linux/drivers/infiniband/core/verbs.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
   3 * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
   4 * Copyright (c) 2004 Intel Corporation.  All rights reserved.
   5 * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
   6 * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
   7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
   8 * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
   9 *
  10 * This software is available to you under a choice of one of two
  11 * licenses.  You may choose to be licensed under the terms of the GNU
  12 * General Public License (GPL) Version 2, available from the file
  13 * COPYING in the main directory of this source tree, or the
  14 * OpenIB.org BSD license below:
  15 *
  16 *     Redistribution and use in source and binary forms, with or
  17 *     without modification, are permitted provided that the following
  18 *     conditions are met:
  19 *
  20 *      - Redistributions of source code must retain the above
  21 *        copyright notice, this list of conditions and the following
  22 *        disclaimer.
  23 *
  24 *      - Redistributions in binary form must reproduce the above
  25 *        copyright notice, this list of conditions and the following
  26 *        disclaimer in the documentation and/or other materials
  27 *        provided with the distribution.
  28 *
  29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  36 * SOFTWARE.
  37 */
  38
  39#include <linux/errno.h>
  40#include <linux/err.h>
  41#include <linux/export.h>
  42#include <linux/string.h>
  43#include <linux/slab.h>
  44#include <linux/in.h>
  45#include <linux/in6.h>
  46#include <net/addrconf.h>
  47#include <linux/security.h>
  48
  49#include <rdma/ib_verbs.h>
  50#include <rdma/ib_cache.h>
  51#include <rdma/ib_addr.h>
  52#include <rdma/rw.h>
  53
  54#include "core_priv.h"
  55
  56static int ib_resolve_eth_dmac(struct ib_device *device,
  57                               struct rdma_ah_attr *ah_attr);
  58
  59static const char * const ib_events[] = {
  60        [IB_EVENT_CQ_ERR]               = "CQ error",
  61        [IB_EVENT_QP_FATAL]             = "QP fatal error",
  62        [IB_EVENT_QP_REQ_ERR]           = "QP request error",
  63        [IB_EVENT_QP_ACCESS_ERR]        = "QP access error",
  64        [IB_EVENT_COMM_EST]             = "communication established",
  65        [IB_EVENT_SQ_DRAINED]           = "send queue drained",
  66        [IB_EVENT_PATH_MIG]             = "path migration successful",
  67        [IB_EVENT_PATH_MIG_ERR]         = "path migration error",
  68        [IB_EVENT_DEVICE_FATAL]         = "device fatal error",
  69        [IB_EVENT_PORT_ACTIVE]          = "port active",
  70        [IB_EVENT_PORT_ERR]             = "port error",
  71        [IB_EVENT_LID_CHANGE]           = "LID change",
  72        [IB_EVENT_PKEY_CHANGE]          = "P_key change",
  73        [IB_EVENT_SM_CHANGE]            = "SM change",
  74        [IB_EVENT_SRQ_ERR]              = "SRQ error",
  75        [IB_EVENT_SRQ_LIMIT_REACHED]    = "SRQ limit reached",
  76        [IB_EVENT_QP_LAST_WQE_REACHED]  = "last WQE reached",
  77        [IB_EVENT_CLIENT_REREGISTER]    = "client reregister",
  78        [IB_EVENT_GID_CHANGE]           = "GID changed",
  79};
  80
  81const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
  82{
  83        size_t index = event;
  84
  85        return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
  86                        ib_events[index] : "unrecognized event";
  87}
  88EXPORT_SYMBOL(ib_event_msg);
  89
  90static const char * const wc_statuses[] = {
  91        [IB_WC_SUCCESS]                 = "success",
  92        [IB_WC_LOC_LEN_ERR]             = "local length error",
  93        [IB_WC_LOC_QP_OP_ERR]           = "local QP operation error",
  94        [IB_WC_LOC_EEC_OP_ERR]          = "local EE context operation error",
  95        [IB_WC_LOC_PROT_ERR]            = "local protection error",
  96        [IB_WC_WR_FLUSH_ERR]            = "WR flushed",
  97        [IB_WC_MW_BIND_ERR]             = "memory management operation error",
  98        [IB_WC_BAD_RESP_ERR]            = "bad response error",
  99        [IB_WC_LOC_ACCESS_ERR]          = "local access error",
 100        [IB_WC_REM_INV_REQ_ERR]         = "invalid request error",
 101        [IB_WC_REM_ACCESS_ERR]          = "remote access error",
 102        [IB_WC_REM_OP_ERR]              = "remote operation error",
 103        [IB_WC_RETRY_EXC_ERR]           = "transport retry counter exceeded",
 104        [IB_WC_RNR_RETRY_EXC_ERR]       = "RNR retry counter exceeded",
 105        [IB_WC_LOC_RDD_VIOL_ERR]        = "local RDD violation error",
 106        [IB_WC_REM_INV_RD_REQ_ERR]      = "remote invalid RD request",
 107        [IB_WC_REM_ABORT_ERR]           = "operation aborted",
 108        [IB_WC_INV_EECN_ERR]            = "invalid EE context number",
 109        [IB_WC_INV_EEC_STATE_ERR]       = "invalid EE context state",
 110        [IB_WC_FATAL_ERR]               = "fatal error",
 111        [IB_WC_RESP_TIMEOUT_ERR]        = "response timeout error",
 112        [IB_WC_GENERAL_ERR]             = "general error",
 113};
 114
 115const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
 116{
 117        size_t index = status;
 118
 119        return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
 120                        wc_statuses[index] : "unrecognized status";
 121}
 122EXPORT_SYMBOL(ib_wc_status_msg);
 123
 124__attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
 125{
 126        switch (rate) {
 127        case IB_RATE_2_5_GBPS: return   1;
 128        case IB_RATE_5_GBPS:   return   2;
 129        case IB_RATE_10_GBPS:  return   4;
 130        case IB_RATE_20_GBPS:  return   8;
 131        case IB_RATE_30_GBPS:  return  12;
 132        case IB_RATE_40_GBPS:  return  16;
 133        case IB_RATE_60_GBPS:  return  24;
 134        case IB_RATE_80_GBPS:  return  32;
 135        case IB_RATE_120_GBPS: return  48;
 136        case IB_RATE_14_GBPS:  return   6;
 137        case IB_RATE_56_GBPS:  return  22;
 138        case IB_RATE_112_GBPS: return  45;
 139        case IB_RATE_168_GBPS: return  67;
 140        case IB_RATE_25_GBPS:  return  10;
 141        case IB_RATE_100_GBPS: return  40;
 142        case IB_RATE_200_GBPS: return  80;
 143        case IB_RATE_300_GBPS: return 120;
 144        case IB_RATE_28_GBPS:  return  11;
 145        case IB_RATE_50_GBPS:  return  20;
 146        case IB_RATE_400_GBPS: return 160;
 147        case IB_RATE_600_GBPS: return 240;
 148        default:               return  -1;
 149        }
 150}
 151EXPORT_SYMBOL(ib_rate_to_mult);
 152
 153__attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
 154{
 155        switch (mult) {
 156        case 1:   return IB_RATE_2_5_GBPS;
 157        case 2:   return IB_RATE_5_GBPS;
 158        case 4:   return IB_RATE_10_GBPS;
 159        case 8:   return IB_RATE_20_GBPS;
 160        case 12:  return IB_RATE_30_GBPS;
 161        case 16:  return IB_RATE_40_GBPS;
 162        case 24:  return IB_RATE_60_GBPS;
 163        case 32:  return IB_RATE_80_GBPS;
 164        case 48:  return IB_RATE_120_GBPS;
 165        case 6:   return IB_RATE_14_GBPS;
 166        case 22:  return IB_RATE_56_GBPS;
 167        case 45:  return IB_RATE_112_GBPS;
 168        case 67:  return IB_RATE_168_GBPS;
 169        case 10:  return IB_RATE_25_GBPS;
 170        case 40:  return IB_RATE_100_GBPS;
 171        case 80:  return IB_RATE_200_GBPS;
 172        case 120: return IB_RATE_300_GBPS;
 173        case 11:  return IB_RATE_28_GBPS;
 174        case 20:  return IB_RATE_50_GBPS;
 175        case 160: return IB_RATE_400_GBPS;
 176        case 240: return IB_RATE_600_GBPS;
 177        default:  return IB_RATE_PORT_CURRENT;
 178        }
 179}
 180EXPORT_SYMBOL(mult_to_ib_rate);
 181
 182__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
 183{
 184        switch (rate) {
 185        case IB_RATE_2_5_GBPS: return 2500;
 186        case IB_RATE_5_GBPS:   return 5000;
 187        case IB_RATE_10_GBPS:  return 10000;
 188        case IB_RATE_20_GBPS:  return 20000;
 189        case IB_RATE_30_GBPS:  return 30000;
 190        case IB_RATE_40_GBPS:  return 40000;
 191        case IB_RATE_60_GBPS:  return 60000;
 192        case IB_RATE_80_GBPS:  return 80000;
 193        case IB_RATE_120_GBPS: return 120000;
 194        case IB_RATE_14_GBPS:  return 14062;
 195        case IB_RATE_56_GBPS:  return 56250;
 196        case IB_RATE_112_GBPS: return 112500;
 197        case IB_RATE_168_GBPS: return 168750;
 198        case IB_RATE_25_GBPS:  return 25781;
 199        case IB_RATE_100_GBPS: return 103125;
 200        case IB_RATE_200_GBPS: return 206250;
 201        case IB_RATE_300_GBPS: return 309375;
 202        case IB_RATE_28_GBPS:  return 28125;
 203        case IB_RATE_50_GBPS:  return 53125;
 204        case IB_RATE_400_GBPS: return 425000;
 205        case IB_RATE_600_GBPS: return 637500;
 206        default:               return -1;
 207        }
 208}
 209EXPORT_SYMBOL(ib_rate_to_mbps);
 210
 211__attribute_const__ enum rdma_transport_type
 212rdma_node_get_transport(unsigned int node_type)
 213{
 214
 215        if (node_type == RDMA_NODE_USNIC)
 216                return RDMA_TRANSPORT_USNIC;
 217        if (node_type == RDMA_NODE_USNIC_UDP)
 218                return RDMA_TRANSPORT_USNIC_UDP;
 219        if (node_type == RDMA_NODE_RNIC)
 220                return RDMA_TRANSPORT_IWARP;
 221        if (node_type == RDMA_NODE_UNSPECIFIED)
 222                return RDMA_TRANSPORT_UNSPECIFIED;
 223
 224        return RDMA_TRANSPORT_IB;
 225}
 226EXPORT_SYMBOL(rdma_node_get_transport);
 227
 228enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
 229{
 230        enum rdma_transport_type lt;
 231        if (device->ops.get_link_layer)
 232                return device->ops.get_link_layer(device, port_num);
 233
 234        lt = rdma_node_get_transport(device->node_type);
 235        if (lt == RDMA_TRANSPORT_IB)
 236                return IB_LINK_LAYER_INFINIBAND;
 237
 238        return IB_LINK_LAYER_ETHERNET;
 239}
 240EXPORT_SYMBOL(rdma_port_get_link_layer);
 241
 242/* Protection domains */
 243
 244/**
 245 * ib_alloc_pd - Allocates an unused protection domain.
 246 * @device: The device on which to allocate the protection domain.
 247 *
 248 * A protection domain object provides an association between QPs, shared
 249 * receive queues, address handles, memory regions, and memory windows.
 250 *
 251 * Every PD has a local_dma_lkey which can be used as the lkey value for local
 252 * memory operations.
 253 */
 254struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
 255                const char *caller)
 256{
 257        struct ib_pd *pd;
 258        int mr_access_flags = 0;
 259        int ret;
 260
 261        pd = rdma_zalloc_drv_obj(device, ib_pd);
 262        if (!pd)
 263                return ERR_PTR(-ENOMEM);
 264
 265        pd->device = device;
 266        pd->uobject = NULL;
 267        pd->__internal_mr = NULL;
 268        atomic_set(&pd->usecnt, 0);
 269        pd->flags = flags;
 270
 271        pd->res.type = RDMA_RESTRACK_PD;
 272        rdma_restrack_set_task(&pd->res, caller);
 273
 274        ret = device->ops.alloc_pd(pd, NULL);
 275        if (ret) {
 276                kfree(pd);
 277                return ERR_PTR(ret);
 278        }
 279        rdma_restrack_kadd(&pd->res);
 280
 281        if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
 282                pd->local_dma_lkey = device->local_dma_lkey;
 283        else
 284                mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
 285
 286        if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
 287                pr_warn("%s: enabling unsafe global rkey\n", caller);
 288                mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
 289        }
 290
 291        if (mr_access_flags) {
 292                struct ib_mr *mr;
 293
 294                mr = pd->device->ops.get_dma_mr(pd, mr_access_flags);
 295                if (IS_ERR(mr)) {
 296                        ib_dealloc_pd(pd);
 297                        return ERR_CAST(mr);
 298                }
 299
 300                mr->device      = pd->device;
 301                mr->pd          = pd;
 302                mr->type        = IB_MR_TYPE_DMA;
 303                mr->uobject     = NULL;
 304                mr->need_inval  = false;
 305
 306                pd->__internal_mr = mr;
 307
 308                if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
 309                        pd->local_dma_lkey = pd->__internal_mr->lkey;
 310
 311                if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
 312                        pd->unsafe_global_rkey = pd->__internal_mr->rkey;
 313        }
 314
 315        return pd;
 316}
 317EXPORT_SYMBOL(__ib_alloc_pd);
 318
 319/**
 320 * ib_dealloc_pd_user - Deallocates a protection domain.
 321 * @pd: The protection domain to deallocate.
 322 * @udata: Valid user data or NULL for kernel object
 323 *
 324 * It is an error to call this function while any resources in the pd still
 325 * exist.  The caller is responsible to synchronously destroy them and
 326 * guarantee no new allocations will happen.
 327 */
 328void ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata)
 329{
 330        int ret;
 331
 332        if (pd->__internal_mr) {
 333                ret = pd->device->ops.dereg_mr(pd->__internal_mr, NULL);
 334                WARN_ON(ret);
 335                pd->__internal_mr = NULL;
 336        }
 337
 338        /* uverbs manipulates usecnt with proper locking, while the kabi
 339           requires the caller to guarantee we can't race here. */
 340        WARN_ON(atomic_read(&pd->usecnt));
 341
 342        rdma_restrack_del(&pd->res);
 343        pd->device->ops.dealloc_pd(pd, udata);
 344        kfree(pd);
 345}
 346EXPORT_SYMBOL(ib_dealloc_pd_user);
 347
 348/* Address handles */
 349
 350/**
 351 * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination.
 352 * @dest:       Pointer to destination ah_attr. Contents of the destination
 353 *              pointer is assumed to be invalid and attribute are overwritten.
 354 * @src:        Pointer to source ah_attr.
 355 */
 356void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
 357                       const struct rdma_ah_attr *src)
 358{
 359        *dest = *src;
 360        if (dest->grh.sgid_attr)
 361                rdma_hold_gid_attr(dest->grh.sgid_attr);
 362}
 363EXPORT_SYMBOL(rdma_copy_ah_attr);
 364
 365/**
 366 * rdma_replace_ah_attr - Replace valid ah_attr with new new one.
 367 * @old:        Pointer to existing ah_attr which needs to be replaced.
 368 *              old is assumed to be valid or zero'd
 369 * @new:        Pointer to the new ah_attr.
 370 *
 371 * rdma_replace_ah_attr() first releases any reference in the old ah_attr if
 372 * old the ah_attr is valid; after that it copies the new attribute and holds
 373 * the reference to the replaced ah_attr.
 374 */
 375void rdma_replace_ah_attr(struct rdma_ah_attr *old,
 376                          const struct rdma_ah_attr *new)
 377{
 378        rdma_destroy_ah_attr(old);
 379        *old = *new;
 380        if (old->grh.sgid_attr)
 381                rdma_hold_gid_attr(old->grh.sgid_attr);
 382}
 383EXPORT_SYMBOL(rdma_replace_ah_attr);
 384
 385/**
 386 * rdma_move_ah_attr - Move ah_attr pointed by source to destination.
 387 * @dest:       Pointer to destination ah_attr to copy to.
 388 *              dest is assumed to be valid or zero'd
 389 * @src:        Pointer to the new ah_attr.
 390 *
 391 * rdma_move_ah_attr() first releases any reference in the destination ah_attr
 392 * if it is valid. This also transfers ownership of internal references from
 393 * src to dest, making src invalid in the process. No new reference of the src
 394 * ah_attr is taken.
 395 */
 396void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src)
 397{
 398        rdma_destroy_ah_attr(dest);
 399        *dest = *src;
 400        src->grh.sgid_attr = NULL;
 401}
 402EXPORT_SYMBOL(rdma_move_ah_attr);
 403
 404/*
 405 * Validate that the rdma_ah_attr is valid for the device before passing it
 406 * off to the driver.
 407 */
 408static int rdma_check_ah_attr(struct ib_device *device,
 409                              struct rdma_ah_attr *ah_attr)
 410{
 411        if (!rdma_is_port_valid(device, ah_attr->port_num))
 412                return -EINVAL;
 413
 414        if ((rdma_is_grh_required(device, ah_attr->port_num) ||
 415             ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) &&
 416            !(ah_attr->ah_flags & IB_AH_GRH))
 417                return -EINVAL;
 418
 419        if (ah_attr->grh.sgid_attr) {
 420                /*
 421                 * Make sure the passed sgid_attr is consistent with the
 422                 * parameters
 423                 */
 424                if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index ||
 425                    ah_attr->grh.sgid_attr->port_num != ah_attr->port_num)
 426                        return -EINVAL;
 427        }
 428        return 0;
 429}
 430
 431/*
 432 * If the ah requires a GRH then ensure that sgid_attr pointer is filled in.
 433 * On success the caller is responsible to call rdma_unfill_sgid_attr().
 434 */
 435static int rdma_fill_sgid_attr(struct ib_device *device,
 436                               struct rdma_ah_attr *ah_attr,
 437                               const struct ib_gid_attr **old_sgid_attr)
 438{
 439        const struct ib_gid_attr *sgid_attr;
 440        struct ib_global_route *grh;
 441        int ret;
 442
 443        *old_sgid_attr = ah_attr->grh.sgid_attr;
 444
 445        ret = rdma_check_ah_attr(device, ah_attr);
 446        if (ret)
 447                return ret;
 448
 449        if (!(ah_attr->ah_flags & IB_AH_GRH))
 450                return 0;
 451
 452        grh = rdma_ah_retrieve_grh(ah_attr);
 453        if (grh->sgid_attr)
 454                return 0;
 455
 456        sgid_attr =
 457                rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index);
 458        if (IS_ERR(sgid_attr))
 459                return PTR_ERR(sgid_attr);
 460
 461        /* Move ownerhip of the kref into the ah_attr */
 462        grh->sgid_attr = sgid_attr;
 463        return 0;
 464}
 465
 466static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr,
 467                                  const struct ib_gid_attr *old_sgid_attr)
 468{
 469        /*
 470         * Fill didn't change anything, the caller retains ownership of
 471         * whatever it passed
 472         */
 473        if (ah_attr->grh.sgid_attr == old_sgid_attr)
 474                return;
 475
 476        /*
 477         * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller
 478         * doesn't see any change in the rdma_ah_attr. If we get here
 479         * old_sgid_attr is NULL.
 480         */
 481        rdma_destroy_ah_attr(ah_attr);
 482}
 483
 484static const struct ib_gid_attr *
 485rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr,
 486                      const struct ib_gid_attr *old_attr)
 487{
 488        if (old_attr)
 489                rdma_put_gid_attr(old_attr);
 490        if (ah_attr->ah_flags & IB_AH_GRH) {
 491                rdma_hold_gid_attr(ah_attr->grh.sgid_attr);
 492                return ah_attr->grh.sgid_attr;
 493        }
 494        return NULL;
 495}
 496
 497static struct ib_ah *_rdma_create_ah(struct ib_pd *pd,
 498                                     struct rdma_ah_attr *ah_attr,
 499                                     u32 flags,
 500                                     struct ib_udata *udata)
 501{
 502        struct ib_device *device = pd->device;
 503        struct ib_ah *ah;
 504        int ret;
 505
 506        might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE);
 507
 508        if (!device->ops.create_ah)
 509                return ERR_PTR(-EOPNOTSUPP);
 510
 511        ah = rdma_zalloc_drv_obj_gfp(
 512                device, ib_ah,
 513                (flags & RDMA_CREATE_AH_SLEEPABLE) ? GFP_KERNEL : GFP_ATOMIC);
 514        if (!ah)
 515                return ERR_PTR(-ENOMEM);
 516
 517        ah->device = device;
 518        ah->pd = pd;
 519        ah->type = ah_attr->type;
 520        ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL);
 521
 522        ret = device->ops.create_ah(ah, ah_attr, flags, udata);
 523        if (ret) {
 524                kfree(ah);
 525                return ERR_PTR(ret);
 526        }
 527
 528        atomic_inc(&pd->usecnt);
 529        return ah;
 530}
 531
 532/**
 533 * rdma_create_ah - Creates an address handle for the
 534 * given address vector.
 535 * @pd: The protection domain associated with the address handle.
 536 * @ah_attr: The attributes of the address vector.
 537 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
 538 *
 539 * It returns 0 on success and returns appropriate error code on error.
 540 * The address handle is used to reference a local or global destination
 541 * in all UD QP post sends.
 542 */
 543struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
 544                             u32 flags)
 545{
 546        const struct ib_gid_attr *old_sgid_attr;
 547        struct ib_ah *ah;
 548        int ret;
 549
 550        ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
 551        if (ret)
 552                return ERR_PTR(ret);
 553
 554        ah = _rdma_create_ah(pd, ah_attr, flags, NULL);
 555
 556        rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
 557        return ah;
 558}
 559EXPORT_SYMBOL(rdma_create_ah);
 560
 561/**
 562 * rdma_create_user_ah - Creates an address handle for the
 563 * given address vector.
 564 * It resolves destination mac address for ah attribute of RoCE type.
 565 * @pd: The protection domain associated with the address handle.
 566 * @ah_attr: The attributes of the address vector.
 567 * @udata: pointer to user's input output buffer information need by
 568 *         provider driver.
 569 *
 570 * It returns 0 on success and returns appropriate error code on error.
 571 * The address handle is used to reference a local or global destination
 572 * in all UD QP post sends.
 573 */
 574struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
 575                                  struct rdma_ah_attr *ah_attr,
 576                                  struct ib_udata *udata)
 577{
 578        const struct ib_gid_attr *old_sgid_attr;
 579        struct ib_ah *ah;
 580        int err;
 581
 582        err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
 583        if (err)
 584                return ERR_PTR(err);
 585
 586        if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) {
 587                err = ib_resolve_eth_dmac(pd->device, ah_attr);
 588                if (err) {
 589                        ah = ERR_PTR(err);
 590                        goto out;
 591                }
 592        }
 593
 594        ah = _rdma_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE, udata);
 595
 596out:
 597        rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
 598        return ah;
 599}
 600EXPORT_SYMBOL(rdma_create_user_ah);
 601
 602int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
 603{
 604        const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
 605        struct iphdr ip4h_checked;
 606        const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
 607
 608        /* If it's IPv6, the version must be 6, otherwise, the first
 609         * 20 bytes (before the IPv4 header) are garbled.
 610         */
 611        if (ip6h->version != 6)
 612                return (ip4h->version == 4) ? 4 : 0;
 613        /* version may be 6 or 4 because the first 20 bytes could be garbled */
 614
 615        /* RoCE v2 requires no options, thus header length
 616         * must be 5 words
 617         */
 618        if (ip4h->ihl != 5)
 619                return 6;
 620
 621        /* Verify checksum.
 622         * We can't write on scattered buffers so we need to copy to
 623         * temp buffer.
 624         */
 625        memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
 626        ip4h_checked.check = 0;
 627        ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
 628        /* if IPv4 header checksum is OK, believe it */
 629        if (ip4h->check == ip4h_checked.check)
 630                return 4;
 631        return 6;
 632}
 633EXPORT_SYMBOL(ib_get_rdma_header_version);
 634
 635static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
 636                                                     u8 port_num,
 637                                                     const struct ib_grh *grh)
 638{
 639        int grh_version;
 640
 641        if (rdma_protocol_ib(device, port_num))
 642                return RDMA_NETWORK_IB;
 643
 644        grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
 645
 646        if (grh_version == 4)
 647                return RDMA_NETWORK_IPV4;
 648
 649        if (grh->next_hdr == IPPROTO_UDP)
 650                return RDMA_NETWORK_IPV6;
 651
 652        return RDMA_NETWORK_ROCE_V1;
 653}
 654
 655struct find_gid_index_context {
 656        u16 vlan_id;
 657        enum ib_gid_type gid_type;
 658};
 659
 660static bool find_gid_index(const union ib_gid *gid,
 661                           const struct ib_gid_attr *gid_attr,
 662                           void *context)
 663{
 664        struct find_gid_index_context *ctx = context;
 665
 666        if (ctx->gid_type != gid_attr->gid_type)
 667                return false;
 668
 669        if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) ||
 670            (is_vlan_dev(gid_attr->ndev) &&
 671             vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id))
 672                return false;
 673
 674        return true;
 675}
 676
 677static const struct ib_gid_attr *
 678get_sgid_attr_from_eth(struct ib_device *device, u8 port_num,
 679                       u16 vlan_id, const union ib_gid *sgid,
 680                       enum ib_gid_type gid_type)
 681{
 682        struct find_gid_index_context context = {.vlan_id = vlan_id,
 683                                                 .gid_type = gid_type};
 684
 685        return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index,
 686                                       &context);
 687}
 688
 689int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
 690                              enum rdma_network_type net_type,
 691                              union ib_gid *sgid, union ib_gid *dgid)
 692{
 693        struct sockaddr_in  src_in;
 694        struct sockaddr_in  dst_in;
 695        __be32 src_saddr, dst_saddr;
 696
 697        if (!sgid || !dgid)
 698                return -EINVAL;
 699
 700        if (net_type == RDMA_NETWORK_IPV4) {
 701                memcpy(&src_in.sin_addr.s_addr,
 702                       &hdr->roce4grh.saddr, 4);
 703                memcpy(&dst_in.sin_addr.s_addr,
 704                       &hdr->roce4grh.daddr, 4);
 705                src_saddr = src_in.sin_addr.s_addr;
 706                dst_saddr = dst_in.sin_addr.s_addr;
 707                ipv6_addr_set_v4mapped(src_saddr,
 708                                       (struct in6_addr *)sgid);
 709                ipv6_addr_set_v4mapped(dst_saddr,
 710                                       (struct in6_addr *)dgid);
 711                return 0;
 712        } else if (net_type == RDMA_NETWORK_IPV6 ||
 713                   net_type == RDMA_NETWORK_IB) {
 714                *dgid = hdr->ibgrh.dgid;
 715                *sgid = hdr->ibgrh.sgid;
 716                return 0;
 717        } else {
 718                return -EINVAL;
 719        }
 720}
 721EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
 722
 723/* Resolve destination mac address and hop limit for unicast destination
 724 * GID entry, considering the source GID entry as well.
 725 * ah_attribute must have have valid port_num, sgid_index.
 726 */
 727static int ib_resolve_unicast_gid_dmac(struct ib_device *device,
 728                                       struct rdma_ah_attr *ah_attr)
 729{
 730        struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr);
 731        const struct ib_gid_attr *sgid_attr = grh->sgid_attr;
 732        int hop_limit = 0xff;
 733        int ret = 0;
 734
 735        /* If destination is link local and source GID is RoCEv1,
 736         * IP stack is not used.
 737         */
 738        if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) &&
 739            sgid_attr->gid_type == IB_GID_TYPE_ROCE) {
 740                rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
 741                                ah_attr->roce.dmac);
 742                return ret;
 743        }
 744
 745        ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid,
 746                                           ah_attr->roce.dmac,
 747                                           sgid_attr, &hop_limit);
 748
 749        grh->hop_limit = hop_limit;
 750        return ret;
 751}
 752
 753/*
 754 * This function initializes address handle attributes from the incoming packet.
 755 * Incoming packet has dgid of the receiver node on which this code is
 756 * getting executed and, sgid contains the GID of the sender.
 757 *
 758 * When resolving mac address of destination, the arrived dgid is used
 759 * as sgid and, sgid is used as dgid because sgid contains destinations
 760 * GID whom to respond to.
 761 *
 762 * On success the caller is responsible to call rdma_destroy_ah_attr on the
 763 * attr.
 764 */
 765int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
 766                            const struct ib_wc *wc, const struct ib_grh *grh,
 767                            struct rdma_ah_attr *ah_attr)
 768{
 769        u32 flow_class;
 770        int ret;
 771        enum rdma_network_type net_type = RDMA_NETWORK_IB;
 772        enum ib_gid_type gid_type = IB_GID_TYPE_IB;
 773        const struct ib_gid_attr *sgid_attr;
 774        int hoplimit = 0xff;
 775        union ib_gid dgid;
 776        union ib_gid sgid;
 777
 778        might_sleep();
 779
 780        memset(ah_attr, 0, sizeof *ah_attr);
 781        ah_attr->type = rdma_ah_find_type(device, port_num);
 782        if (rdma_cap_eth_ah(device, port_num)) {
 783                if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
 784                        net_type = wc->network_hdr_type;
 785                else
 786                        net_type = ib_get_net_type_by_grh(device, port_num, grh);
 787                gid_type = ib_network_to_gid_type(net_type);
 788        }
 789        ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
 790                                        &sgid, &dgid);
 791        if (ret)
 792                return ret;
 793
 794        rdma_ah_set_sl(ah_attr, wc->sl);
 795        rdma_ah_set_port_num(ah_attr, port_num);
 796
 797        if (rdma_protocol_roce(device, port_num)) {
 798                u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
 799                                wc->vlan_id : 0xffff;
 800
 801                if (!(wc->wc_flags & IB_WC_GRH))
 802                        return -EPROTOTYPE;
 803
 804                sgid_attr = get_sgid_attr_from_eth(device, port_num,
 805                                                   vlan_id, &dgid,
 806                                                   gid_type);
 807                if (IS_ERR(sgid_attr))
 808                        return PTR_ERR(sgid_attr);
 809
 810                flow_class = be32_to_cpu(grh->version_tclass_flow);
 811                rdma_move_grh_sgid_attr(ah_attr,
 812                                        &sgid,
 813                                        flow_class & 0xFFFFF,
 814                                        hoplimit,
 815                                        (flow_class >> 20) & 0xFF,
 816                                        sgid_attr);
 817
 818                ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
 819                if (ret)
 820                        rdma_destroy_ah_attr(ah_attr);
 821
 822                return ret;
 823        } else {
 824                rdma_ah_set_dlid(ah_attr, wc->slid);
 825                rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
 826
 827                if ((wc->wc_flags & IB_WC_GRH) == 0)
 828                        return 0;
 829
 830                if (dgid.global.interface_id !=
 831                                        cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
 832                        sgid_attr = rdma_find_gid_by_port(
 833                                device, &dgid, IB_GID_TYPE_IB, port_num, NULL);
 834                } else
 835                        sgid_attr = rdma_get_gid_attr(device, port_num, 0);
 836
 837                if (IS_ERR(sgid_attr))
 838                        return PTR_ERR(sgid_attr);
 839                flow_class = be32_to_cpu(grh->version_tclass_flow);
 840                rdma_move_grh_sgid_attr(ah_attr,
 841                                        &sgid,
 842                                        flow_class & 0xFFFFF,
 843                                        hoplimit,
 844                                        (flow_class >> 20) & 0xFF,
 845                                        sgid_attr);
 846
 847                return 0;
 848        }
 849}
 850EXPORT_SYMBOL(ib_init_ah_attr_from_wc);
 851
 852/**
 853 * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership
 854 * of the reference
 855 *
 856 * @attr:       Pointer to AH attribute structure
 857 * @dgid:       Destination GID
 858 * @flow_label: Flow label
 859 * @hop_limit:  Hop limit
 860 * @traffic_class: traffic class
 861 * @sgid_attr:  Pointer to SGID attribute
 862 *
 863 * This takes ownership of the sgid_attr reference. The caller must ensure
 864 * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after
 865 * calling this function.
 866 */
 867void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
 868                             u32 flow_label, u8 hop_limit, u8 traffic_class,
 869                             const struct ib_gid_attr *sgid_attr)
 870{
 871        rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit,
 872                        traffic_class);
 873        attr->grh.sgid_attr = sgid_attr;
 874}
 875EXPORT_SYMBOL(rdma_move_grh_sgid_attr);
 876
 877/**
 878 * rdma_destroy_ah_attr - Release reference to SGID attribute of
 879 * ah attribute.
 880 * @ah_attr: Pointer to ah attribute
 881 *
 882 * Release reference to the SGID attribute of the ah attribute if it is
 883 * non NULL. It is safe to call this multiple times, and safe to call it on
 884 * a zero initialized ah_attr.
 885 */
 886void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr)
 887{
 888        if (ah_attr->grh.sgid_attr) {
 889                rdma_put_gid_attr(ah_attr->grh.sgid_attr);
 890                ah_attr->grh.sgid_attr = NULL;
 891        }
 892}
 893EXPORT_SYMBOL(rdma_destroy_ah_attr);
 894
 895struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
 896                                   const struct ib_grh *grh, u8 port_num)
 897{
 898        struct rdma_ah_attr ah_attr;
 899        struct ib_ah *ah;
 900        int ret;
 901
 902        ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr);
 903        if (ret)
 904                return ERR_PTR(ret);
 905
 906        ah = rdma_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE);
 907
 908        rdma_destroy_ah_attr(&ah_attr);
 909        return ah;
 910}
 911EXPORT_SYMBOL(ib_create_ah_from_wc);
 912
 913int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
 914{
 915        const struct ib_gid_attr *old_sgid_attr;
 916        int ret;
 917
 918        if (ah->type != ah_attr->type)
 919                return -EINVAL;
 920
 921        ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr);
 922        if (ret)
 923                return ret;
 924
 925        ret = ah->device->ops.modify_ah ?
 926                ah->device->ops.modify_ah(ah, ah_attr) :
 927                -EOPNOTSUPP;
 928
 929        ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr);
 930        rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
 931        return ret;
 932}
 933EXPORT_SYMBOL(rdma_modify_ah);
 934
 935int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
 936{
 937        ah_attr->grh.sgid_attr = NULL;
 938
 939        return ah->device->ops.query_ah ?
 940                ah->device->ops.query_ah(ah, ah_attr) :
 941                -EOPNOTSUPP;
 942}
 943EXPORT_SYMBOL(rdma_query_ah);
 944
 945int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata)
 946{
 947        const struct ib_gid_attr *sgid_attr = ah->sgid_attr;
 948        struct ib_pd *pd;
 949
 950        might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE);
 951
 952        pd = ah->pd;
 953
 954        ah->device->ops.destroy_ah(ah, flags);
 955        atomic_dec(&pd->usecnt);
 956        if (sgid_attr)
 957                rdma_put_gid_attr(sgid_attr);
 958
 959        kfree(ah);
 960        return 0;
 961}
 962EXPORT_SYMBOL(rdma_destroy_ah_user);
 963
 964/* Shared receive queues */
 965
 966struct ib_srq *ib_create_srq(struct ib_pd *pd,
 967                             struct ib_srq_init_attr *srq_init_attr)
 968{
 969        struct ib_srq *srq;
 970        int ret;
 971
 972        if (!pd->device->ops.create_srq)
 973                return ERR_PTR(-EOPNOTSUPP);
 974
 975        srq = rdma_zalloc_drv_obj(pd->device, ib_srq);
 976        if (!srq)
 977                return ERR_PTR(-ENOMEM);
 978
 979        srq->device = pd->device;
 980        srq->pd = pd;
 981        srq->event_handler = srq_init_attr->event_handler;
 982        srq->srq_context = srq_init_attr->srq_context;
 983        srq->srq_type = srq_init_attr->srq_type;
 984
 985        if (ib_srq_has_cq(srq->srq_type)) {
 986                srq->ext.cq = srq_init_attr->ext.cq;
 987                atomic_inc(&srq->ext.cq->usecnt);
 988        }
 989        if (srq->srq_type == IB_SRQT_XRC) {
 990                srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
 991                atomic_inc(&srq->ext.xrc.xrcd->usecnt);
 992        }
 993        atomic_inc(&pd->usecnt);
 994
 995        ret = pd->device->ops.create_srq(srq, srq_init_attr, NULL);
 996        if (ret) {
 997                atomic_dec(&srq->pd->usecnt);
 998                if (srq->srq_type == IB_SRQT_XRC)
 999                        atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1000                if (ib_srq_has_cq(srq->srq_type))
1001                        atomic_dec(&srq->ext.cq->usecnt);
1002                kfree(srq);
1003                return ERR_PTR(ret);
1004        }
1005
1006        return srq;
1007}
1008EXPORT_SYMBOL(ib_create_srq);
1009
1010int ib_modify_srq(struct ib_srq *srq,
1011                  struct ib_srq_attr *srq_attr,
1012                  enum ib_srq_attr_mask srq_attr_mask)
1013{
1014        return srq->device->ops.modify_srq ?
1015                srq->device->ops.modify_srq(srq, srq_attr, srq_attr_mask,
1016                                            NULL) : -EOPNOTSUPP;
1017}
1018EXPORT_SYMBOL(ib_modify_srq);
1019
1020int ib_query_srq(struct ib_srq *srq,
1021                 struct ib_srq_attr *srq_attr)
1022{
1023        return srq->device->ops.query_srq ?
1024                srq->device->ops.query_srq(srq, srq_attr) : -EOPNOTSUPP;
1025}
1026EXPORT_SYMBOL(ib_query_srq);
1027
1028int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata)
1029{
1030        if (atomic_read(&srq->usecnt))
1031                return -EBUSY;
1032
1033        srq->device->ops.destroy_srq(srq, udata);
1034
1035        atomic_dec(&srq->pd->usecnt);
1036        if (srq->srq_type == IB_SRQT_XRC)
1037                atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1038        if (ib_srq_has_cq(srq->srq_type))
1039                atomic_dec(&srq->ext.cq->usecnt);
1040        kfree(srq);
1041
1042        return 0;
1043}
1044EXPORT_SYMBOL(ib_destroy_srq_user);
1045
1046/* Queue pairs */
1047
1048static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
1049{
1050        struct ib_qp *qp = context;
1051        unsigned long flags;
1052
1053        spin_lock_irqsave(&qp->device->event_handler_lock, flags);
1054        list_for_each_entry(event->element.qp, &qp->open_list, open_list)
1055                if (event->element.qp->event_handler)
1056                        event->element.qp->event_handler(event, event->element.qp->qp_context);
1057        spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
1058}
1059
1060static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
1061{
1062        mutex_lock(&xrcd->tgt_qp_mutex);
1063        list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
1064        mutex_unlock(&xrcd->tgt_qp_mutex);
1065}
1066
1067static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
1068                                  void (*event_handler)(struct ib_event *, void *),
1069                                  void *qp_context)
1070{
1071        struct ib_qp *qp;
1072        unsigned long flags;
1073        int err;
1074
1075        qp = kzalloc(sizeof *qp, GFP_KERNEL);
1076        if (!qp)
1077                return ERR_PTR(-ENOMEM);
1078
1079        qp->real_qp = real_qp;
1080        err = ib_open_shared_qp_security(qp, real_qp->device);
1081        if (err) {
1082                kfree(qp);
1083                return ERR_PTR(err);
1084        }
1085
1086        qp->real_qp = real_qp;
1087        atomic_inc(&real_qp->usecnt);
1088        qp->device = real_qp->device;
1089        qp->event_handler = event_handler;
1090        qp->qp_context = qp_context;
1091        qp->qp_num = real_qp->qp_num;
1092        qp->qp_type = real_qp->qp_type;
1093
1094        spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1095        list_add(&qp->open_list, &real_qp->open_list);
1096        spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1097
1098        return qp;
1099}
1100
1101struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1102                         struct ib_qp_open_attr *qp_open_attr)
1103{
1104        struct ib_qp *qp, *real_qp;
1105
1106        if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
1107                return ERR_PTR(-EINVAL);
1108
1109        qp = ERR_PTR(-EINVAL);
1110        mutex_lock(&xrcd->tgt_qp_mutex);
1111        list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
1112                if (real_qp->qp_num == qp_open_attr->qp_num) {
1113                        qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
1114                                          qp_open_attr->qp_context);
1115                        break;
1116                }
1117        }
1118        mutex_unlock(&xrcd->tgt_qp_mutex);
1119        return qp;
1120}
1121EXPORT_SYMBOL(ib_open_qp);
1122
1123static struct ib_qp *create_xrc_qp_user(struct ib_qp *qp,
1124                                        struct ib_qp_init_attr *qp_init_attr,
1125                                        struct ib_udata *udata)
1126{
1127        struct ib_qp *real_qp = qp;
1128
1129        qp->event_handler = __ib_shared_qp_event_handler;
1130        qp->qp_context = qp;
1131        qp->pd = NULL;
1132        qp->send_cq = qp->recv_cq = NULL;
1133        qp->srq = NULL;
1134        qp->xrcd = qp_init_attr->xrcd;
1135        atomic_inc(&qp_init_attr->xrcd->usecnt);
1136        INIT_LIST_HEAD(&qp->open_list);
1137
1138        qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
1139                          qp_init_attr->qp_context);
1140        if (IS_ERR(qp))
1141                return qp;
1142
1143        __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
1144        return qp;
1145}
1146
1147struct ib_qp *ib_create_qp_user(struct ib_pd *pd,
1148                                struct ib_qp_init_attr *qp_init_attr,
1149                                struct ib_udata *udata)
1150{
1151        struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
1152        struct ib_qp *qp;
1153        int ret;
1154
1155        if (qp_init_attr->rwq_ind_tbl &&
1156            (qp_init_attr->recv_cq ||
1157            qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
1158            qp_init_attr->cap.max_recv_sge))
1159                return ERR_PTR(-EINVAL);
1160
1161        if ((qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN) &&
1162            !(device->attrs.device_cap_flags & IB_DEVICE_INTEGRITY_HANDOVER))
1163                return ERR_PTR(-EINVAL);
1164
1165        /*
1166         * If the callers is using the RDMA API calculate the resources
1167         * needed for the RDMA READ/WRITE operations.
1168         *
1169         * Note that these callers need to pass in a port number.
1170         */
1171        if (qp_init_attr->cap.max_rdma_ctxs)
1172                rdma_rw_init_qp(device, qp_init_attr);
1173
1174        qp = _ib_create_qp(device, pd, qp_init_attr, NULL, NULL);
1175        if (IS_ERR(qp))
1176                return qp;
1177
1178        ret = ib_create_qp_security(qp, device);
1179        if (ret)
1180                goto err;
1181
1182        qp->qp_type    = qp_init_attr->qp_type;
1183        qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
1184
1185        atomic_set(&qp->usecnt, 0);
1186        qp->mrs_used = 0;
1187        spin_lock_init(&qp->mr_lock);
1188        INIT_LIST_HEAD(&qp->rdma_mrs);
1189        INIT_LIST_HEAD(&qp->sig_mrs);
1190        qp->port = 0;
1191
1192        if (qp_init_attr->qp_type == IB_QPT_XRC_TGT) {
1193                struct ib_qp *xrc_qp =
1194                        create_xrc_qp_user(qp, qp_init_attr, udata);
1195
1196                if (IS_ERR(xrc_qp)) {
1197                        ret = PTR_ERR(xrc_qp);
1198                        goto err;
1199                }
1200                return xrc_qp;
1201        }
1202
1203        qp->event_handler = qp_init_attr->event_handler;
1204        qp->qp_context = qp_init_attr->qp_context;
1205        if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
1206                qp->recv_cq = NULL;
1207                qp->srq = NULL;
1208        } else {
1209                qp->recv_cq = qp_init_attr->recv_cq;
1210                if (qp_init_attr->recv_cq)
1211                        atomic_inc(&qp_init_attr->recv_cq->usecnt);
1212                qp->srq = qp_init_attr->srq;
1213                if (qp->srq)
1214                        atomic_inc(&qp_init_attr->srq->usecnt);
1215        }
1216
1217        qp->send_cq = qp_init_attr->send_cq;
1218        qp->xrcd    = NULL;
1219
1220        atomic_inc(&pd->usecnt);
1221        if (qp_init_attr->send_cq)
1222                atomic_inc(&qp_init_attr->send_cq->usecnt);
1223        if (qp_init_attr->rwq_ind_tbl)
1224                atomic_inc(&qp->rwq_ind_tbl->usecnt);
1225
1226        if (qp_init_attr->cap.max_rdma_ctxs) {
1227                ret = rdma_rw_init_mrs(qp, qp_init_attr);
1228                if (ret)
1229                        goto err;
1230        }
1231
1232        /*
1233         * Note: all hw drivers guarantee that max_send_sge is lower than
1234         * the device RDMA WRITE SGE limit but not all hw drivers ensure that
1235         * max_send_sge <= max_sge_rd.
1236         */
1237        qp->max_write_sge = qp_init_attr->cap.max_send_sge;
1238        qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
1239                                 device->attrs.max_sge_rd);
1240        if (qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN)
1241                qp->integrity_en = true;
1242
1243        return qp;
1244
1245err:
1246        ib_destroy_qp(qp);
1247        return ERR_PTR(ret);
1248
1249}
1250EXPORT_SYMBOL(ib_create_qp_user);
1251
1252static const struct {
1253        int                     valid;
1254        enum ib_qp_attr_mask    req_param[IB_QPT_MAX];
1255        enum ib_qp_attr_mask    opt_param[IB_QPT_MAX];
1256} qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
1257        [IB_QPS_RESET] = {
1258                [IB_QPS_RESET] = { .valid = 1 },
1259                [IB_QPS_INIT]  = {
1260                        .valid = 1,
1261                        .req_param = {
1262                                [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1263                                                IB_QP_PORT                      |
1264                                                IB_QP_QKEY),
1265                                [IB_QPT_RAW_PACKET] = IB_QP_PORT,
1266                                [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
1267                                                IB_QP_PORT                      |
1268                                                IB_QP_ACCESS_FLAGS),
1269                                [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
1270                                                IB_QP_PORT                      |
1271                                                IB_QP_ACCESS_FLAGS),
1272                                [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
1273                                                IB_QP_PORT                      |
1274                                                IB_QP_ACCESS_FLAGS),
1275                                [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
1276                                                IB_QP_PORT                      |
1277                                                IB_QP_ACCESS_FLAGS),
1278                                [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1279                                                IB_QP_QKEY),
1280                                [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1281                                                IB_QP_QKEY),
1282                        }
1283                },
1284        },
1285        [IB_QPS_INIT]  = {
1286                [IB_QPS_RESET] = { .valid = 1 },
1287                [IB_QPS_ERR] =   { .valid = 1 },
1288                [IB_QPS_INIT]  = {
1289                        .valid = 1,
1290                        .opt_param = {
1291                                [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1292                                                IB_QP_PORT                      |
1293                                                IB_QP_QKEY),
1294                                [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
1295                                                IB_QP_PORT                      |
1296                                                IB_QP_ACCESS_FLAGS),
1297                                [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
1298                                                IB_QP_PORT                      |
1299                                                IB_QP_ACCESS_FLAGS),
1300                                [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
1301                                                IB_QP_PORT                      |
1302                                                IB_QP_ACCESS_FLAGS),
1303                                [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
1304                                                IB_QP_PORT                      |
1305                                                IB_QP_ACCESS_FLAGS),
1306                                [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1307                                                IB_QP_QKEY),
1308                                [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1309                                                IB_QP_QKEY),
1310                        }
1311                },
1312                [IB_QPS_RTR]   = {
1313                        .valid = 1,
1314                        .req_param = {
1315                                [IB_QPT_UC]  = (IB_QP_AV                        |
1316                                                IB_QP_PATH_MTU                  |
1317                                                IB_QP_DEST_QPN                  |
1318                                                IB_QP_RQ_PSN),
1319                                [IB_QPT_RC]  = (IB_QP_AV                        |
1320                                                IB_QP_PATH_MTU                  |
1321                                                IB_QP_DEST_QPN                  |
1322                                                IB_QP_RQ_PSN                    |
1323                                                IB_QP_MAX_DEST_RD_ATOMIC        |
1324                                                IB_QP_MIN_RNR_TIMER),
1325                                [IB_QPT_XRC_INI] = (IB_QP_AV                    |
1326                                                IB_QP_PATH_MTU                  |
1327                                                IB_QP_DEST_QPN                  |
1328                                                IB_QP_RQ_PSN),
1329                                [IB_QPT_XRC_TGT] = (IB_QP_AV                    |
1330                                                IB_QP_PATH_MTU                  |
1331                                                IB_QP_DEST_QPN                  |
1332                                                IB_QP_RQ_PSN                    |
1333                                                IB_QP_MAX_DEST_RD_ATOMIC        |
1334                                                IB_QP_MIN_RNR_TIMER),
1335                        },
1336                        .opt_param = {
1337                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX               |
1338                                                 IB_QP_QKEY),
1339                                 [IB_QPT_UC]  = (IB_QP_ALT_PATH                 |
1340                                                 IB_QP_ACCESS_FLAGS             |
1341                                                 IB_QP_PKEY_INDEX),
1342                                 [IB_QPT_RC]  = (IB_QP_ALT_PATH                 |
1343                                                 IB_QP_ACCESS_FLAGS             |
1344                                                 IB_QP_PKEY_INDEX),
1345                                 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH             |
1346                                                 IB_QP_ACCESS_FLAGS             |
1347                                                 IB_QP_PKEY_INDEX),
1348                                 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH             |
1349                                                 IB_QP_ACCESS_FLAGS             |
1350                                                 IB_QP_PKEY_INDEX),
1351                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX               |
1352                                                 IB_QP_QKEY),
1353                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX               |
1354                                                 IB_QP_QKEY),
1355                         },
1356                },
1357        },
1358        [IB_QPS_RTR]   = {
1359                [IB_QPS_RESET] = { .valid = 1 },
1360                [IB_QPS_ERR] =   { .valid = 1 },
1361                [IB_QPS_RTS]   = {
1362                        .valid = 1,
1363                        .req_param = {
1364                                [IB_QPT_UD]  = IB_QP_SQ_PSN,
1365                                [IB_QPT_UC]  = IB_QP_SQ_PSN,
1366                                [IB_QPT_RC]  = (IB_QP_TIMEOUT                   |
1367                                                IB_QP_RETRY_CNT                 |
1368                                                IB_QP_RNR_RETRY                 |
1369                                                IB_QP_SQ_PSN                    |
1370                                                IB_QP_MAX_QP_RD_ATOMIC),
1371                                [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT               |
1372                                                IB_QP_RETRY_CNT                 |
1373                                                IB_QP_RNR_RETRY                 |
1374                                                IB_QP_SQ_PSN                    |
1375                                                IB_QP_MAX_QP_RD_ATOMIC),
1376                                [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT               |
1377                                                IB_QP_SQ_PSN),
1378                                [IB_QPT_SMI] = IB_QP_SQ_PSN,
1379                                [IB_QPT_GSI] = IB_QP_SQ_PSN,
1380                        },
1381                        .opt_param = {
1382                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                |
1383                                                 IB_QP_QKEY),
1384                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                |
1385                                                 IB_QP_ALT_PATH                 |
1386                                                 IB_QP_ACCESS_FLAGS             |
1387                                                 IB_QP_PATH_MIG_STATE),
1388                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                |
1389                                                 IB_QP_ALT_PATH                 |
1390                                                 IB_QP_ACCESS_FLAGS             |
1391                                                 IB_QP_MIN_RNR_TIMER            |
1392                                                 IB_QP_PATH_MIG_STATE),
1393                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE            |
1394                                                 IB_QP_ALT_PATH                 |
1395                                                 IB_QP_ACCESS_FLAGS             |
1396                                                 IB_QP_PATH_MIG_STATE),
1397                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE            |
1398                                                 IB_QP_ALT_PATH                 |
1399                                                 IB_QP_ACCESS_FLAGS             |
1400                                                 IB_QP_MIN_RNR_TIMER            |
1401                                                 IB_QP_PATH_MIG_STATE),
1402                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                |
1403                                                 IB_QP_QKEY),
1404                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                |
1405                                                 IB_QP_QKEY),
1406                                 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1407                         }
1408                }
1409        },
1410        [IB_QPS_RTS]   = {
1411                [IB_QPS_RESET] = { .valid = 1 },
1412                [IB_QPS_ERR] =   { .valid = 1 },
1413                [IB_QPS_RTS]   = {
1414                        .valid = 1,
1415                        .opt_param = {
1416                                [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1417                                                IB_QP_QKEY),
1418                                [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1419                                                IB_QP_ACCESS_FLAGS              |
1420                                                IB_QP_ALT_PATH                  |
1421                                                IB_QP_PATH_MIG_STATE),
1422                                [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1423                                                IB_QP_ACCESS_FLAGS              |
1424                                                IB_QP_ALT_PATH                  |
1425                                                IB_QP_PATH_MIG_STATE            |
1426                                                IB_QP_MIN_RNR_TIMER),
1427                                [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1428                                                IB_QP_ACCESS_FLAGS              |
1429                                                IB_QP_ALT_PATH                  |
1430                                                IB_QP_PATH_MIG_STATE),
1431                                [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1432                                                IB_QP_ACCESS_FLAGS              |
1433                                                IB_QP_ALT_PATH                  |
1434                                                IB_QP_PATH_MIG_STATE            |
1435                                                IB_QP_MIN_RNR_TIMER),
1436                                [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1437                                                IB_QP_QKEY),
1438                                [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1439                                                IB_QP_QKEY),
1440                                [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1441                        }
1442                },
1443                [IB_QPS_SQD]   = {
1444                        .valid = 1,
1445                        .opt_param = {
1446                                [IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1447                                [IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1448                                [IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1449                                [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1450                                [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1451                                [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1452                                [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1453                        }
1454                },
1455        },
1456        [IB_QPS_SQD]   = {
1457                [IB_QPS_RESET] = { .valid = 1 },
1458                [IB_QPS_ERR] =   { .valid = 1 },
1459                [IB_QPS_RTS]   = {
1460                        .valid = 1,
1461                        .opt_param = {
1462                                [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1463                                                IB_QP_QKEY),
1464                                [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1465                                                IB_QP_ALT_PATH                  |
1466                                                IB_QP_ACCESS_FLAGS              |
1467                                                IB_QP_PATH_MIG_STATE),
1468                                [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1469                                                IB_QP_ALT_PATH                  |
1470                                                IB_QP_ACCESS_FLAGS              |
1471                                                IB_QP_MIN_RNR_TIMER             |
1472                                                IB_QP_PATH_MIG_STATE),
1473                                [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1474                                                IB_QP_ALT_PATH                  |
1475                                                IB_QP_ACCESS_FLAGS              |
1476                                                IB_QP_PATH_MIG_STATE),
1477                                [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1478                                                IB_QP_ALT_PATH                  |
1479                                                IB_QP_ACCESS_FLAGS              |
1480                                                IB_QP_MIN_RNR_TIMER             |
1481                                                IB_QP_PATH_MIG_STATE),
1482                                [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1483                                                IB_QP_QKEY),
1484                                [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1485                                                IB_QP_QKEY),
1486                        }
1487                },
1488                [IB_QPS_SQD]   = {
1489                        .valid = 1,
1490                        .opt_param = {
1491                                [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1492                                                IB_QP_QKEY),
1493                                [IB_QPT_UC]  = (IB_QP_AV                        |
1494                                                IB_QP_ALT_PATH                  |
1495                                                IB_QP_ACCESS_FLAGS              |
1496                                                IB_QP_PKEY_INDEX                |
1497                                                IB_QP_PATH_MIG_STATE),
1498                                [IB_QPT_RC]  = (IB_QP_PORT                      |
1499                                                IB_QP_AV                        |
1500                                                IB_QP_TIMEOUT                   |
1501                                                IB_QP_RETRY_CNT                 |
1502                                                IB_QP_RNR_RETRY                 |
1503                                                IB_QP_MAX_QP_RD_ATOMIC          |
1504                                                IB_QP_MAX_DEST_RD_ATOMIC        |
1505                                                IB_QP_ALT_PATH                  |
1506                                                IB_QP_ACCESS_FLAGS              |
1507                                                IB_QP_PKEY_INDEX                |
1508                                                IB_QP_MIN_RNR_TIMER             |
1509                                                IB_QP_PATH_MIG_STATE),
1510                                [IB_QPT_XRC_INI] = (IB_QP_PORT                  |
1511                                                IB_QP_AV                        |
1512                                                IB_QP_TIMEOUT                   |
1513                                                IB_QP_RETRY_CNT                 |
1514                                                IB_QP_RNR_RETRY                 |
1515                                                IB_QP_MAX_QP_RD_ATOMIC          |
1516                                                IB_QP_ALT_PATH                  |
1517                                                IB_QP_ACCESS_FLAGS              |
1518                                                IB_QP_PKEY_INDEX                |
1519                                                IB_QP_PATH_MIG_STATE),
1520                                [IB_QPT_XRC_TGT] = (IB_QP_PORT                  |
1521                                                IB_QP_AV                        |
1522                                                IB_QP_TIMEOUT                   |
1523                                                IB_QP_MAX_DEST_RD_ATOMIC        |
1524                                                IB_QP_ALT_PATH                  |
1525                                                IB_QP_ACCESS_FLAGS              |
1526                                                IB_QP_PKEY_INDEX                |
1527                                                IB_QP_MIN_RNR_TIMER             |
1528                                                IB_QP_PATH_MIG_STATE),
1529                                [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1530                                                IB_QP_QKEY),
1531                                [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1532                                                IB_QP_QKEY),
1533                        }
1534                }
1535        },
1536        [IB_QPS_SQE]   = {
1537                [IB_QPS_RESET] = { .valid = 1 },
1538                [IB_QPS_ERR] =   { .valid = 1 },
1539                [IB_QPS_RTS]   = {
1540                        .valid = 1,
1541                        .opt_param = {
1542                                [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1543                                                IB_QP_QKEY),
1544                                [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1545                                                IB_QP_ACCESS_FLAGS),
1546                                [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1547                                                IB_QP_QKEY),
1548                                [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1549                                                IB_QP_QKEY),
1550                        }
1551                }
1552        },
1553        [IB_QPS_ERR] = {
1554                [IB_QPS_RESET] = { .valid = 1 },
1555                [IB_QPS_ERR] =   { .valid = 1 }
1556        }
1557};
1558
1559bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1560                        enum ib_qp_type type, enum ib_qp_attr_mask mask)
1561{
1562        enum ib_qp_attr_mask req_param, opt_param;
1563
1564        if (mask & IB_QP_CUR_STATE  &&
1565            cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1566            cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1567                return false;
1568
1569        if (!qp_state_table[cur_state][next_state].valid)
1570                return false;
1571
1572        req_param = qp_state_table[cur_state][next_state].req_param[type];
1573        opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1574
1575        if ((mask & req_param) != req_param)
1576                return false;
1577
1578        if (mask & ~(req_param | opt_param | IB_QP_STATE))
1579                return false;
1580
1581        return true;
1582}
1583EXPORT_SYMBOL(ib_modify_qp_is_ok);
1584
1585/**
1586 * ib_resolve_eth_dmac - Resolve destination mac address
1587 * @device:             Device to consider
1588 * @ah_attr:            address handle attribute which describes the
1589 *                      source and destination parameters
1590 * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It
1591 * returns 0 on success or appropriate error code. It initializes the
1592 * necessary ah_attr fields when call is successful.
1593 */
1594static int ib_resolve_eth_dmac(struct ib_device *device,
1595                               struct rdma_ah_attr *ah_attr)
1596{
1597        int ret = 0;
1598
1599        if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1600                if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1601                        __be32 addr = 0;
1602
1603                        memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1604                        ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac);
1605                } else {
1606                        ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1607                                        (char *)ah_attr->roce.dmac);
1608                }
1609        } else {
1610                ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
1611        }
1612        return ret;
1613}
1614
1615static bool is_qp_type_connected(const struct ib_qp *qp)
1616{
1617        return (qp->qp_type == IB_QPT_UC ||
1618                qp->qp_type == IB_QPT_RC ||
1619                qp->qp_type == IB_QPT_XRC_INI ||
1620                qp->qp_type == IB_QPT_XRC_TGT);
1621}
1622
1623/**
1624 * IB core internal function to perform QP attributes modification.
1625 */
1626static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr,
1627                         int attr_mask, struct ib_udata *udata)
1628{
1629        u8 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
1630        const struct ib_gid_attr *old_sgid_attr_av;
1631        const struct ib_gid_attr *old_sgid_attr_alt_av;
1632        int ret;
1633
1634        if (attr_mask & IB_QP_AV) {
1635                ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr,
1636                                          &old_sgid_attr_av);
1637                if (ret)
1638                        return ret;
1639        }
1640        if (attr_mask & IB_QP_ALT_PATH) {
1641                /*
1642                 * FIXME: This does not track the migration state, so if the
1643                 * user loads a new alternate path after the HW has migrated
1644                 * from primary->alternate we will keep the wrong
1645                 * references. This is OK for IB because the reference
1646                 * counting does not serve any functional purpose.
1647                 */
1648                ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr,
1649                                          &old_sgid_attr_alt_av);
1650                if (ret)
1651                        goto out_av;
1652
1653                /*
1654                 * Today the core code can only handle alternate paths and APM
1655                 * for IB. Ban them in roce mode.
1656                 */
1657                if (!(rdma_protocol_ib(qp->device,
1658                                       attr->alt_ah_attr.port_num) &&
1659                      rdma_protocol_ib(qp->device, port))) {
1660                        ret = EINVAL;
1661                        goto out;
1662                }
1663        }
1664
1665        /*
1666         * If the user provided the qp_attr then we have to resolve it. Kernel
1667         * users have to provide already resolved rdma_ah_attr's
1668         */
1669        if (udata && (attr_mask & IB_QP_AV) &&
1670            attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE &&
1671            is_qp_type_connected(qp)) {
1672                ret = ib_resolve_eth_dmac(qp->device, &attr->ah_attr);
1673                if (ret)
1674                        goto out;
1675        }
1676
1677        if (rdma_ib_or_roce(qp->device, port)) {
1678                if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) {
1679                        dev_warn(&qp->device->dev,
1680                                 "%s rq_psn overflow, masking to 24 bits\n",
1681                                 __func__);
1682                        attr->rq_psn &= 0xffffff;
1683                }
1684
1685                if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) {
1686                        dev_warn(&qp->device->dev,
1687                                 " %s sq_psn overflow, masking to 24 bits\n",
1688                                 __func__);
1689                        attr->sq_psn &= 0xffffff;
1690                }
1691        }
1692
1693        /*
1694         * Bind this qp to a counter automatically based on the rdma counter
1695         * rules. This only set in RST2INIT with port specified
1696         */
1697        if (!qp->counter && (attr_mask & IB_QP_PORT) &&
1698            ((attr_mask & IB_QP_STATE) && attr->qp_state == IB_QPS_INIT))
1699                rdma_counter_bind_qp_auto(qp, attr->port_num);
1700
1701        ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
1702        if (ret)
1703                goto out;
1704
1705        if (attr_mask & IB_QP_PORT)
1706                qp->port = attr->port_num;
1707        if (attr_mask & IB_QP_AV)
1708                qp->av_sgid_attr =
1709                        rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr);
1710        if (attr_mask & IB_QP_ALT_PATH)
1711                qp->alt_path_sgid_attr = rdma_update_sgid_attr(
1712                        &attr->alt_ah_attr, qp->alt_path_sgid_attr);
1713
1714out:
1715        if (attr_mask & IB_QP_ALT_PATH)
1716                rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av);
1717out_av:
1718        if (attr_mask & IB_QP_AV)
1719                rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av);
1720        return ret;
1721}
1722
1723/**
1724 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1725 * @ib_qp: The QP to modify.
1726 * @attr: On input, specifies the QP attributes to modify.  On output,
1727 *   the current values of selected QP attributes are returned.
1728 * @attr_mask: A bit-mask used to specify which attributes of the QP
1729 *   are being modified.
1730 * @udata: pointer to user's input output buffer information
1731 *   are being modified.
1732 * It returns 0 on success and returns appropriate error code on error.
1733 */
1734int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr,
1735                            int attr_mask, struct ib_udata *udata)
1736{
1737        return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata);
1738}
1739EXPORT_SYMBOL(ib_modify_qp_with_udata);
1740
1741int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width)
1742{
1743        int rc;
1744        u32 netdev_speed;
1745        struct net_device *netdev;
1746        struct ethtool_link_ksettings lksettings;
1747
1748        if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET)
1749                return -EINVAL;
1750
1751        netdev = ib_device_get_netdev(dev, port_num);
1752        if (!netdev)
1753                return -ENODEV;
1754
1755        rtnl_lock();
1756        rc = __ethtool_get_link_ksettings(netdev, &lksettings);
1757        rtnl_unlock();
1758
1759        dev_put(netdev);
1760
1761        if (!rc) {
1762                netdev_speed = lksettings.base.speed;
1763        } else {
1764                netdev_speed = SPEED_1000;
1765                pr_warn("%s speed is unknown, defaulting to %d\n", netdev->name,
1766                        netdev_speed);
1767        }
1768
1769        if (netdev_speed <= SPEED_1000) {
1770                *width = IB_WIDTH_1X;
1771                *speed = IB_SPEED_SDR;
1772        } else if (netdev_speed <= SPEED_10000) {
1773                *width = IB_WIDTH_1X;
1774                *speed = IB_SPEED_FDR10;
1775        } else if (netdev_speed <= SPEED_20000) {
1776                *width = IB_WIDTH_4X;
1777                *speed = IB_SPEED_DDR;
1778        } else if (netdev_speed <= SPEED_25000) {
1779                *width = IB_WIDTH_1X;
1780                *speed = IB_SPEED_EDR;
1781        } else if (netdev_speed <= SPEED_40000) {
1782                *width = IB_WIDTH_4X;
1783                *speed = IB_SPEED_FDR10;
1784        } else {
1785                *width = IB_WIDTH_4X;
1786                *speed = IB_SPEED_EDR;
1787        }
1788
1789        return 0;
1790}
1791EXPORT_SYMBOL(ib_get_eth_speed);
1792
1793int ib_modify_qp(struct ib_qp *qp,
1794                 struct ib_qp_attr *qp_attr,
1795                 int qp_attr_mask)
1796{
1797        return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1798}
1799EXPORT_SYMBOL(ib_modify_qp);
1800
1801int ib_query_qp(struct ib_qp *qp,
1802                struct ib_qp_attr *qp_attr,
1803                int qp_attr_mask,
1804                struct ib_qp_init_attr *qp_init_attr)
1805{
1806        qp_attr->ah_attr.grh.sgid_attr = NULL;
1807        qp_attr->alt_ah_attr.grh.sgid_attr = NULL;
1808
1809        return qp->device->ops.query_qp ?
1810                qp->device->ops.query_qp(qp->real_qp, qp_attr, qp_attr_mask,
1811                                         qp_init_attr) : -EOPNOTSUPP;
1812}
1813EXPORT_SYMBOL(ib_query_qp);
1814
1815int ib_close_qp(struct ib_qp *qp)
1816{
1817        struct ib_qp *real_qp;
1818        unsigned long flags;
1819
1820        real_qp = qp->real_qp;
1821        if (real_qp == qp)
1822                return -EINVAL;
1823
1824        spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1825        list_del(&qp->open_list);
1826        spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1827
1828        atomic_dec(&real_qp->usecnt);
1829        if (qp->qp_sec)
1830                ib_close_shared_qp_security(qp->qp_sec);
1831        kfree(qp);
1832
1833        return 0;
1834}
1835EXPORT_SYMBOL(ib_close_qp);
1836
1837static int __ib_destroy_shared_qp(struct ib_qp *qp)
1838{
1839        struct ib_xrcd *xrcd;
1840        struct ib_qp *real_qp;
1841        int ret;
1842
1843        real_qp = qp->real_qp;
1844        xrcd = real_qp->xrcd;
1845
1846        mutex_lock(&xrcd->tgt_qp_mutex);
1847        ib_close_qp(qp);
1848        if (atomic_read(&real_qp->usecnt) == 0)
1849                list_del(&real_qp->xrcd_list);
1850        else
1851                real_qp = NULL;
1852        mutex_unlock(&xrcd->tgt_qp_mutex);
1853
1854        if (real_qp) {
1855                ret = ib_destroy_qp(real_qp);
1856                if (!ret)
1857                        atomic_dec(&xrcd->usecnt);
1858                else
1859                        __ib_insert_xrcd_qp(xrcd, real_qp);
1860        }
1861
1862        return 0;
1863}
1864
1865int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata)
1866{
1867        const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr;
1868        const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr;
1869        struct ib_pd *pd;
1870        struct ib_cq *scq, *rcq;
1871        struct ib_srq *srq;
1872        struct ib_rwq_ind_table *ind_tbl;
1873        struct ib_qp_security *sec;
1874        int ret;
1875
1876        WARN_ON_ONCE(qp->mrs_used > 0);
1877
1878        if (atomic_read(&qp->usecnt))
1879                return -EBUSY;
1880
1881        if (qp->real_qp != qp)
1882                return __ib_destroy_shared_qp(qp);
1883
1884        pd   = qp->pd;
1885        scq  = qp->send_cq;
1886        rcq  = qp->recv_cq;
1887        srq  = qp->srq;
1888        ind_tbl = qp->rwq_ind_tbl;
1889        sec  = qp->qp_sec;
1890        if (sec)
1891                ib_destroy_qp_security_begin(sec);
1892
1893        if (!qp->uobject)
1894                rdma_rw_cleanup_mrs(qp);
1895
1896        rdma_counter_unbind_qp(qp, true);
1897        rdma_restrack_del(&qp->res);
1898        ret = qp->device->ops.destroy_qp(qp, udata);
1899        if (!ret) {
1900                if (alt_path_sgid_attr)
1901                        rdma_put_gid_attr(alt_path_sgid_attr);
1902                if (av_sgid_attr)
1903                        rdma_put_gid_attr(av_sgid_attr);
1904                if (pd)
1905                        atomic_dec(&pd->usecnt);
1906                if (scq)
1907                        atomic_dec(&scq->usecnt);
1908                if (rcq)
1909                        atomic_dec(&rcq->usecnt);
1910                if (srq)
1911                        atomic_dec(&srq->usecnt);
1912                if (ind_tbl)
1913                        atomic_dec(&ind_tbl->usecnt);
1914                if (sec)
1915                        ib_destroy_qp_security_end(sec);
1916        } else {
1917                if (sec)
1918                        ib_destroy_qp_security_abort(sec);
1919        }
1920
1921        return ret;
1922}
1923EXPORT_SYMBOL(ib_destroy_qp_user);
1924
1925/* Completion queues */
1926
1927struct ib_cq *__ib_create_cq(struct ib_device *device,
1928                             ib_comp_handler comp_handler,
1929                             void (*event_handler)(struct ib_event *, void *),
1930                             void *cq_context,
1931                             const struct ib_cq_init_attr *cq_attr,
1932                             const char *caller)
1933{
1934        struct ib_cq *cq;
1935        int ret;
1936
1937        cq = rdma_zalloc_drv_obj(device, ib_cq);
1938        if (!cq)
1939                return ERR_PTR(-ENOMEM);
1940
1941        cq->device = device;
1942        cq->uobject = NULL;
1943        cq->comp_handler = comp_handler;
1944        cq->event_handler = event_handler;
1945        cq->cq_context = cq_context;
1946        atomic_set(&cq->usecnt, 0);
1947        cq->res.type = RDMA_RESTRACK_CQ;
1948        rdma_restrack_set_task(&cq->res, caller);
1949
1950        ret = device->ops.create_cq(cq, cq_attr, NULL);
1951        if (ret) {
1952                kfree(cq);
1953                return ERR_PTR(ret);
1954        }
1955
1956        rdma_restrack_kadd(&cq->res);
1957        return cq;
1958}
1959EXPORT_SYMBOL(__ib_create_cq);
1960
1961int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1962{
1963        return cq->device->ops.modify_cq ?
1964                cq->device->ops.modify_cq(cq, cq_count,
1965                                          cq_period) : -EOPNOTSUPP;
1966}
1967EXPORT_SYMBOL(rdma_set_cq_moderation);
1968
1969int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata)
1970{
1971        if (atomic_read(&cq->usecnt))
1972                return -EBUSY;
1973
1974        rdma_restrack_del(&cq->res);
1975        cq->device->ops.destroy_cq(cq, udata);
1976        kfree(cq);
1977        return 0;
1978}
1979EXPORT_SYMBOL(ib_destroy_cq_user);
1980
1981int ib_resize_cq(struct ib_cq *cq, int cqe)
1982{
1983        return cq->device->ops.resize_cq ?
1984                cq->device->ops.resize_cq(cq, cqe, NULL) : -EOPNOTSUPP;
1985}
1986EXPORT_SYMBOL(ib_resize_cq);
1987
1988/* Memory regions */
1989
1990int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata)
1991{
1992        struct ib_pd *pd = mr->pd;
1993        struct ib_dm *dm = mr->dm;
1994        struct ib_sig_attrs *sig_attrs = mr->sig_attrs;
1995        int ret;
1996
1997        rdma_restrack_del(&mr->res);
1998        ret = mr->device->ops.dereg_mr(mr, udata);
1999        if (!ret) {
2000                atomic_dec(&pd->usecnt);
2001                if (dm)
2002                        atomic_dec(&dm->usecnt);
2003                kfree(sig_attrs);
2004        }
2005
2006        return ret;
2007}
2008EXPORT_SYMBOL(ib_dereg_mr_user);
2009
2010/**
2011 * ib_alloc_mr_user() - Allocates a memory region
2012 * @pd:            protection domain associated with the region
2013 * @mr_type:       memory region type
2014 * @max_num_sg:    maximum sg entries available for registration.
2015 * @udata:         user data or null for kernel objects
2016 *
2017 * Notes:
2018 * Memory registeration page/sg lists must not exceed max_num_sg.
2019 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
2020 * max_num_sg * used_page_size.
2021 *
2022 */
2023struct ib_mr *ib_alloc_mr_user(struct ib_pd *pd, enum ib_mr_type mr_type,
2024                               u32 max_num_sg, struct ib_udata *udata)
2025{
2026        struct ib_mr *mr;
2027
2028        if (!pd->device->ops.alloc_mr)
2029                return ERR_PTR(-EOPNOTSUPP);
2030
2031        if (WARN_ON_ONCE(mr_type == IB_MR_TYPE_INTEGRITY))
2032                return ERR_PTR(-EINVAL);
2033
2034        mr = pd->device->ops.alloc_mr(pd, mr_type, max_num_sg, udata);
2035        if (!IS_ERR(mr)) {
2036                mr->device  = pd->device;
2037                mr->pd      = pd;
2038                mr->dm      = NULL;
2039                mr->uobject = NULL;
2040                atomic_inc(&pd->usecnt);
2041                mr->need_inval = false;
2042                mr->res.type = RDMA_RESTRACK_MR;
2043                rdma_restrack_kadd(&mr->res);
2044                mr->type = mr_type;
2045                mr->sig_attrs = NULL;
2046        }
2047
2048        return mr;
2049}
2050EXPORT_SYMBOL(ib_alloc_mr_user);
2051
2052/**
2053 * ib_alloc_mr_integrity() - Allocates an integrity memory region
2054 * @pd:                      protection domain associated with the region
2055 * @max_num_data_sg:         maximum data sg entries available for registration
2056 * @max_num_meta_sg:         maximum metadata sg entries available for
2057 *                           registration
2058 *
2059 * Notes:
2060 * Memory registration page/sg lists must not exceed max_num_sg,
2061 * also the integrity page/sg lists must not exceed max_num_meta_sg.
2062 *
2063 */
2064struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
2065                                    u32 max_num_data_sg,
2066                                    u32 max_num_meta_sg)
2067{
2068        struct ib_mr *mr;
2069        struct ib_sig_attrs *sig_attrs;
2070
2071        if (!pd->device->ops.alloc_mr_integrity ||
2072            !pd->device->ops.map_mr_sg_pi)
2073                return ERR_PTR(-EOPNOTSUPP);
2074
2075        if (!max_num_meta_sg)
2076                return ERR_PTR(-EINVAL);
2077
2078        sig_attrs = kzalloc(sizeof(struct ib_sig_attrs), GFP_KERNEL);
2079        if (!sig_attrs)
2080                return ERR_PTR(-ENOMEM);
2081
2082        mr = pd->device->ops.alloc_mr_integrity(pd, max_num_data_sg,
2083                                                max_num_meta_sg);
2084        if (IS_ERR(mr)) {
2085                kfree(sig_attrs);
2086                return mr;
2087        }
2088
2089        mr->device = pd->device;
2090        mr->pd = pd;
2091        mr->dm = NULL;
2092        mr->uobject = NULL;
2093        atomic_inc(&pd->usecnt);
2094        mr->need_inval = false;
2095        mr->res.type = RDMA_RESTRACK_MR;
2096        rdma_restrack_kadd(&mr->res);
2097        mr->type = IB_MR_TYPE_INTEGRITY;
2098        mr->sig_attrs = sig_attrs;
2099
2100        return mr;
2101}
2102EXPORT_SYMBOL(ib_alloc_mr_integrity);
2103
2104/* "Fast" memory regions */
2105
2106struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2107                            int mr_access_flags,
2108                            struct ib_fmr_attr *fmr_attr)
2109{
2110        struct ib_fmr *fmr;
2111
2112        if (!pd->device->ops.alloc_fmr)
2113                return ERR_PTR(-EOPNOTSUPP);
2114
2115        fmr = pd->device->ops.alloc_fmr(pd, mr_access_flags, fmr_attr);
2116        if (!IS_ERR(fmr)) {
2117                fmr->device = pd->device;
2118                fmr->pd     = pd;
2119                atomic_inc(&pd->usecnt);
2120        }
2121
2122        return fmr;
2123}
2124EXPORT_SYMBOL(ib_alloc_fmr);
2125
2126int ib_unmap_fmr(struct list_head *fmr_list)
2127{
2128        struct ib_fmr *fmr;
2129
2130        if (list_empty(fmr_list))
2131                return 0;
2132
2133        fmr = list_entry(fmr_list->next, struct ib_fmr, list);
2134        return fmr->device->ops.unmap_fmr(fmr_list);
2135}
2136EXPORT_SYMBOL(ib_unmap_fmr);
2137
2138int ib_dealloc_fmr(struct ib_fmr *fmr)
2139{
2140        struct ib_pd *pd;
2141        int ret;
2142
2143        pd = fmr->pd;
2144        ret = fmr->device->ops.dealloc_fmr(fmr);
2145        if (!ret)
2146                atomic_dec(&pd->usecnt);
2147
2148        return ret;
2149}
2150EXPORT_SYMBOL(ib_dealloc_fmr);
2151
2152/* Multicast groups */
2153
2154static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
2155{
2156        struct ib_qp_init_attr init_attr = {};
2157        struct ib_qp_attr attr = {};
2158        int num_eth_ports = 0;
2159        int port;
2160
2161        /* If QP state >= init, it is assigned to a port and we can check this
2162         * port only.
2163         */
2164        if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
2165                if (attr.qp_state >= IB_QPS_INIT) {
2166                        if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
2167                            IB_LINK_LAYER_INFINIBAND)
2168                                return true;
2169                        goto lid_check;
2170                }
2171        }
2172
2173        /* Can't get a quick answer, iterate over all ports */
2174        for (port = 0; port < qp->device->phys_port_cnt; port++)
2175                if (rdma_port_get_link_layer(qp->device, port) !=
2176                    IB_LINK_LAYER_INFINIBAND)
2177                        num_eth_ports++;
2178
2179        /* If we have at lease one Ethernet port, RoCE annex declares that
2180         * multicast LID should be ignored. We can't tell at this step if the
2181         * QP belongs to an IB or Ethernet port.
2182         */
2183        if (num_eth_ports)
2184                return true;
2185
2186        /* If all the ports are IB, we can check according to IB spec. */
2187lid_check:
2188        return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
2189                 lid == be16_to_cpu(IB_LID_PERMISSIVE));
2190}
2191
2192int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2193{
2194        int ret;
2195
2196        if (!qp->device->ops.attach_mcast)
2197                return -EOPNOTSUPP;
2198
2199        if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2200            qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2201                return -EINVAL;
2202
2203        ret = qp->device->ops.attach_mcast(qp, gid, lid);
2204        if (!ret)
2205                atomic_inc(&qp->usecnt);
2206        return ret;
2207}
2208EXPORT_SYMBOL(ib_attach_mcast);
2209
2210int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2211{
2212        int ret;
2213
2214        if (!qp->device->ops.detach_mcast)
2215                return -EOPNOTSUPP;
2216
2217        if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2218            qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2219                return -EINVAL;
2220
2221        ret = qp->device->ops.detach_mcast(qp, gid, lid);
2222        if (!ret)
2223                atomic_dec(&qp->usecnt);
2224        return ret;
2225}
2226EXPORT_SYMBOL(ib_detach_mcast);
2227
2228struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller)
2229{
2230        struct ib_xrcd *xrcd;
2231
2232        if (!device->ops.alloc_xrcd)
2233                return ERR_PTR(-EOPNOTSUPP);
2234
2235        xrcd = device->ops.alloc_xrcd(device, NULL);
2236        if (!IS_ERR(xrcd)) {
2237                xrcd->device = device;
2238                xrcd->inode = NULL;
2239                atomic_set(&xrcd->usecnt, 0);
2240                mutex_init(&xrcd->tgt_qp_mutex);
2241                INIT_LIST_HEAD(&xrcd->tgt_qp_list);
2242        }
2243
2244        return xrcd;
2245}
2246EXPORT_SYMBOL(__ib_alloc_xrcd);
2247
2248int ib_dealloc_xrcd(struct ib_xrcd *xrcd, struct ib_udata *udata)
2249{
2250        struct ib_qp *qp;
2251        int ret;
2252
2253        if (atomic_read(&xrcd->usecnt))
2254                return -EBUSY;
2255
2256        while (!list_empty(&xrcd->tgt_qp_list)) {
2257                qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
2258                ret = ib_destroy_qp(qp);
2259                if (ret)
2260                        return ret;
2261        }
2262
2263        return xrcd->device->ops.dealloc_xrcd(xrcd, udata);
2264}
2265EXPORT_SYMBOL(ib_dealloc_xrcd);
2266
2267/**
2268 * ib_create_wq - Creates a WQ associated with the specified protection
2269 * domain.
2270 * @pd: The protection domain associated with the WQ.
2271 * @wq_attr: A list of initial attributes required to create the
2272 * WQ. If WQ creation succeeds, then the attributes are updated to
2273 * the actual capabilities of the created WQ.
2274 *
2275 * wq_attr->max_wr and wq_attr->max_sge determine
2276 * the requested size of the WQ, and set to the actual values allocated
2277 * on return.
2278 * If ib_create_wq() succeeds, then max_wr and max_sge will always be
2279 * at least as large as the requested values.
2280 */
2281struct ib_wq *ib_create_wq(struct ib_pd *pd,
2282                           struct ib_wq_init_attr *wq_attr)
2283{
2284        struct ib_wq *wq;
2285
2286        if (!pd->device->ops.create_wq)
2287                return ERR_PTR(-EOPNOTSUPP);
2288
2289        wq = pd->device->ops.create_wq(pd, wq_attr, NULL);
2290        if (!IS_ERR(wq)) {
2291                wq->event_handler = wq_attr->event_handler;
2292                wq->wq_context = wq_attr->wq_context;
2293                wq->wq_type = wq_attr->wq_type;
2294                wq->cq = wq_attr->cq;
2295                wq->device = pd->device;
2296                wq->pd = pd;
2297                wq->uobject = NULL;
2298                atomic_inc(&pd->usecnt);
2299                atomic_inc(&wq_attr->cq->usecnt);
2300                atomic_set(&wq->usecnt, 0);
2301        }
2302        return wq;
2303}
2304EXPORT_SYMBOL(ib_create_wq);
2305
2306/**
2307 * ib_destroy_wq - Destroys the specified user WQ.
2308 * @wq: The WQ to destroy.
2309 * @udata: Valid user data
2310 */
2311int ib_destroy_wq(struct ib_wq *wq, struct ib_udata *udata)
2312{
2313        struct ib_cq *cq = wq->cq;
2314        struct ib_pd *pd = wq->pd;
2315
2316        if (atomic_read(&wq->usecnt))
2317                return -EBUSY;
2318
2319        wq->device->ops.destroy_wq(wq, udata);
2320        atomic_dec(&pd->usecnt);
2321        atomic_dec(&cq->usecnt);
2322
2323        return 0;
2324}
2325EXPORT_SYMBOL(ib_destroy_wq);
2326
2327/**
2328 * ib_modify_wq - Modifies the specified WQ.
2329 * @wq: The WQ to modify.
2330 * @wq_attr: On input, specifies the WQ attributes to modify.
2331 * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
2332 *   are being modified.
2333 * On output, the current values of selected WQ attributes are returned.
2334 */
2335int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
2336                 u32 wq_attr_mask)
2337{
2338        int err;
2339
2340        if (!wq->device->ops.modify_wq)
2341                return -EOPNOTSUPP;
2342
2343        err = wq->device->ops.modify_wq(wq, wq_attr, wq_attr_mask, NULL);
2344        return err;
2345}
2346EXPORT_SYMBOL(ib_modify_wq);
2347
2348/*
2349 * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
2350 * @device: The device on which to create the rwq indirection table.
2351 * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
2352 * create the Indirection Table.
2353 *
2354 * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
2355 *      than the created ib_rwq_ind_table object and the caller is responsible
2356 *      for its memory allocation/free.
2357 */
2358struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
2359                                                 struct ib_rwq_ind_table_init_attr *init_attr)
2360{
2361        struct ib_rwq_ind_table *rwq_ind_table;
2362        int i;
2363        u32 table_size;
2364
2365        if (!device->ops.create_rwq_ind_table)
2366                return ERR_PTR(-EOPNOTSUPP);
2367
2368        table_size = (1 << init_attr->log_ind_tbl_size);
2369        rwq_ind_table = device->ops.create_rwq_ind_table(device,
2370                                                         init_attr, NULL);
2371        if (IS_ERR(rwq_ind_table))
2372                return rwq_ind_table;
2373
2374        rwq_ind_table->ind_tbl = init_attr->ind_tbl;
2375        rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
2376        rwq_ind_table->device = device;
2377        rwq_ind_table->uobject = NULL;
2378        atomic_set(&rwq_ind_table->usecnt, 0);
2379
2380        for (i = 0; i < table_size; i++)
2381                atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
2382
2383        return rwq_ind_table;
2384}
2385EXPORT_SYMBOL(ib_create_rwq_ind_table);
2386
2387/*
2388 * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
2389 * @wq_ind_table: The Indirection Table to destroy.
2390*/
2391int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
2392{
2393        int err, i;
2394        u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
2395        struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
2396
2397        if (atomic_read(&rwq_ind_table->usecnt))
2398                return -EBUSY;
2399
2400        err = rwq_ind_table->device->ops.destroy_rwq_ind_table(rwq_ind_table);
2401        if (!err) {
2402                for (i = 0; i < table_size; i++)
2403                        atomic_dec(&ind_tbl[i]->usecnt);
2404        }
2405
2406        return err;
2407}
2408EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
2409
2410int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
2411                       struct ib_mr_status *mr_status)
2412{
2413        if (!mr->device->ops.check_mr_status)
2414                return -EOPNOTSUPP;
2415
2416        return mr->device->ops.check_mr_status(mr, check_mask, mr_status);
2417}
2418EXPORT_SYMBOL(ib_check_mr_status);
2419
2420int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2421                         int state)
2422{
2423        if (!device->ops.set_vf_link_state)
2424                return -EOPNOTSUPP;
2425
2426        return device->ops.set_vf_link_state(device, vf, port, state);
2427}
2428EXPORT_SYMBOL(ib_set_vf_link_state);
2429
2430int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2431                     struct ifla_vf_info *info)
2432{
2433        if (!device->ops.get_vf_config)
2434                return -EOPNOTSUPP;
2435
2436        return device->ops.get_vf_config(device, vf, port, info);
2437}
2438EXPORT_SYMBOL(ib_get_vf_config);
2439
2440int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2441                    struct ifla_vf_stats *stats)
2442{
2443        if (!device->ops.get_vf_stats)
2444                return -EOPNOTSUPP;
2445
2446        return device->ops.get_vf_stats(device, vf, port, stats);
2447}
2448EXPORT_SYMBOL(ib_get_vf_stats);
2449
2450int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2451                   int type)
2452{
2453        if (!device->ops.set_vf_guid)
2454                return -EOPNOTSUPP;
2455
2456        return device->ops.set_vf_guid(device, vf, port, guid, type);
2457}
2458EXPORT_SYMBOL(ib_set_vf_guid);
2459
2460/**
2461 * ib_map_mr_sg_pi() - Map the dma mapped SG lists for PI (protection
2462 *     information) and set an appropriate memory region for registration.
2463 * @mr:             memory region
2464 * @data_sg:        dma mapped scatterlist for data
2465 * @data_sg_nents:  number of entries in data_sg
2466 * @data_sg_offset: offset in bytes into data_sg
2467 * @meta_sg:        dma mapped scatterlist for metadata
2468 * @meta_sg_nents:  number of entries in meta_sg
2469 * @meta_sg_offset: offset in bytes into meta_sg
2470 * @page_size:      page vector desired page size
2471 *
2472 * Constraints:
2473 * - The MR must be allocated with type IB_MR_TYPE_INTEGRITY.
2474 *
2475 * Return: 0 on success.
2476 *
2477 * After this completes successfully, the  memory region
2478 * is ready for registration.
2479 */
2480int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
2481                    int data_sg_nents, unsigned int *data_sg_offset,
2482                    struct scatterlist *meta_sg, int meta_sg_nents,
2483                    unsigned int *meta_sg_offset, unsigned int page_size)
2484{
2485        if (unlikely(!mr->device->ops.map_mr_sg_pi ||
2486                     WARN_ON_ONCE(mr->type != IB_MR_TYPE_INTEGRITY)))
2487                return -EOPNOTSUPP;
2488
2489        mr->page_size = page_size;
2490
2491        return mr->device->ops.map_mr_sg_pi(mr, data_sg, data_sg_nents,
2492                                            data_sg_offset, meta_sg,
2493                                            meta_sg_nents, meta_sg_offset);
2494}
2495EXPORT_SYMBOL(ib_map_mr_sg_pi);
2496
2497/**
2498 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
2499 *     and set it the memory region.
2500 * @mr:            memory region
2501 * @sg:            dma mapped scatterlist
2502 * @sg_nents:      number of entries in sg
2503 * @sg_offset:     offset in bytes into sg
2504 * @page_size:     page vector desired page size
2505 *
2506 * Constraints:
2507 * - The first sg element is allowed to have an offset.
2508 * - Each sg element must either be aligned to page_size or virtually
2509 *   contiguous to the previous element. In case an sg element has a
2510 *   non-contiguous offset, the mapping prefix will not include it.
2511 * - The last sg element is allowed to have length less than page_size.
2512 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
2513 *   then only max_num_sg entries will be mapped.
2514 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
2515 *   constraints holds and the page_size argument is ignored.
2516 *
2517 * Returns the number of sg elements that were mapped to the memory region.
2518 *
2519 * After this completes successfully, the  memory region
2520 * is ready for registration.
2521 */
2522int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2523                 unsigned int *sg_offset, unsigned int page_size)
2524{
2525        if (unlikely(!mr->device->ops.map_mr_sg))
2526                return -EOPNOTSUPP;
2527
2528        mr->page_size = page_size;
2529
2530        return mr->device->ops.map_mr_sg(mr, sg, sg_nents, sg_offset);
2531}
2532EXPORT_SYMBOL(ib_map_mr_sg);
2533
2534/**
2535 * ib_sg_to_pages() - Convert the largest prefix of a sg list
2536 *     to a page vector
2537 * @mr:            memory region
2538 * @sgl:           dma mapped scatterlist
2539 * @sg_nents:      number of entries in sg
2540 * @sg_offset_p:   IN:  start offset in bytes into sg
2541 *                 OUT: offset in bytes for element n of the sg of the first
2542 *                      byte that has not been processed where n is the return
2543 *                      value of this function.
2544 * @set_page:      driver page assignment function pointer
2545 *
2546 * Core service helper for drivers to convert the largest
2547 * prefix of given sg list to a page vector. The sg list
2548 * prefix converted is the prefix that meet the requirements
2549 * of ib_map_mr_sg.
2550 *
2551 * Returns the number of sg elements that were assigned to
2552 * a page vector.
2553 */
2554int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
2555                unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
2556{
2557        struct scatterlist *sg;
2558        u64 last_end_dma_addr = 0;
2559        unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2560        unsigned int last_page_off = 0;
2561        u64 page_mask = ~((u64)mr->page_size - 1);
2562        int i, ret;
2563
2564        if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
2565                return -EINVAL;
2566
2567        mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
2568        mr->length = 0;
2569
2570        for_each_sg(sgl, sg, sg_nents, i) {
2571                u64 dma_addr = sg_dma_address(sg) + sg_offset;
2572                u64 prev_addr = dma_addr;
2573                unsigned int dma_len = sg_dma_len(sg) - sg_offset;
2574                u64 end_dma_addr = dma_addr + dma_len;
2575                u64 page_addr = dma_addr & page_mask;
2576
2577                /*
2578                 * For the second and later elements, check whether either the
2579                 * end of element i-1 or the start of element i is not aligned
2580                 * on a page boundary.
2581                 */
2582                if (i && (last_page_off != 0 || page_addr != dma_addr)) {
2583                        /* Stop mapping if there is a gap. */
2584                        if (last_end_dma_addr != dma_addr)
2585                                break;
2586
2587                        /*
2588                         * Coalesce this element with the last. If it is small
2589                         * enough just update mr->length. Otherwise start
2590                         * mapping from the next page.
2591                         */
2592                        goto next_page;
2593                }
2594
2595                do {
2596                        ret = set_page(mr, page_addr);
2597                        if (unlikely(ret < 0)) {
2598                                sg_offset = prev_addr - sg_dma_address(sg);
2599                                mr->length += prev_addr - dma_addr;
2600                                if (sg_offset_p)
2601                                        *sg_offset_p = sg_offset;
2602                                return i || sg_offset ? i : ret;
2603                        }
2604                        prev_addr = page_addr;
2605next_page:
2606                        page_addr += mr->page_size;
2607                } while (page_addr < end_dma_addr);
2608
2609                mr->length += dma_len;
2610                last_end_dma_addr = end_dma_addr;
2611                last_page_off = end_dma_addr & ~page_mask;
2612
2613                sg_offset = 0;
2614        }
2615
2616        if (sg_offset_p)
2617                *sg_offset_p = 0;
2618        return i;
2619}
2620EXPORT_SYMBOL(ib_sg_to_pages);
2621
2622struct ib_drain_cqe {
2623        struct ib_cqe cqe;
2624        struct completion done;
2625};
2626
2627static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2628{
2629        struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2630                                                cqe);
2631
2632        complete(&cqe->done);
2633}
2634
2635/*
2636 * Post a WR and block until its completion is reaped for the SQ.
2637 */
2638static void __ib_drain_sq(struct ib_qp *qp)
2639{
2640        struct ib_cq *cq = qp->send_cq;
2641        struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2642        struct ib_drain_cqe sdrain;
2643        struct ib_rdma_wr swr = {
2644                .wr = {
2645                        .next = NULL,
2646                        { .wr_cqe       = &sdrain.cqe, },
2647                        .opcode = IB_WR_RDMA_WRITE,
2648                },
2649        };
2650        int ret;
2651
2652        ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2653        if (ret) {
2654                WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2655                return;
2656        }
2657
2658        sdrain.cqe.done = ib_drain_qp_done;
2659        init_completion(&sdrain.done);
2660
2661        ret = ib_post_send(qp, &swr.wr, NULL);
2662        if (ret) {
2663                WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2664                return;
2665        }
2666
2667        if (cq->poll_ctx == IB_POLL_DIRECT)
2668                while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
2669                        ib_process_cq_direct(cq, -1);
2670        else
2671                wait_for_completion(&sdrain.done);
2672}
2673
2674/*
2675 * Post a WR and block until its completion is reaped for the RQ.
2676 */
2677static void __ib_drain_rq(struct ib_qp *qp)
2678{
2679        struct ib_cq *cq = qp->recv_cq;
2680        struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2681        struct ib_drain_cqe rdrain;
2682        struct ib_recv_wr rwr = {};
2683        int ret;
2684
2685        ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2686        if (ret) {
2687                WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2688                return;
2689        }
2690
2691        rwr.wr_cqe = &rdrain.cqe;
2692        rdrain.cqe.done = ib_drain_qp_done;
2693        init_completion(&rdrain.done);
2694
2695        ret = ib_post_recv(qp, &rwr, NULL);
2696        if (ret) {
2697                WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2698                return;
2699        }
2700
2701        if (cq->poll_ctx == IB_POLL_DIRECT)
2702                while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2703                        ib_process_cq_direct(cq, -1);
2704        else
2705                wait_for_completion(&rdrain.done);
2706}
2707
2708/**
2709 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2710 *                 application.
2711 * @qp:            queue pair to drain
2712 *
2713 * If the device has a provider-specific drain function, then
2714 * call that.  Otherwise call the generic drain function
2715 * __ib_drain_sq().
2716 *
2717 * The caller must:
2718 *
2719 * ensure there is room in the CQ and SQ for the drain work request and
2720 * completion.
2721 *
2722 * allocate the CQ using ib_alloc_cq().
2723 *
2724 * ensure that there are no other contexts that are posting WRs concurrently.
2725 * Otherwise the drain is not guaranteed.
2726 */
2727void ib_drain_sq(struct ib_qp *qp)
2728{
2729        if (qp->device->ops.drain_sq)
2730                qp->device->ops.drain_sq(qp);
2731        else
2732                __ib_drain_sq(qp);
2733}
2734EXPORT_SYMBOL(ib_drain_sq);
2735
2736/**
2737 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2738 *                 application.
2739 * @qp:            queue pair to drain
2740 *
2741 * If the device has a provider-specific drain function, then
2742 * call that.  Otherwise call the generic drain function
2743 * __ib_drain_rq().
2744 *
2745 * The caller must:
2746 *
2747 * ensure there is room in the CQ and RQ for the drain work request and
2748 * completion.
2749 *
2750 * allocate the CQ using ib_alloc_cq().
2751 *
2752 * ensure that there are no other contexts that are posting WRs concurrently.
2753 * Otherwise the drain is not guaranteed.
2754 */
2755void ib_drain_rq(struct ib_qp *qp)
2756{
2757        if (qp->device->ops.drain_rq)
2758                qp->device->ops.drain_rq(qp);
2759        else
2760                __ib_drain_rq(qp);
2761}
2762EXPORT_SYMBOL(ib_drain_rq);
2763
2764/**
2765 * ib_drain_qp() - Block until all CQEs have been consumed by the
2766 *                 application on both the RQ and SQ.
2767 * @qp:            queue pair to drain
2768 *
2769 * The caller must:
2770 *
2771 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2772 * and completions.
2773 *
2774 * allocate the CQs using ib_alloc_cq().
2775 *
2776 * ensure that there are no other contexts that are posting WRs concurrently.
2777 * Otherwise the drain is not guaranteed.
2778 */
2779void ib_drain_qp(struct ib_qp *qp)
2780{
2781        ib_drain_sq(qp);
2782        if (!qp->srq)
2783                ib_drain_rq(qp);
2784}
2785EXPORT_SYMBOL(ib_drain_qp);
2786
2787struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num,
2788                                     enum rdma_netdev_t type, const char *name,
2789                                     unsigned char name_assign_type,
2790                                     void (*setup)(struct net_device *))
2791{
2792        struct rdma_netdev_alloc_params params;
2793        struct net_device *netdev;
2794        int rc;
2795
2796        if (!device->ops.rdma_netdev_get_params)
2797                return ERR_PTR(-EOPNOTSUPP);
2798
2799        rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2800                                                &params);
2801        if (rc)
2802                return ERR_PTR(rc);
2803
2804        netdev = alloc_netdev_mqs(params.sizeof_priv, name, name_assign_type,
2805                                  setup, params.txqs, params.rxqs);
2806        if (!netdev)
2807                return ERR_PTR(-ENOMEM);
2808
2809        return netdev;
2810}
2811EXPORT_SYMBOL(rdma_alloc_netdev);
2812
2813int rdma_init_netdev(struct ib_device *device, u8 port_num,
2814                     enum rdma_netdev_t type, const char *name,
2815                     unsigned char name_assign_type,
2816                     void (*setup)(struct net_device *),
2817                     struct net_device *netdev)
2818{
2819        struct rdma_netdev_alloc_params params;
2820        int rc;
2821
2822        if (!device->ops.rdma_netdev_get_params)
2823                return -EOPNOTSUPP;
2824
2825        rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2826                                                &params);
2827        if (rc)
2828                return rc;
2829
2830        return params.initialize_rdma_netdev(device, port_num,
2831                                             netdev, params.param);
2832}
2833EXPORT_SYMBOL(rdma_init_netdev);
2834
2835void __rdma_block_iter_start(struct ib_block_iter *biter,
2836                             struct scatterlist *sglist, unsigned int nents,
2837                             unsigned long pgsz)
2838{
2839        memset(biter, 0, sizeof(struct ib_block_iter));
2840        biter->__sg = sglist;
2841        biter->__sg_nents = nents;
2842
2843        /* Driver provides best block size to use */
2844        biter->__pg_bit = __fls(pgsz);
2845}
2846EXPORT_SYMBOL(__rdma_block_iter_start);
2847
2848bool __rdma_block_iter_next(struct ib_block_iter *biter)
2849{
2850        unsigned int block_offset;
2851
2852        if (!biter->__sg_nents || !biter->__sg)
2853                return false;
2854
2855        biter->__dma_addr = sg_dma_address(biter->__sg) + biter->__sg_advance;
2856        block_offset = biter->__dma_addr & (BIT_ULL(biter->__pg_bit) - 1);
2857        biter->__sg_advance += BIT_ULL(biter->__pg_bit) - block_offset;
2858
2859        if (biter->__sg_advance >= sg_dma_len(biter->__sg)) {
2860                biter->__sg_advance = 0;
2861                biter->__sg = sg_next(biter->__sg);
2862                biter->__sg_nents--;
2863        }
2864
2865        return true;
2866}
2867EXPORT_SYMBOL(__rdma_block_iter_next);
2868