linux/drivers/infiniband/hw/hfi1/sdma.h
<<
>>
Prefs
   1#ifndef _HFI1_SDMA_H
   2#define _HFI1_SDMA_H
   3/*
   4 * Copyright(c) 2015 - 2018 Intel Corporation.
   5 *
   6 * This file is provided under a dual BSD/GPLv2 license.  When using or
   7 * redistributing this file, you may do so under either license.
   8 *
   9 * GPL LICENSE SUMMARY
  10 *
  11 * This program is free software; you can redistribute it and/or modify
  12 * it under the terms of version 2 of the GNU General Public License as
  13 * published by the Free Software Foundation.
  14 *
  15 * This program is distributed in the hope that it will be useful, but
  16 * WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  18 * General Public License for more details.
  19 *
  20 * BSD LICENSE
  21 *
  22 * Redistribution and use in source and binary forms, with or without
  23 * modification, are permitted provided that the following conditions
  24 * are met:
  25 *
  26 *  - Redistributions of source code must retain the above copyright
  27 *    notice, this list of conditions and the following disclaimer.
  28 *  - Redistributions in binary form must reproduce the above copyright
  29 *    notice, this list of conditions and the following disclaimer in
  30 *    the documentation and/or other materials provided with the
  31 *    distribution.
  32 *  - Neither the name of Intel Corporation nor the names of its
  33 *    contributors may be used to endorse or promote products derived
  34 *    from this software without specific prior written permission.
  35 *
  36 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  37 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  38 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  39 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  40 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  42 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  43 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  44 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  45 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  46 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  47 *
  48 */
  49
  50#include <linux/types.h>
  51#include <linux/list.h>
  52#include <asm/byteorder.h>
  53#include <linux/workqueue.h>
  54#include <linux/rculist.h>
  55
  56#include "hfi.h"
  57#include "verbs.h"
  58#include "sdma_txreq.h"
  59
  60/* Hardware limit */
  61#define MAX_DESC 64
  62/* Hardware limit for SDMA packet size */
  63#define MAX_SDMA_PKT_SIZE ((16 * 1024) - 1)
  64
  65#define SDMA_MAP_NONE          0
  66#define SDMA_MAP_SINGLE        1
  67#define SDMA_MAP_PAGE          2
  68
  69#define SDMA_AHG_VALUE_MASK          0xffff
  70#define SDMA_AHG_VALUE_SHIFT         0
  71#define SDMA_AHG_INDEX_MASK          0xf
  72#define SDMA_AHG_INDEX_SHIFT         16
  73#define SDMA_AHG_FIELD_LEN_MASK      0xf
  74#define SDMA_AHG_FIELD_LEN_SHIFT     20
  75#define SDMA_AHG_FIELD_START_MASK    0x1f
  76#define SDMA_AHG_FIELD_START_SHIFT   24
  77#define SDMA_AHG_UPDATE_ENABLE_MASK  0x1
  78#define SDMA_AHG_UPDATE_ENABLE_SHIFT 31
  79
  80/* AHG modes */
  81
  82/*
  83 * Be aware the ordering and values
  84 * for SDMA_AHG_APPLY_UPDATE[123]
  85 * are assumed in generating a skip
  86 * count in submit_tx() in sdma.c
  87 */
  88#define SDMA_AHG_NO_AHG              0
  89#define SDMA_AHG_COPY                1
  90#define SDMA_AHG_APPLY_UPDATE1       2
  91#define SDMA_AHG_APPLY_UPDATE2       3
  92#define SDMA_AHG_APPLY_UPDATE3       4
  93
  94/*
  95 * Bits defined in the send DMA descriptor.
  96 */
  97#define SDMA_DESC0_FIRST_DESC_FLAG      BIT_ULL(63)
  98#define SDMA_DESC0_LAST_DESC_FLAG       BIT_ULL(62)
  99#define SDMA_DESC0_BYTE_COUNT_SHIFT     48
 100#define SDMA_DESC0_BYTE_COUNT_WIDTH     14
 101#define SDMA_DESC0_BYTE_COUNT_MASK \
 102        ((1ULL << SDMA_DESC0_BYTE_COUNT_WIDTH) - 1)
 103#define SDMA_DESC0_BYTE_COUNT_SMASK \
 104        (SDMA_DESC0_BYTE_COUNT_MASK << SDMA_DESC0_BYTE_COUNT_SHIFT)
 105#define SDMA_DESC0_PHY_ADDR_SHIFT       0
 106#define SDMA_DESC0_PHY_ADDR_WIDTH       48
 107#define SDMA_DESC0_PHY_ADDR_MASK \
 108        ((1ULL << SDMA_DESC0_PHY_ADDR_WIDTH) - 1)
 109#define SDMA_DESC0_PHY_ADDR_SMASK \
 110        (SDMA_DESC0_PHY_ADDR_MASK << SDMA_DESC0_PHY_ADDR_SHIFT)
 111
 112#define SDMA_DESC1_HEADER_UPDATE1_SHIFT 32
 113#define SDMA_DESC1_HEADER_UPDATE1_WIDTH 32
 114#define SDMA_DESC1_HEADER_UPDATE1_MASK \
 115        ((1ULL << SDMA_DESC1_HEADER_UPDATE1_WIDTH) - 1)
 116#define SDMA_DESC1_HEADER_UPDATE1_SMASK \
 117        (SDMA_DESC1_HEADER_UPDATE1_MASK << SDMA_DESC1_HEADER_UPDATE1_SHIFT)
 118#define SDMA_DESC1_HEADER_MODE_SHIFT    13
 119#define SDMA_DESC1_HEADER_MODE_WIDTH    3
 120#define SDMA_DESC1_HEADER_MODE_MASK \
 121        ((1ULL << SDMA_DESC1_HEADER_MODE_WIDTH) - 1)
 122#define SDMA_DESC1_HEADER_MODE_SMASK \
 123        (SDMA_DESC1_HEADER_MODE_MASK << SDMA_DESC1_HEADER_MODE_SHIFT)
 124#define SDMA_DESC1_HEADER_INDEX_SHIFT   8
 125#define SDMA_DESC1_HEADER_INDEX_WIDTH   5
 126#define SDMA_DESC1_HEADER_INDEX_MASK \
 127        ((1ULL << SDMA_DESC1_HEADER_INDEX_WIDTH) - 1)
 128#define SDMA_DESC1_HEADER_INDEX_SMASK \
 129        (SDMA_DESC1_HEADER_INDEX_MASK << SDMA_DESC1_HEADER_INDEX_SHIFT)
 130#define SDMA_DESC1_HEADER_DWS_SHIFT     4
 131#define SDMA_DESC1_HEADER_DWS_WIDTH     4
 132#define SDMA_DESC1_HEADER_DWS_MASK \
 133        ((1ULL << SDMA_DESC1_HEADER_DWS_WIDTH) - 1)
 134#define SDMA_DESC1_HEADER_DWS_SMASK \
 135        (SDMA_DESC1_HEADER_DWS_MASK << SDMA_DESC1_HEADER_DWS_SHIFT)
 136#define SDMA_DESC1_GENERATION_SHIFT     2
 137#define SDMA_DESC1_GENERATION_WIDTH     2
 138#define SDMA_DESC1_GENERATION_MASK \
 139        ((1ULL << SDMA_DESC1_GENERATION_WIDTH) - 1)
 140#define SDMA_DESC1_GENERATION_SMASK \
 141        (SDMA_DESC1_GENERATION_MASK << SDMA_DESC1_GENERATION_SHIFT)
 142#define SDMA_DESC1_INT_REQ_FLAG         BIT_ULL(1)
 143#define SDMA_DESC1_HEAD_TO_HOST_FLAG    BIT_ULL(0)
 144
 145enum sdma_states {
 146        sdma_state_s00_hw_down,
 147        sdma_state_s10_hw_start_up_halt_wait,
 148        sdma_state_s15_hw_start_up_clean_wait,
 149        sdma_state_s20_idle,
 150        sdma_state_s30_sw_clean_up_wait,
 151        sdma_state_s40_hw_clean_up_wait,
 152        sdma_state_s50_hw_halt_wait,
 153        sdma_state_s60_idle_halt_wait,
 154        sdma_state_s80_hw_freeze,
 155        sdma_state_s82_freeze_sw_clean,
 156        sdma_state_s99_running,
 157};
 158
 159enum sdma_events {
 160        sdma_event_e00_go_hw_down,
 161        sdma_event_e10_go_hw_start,
 162        sdma_event_e15_hw_halt_done,
 163        sdma_event_e25_hw_clean_up_done,
 164        sdma_event_e30_go_running,
 165        sdma_event_e40_sw_cleaned,
 166        sdma_event_e50_hw_cleaned,
 167        sdma_event_e60_hw_halted,
 168        sdma_event_e70_go_idle,
 169        sdma_event_e80_hw_freeze,
 170        sdma_event_e81_hw_frozen,
 171        sdma_event_e82_hw_unfreeze,
 172        sdma_event_e85_link_down,
 173        sdma_event_e90_sw_halted,
 174};
 175
 176struct sdma_set_state_action {
 177        unsigned op_enable:1;
 178        unsigned op_intenable:1;
 179        unsigned op_halt:1;
 180        unsigned op_cleanup:1;
 181        unsigned go_s99_running_tofalse:1;
 182        unsigned go_s99_running_totrue:1;
 183};
 184
 185struct sdma_state {
 186        struct kref          kref;
 187        struct completion    comp;
 188        enum sdma_states current_state;
 189        unsigned             current_op;
 190        unsigned             go_s99_running;
 191        /* debugging/development */
 192        enum sdma_states previous_state;
 193        unsigned             previous_op;
 194        enum sdma_events last_event;
 195};
 196
 197/**
 198 * DOC: sdma exported routines
 199 *
 200 * These sdma routines fit into three categories:
 201 * - The SDMA API for building and submitting packets
 202 *   to the ring
 203 *
 204 * - Initialization and tear down routines to buildup
 205 *   and tear down SDMA
 206 *
 207 * - ISR entrances to handle interrupts, state changes
 208 *   and errors
 209 */
 210
 211/**
 212 * DOC: sdma PSM/verbs API
 213 *
 214 * The sdma API is designed to be used by both PSM
 215 * and verbs to supply packets to the SDMA ring.
 216 *
 217 * The usage of the API is as follows:
 218 *
 219 * Embed a struct iowait in the QP or
 220 * PQ.  The iowait should be initialized with a
 221 * call to iowait_init().
 222 *
 223 * The user of the API should create an allocation method
 224 * for their version of the txreq. slabs, pre-allocated lists,
 225 * and dma pools can be used.  Once the user's overload of
 226 * the sdma_txreq has been allocated, the sdma_txreq member
 227 * must be initialized with sdma_txinit() or sdma_txinit_ahg().
 228 *
 229 * The txreq must be declared with the sdma_txreq first.
 230 *
 231 * The tx request, once initialized,  is manipulated with calls to
 232 * sdma_txadd_daddr(), sdma_txadd_page(), or sdma_txadd_kvaddr()
 233 * for each disjoint memory location.  It is the user's responsibility
 234 * to understand the packet boundaries and page boundaries to do the
 235 * appropriate number of sdma_txadd_* calls..  The user
 236 * must be prepared to deal with failures from these routines due to
 237 * either memory allocation or dma_mapping failures.
 238 *
 239 * The mapping specifics for each memory location are recorded
 240 * in the tx. Memory locations added with sdma_txadd_page()
 241 * and sdma_txadd_kvaddr() are automatically mapped when added
 242 * to the tx and nmapped as part of the progress processing in the
 243 * SDMA interrupt handling.
 244 *
 245 * sdma_txadd_daddr() is used to add an dma_addr_t memory to the
 246 * tx.   An example of a use case would be a pre-allocated
 247 * set of headers allocated via dma_pool_alloc() or
 248 * dma_alloc_coherent().  For these memory locations, it
 249 * is the responsibility of the user to handle that unmapping.
 250 * (This would usually be at an unload or job termination.)
 251 *
 252 * The routine sdma_send_txreq() is used to submit
 253 * a tx to the ring after the appropriate number of
 254 * sdma_txadd_* have been done.
 255 *
 256 * If it is desired to send a burst of sdma_txreqs, sdma_send_txlist()
 257 * can be used to submit a list of packets.
 258 *
 259 * The user is free to use the link overhead in the struct sdma_txreq as
 260 * long as the tx isn't in flight.
 261 *
 262 * The extreme degenerate case of the number of descriptors
 263 * exceeding the ring size is automatically handled as
 264 * memory locations are added.  An overflow of the descriptor
 265 * array that is part of the sdma_txreq is also automatically
 266 * handled.
 267 *
 268 */
 269
 270/**
 271 * DOC: Infrastructure calls
 272 *
 273 * sdma_init() is used to initialize data structures and
 274 * CSRs for the desired number of SDMA engines.
 275 *
 276 * sdma_start() is used to kick the SDMA engines initialized
 277 * with sdma_init().   Interrupts must be enabled at this
 278 * point since aspects of the state machine are interrupt
 279 * driven.
 280 *
 281 * sdma_engine_error() and sdma_engine_interrupt() are
 282 * entrances for interrupts.
 283 *
 284 * sdma_map_init() is for the management of the mapping
 285 * table when the number of vls is changed.
 286 *
 287 */
 288
 289/*
 290 * struct hw_sdma_desc - raw 128 bit SDMA descriptor
 291 *
 292 * This is the raw descriptor in the SDMA ring
 293 */
 294struct hw_sdma_desc {
 295        /* private:  don't use directly */
 296        __le64 qw[2];
 297};
 298
 299/**
 300 * struct sdma_engine - Data pertaining to each SDMA engine.
 301 * @dd: a back-pointer to the device data
 302 * @ppd: per port back-pointer
 303 * @imask: mask for irq manipulation
 304 * @idle_mask: mask for determining if an interrupt is due to sdma_idle
 305 *
 306 * This structure has the state for each sdma_engine.
 307 *
 308 * Accessing to non public fields are not supported
 309 * since the private members are subject to change.
 310 */
 311struct sdma_engine {
 312        /* read mostly */
 313        struct hfi1_devdata *dd;
 314        struct hfi1_pportdata *ppd;
 315        /* private: */
 316        void __iomem *tail_csr;
 317        u64 imask;                      /* clear interrupt mask */
 318        u64 idle_mask;
 319        u64 progress_mask;
 320        u64 int_mask;
 321        /* private: */
 322        volatile __le64      *head_dma; /* DMA'ed by chip */
 323        /* private: */
 324        dma_addr_t            head_phys;
 325        /* private: */
 326        struct hw_sdma_desc *descq;
 327        /* private: */
 328        unsigned descq_full_count;
 329        struct sdma_txreq **tx_ring;
 330        /* private: */
 331        dma_addr_t            descq_phys;
 332        /* private */
 333        u32 sdma_mask;
 334        /* private */
 335        struct sdma_state state;
 336        /* private */
 337        int cpu;
 338        /* private: */
 339        u8 sdma_shift;
 340        /* private: */
 341        u8 this_idx; /* zero relative engine */
 342        /* protect changes to senddmactrl shadow */
 343        spinlock_t senddmactrl_lock;
 344        /* private: */
 345        u64 p_senddmactrl;              /* shadow per-engine SendDmaCtrl */
 346
 347        /* read/write using tail_lock */
 348        spinlock_t            tail_lock ____cacheline_aligned_in_smp;
 349#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
 350        /* private: */
 351        u64                   tail_sn;
 352#endif
 353        /* private: */
 354        u32                   descq_tail;
 355        /* private: */
 356        unsigned long         ahg_bits;
 357        /* private: */
 358        u16                   desc_avail;
 359        /* private: */
 360        u16                   tx_tail;
 361        /* private: */
 362        u16 descq_cnt;
 363
 364        /* read/write using head_lock */
 365        /* private: */
 366        seqlock_t            head_lock ____cacheline_aligned_in_smp;
 367#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
 368        /* private: */
 369        u64                   head_sn;
 370#endif
 371        /* private: */
 372        u32                   descq_head;
 373        /* private: */
 374        u16                   tx_head;
 375        /* private: */
 376        u64                   last_status;
 377        /* private */
 378        u64                     err_cnt;
 379        /* private */
 380        u64                     sdma_int_cnt;
 381        u64                     idle_int_cnt;
 382        u64                     progress_int_cnt;
 383
 384        /* private: */
 385        seqlock_t            waitlock;
 386        struct list_head      dmawait;
 387
 388        /* CONFIG SDMA for now, just blindly duplicate */
 389        /* private: */
 390        struct tasklet_struct sdma_hw_clean_up_task
 391                ____cacheline_aligned_in_smp;
 392
 393        /* private: */
 394        struct tasklet_struct sdma_sw_clean_up_task
 395                ____cacheline_aligned_in_smp;
 396        /* private: */
 397        struct work_struct err_halt_worker;
 398        /* private */
 399        struct timer_list     err_progress_check_timer;
 400        u32                   progress_check_head;
 401        /* private: */
 402        struct work_struct flush_worker;
 403        /* protect flush list */
 404        spinlock_t flushlist_lock;
 405        /* private: */
 406        struct list_head flushlist;
 407        struct cpumask cpu_mask;
 408        struct kobject kobj;
 409        u32 msix_intr;
 410};
 411
 412int sdma_init(struct hfi1_devdata *dd, u8 port);
 413void sdma_start(struct hfi1_devdata *dd);
 414void sdma_exit(struct hfi1_devdata *dd);
 415void sdma_clean(struct hfi1_devdata *dd, size_t num_engines);
 416void sdma_all_running(struct hfi1_devdata *dd);
 417void sdma_all_idle(struct hfi1_devdata *dd);
 418void sdma_freeze_notify(struct hfi1_devdata *dd, int go_idle);
 419void sdma_freeze(struct hfi1_devdata *dd);
 420void sdma_unfreeze(struct hfi1_devdata *dd);
 421void sdma_wait(struct hfi1_devdata *dd);
 422
 423/**
 424 * sdma_empty() - idle engine test
 425 * @engine: sdma engine
 426 *
 427 * Currently used by verbs as a latency optimization.
 428 *
 429 * Return:
 430 * 1 - empty, 0 - non-empty
 431 */
 432static inline int sdma_empty(struct sdma_engine *sde)
 433{
 434        return sde->descq_tail == sde->descq_head;
 435}
 436
 437static inline u16 sdma_descq_freecnt(struct sdma_engine *sde)
 438{
 439        return sde->descq_cnt -
 440                (sde->descq_tail -
 441                 READ_ONCE(sde->descq_head)) - 1;
 442}
 443
 444static inline u16 sdma_descq_inprocess(struct sdma_engine *sde)
 445{
 446        return sde->descq_cnt - sdma_descq_freecnt(sde);
 447}
 448
 449/*
 450 * Either head_lock or tail lock required to see
 451 * a steady state.
 452 */
 453static inline int __sdma_running(struct sdma_engine *engine)
 454{
 455        return engine->state.current_state == sdma_state_s99_running;
 456}
 457
 458/**
 459 * sdma_running() - state suitability test
 460 * @engine: sdma engine
 461 *
 462 * sdma_running probes the internal state to determine if it is suitable
 463 * for submitting packets.
 464 *
 465 * Return:
 466 * 1 - ok to submit, 0 - not ok to submit
 467 *
 468 */
 469static inline int sdma_running(struct sdma_engine *engine)
 470{
 471        unsigned long flags;
 472        int ret;
 473
 474        spin_lock_irqsave(&engine->tail_lock, flags);
 475        ret = __sdma_running(engine);
 476        spin_unlock_irqrestore(&engine->tail_lock, flags);
 477        return ret;
 478}
 479
 480void _sdma_txreq_ahgadd(
 481        struct sdma_txreq *tx,
 482        u8 num_ahg,
 483        u8 ahg_entry,
 484        u32 *ahg,
 485        u8 ahg_hlen);
 486
 487/**
 488 * sdma_txinit_ahg() - initialize an sdma_txreq struct with AHG
 489 * @tx: tx request to initialize
 490 * @flags: flags to key last descriptor additions
 491 * @tlen: total packet length (pbc + headers + data)
 492 * @ahg_entry: ahg entry to use  (0 - 31)
 493 * @num_ahg: ahg descriptor for first descriptor (0 - 9)
 494 * @ahg: array of AHG descriptors (up to 9 entries)
 495 * @ahg_hlen: number of bytes from ASIC entry to use
 496 * @cb: callback
 497 *
 498 * The allocation of the sdma_txreq and it enclosing structure is user
 499 * dependent.  This routine must be called to initialize the user independent
 500 * fields.
 501 *
 502 * The currently supported flags are SDMA_TXREQ_F_URGENT,
 503 * SDMA_TXREQ_F_AHG_COPY, and SDMA_TXREQ_F_USE_AHG.
 504 *
 505 * SDMA_TXREQ_F_URGENT is used for latency sensitive situations where the
 506 * completion is desired as soon as possible.
 507 *
 508 * SDMA_TXREQ_F_AHG_COPY causes the header in the first descriptor to be
 509 * copied to chip entry. SDMA_TXREQ_F_USE_AHG causes the code to add in
 510 * the AHG descriptors into the first 1 to 3 descriptors.
 511 *
 512 * Completions of submitted requests can be gotten on selected
 513 * txreqs by giving a completion routine callback to sdma_txinit() or
 514 * sdma_txinit_ahg().  The environment in which the callback runs
 515 * can be from an ISR, a tasklet, or a thread, so no sleeping
 516 * kernel routines can be used.   Aspects of the sdma ring may
 517 * be locked so care should be taken with locking.
 518 *
 519 * The callback pointer can be NULL to avoid any callback for the packet
 520 * being submitted. The callback will be provided this tx, a status, and a flag.
 521 *
 522 * The status will be one of SDMA_TXREQ_S_OK, SDMA_TXREQ_S_SENDERROR,
 523 * SDMA_TXREQ_S_ABORTED, or SDMA_TXREQ_S_SHUTDOWN.
 524 *
 525 * The flag, if the is the iowait had been used, indicates the iowait
 526 * sdma_busy count has reached zero.
 527 *
 528 * user data portion of tlen should be precise.   The sdma_txadd_* entrances
 529 * will pad with a descriptor references 1 - 3 bytes when the number of bytes
 530 * specified in tlen have been supplied to the sdma_txreq.
 531 *
 532 * ahg_hlen is used to determine the number of on-chip entry bytes to
 533 * use as the header.   This is for cases where the stored header is
 534 * larger than the header to be used in a packet.  This is typical
 535 * for verbs where an RDMA_WRITE_FIRST is larger than the packet in
 536 * and RDMA_WRITE_MIDDLE.
 537 *
 538 */
 539static inline int sdma_txinit_ahg(
 540        struct sdma_txreq *tx,
 541        u16 flags,
 542        u16 tlen,
 543        u8 ahg_entry,
 544        u8 num_ahg,
 545        u32 *ahg,
 546        u8 ahg_hlen,
 547        void (*cb)(struct sdma_txreq *, int))
 548{
 549        if (tlen == 0)
 550                return -ENODATA;
 551        if (tlen > MAX_SDMA_PKT_SIZE)
 552                return -EMSGSIZE;
 553        tx->desc_limit = ARRAY_SIZE(tx->descs);
 554        tx->descp = &tx->descs[0];
 555        INIT_LIST_HEAD(&tx->list);
 556        tx->num_desc = 0;
 557        tx->flags = flags;
 558        tx->complete = cb;
 559        tx->coalesce_buf = NULL;
 560        tx->wait = NULL;
 561        tx->packet_len = tlen;
 562        tx->tlen = tx->packet_len;
 563        tx->descs[0].qw[0] = SDMA_DESC0_FIRST_DESC_FLAG;
 564        tx->descs[0].qw[1] = 0;
 565        if (flags & SDMA_TXREQ_F_AHG_COPY)
 566                tx->descs[0].qw[1] |=
 567                        (((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK)
 568                                << SDMA_DESC1_HEADER_INDEX_SHIFT) |
 569                        (((u64)SDMA_AHG_COPY & SDMA_DESC1_HEADER_MODE_MASK)
 570                                << SDMA_DESC1_HEADER_MODE_SHIFT);
 571        else if (flags & SDMA_TXREQ_F_USE_AHG && num_ahg)
 572                _sdma_txreq_ahgadd(tx, num_ahg, ahg_entry, ahg, ahg_hlen);
 573        return 0;
 574}
 575
 576/**
 577 * sdma_txinit() - initialize an sdma_txreq struct (no AHG)
 578 * @tx: tx request to initialize
 579 * @flags: flags to key last descriptor additions
 580 * @tlen: total packet length (pbc + headers + data)
 581 * @cb: callback pointer
 582 *
 583 * The allocation of the sdma_txreq and it enclosing structure is user
 584 * dependent.  This routine must be called to initialize the user
 585 * independent fields.
 586 *
 587 * The currently supported flags is SDMA_TXREQ_F_URGENT.
 588 *
 589 * SDMA_TXREQ_F_URGENT is used for latency sensitive situations where the
 590 * completion is desired as soon as possible.
 591 *
 592 * Completions of submitted requests can be gotten on selected
 593 * txreqs by giving a completion routine callback to sdma_txinit() or
 594 * sdma_txinit_ahg().  The environment in which the callback runs
 595 * can be from an ISR, a tasklet, or a thread, so no sleeping
 596 * kernel routines can be used.   The head size of the sdma ring may
 597 * be locked so care should be taken with locking.
 598 *
 599 * The callback pointer can be NULL to avoid any callback for the packet
 600 * being submitted.
 601 *
 602 * The callback, if non-NULL,  will be provided this tx and a status.  The
 603 * status will be one of SDMA_TXREQ_S_OK, SDMA_TXREQ_S_SENDERROR,
 604 * SDMA_TXREQ_S_ABORTED, or SDMA_TXREQ_S_SHUTDOWN.
 605 *
 606 */
 607static inline int sdma_txinit(
 608        struct sdma_txreq *tx,
 609        u16 flags,
 610        u16 tlen,
 611        void (*cb)(struct sdma_txreq *, int))
 612{
 613        return sdma_txinit_ahg(tx, flags, tlen, 0, 0, NULL, 0, cb);
 614}
 615
 616/* helpers - don't use */
 617static inline int sdma_mapping_type(struct sdma_desc *d)
 618{
 619        return (d->qw[1] & SDMA_DESC1_GENERATION_SMASK)
 620                >> SDMA_DESC1_GENERATION_SHIFT;
 621}
 622
 623static inline size_t sdma_mapping_len(struct sdma_desc *d)
 624{
 625        return (d->qw[0] & SDMA_DESC0_BYTE_COUNT_SMASK)
 626                >> SDMA_DESC0_BYTE_COUNT_SHIFT;
 627}
 628
 629static inline dma_addr_t sdma_mapping_addr(struct sdma_desc *d)
 630{
 631        return (d->qw[0] & SDMA_DESC0_PHY_ADDR_SMASK)
 632                >> SDMA_DESC0_PHY_ADDR_SHIFT;
 633}
 634
 635static inline void make_tx_sdma_desc(
 636        struct sdma_txreq *tx,
 637        int type,
 638        dma_addr_t addr,
 639        size_t len)
 640{
 641        struct sdma_desc *desc = &tx->descp[tx->num_desc];
 642
 643        if (!tx->num_desc) {
 644                /* qw[0] zero; qw[1] first, ahg mode already in from init */
 645                desc->qw[1] |= ((u64)type & SDMA_DESC1_GENERATION_MASK)
 646                                << SDMA_DESC1_GENERATION_SHIFT;
 647        } else {
 648                desc->qw[0] = 0;
 649                desc->qw[1] = ((u64)type & SDMA_DESC1_GENERATION_MASK)
 650                                << SDMA_DESC1_GENERATION_SHIFT;
 651        }
 652        desc->qw[0] |= (((u64)addr & SDMA_DESC0_PHY_ADDR_MASK)
 653                                << SDMA_DESC0_PHY_ADDR_SHIFT) |
 654                        (((u64)len & SDMA_DESC0_BYTE_COUNT_MASK)
 655                                << SDMA_DESC0_BYTE_COUNT_SHIFT);
 656}
 657
 658/* helper to extend txreq */
 659int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx,
 660                           int type, void *kvaddr, struct page *page,
 661                           unsigned long offset, u16 len);
 662int _pad_sdma_tx_descs(struct hfi1_devdata *, struct sdma_txreq *);
 663void __sdma_txclean(struct hfi1_devdata *, struct sdma_txreq *);
 664
 665static inline void sdma_txclean(struct hfi1_devdata *dd, struct sdma_txreq *tx)
 666{
 667        if (tx->num_desc)
 668                __sdma_txclean(dd, tx);
 669}
 670
 671/* helpers used by public routines */
 672static inline void _sdma_close_tx(struct hfi1_devdata *dd,
 673                                  struct sdma_txreq *tx)
 674{
 675        tx->descp[tx->num_desc].qw[0] |=
 676                SDMA_DESC0_LAST_DESC_FLAG;
 677        tx->descp[tx->num_desc].qw[1] |=
 678                dd->default_desc1;
 679        if (tx->flags & SDMA_TXREQ_F_URGENT)
 680                tx->descp[tx->num_desc].qw[1] |=
 681                        (SDMA_DESC1_HEAD_TO_HOST_FLAG |
 682                         SDMA_DESC1_INT_REQ_FLAG);
 683}
 684
 685static inline int _sdma_txadd_daddr(
 686        struct hfi1_devdata *dd,
 687        int type,
 688        struct sdma_txreq *tx,
 689        dma_addr_t addr,
 690        u16 len)
 691{
 692        int rval = 0;
 693
 694        make_tx_sdma_desc(
 695                tx,
 696                type,
 697                addr, len);
 698        WARN_ON(len > tx->tlen);
 699        tx->tlen -= len;
 700        /* special cases for last */
 701        if (!tx->tlen) {
 702                if (tx->packet_len & (sizeof(u32) - 1)) {
 703                        rval = _pad_sdma_tx_descs(dd, tx);
 704                        if (rval)
 705                                return rval;
 706                } else {
 707                        _sdma_close_tx(dd, tx);
 708                }
 709        }
 710        tx->num_desc++;
 711        return rval;
 712}
 713
 714/**
 715 * sdma_txadd_page() - add a page to the sdma_txreq
 716 * @dd: the device to use for mapping
 717 * @tx: tx request to which the page is added
 718 * @page: page to map
 719 * @offset: offset within the page
 720 * @len: length in bytes
 721 *
 722 * This is used to add a page/offset/length descriptor.
 723 *
 724 * The mapping/unmapping of the page/offset/len is automatically handled.
 725 *
 726 * Return:
 727 * 0 - success, -ENOSPC - mapping fail, -ENOMEM - couldn't
 728 * extend/coalesce descriptor array
 729 */
 730static inline int sdma_txadd_page(
 731        struct hfi1_devdata *dd,
 732        struct sdma_txreq *tx,
 733        struct page *page,
 734        unsigned long offset,
 735        u16 len)
 736{
 737        dma_addr_t addr;
 738        int rval;
 739
 740        if ((unlikely(tx->num_desc == tx->desc_limit))) {
 741                rval = ext_coal_sdma_tx_descs(dd, tx, SDMA_MAP_PAGE,
 742                                              NULL, page, offset, len);
 743                if (rval <= 0)
 744                        return rval;
 745        }
 746
 747        addr = dma_map_page(
 748                       &dd->pcidev->dev,
 749                       page,
 750                       offset,
 751                       len,
 752                       DMA_TO_DEVICE);
 753
 754        if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
 755                __sdma_txclean(dd, tx);
 756                return -ENOSPC;
 757        }
 758
 759        return _sdma_txadd_daddr(
 760                        dd, SDMA_MAP_PAGE, tx, addr, len);
 761}
 762
 763/**
 764 * sdma_txadd_daddr() - add a dma address to the sdma_txreq
 765 * @dd: the device to use for mapping
 766 * @tx: sdma_txreq to which the page is added
 767 * @addr: dma address mapped by caller
 768 * @len: length in bytes
 769 *
 770 * This is used to add a descriptor for memory that is already dma mapped.
 771 *
 772 * In this case, there is no unmapping as part of the progress processing for
 773 * this memory location.
 774 *
 775 * Return:
 776 * 0 - success, -ENOMEM - couldn't extend descriptor array
 777 */
 778
 779static inline int sdma_txadd_daddr(
 780        struct hfi1_devdata *dd,
 781        struct sdma_txreq *tx,
 782        dma_addr_t addr,
 783        u16 len)
 784{
 785        int rval;
 786
 787        if ((unlikely(tx->num_desc == tx->desc_limit))) {
 788                rval = ext_coal_sdma_tx_descs(dd, tx, SDMA_MAP_NONE,
 789                                              NULL, NULL, 0, 0);
 790                if (rval <= 0)
 791                        return rval;
 792        }
 793
 794        return _sdma_txadd_daddr(dd, SDMA_MAP_NONE, tx, addr, len);
 795}
 796
 797/**
 798 * sdma_txadd_kvaddr() - add a kernel virtual address to sdma_txreq
 799 * @dd: the device to use for mapping
 800 * @tx: sdma_txreq to which the page is added
 801 * @kvaddr: the kernel virtual address
 802 * @len: length in bytes
 803 *
 804 * This is used to add a descriptor referenced by the indicated kvaddr and
 805 * len.
 806 *
 807 * The mapping/unmapping of the kvaddr and len is automatically handled.
 808 *
 809 * Return:
 810 * 0 - success, -ENOSPC - mapping fail, -ENOMEM - couldn't extend/coalesce
 811 * descriptor array
 812 */
 813static inline int sdma_txadd_kvaddr(
 814        struct hfi1_devdata *dd,
 815        struct sdma_txreq *tx,
 816        void *kvaddr,
 817        u16 len)
 818{
 819        dma_addr_t addr;
 820        int rval;
 821
 822        if ((unlikely(tx->num_desc == tx->desc_limit))) {
 823                rval = ext_coal_sdma_tx_descs(dd, tx, SDMA_MAP_SINGLE,
 824                                              kvaddr, NULL, 0, len);
 825                if (rval <= 0)
 826                        return rval;
 827        }
 828
 829        addr = dma_map_single(
 830                       &dd->pcidev->dev,
 831                       kvaddr,
 832                       len,
 833                       DMA_TO_DEVICE);
 834
 835        if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
 836                __sdma_txclean(dd, tx);
 837                return -ENOSPC;
 838        }
 839
 840        return _sdma_txadd_daddr(
 841                        dd, SDMA_MAP_SINGLE, tx, addr, len);
 842}
 843
 844struct iowait_work;
 845
 846int sdma_send_txreq(struct sdma_engine *sde,
 847                    struct iowait_work *wait,
 848                    struct sdma_txreq *tx,
 849                    bool pkts_sent);
 850int sdma_send_txlist(struct sdma_engine *sde,
 851                     struct iowait_work *wait,
 852                     struct list_head *tx_list,
 853                     u16 *count_out);
 854
 855int sdma_ahg_alloc(struct sdma_engine *sde);
 856void sdma_ahg_free(struct sdma_engine *sde, int ahg_index);
 857
 858/**
 859 * sdma_build_ahg - build ahg descriptor
 860 * @data
 861 * @dwindex
 862 * @startbit
 863 * @bits
 864 *
 865 * Build and return a 32 bit descriptor.
 866 */
 867static inline u32 sdma_build_ahg_descriptor(
 868        u16 data,
 869        u8 dwindex,
 870        u8 startbit,
 871        u8 bits)
 872{
 873        return (u32)(1UL << SDMA_AHG_UPDATE_ENABLE_SHIFT |
 874                ((startbit & SDMA_AHG_FIELD_START_MASK) <<
 875                SDMA_AHG_FIELD_START_SHIFT) |
 876                ((bits & SDMA_AHG_FIELD_LEN_MASK) <<
 877                SDMA_AHG_FIELD_LEN_SHIFT) |
 878                ((dwindex & SDMA_AHG_INDEX_MASK) <<
 879                SDMA_AHG_INDEX_SHIFT) |
 880                ((data & SDMA_AHG_VALUE_MASK) <<
 881                SDMA_AHG_VALUE_SHIFT));
 882}
 883
 884/**
 885 * sdma_progress - use seq number of detect head progress
 886 * @sde: sdma_engine to check
 887 * @seq: base seq count
 888 * @tx: txreq for which we need to check descriptor availability
 889 *
 890 * This is used in the appropriate spot in the sleep routine
 891 * to check for potential ring progress.  This routine gets the
 892 * seqcount before queuing the iowait structure for progress.
 893 *
 894 * If the seqcount indicates that progress needs to be checked,
 895 * re-submission is detected by checking whether the descriptor
 896 * queue has enough descriptor for the txreq.
 897 */
 898static inline unsigned sdma_progress(struct sdma_engine *sde, unsigned seq,
 899                                     struct sdma_txreq *tx)
 900{
 901        if (read_seqretry(&sde->head_lock, seq)) {
 902                sde->desc_avail = sdma_descq_freecnt(sde);
 903                if (tx->num_desc > sde->desc_avail)
 904                        return 0;
 905                return 1;
 906        }
 907        return 0;
 908}
 909
 910/**
 911 * sdma_iowait_schedule() - initialize wait structure
 912 * @sde: sdma_engine to schedule
 913 * @wait: wait struct to schedule
 914 *
 915 * This function initializes the iowait
 916 * structure embedded in the QP or PQ.
 917 *
 918 */
 919static inline void sdma_iowait_schedule(
 920        struct sdma_engine *sde,
 921        struct iowait *wait)
 922{
 923        struct hfi1_pportdata *ppd = sde->dd->pport;
 924
 925        iowait_schedule(wait, ppd->hfi1_wq, sde->cpu);
 926}
 927
 928/* for use by interrupt handling */
 929void sdma_engine_error(struct sdma_engine *sde, u64 status);
 930void sdma_engine_interrupt(struct sdma_engine *sde, u64 status);
 931
 932/*
 933 *
 934 * The diagram below details the relationship of the mapping structures
 935 *
 936 * Since the mapping now allows for non-uniform engines per vl, the
 937 * number of engines for a vl is either the vl_engines[vl] or
 938 * a computation based on num_sdma/num_vls:
 939 *
 940 * For example:
 941 * nactual = vl_engines ? vl_engines[vl] : num_sdma/num_vls
 942 *
 943 * n = roundup to next highest power of 2 using nactual
 944 *
 945 * In the case where there are num_sdma/num_vls doesn't divide
 946 * evenly, the extras are added from the last vl downward.
 947 *
 948 * For the case where n > nactual, the engines are assigned
 949 * in a round robin fashion wrapping back to the first engine
 950 * for a particular vl.
 951 *
 952 *               dd->sdma_map
 953 *                    |                                   sdma_map_elem[0]
 954 *                    |                                +--------------------+
 955 *                    v                                |       mask         |
 956 *               sdma_vl_map                           |--------------------|
 957 *      +--------------------------+                   | sde[0] -> eng 1    |
 958 *      |    list (RCU)            |                   |--------------------|
 959 *      |--------------------------|                 ->| sde[1] -> eng 2    |
 960 *      |    mask                  |              --/  |--------------------|
 961 *      |--------------------------|            -/     |        *           |
 962 *      |    actual_vls (max 8)    |          -/       |--------------------|
 963 *      |--------------------------|       --/         | sde[n-1] -> eng n  |
 964 *      |    vls (max 8)           |     -/            +--------------------+
 965 *      |--------------------------|  --/
 966 *      |    map[0]                |-/
 967 *      |--------------------------|                   +---------------------+
 968 *      |    map[1]                |---                |       mask          |
 969 *      |--------------------------|   \----           |---------------------|
 970 *      |           *              |        \--        | sde[0] -> eng 1+n   |
 971 *      |           *              |           \----   |---------------------|
 972 *      |           *              |                \->| sde[1] -> eng 2+n   |
 973 *      |--------------------------|                   |---------------------|
 974 *      |   map[vls - 1]           |-                  |         *           |
 975 *      +--------------------------+ \-                |---------------------|
 976 *                                     \-              | sde[m-1] -> eng m+n |
 977 *                                       \             +---------------------+
 978 *                                        \-
 979 *                                          \
 980 *                                           \-        +----------------------+
 981 *                                             \-      |       mask           |
 982 *                                               \     |----------------------|
 983 *                                                \-   | sde[0] -> eng 1+m+n  |
 984 *                                                  \- |----------------------|
 985 *                                                    >| sde[1] -> eng 2+m+n  |
 986 *                                                     |----------------------|
 987 *                                                     |         *            |
 988 *                                                     |----------------------|
 989 *                                                     | sde[o-1] -> eng o+m+n|
 990 *                                                     +----------------------+
 991 *
 992 */
 993
 994/**
 995 * struct sdma_map_elem - mapping for a vl
 996 * @mask - selector mask
 997 * @sde - array of engines for this vl
 998 *
 999 * The mask is used to "mod" the selector
1000 * to produce index into the trailing
1001 * array of sdes.
1002 */
1003struct sdma_map_elem {
1004        u32 mask;
1005        struct sdma_engine *sde[0];
1006};
1007
1008/**
1009 * struct sdma_map_el - mapping for a vl
1010 * @engine_to_vl - map of an engine to a vl
1011 * @list - rcu head for free callback
1012 * @mask - vl mask to "mod" the vl to produce an index to map array
1013 * @actual_vls - number of vls
1014 * @vls - number of vls rounded to next power of 2
1015 * @map - array of sdma_map_elem entries
1016 *
1017 * This is the parent mapping structure.  The trailing
1018 * members of the struct point to sdma_map_elem entries, which
1019 * in turn point to an array of sde's for that vl.
1020 */
1021struct sdma_vl_map {
1022        s8 engine_to_vl[TXE_NUM_SDMA_ENGINES];
1023        struct rcu_head list;
1024        u32 mask;
1025        u8 actual_vls;
1026        u8 vls;
1027        struct sdma_map_elem *map[0];
1028};
1029
1030int sdma_map_init(
1031        struct hfi1_devdata *dd,
1032        u8 port,
1033        u8 num_vls,
1034        u8 *vl_engines);
1035
1036/* slow path */
1037void _sdma_engine_progress_schedule(struct sdma_engine *sde);
1038
1039/**
1040 * sdma_engine_progress_schedule() - schedule progress on engine
1041 * @sde: sdma_engine to schedule progress
1042 *
1043 * This is the fast path.
1044 *
1045 */
1046static inline void sdma_engine_progress_schedule(
1047        struct sdma_engine *sde)
1048{
1049        if (!sde || sdma_descq_inprocess(sde) < (sde->descq_cnt / 8))
1050                return;
1051        _sdma_engine_progress_schedule(sde);
1052}
1053
1054struct sdma_engine *sdma_select_engine_sc(
1055        struct hfi1_devdata *dd,
1056        u32 selector,
1057        u8 sc5);
1058
1059struct sdma_engine *sdma_select_engine_vl(
1060        struct hfi1_devdata *dd,
1061        u32 selector,
1062        u8 vl);
1063
1064struct sdma_engine *sdma_select_user_engine(struct hfi1_devdata *dd,
1065                                            u32 selector, u8 vl);
1066ssize_t sdma_get_cpu_to_sde_map(struct sdma_engine *sde, char *buf);
1067ssize_t sdma_set_cpu_to_sde_map(struct sdma_engine *sde, const char *buf,
1068                                size_t count);
1069int sdma_engine_get_vl(struct sdma_engine *sde);
1070void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *);
1071void sdma_seqfile_dump_cpu_list(struct seq_file *s, struct hfi1_devdata *dd,
1072                                unsigned long cpuid);
1073
1074#ifdef CONFIG_SDMA_VERBOSITY
1075void sdma_dumpstate(struct sdma_engine *);
1076#endif
1077static inline char *slashstrip(char *s)
1078{
1079        char *r = s;
1080
1081        while (*s)
1082                if (*s++ == '/')
1083                        r = s;
1084        return r;
1085}
1086
1087u16 sdma_get_descq_cnt(void);
1088
1089extern uint mod_num_sdma;
1090
1091void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid);
1092
1093#endif
1094