khz from becoming 0 */
 765        if (WARN_ON(t->bus_freq_hz < 1000))
 766                t->bus_freq_hz = 1000;
 767
 768        /*
 769         * min_low_ns: The minimum number of ns we need to hold low to
 770         *             meet I2C specification, should include fall time.
 771         * min_high_ns: The minimum number of ns we need to hold high to
 772         *              meet I2C specification, should include rise time.
 773         */
 774        spec = rk3x_i2c_get_spec(t->bus_freq_hz);
 775
 776        /* calculate min-divh and min-divl */
 777        clk_rate_khz = DIV_ROUND_UP(clk_rate, 1000);
 778        scl_rate_khz = t->bus_freq_hz / 1000;
 779        min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * 8);
 780
 781        min_high_ns = t->scl_rise_ns + spec->min_high_ns;
 782        min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, 8 * 1000000);
 783
 784        min_low_ns = t->scl_fall_ns + spec->min_low_ns;
 785        min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 8 * 1000000);
 786
 787        /*
 788         * Final divh and divl must be greater than 0, otherwise the
 789         * hardware would not output the i2c clk.
 790         */
 791        min_high_div = (min_high_div < 1) ? 2 : min_high_div;
 792        min_low_div = (min_low_div < 1) ? 2 : min_low_div;
 793
 794        /* These are the min dividers needed for min hold times. */
 795        min_div_for_hold = (min_low_div + min_high_div);
 796
 797        /*
 798         * This is the maximum divider so we don't go over the maximum.
 799         * We don't round up here (we round down) since this is a maximum.
 800         */
 801        if (min_div_for_hold >= min_total_div) {
 802                /*
 803                 * Time needed to meet hold requirements is important.
 804                 * Just use that.
 805                 */
 806                t_calc->div_low = min_low_div;
 807                t_calc->div_high = min_high_div;
 808        } else {
 809                /*
 810                 * We've got to distribute some time among the low and high
 811                 * so we don't run too fast.
 812                 * We'll try to split things up by the scale of min_low_div and
 813                 * min_high_div, biasing slightly towards having a higher div
 814                 * for low (spend more time low).
 815                 */
 816                extra_div = min_total_div - min_div_for_hold;
 817                extra_low_div = DIV_ROUND_UP(min_low_div * extra_div,
 818                                             min_div_for_hold);
 819
 820                t_calc->div_low = min_low_div + extra_low_div;
 821                t_calc->div_high = min_high_div + (extra_div - extra_low_div);
 822        }
 823
 824        /*
 825         * calculate sda data hold count by the rules, data_upd_st:3
 826         * is a appropriate value to reduce calculated times.
 827         */
 828        for (sda_update_cfg = 3; sda_update_cfg > 0; sda_update_cfg--) {
 829                max_hold_data_ns =  DIV_ROUND_UP((sda_update_cfg
 830                                                 * (t_calc->div_low) + 1)
 831                                                 * 1000000, clk_rate_khz);
 832                min_setup_data_ns =  DIV_ROUND_UP(((8 - sda_update_cfg)
 833                                                 * (t_calc->div_low) + 1)
 834                                                 * 1000000, clk_rate_khz);
 835                if ((max_hold_data_ns < spec->max_data_hold_ns) &&
 836                    (min_setup_data_ns > spec->min_data_setup_ns))
 837                        break;
 838        }
 839
 840        /* calculate setup start config */
 841        min_setup_start_ns = t->scl_rise_ns + spec->min_setup_start_ns;
 842        stp_sta_cfg = DIV_ROUND_UP(clk_rate_khz * min_setup_start_ns
 843                           - 1000000, 8 * 1000000 * (t_calc->div_high));
 844
 845        /* calculate setup stop config */
 846        min_setup_stop_ns = t->scl_rise_ns + spec->min_setup_stop_ns;
 847        stp_sto_cfg = DIV_ROUND_UP(clk_rate_khz * min_setup_stop_ns
 848                           - 1000000, 8 * 1000000 * (t_calc->div_high));
 849
 850        t_calc->tuning = REG_CON_SDA_CFG(--sda_update_cfg) |
 851                         REG_CON_STA_CFG(--stp_sta_cfg) |
 852                         REG_CON_STO_CFG(--stp_sto_cfg);
 853
 854        t_calc->div_low--;
 855        t_calc->div_high--;
 856
 857        /* Maximum divider supported by hw is 0xffff */
 858        if (t_calc->div_low > 0xffff) {
 859                t_calc->div_low = 0xffff;
 860                ret = -EINVAL;
 861        }
 862
 863        if (t_calc->div_high > 0xffff) {
 864                t_calc->div_high = 0xffff;
 865                ret = -EINVAL;
 866        }
 867
 868        return ret;
 869}
 870
 871static void rk3x_i2c_adapt_div(struct rk3x_i2c *i2c, unsigned long clk_rate)
 872{
 873        struct i2c_timings *t = &i2c->t;
 874        struct rk3x_i2c_calced_timings calc;
 875        u64 t_low_ns, t_high_ns;
 876        unsigned long flags;
 877        u32 val;
 878        int ret;
 879
 880        ret = i2c->soc_data->calc_timings(clk_rate, t, &calc);
 881        WARN_ONCE(ret != 0, "Could not reach SCL freq %u", t->bus_freq_hz);
 882
 883        clk_enable(i2c->pclk);
 884
 885        spin_lock_irqsave(&i2c->lock, flags);
 886        val = i2c_readl(i2c, REG_CON);
 887        val &= ~REG_CON_TUNING_MASK;
 888        val |= calc.tuning;
 889        i2c_writel(i2c, val, REG_CON);
 890        i2c_writel(i2c, (calc.div_high << 16) | (calc.div_low & 0xffff),
 891                   REG_CLKDIV);
 892        spin_unlock_irqrestore(&i2c->lock, flags);
 893
 894        clk_disable(i2c->pclk);
 895
 896        t_low_ns = div_u64(((u64)calc.div_low + 1) * 8 * 1000000000, clk_rate);
 897        t_high_ns = div_u64(((u64)calc.div_high + 1) * 8 * 1000000000,
 898                            clk_rate);
 899        dev_dbg(i2c->dev,
 900                "CLK %lukhz, Req %uns, Act low %lluns high %lluns\n",
 901                clk_rate / 1000,
 902                1000000000 / t->bus_freq_hz,
 903                t_low_ns, t_high_ns);
 904}
 905
 906/**
 907 * rk3x_i2c_clk_notifier_cb - Clock rate change callback
 908 * @nb:         Pointer to notifier block
 909 * @event:      Notification reason
 910 * @data:       Pointer to notification data object
 911 *
 912 * The callback checks whether a valid bus frequency can be generated after the
 913 * change. If so, the change is acknowledged, otherwise the change is aborted.
 914 * New dividers are written to the HW in the pre- or post change notification
 915 * depending on the scaling direction.
 916 *
 917 * Code adapted from i2c-cadence.c.
 918 *
 919 * Return:      NOTIFY_STOP if the rate change should be aborted, NOTIFY_OK
 920 *              to acknowledge the change, NOTIFY_DONE if the notification is
 921 *              considered irrelevant.
 922 */
 923static int rk3x_i2c_clk_notifier_cb(struct notifier_block *nb, unsigned long
 924                                    event, void *data)
 925{
 926        struct clk_notifier_data *ndata = data;
 927        struct rk3x_i2c *i2c = container_of(nb, struct rk3x_i2c, clk_rate_nb);
 928        struct rk3x_i2c_calced_timings calc;
 929
 930        switch (event) {
 931        case PRE_RATE_CHANGE:
 932                /*
 933                 * Try the calculation (but don't store the result) ahead of
 934                 * time to see if we need to block the clock change.  Timings
 935                 * shouldn't actually take effect until rk3x_i2c_adapt_div().
 936                 */
 937                if (i2c->soc_data->calc_timings(ndata->new_rate, &i2c->t,
 938                                                &calc) != 0)
 939                        return NOTIFY_STOP;
 940
 941                /* scale up */
 942                if (ndata->new_rate > ndata->old_rate)
 943                        rk3x_i2c_adapt_div(i2c, ndata->new_rate);
 944
 945                return NOTIFY_OK;
 946        case POST_RATE_CHANGE:
 947                /* scale down */
 948                if (ndata->new_rate < ndata->old_rate)
 949                        rk3x_i2c_adapt_div(i2c, ndata->new_rate);
 950                return NOTIFY_OK;
 951        case ABORT_RATE_CHANGE:
 952                /* scale up */
 953                if (ndata->new_rate > ndata->old_rate)
 954                        rk3x_i2c_adapt_div(i2c, ndata->old_rate);
 955                return NOTIFY_OK;
 956        default:
 957                return NOTIFY_DONE;
 958        }
 959}
 960
 961/**
 962 * Setup I2C registers for an I2C operation specified by msgs, num.
 963 *
 964 * Must be called with i2c->lock held.
 965 *
 966 * @msgs: I2C msgs to process
 967 * @num: Number of msgs
 968 *
 969 * returns: Number of I2C msgs processed or negative in case of error
 970 */
 971static int rk3x_i2c_setup(struct rk3x_i2c *i2c, struct i2c_msg *msgs, int num)
 972{
 973        u32 addr = (msgs[0].addr & 0x7f) << 1;
 974        int ret = 0;
 975
 976        /*
 977         * The I2C adapter can issue a small (len < 4) write packet before
 978         * reading. This speeds up SMBus-style register reads.
 979         * The MRXADDR/MRXRADDR hold the slave address and the slave register
 980         * address in this case.
 981         */
 982
 983        if (num >= 2 && msgs[0].len < 4 &&
 984            !(msgs[0].flags & I2C_M_RD) && (msgs[1].flags & I2C_M_RD)) {
 985                u32 reg_addr = 0;
 986                int i;
 987
 988                dev_dbg(i2c->dev, "Combined write/read from addr 0x%x\n",
 989                        addr >> 1);
 990
 991                /* Fill MRXRADDR with the register address(es) */
 992                for (i = 0; i < msgs[0].len; ++i) {
 993                        reg_addr |= msgs[0].buf[i] << (i * 8);
 994                        reg_addr |= REG_MRXADDR_VALID(i);
 995                }
 996
 997                /* msgs[0] is handled by hw. */
 998                i2c->msg = &msgs[1];
 999
1000                i2c->mode = REG_CON_MOD_REGISTER_TX;
1001
1002                i2c_writel(i2c, addr | REG_MRXADDR_VALID(0), REG_MRXADDR);
1003                i2c_writel(i2c, reg_addr, REG_MRXRADDR);
1004
1005                ret = 2;
1006        } else {
1007                /*
1008                 * We'll have to do it the boring way and process the msgs
1009                 * one-by-one.
1010                 */
1011
1012                if (msgs[0].flags & I2C_M_RD) {
1013                        addr |= 1; /* set read bit */
1014
1015                        /*
1016                         * We have to transmit the slave addr first. Use
1017                         * MOD_REGISTER_TX for that purpose.
1018                         */
1019                        i2c->mode = REG_CON_MOD_REGISTER_TX;
1020                        i2c_writel(i2c, addr | REG_MRXADDR_VALID(0),
1021                                   REG_MRXADDR);
1022                        i2c_writel(i2c, 0, REG_MRXRADDR);
1023                } else {
1024                        i2c->mode = REG_CON_MOD_TX;
1025                }
1026
1027                i2c->msg = &msgs[0];
1028
1029                ret = 1;
1030        }
1031
1032        i2c->addr = msgs[0].addr;
1033        i2c->busy = true;
1034        i2c->state = STATE_START;
1035        i2c->processed = 0;
1036        i2c->error = 0;
1037
1038        rk3x_i2c_clean_ipd(i2c);
1039
1040        return ret;
1041}
1042
1043static int rk3x_i2c_xfer(struct i2c_adapter *adap,
1044                         struct i2c_msg *msgs, int num)
1045{
1046        struct rk3x_i2c *i2c = (struct rk3x_i2c *)adap->algo_data;
1047        unsigned long timeout, flags;
1048        u32 val;
1049        int ret = 0;
1050        int i;
1051
1052        spin_lock_irqsave(&i2c->lock, flags);
1053
1054        clk_enable(i2c->clk);
1055        clk_enable(i2c->pclk);
1056
1057        i2c->is_last_msg = false;
1058
1059        /*
1060         * Process msgs. We can handle more than one message at once (see
1061         * rk3x_i2c_setup()).
1062         */
1063        for (i = 0; i < num; i += ret) {
1064                ret = rk3x_i2c_setup(i2c, msgs + i, num - i);
1065
1066                if (ret < 0) {
1067                        dev_err(i2c->dev, "rk3x_i2c_setup() failed\n");
1068                        break;
1069                }
1070
1071                if (i + ret >= num)
1072                        i2c->is_last_msg = true;
1073
1074                spin_unlock_irqrestore(&i2c->lock, flags);
1075
1076                rk3x_i2c_start(i2c);
1077
1078                timeout = wait_event_timeout(i2c->wait, !i2c->busy,
1079                                             msecs_to_jiffies(WAIT_TIMEOUT));
1080
1081                spin_lock_irqsave(&i2c->lock, flags);
1082
1083                if (timeout == 0) {
1084                        dev_err(i2c->dev, "timeout, ipd: 0x%02x, state: %d\n",
1085                                i2c_readl(i2c, REG_IPD), i2c->state);
1086
1087                        /* Force a STOP condition without interrupt */
1088                        i2c_writel(i2c, 0, REG_IEN);
1089                        val = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK;
1090                        val |= REG_CON_EN | REG_CON_STOP;
1091                        i2c_writel(i2c, val, REG_CON);
1092
1093                        i2c->state = STATE_IDLE;
1094
1095                        ret = -ETIMEDOUT;
1096                        break;
1097                }
1098
1099                if (i2c->error) {
1100                        ret = i2c->error;
1101                        break;
1102                }
1103        }
1104
1105        clk_disable(i2c->pclk);
1106        clk_disable(i2c->clk);
1107
1108        spin_unlock_irqrestore(&i2c->lock, flags);
1109
1110        return ret < 0 ? ret : num;
1111}
1112
1113static __maybe_unused int rk3x_i2c_resume(struct device *dev)
1114{
1115        struct rk3x_i2c *i2c = dev_get_drvdata(dev);
1116
1117        rk3x_i2c_adapt_div(i2c, clk_get_rate(i2c->clk));
1118
1119        return 0;
1120}
1121
1122static u32 rk3x_i2c_func(struct i2c_adapter *adap)
1123{
1124        return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_PROTOCOL_MANGLING;
1125}
1126
1127static const struct i2c_algorithm rk3x_i2c_algorithm = {
1128        .master_xfer            = rk3x_i2c_xfer,
1129        .functionality          = rk3x_i2c_func,
1130};
1131
1132static const struct rk3x_i2c_soc_data rv1108_soc_data = {
1133        .grf_offset = -1,
1134        .calc_timings = rk3x_i2c_v1_calc_timings,
1135};
1136
1137static const struct rk3x_i2c_soc_data rk3066_soc_data = {
1138        .grf_offset = 0x154,
1139        .calc_timings = rk3x_i2c_v0_calc_timings,
1140};
1141
1142static const struct rk3x_i2c_soc_data rk3188_soc_data = {
1143        .grf_offset = 0x0a4,
1144        .calc_timings = rk3x_i2c_v0_calc_timings,
1145};
1146
1147static const struct rk3x_i2c_soc_data rk3228_soc_data = {
1148        .grf_offset = -1,
1149        .calc_timings = rk3x_i2c_v0_calc_timings,
1150};
1151
1152static const struct rk3x_i2c_soc_data rk3288_soc_data = {
1153        .grf_offset = -1,
1154        .calc_timings = rk3x_i2c_v0_calc_timings,
1155};
1156
1157static const struct rk3x_i2c_soc_data rk3399_soc_data = {
1158        .grf_offset = -1,
1159        .calc_timings = rk3x_i2c_v1_calc_timings,
1160};
1161
1162static const struct of_device_id rk3x_i2c_match[] = {
1163        {
1164                .compatible = "rockchip,rv1108-i2c",
1165                .data = &rv1108_soc_data
1166        },
1167        {
1168                .compatible = "rockchip,rk3066-i2c",
1169                .data = &rk3066_soc_data
1170        },
1171        {
1172                .compatible = "rockchip,rk3188-i2c",
1173                .data = &rk3188_soc_data
1174        },
1175        {
1176                .compatible = "rockchip,rk3228-i2c",
1177                .data = &rk3228_soc_data
1178        },
1179        {
1180                .compatible = "rockchip,rk3288-i2c",
1181                .data = &rk3288_soc_data
1182        },
1183        {
1184                .compatible = "rockchip,rk3399-i2c",
1185                .data = &rk3399_soc_data
1186        },
1187        {},
1188};
1189MODULE_DEVICE_TABLE(of, rk3x_i2c_match);
1190
1191static int rk3x_i2c_probe(struct platform_device *pdev)
1192{
1193        struct device_node *np = pdev->dev.of_node;
1194        const struct of_device_id *match;
1195        struct rk3x_i2c *i2c;
1196        struct resource *mem;
1197        int ret = 0;
1198        int bus_nr;
1199        u32 value;
1200        int irq;
1201        unsigned long clk_rate;
1202
1203        i2c = devm_kzalloc(&pdev->dev, sizeof(struct rk3x_i2c), GFP_KERNEL);
1204        if (!i2c)
1205                return -ENOMEM;
1206
1207        match = of_match_node(rk3x_i2c_match, np);
1208        i2c->soc_data = match->data;
1209
1210        /* use common interface to get I2C timing properties */
1211        i2c_parse_fw_timings(&pdev->dev, &i2c->t, true);
1212
1213        strlcpy(i2c->adap.name, "rk3x-i2c", sizeof(i2c->adap.name));
1214        i2c->adap.owner = THIS_MODULE;
1215        i2c->adap.algo = &rk3x_i2c_algorithm;
1216        i2c->adap.retries = 3;
1217        i2c->adap.dev.of_node = np;
1218        i2c->adap.algo_data = i2c;
1219        i2c->adap.dev.parent = &pdev->dev;
1220
1221        i2c->dev = &pdev->dev;
1222
1223        spin_lock_init(&i2c->lock);
1224        init_waitqueue_head(&i2c->wait);
1225
1226        mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1227        i2c->regs = devm_ioremap_resource(&pdev->dev, mem);
1228        if (IS_ERR(i2c->regs))
1229                return PTR_ERR(i2c->regs);
1230
1231        /* Try to set the I2C adapter number from dt */
1232        bus_nr = of_alias_get_id(np, "i2c");
1233
1234        /*
1235         * Switch to new interface if the SoC also offers the old one.
1236         * The control bit is located in the GRF register space.
1237         */
1238        if (i2c->soc_data->grf_offset >= 0) {
1239                struct regmap *grf;
1240
1241                grf = syscon_regmap_lookup_by_phandle(np, "rockchip,grf");
1242                if (IS_ERR(grf)) {
1243                        dev_err(&pdev->dev,
1244                                "rk3x-i2c needs 'rockchip,grf' property\n");
1245                        return PTR_ERR(grf);
1246                }
1247
1248                if (bus_nr < 0) {
1249                        dev_err(&pdev->dev, "rk3x-i2c needs i2cX alias");
1250                        return -EINVAL;
1251                }
1252
1253                /* 27+i: write mask, 11+i: value */
1254                value = BIT(27 + bus_nr) | BIT(11 + bus_nr);
1255
1256                ret = regmap_write(grf, i2c->soc_data->grf_offset, value);
1257                if (ret != 0) {
1258                        dev_err(i2c->dev, "Could not write to GRF: %d\n", ret);
1259                        return ret;
1260                }
1261        }
1262
1263        /* IRQ setup */
1264        irq = platform_get_irq(pdev, 0);
1265        if (irq < 0) {
1266                dev_err(&pdev->dev, "cannot find rk3x IRQ\n");
1267                return irq;
1268        }
1269
1270        ret = devm_request_irq(&pdev->dev, irq, rk3x_i2c_irq,
1271                               0, dev_name(&pdev->dev), i2c);
1272        if (ret < 0) {
1273                dev_err(&pdev->dev, "cannot request IRQ\n");
1274                return ret;
1275        }
1276
1277        platform_set_drvdata(pdev, i2c);
1278
1279        if (i2c->soc_data->calc_timings == rk3x_i2c_v0_calc_timings) {
1280                /* Only one clock to use for bus clock and peripheral clock */
1281                i2c->clk = devm_clk_get(&pdev->dev, NULL);
1282                i2c->pclk = i2c->clk;
1283        } else {
1284                i2c->clk = devm_clk_get(&pdev->dev, "i2c");
1285                i2c->pclk = devm_clk_get(&pdev->dev, "pclk");
1286        }
1287
1288        if (IS_ERR(i2c->clk)) {
1289                ret = PTR_ERR(i2c->clk);
1290                if (ret != -EPROBE_DEFER)
1291                        dev_err(&pdev->dev, "Can't get bus clk: %d\n", ret);
1292                return ret;
1293        }
1294        if (IS_ERR(i2c->pclk)) {
1295                ret = PTR_ERR(i2c->pclk);
1296                if (ret != -EPROBE_DEFER)
1297                        dev_err(&pdev->dev, "Can't get periph clk: %d\n", ret);
1298                return ret;
1299        }
1300
1301        ret = clk_prepare(i2c->clk);
1302        if (ret < 0) {
1303                dev_err(&pdev->dev, "Can't prepare bus clk: %d\n", ret);
1304                return ret;
1305        }
1306        ret = clk_prepare(i2c->pclk);
1307        if (ret < 0) {
1308                dev_err(&pdev->dev, "Can't prepare periph clock: %d\n", ret);
1309                goto err_clk;
1310        }
1311
1312        i2c->clk_rate_nb.notifier_call = rk3x_i2c_clk_notifier_cb;
1313        ret = clk_notifier_register(i2c->clk, &i2c->clk_rate_nb);
1314        if (ret != 0) {
1315                dev_err(&pdev->dev, "Unable to register clock notifier\n");
1316                goto err_pclk;
1317        }
1318
1319        clk_rate = clk_get_rate(i2c->clk);
1320        rk3x_i2c_adapt_div(i2c, clk_rate);
1321
1322        ret = i2c_add_adapter(&i2c->adap);
1323        if (ret < 0)
1324                goto err_clk_notifier;
1325
1326        return 0;
1327
1328err_clk_notifier:
1329        clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb);
1330err_pclk:
1331        clk_unprepare(i2c->pclk);
1332err_clk:
1333        clk_unprepare(i2c->clk);
1334        return ret;
1335}
1336
1337static int rk3x_i2c_remove(struct platform_device *pdev)
1338{
1339        struct rk3x_i2c *i2c = platform_get_drvdata(pdev);
1340
1341        i2c_del_adapter(&i2c->adap);
1342
1343        clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb);
1344        clk_unprepare(i2c->pclk);
1345        clk_unprepare(i2c->clk);
1346
1347        return 0;
1348}
1349
1350static SIMPLE_DEV_PM_OPS(rk3x_i2c_pm_ops, NULL, rk3x_i2c_resume);
1351
1352static struct platform_driver rk3x_i2c_driver = {
1353        .probe   = rk3x_i2c_probe,
1354        .remove  = rk3x_i2c_remove,
1355        .driver  = {
1356                .name  = "rk3x-i2c",
1357                .of_match_table = rk3x_i2c_match,
1358                .pm = &rk3x_i2c_pm_ops,
1359        },
1360};
1361
1362module_platform_driver(rk3x_i2c_driver);
1363
1364MODULE_DESCRIPTION("Rockchip RK3xxx I2C Bus driver");
1365MODULE_AUTHOR("Max Schwarz <max.schwarz@online.de>");
1366MODULE_LICENSE("GPL v2");
1367