linux/drivers/infiniband/sw/rdmavt/qp.c
<<
>>
Prefs
   1/*
   2 * Copyright(c) 2016 - 2019 Intel Corporation.
   3 *
   4 * This file is provided under a dual BSD/GPLv2 license.  When using or
   5 * redistributing this file, you may do so under either license.
   6 *
   7 * GPL LICENSE SUMMARY
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of version 2 of the GNU General Public License as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16 * General Public License for more details.
  17 *
  18 * BSD LICENSE
  19 *
  20 * Redistribution and use in source and binary forms, with or without
  21 * modification, are permitted provided that the following conditions
  22 * are met:
  23 *
  24 *  - Redistributions of source code must retain the above copyright
  25 *    notice, this list of conditions and the following disclaimer.
  26 *  - Redistributions in binary form must reproduce the above copyright
  27 *    notice, this list of conditions and the following disclaimer in
  28 *    the documentation and/or other materials provided with the
  29 *    distribution.
  30 *  - Neither the name of Intel Corporation nor the names of its
  31 *    contributors may be used to endorse or promote products derived
  32 *    from this software without specific prior written permission.
  33 *
  34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  45 *
  46 */
  47
  48#include <linux/hash.h>
  49#include <linux/bitops.h>
  50#include <linux/lockdep.h>
  51#include <linux/vmalloc.h>
  52#include <linux/slab.h>
  53#include <rdma/ib_verbs.h>
  54#include <rdma/ib_hdrs.h>
  55#include <rdma/opa_addr.h>
  56#include <rdma/uverbs_ioctl.h>
  57#include "qp.h"
  58#include "vt.h"
  59#include "trace.h"
  60
  61#define RVT_RWQ_COUNT_THRESHOLD 16
  62
  63static void rvt_rc_timeout(struct timer_list *t);
  64
  65/*
  66 * Convert the AETH RNR timeout code into the number of microseconds.
  67 */
  68static const u32 ib_rvt_rnr_table[32] = {
  69        655360, /* 00: 655.36 */
  70        10,     /* 01:    .01 */
  71        20,     /* 02     .02 */
  72        30,     /* 03:    .03 */
  73        40,     /* 04:    .04 */
  74        60,     /* 05:    .06 */
  75        80,     /* 06:    .08 */
  76        120,    /* 07:    .12 */
  77        160,    /* 08:    .16 */
  78        240,    /* 09:    .24 */
  79        320,    /* 0A:    .32 */
  80        480,    /* 0B:    .48 */
  81        640,    /* 0C:    .64 */
  82        960,    /* 0D:    .96 */
  83        1280,   /* 0E:   1.28 */
  84        1920,   /* 0F:   1.92 */
  85        2560,   /* 10:   2.56 */
  86        3840,   /* 11:   3.84 */
  87        5120,   /* 12:   5.12 */
  88        7680,   /* 13:   7.68 */
  89        10240,  /* 14:  10.24 */
  90        15360,  /* 15:  15.36 */
  91        20480,  /* 16:  20.48 */
  92        30720,  /* 17:  30.72 */
  93        40960,  /* 18:  40.96 */
  94        61440,  /* 19:  61.44 */
  95        81920,  /* 1A:  81.92 */
  96        122880, /* 1B: 122.88 */
  97        163840, /* 1C: 163.84 */
  98        245760, /* 1D: 245.76 */
  99        327680, /* 1E: 327.68 */
 100        491520  /* 1F: 491.52 */
 101};
 102
 103/*
 104 * Note that it is OK to post send work requests in the SQE and ERR
 105 * states; rvt_do_send() will process them and generate error
 106 * completions as per IB 1.2 C10-96.
 107 */
 108const int ib_rvt_state_ops[IB_QPS_ERR + 1] = {
 109        [IB_QPS_RESET] = 0,
 110        [IB_QPS_INIT] = RVT_POST_RECV_OK,
 111        [IB_QPS_RTR] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK,
 112        [IB_QPS_RTS] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
 113            RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK |
 114            RVT_PROCESS_NEXT_SEND_OK,
 115        [IB_QPS_SQD] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
 116            RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK,
 117        [IB_QPS_SQE] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
 118            RVT_POST_SEND_OK | RVT_FLUSH_SEND,
 119        [IB_QPS_ERR] = RVT_POST_RECV_OK | RVT_FLUSH_RECV |
 120            RVT_POST_SEND_OK | RVT_FLUSH_SEND,
 121};
 122EXPORT_SYMBOL(ib_rvt_state_ops);
 123
 124/* platform specific: return the last level cache (llc) size, in KiB */
 125static int rvt_wss_llc_size(void)
 126{
 127        /* assume that the boot CPU value is universal for all CPUs */
 128        return boot_cpu_data.x86_cache_size;
 129}
 130
 131/* platform specific: cacheless copy */
 132static void cacheless_memcpy(void *dst, void *src, size_t n)
 133{
 134        /*
 135         * Use the only available X64 cacheless copy.  Add a __user cast
 136         * to quiet sparse.  The src agument is already in the kernel so
 137         * there are no security issues.  The extra fault recovery machinery
 138         * is not invoked.
 139         */
 140        __copy_user_nocache(dst, (void __user *)src, n, 0);
 141}
 142
 143void rvt_wss_exit(struct rvt_dev_info *rdi)
 144{
 145        struct rvt_wss *wss = rdi->wss;
 146
 147        if (!wss)
 148                return;
 149
 150        /* coded to handle partially initialized and repeat callers */
 151        kfree(wss->entries);
 152        wss->entries = NULL;
 153        kfree(rdi->wss);
 154        rdi->wss = NULL;
 155}
 156
 157/**
 158 * rvt_wss_init - Init wss data structures
 159 *
 160 * Return: 0 on success
 161 */
 162int rvt_wss_init(struct rvt_dev_info *rdi)
 163{
 164        unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode;
 165        unsigned int wss_threshold = rdi->dparms.wss_threshold;
 166        unsigned int wss_clean_period = rdi->dparms.wss_clean_period;
 167        long llc_size;
 168        long llc_bits;
 169        long table_size;
 170        long table_bits;
 171        struct rvt_wss *wss;
 172        int node = rdi->dparms.node;
 173
 174        if (sge_copy_mode != RVT_SGE_COPY_ADAPTIVE) {
 175                rdi->wss = NULL;
 176                return 0;
 177        }
 178
 179        rdi->wss = kzalloc_node(sizeof(*rdi->wss), GFP_KERNEL, node);
 180        if (!rdi->wss)
 181                return -ENOMEM;
 182        wss = rdi->wss;
 183
 184        /* check for a valid percent range - default to 80 if none or invalid */
 185        if (wss_threshold < 1 || wss_threshold > 100)
 186                wss_threshold = 80;
 187
 188        /* reject a wildly large period */
 189        if (wss_clean_period > 1000000)
 190                wss_clean_period = 256;
 191
 192        /* reject a zero period */
 193        if (wss_clean_period == 0)
 194                wss_clean_period = 1;
 195
 196        /*
 197         * Calculate the table size - the next power of 2 larger than the
 198         * LLC size.  LLC size is in KiB.
 199         */
 200        llc_size = rvt_wss_llc_size() * 1024;
 201        table_size = roundup_pow_of_two(llc_size);
 202
 203        /* one bit per page in rounded up table */
 204        llc_bits = llc_size / PAGE_SIZE;
 205        table_bits = table_size / PAGE_SIZE;
 206        wss->pages_mask = table_bits - 1;
 207        wss->num_entries = table_bits / BITS_PER_LONG;
 208
 209        wss->threshold = (llc_bits * wss_threshold) / 100;
 210        if (wss->threshold == 0)
 211                wss->threshold = 1;
 212
 213        wss->clean_period = wss_clean_period;
 214        atomic_set(&wss->clean_counter, wss_clean_period);
 215
 216        wss->entries = kcalloc_node(wss->num_entries, sizeof(*wss->entries),
 217                                    GFP_KERNEL, node);
 218        if (!wss->entries) {
 219                rvt_wss_exit(rdi);
 220                return -ENOMEM;
 221        }
 222
 223        return 0;
 224}
 225
 226/*
 227 * Advance the clean counter.  When the clean period has expired,
 228 * clean an entry.
 229 *
 230 * This is implemented in atomics to avoid locking.  Because multiple
 231 * variables are involved, it can be racy which can lead to slightly
 232 * inaccurate information.  Since this is only a heuristic, this is
 233 * OK.  Any innaccuracies will clean themselves out as the counter
 234 * advances.  That said, it is unlikely the entry clean operation will
 235 * race - the next possible racer will not start until the next clean
 236 * period.
 237 *
 238 * The clean counter is implemented as a decrement to zero.  When zero
 239 * is reached an entry is cleaned.
 240 */
 241static void wss_advance_clean_counter(struct rvt_wss *wss)
 242{
 243        int entry;
 244        int weight;
 245        unsigned long bits;
 246
 247        /* become the cleaner if we decrement the counter to zero */
 248        if (atomic_dec_and_test(&wss->clean_counter)) {
 249                /*
 250                 * Set, not add, the clean period.  This avoids an issue
 251                 * where the counter could decrement below the clean period.
 252                 * Doing a set can result in lost decrements, slowing the
 253                 * clean advance.  Since this a heuristic, this possible
 254                 * slowdown is OK.
 255                 *
 256                 * An alternative is to loop, advancing the counter by a
 257                 * clean period until the result is > 0. However, this could
 258                 * lead to several threads keeping another in the clean loop.
 259                 * This could be mitigated by limiting the number of times
 260                 * we stay in the loop.
 261                 */
 262                atomic_set(&wss->clean_counter, wss->clean_period);
 263
 264                /*
 265                 * Uniquely grab the entry to clean and move to next.
 266                 * The current entry is always the lower bits of
 267                 * wss.clean_entry.  The table size, wss.num_entries,
 268                 * is always a power-of-2.
 269                 */
 270                entry = (atomic_inc_return(&wss->clean_entry) - 1)
 271                        & (wss->num_entries - 1);
 272
 273                /* clear the entry and count the bits */
 274                bits = xchg(&wss->entries[entry], 0);
 275                weight = hweight64((u64)bits);
 276                /* only adjust the contended total count if needed */
 277                if (weight)
 278                        atomic_sub(weight, &wss->total_count);
 279        }
 280}
 281
 282/*
 283 * Insert the given address into the working set array.
 284 */
 285static void wss_insert(struct rvt_wss *wss, void *address)
 286{
 287        u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss->pages_mask;
 288        u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */
 289        u32 nr = page & (BITS_PER_LONG - 1);
 290
 291        if (!test_and_set_bit(nr, &wss->entries[entry]))
 292                atomic_inc(&wss->total_count);
 293
 294        wss_advance_clean_counter(wss);
 295}
 296
 297/*
 298 * Is the working set larger than the threshold?
 299 */
 300static inline bool wss_exceeds_threshold(struct rvt_wss *wss)
 301{
 302        return atomic_read(&wss->total_count) >= wss->threshold;
 303}
 304
 305static void get_map_page(struct rvt_qpn_table *qpt,
 306                         struct rvt_qpn_map *map)
 307{
 308        unsigned long page = get_zeroed_page(GFP_KERNEL);
 309
 310        /*
 311         * Free the page if someone raced with us installing it.
 312         */
 313
 314        spin_lock(&qpt->lock);
 315        if (map->page)
 316                free_page(page);
 317        else
 318                map->page = (void *)page;
 319        spin_unlock(&qpt->lock);
 320}
 321
 322/**
 323 * init_qpn_table - initialize the QP number table for a device
 324 * @qpt: the QPN table
 325 */
 326static int init_qpn_table(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt)
 327{
 328        u32 offset, i;
 329        struct rvt_qpn_map *map;
 330        int ret = 0;
 331
 332        if (!(rdi->dparms.qpn_res_end >= rdi->dparms.qpn_res_start))
 333                return -EINVAL;
 334
 335        spin_lock_init(&qpt->lock);
 336
 337        qpt->last = rdi->dparms.qpn_start;
 338        qpt->incr = rdi->dparms.qpn_inc << rdi->dparms.qos_shift;
 339
 340        /*
 341         * Drivers may want some QPs beyond what we need for verbs let them use
 342         * our qpn table. No need for two. Lets go ahead and mark the bitmaps
 343         * for those. The reserved range must be *after* the range which verbs
 344         * will pick from.
 345         */
 346
 347        /* Figure out number of bit maps needed before reserved range */
 348        qpt->nmaps = rdi->dparms.qpn_res_start / RVT_BITS_PER_PAGE;
 349
 350        /* This should always be zero */
 351        offset = rdi->dparms.qpn_res_start & RVT_BITS_PER_PAGE_MASK;
 352
 353        /* Starting with the first reserved bit map */
 354        map = &qpt->map[qpt->nmaps];
 355
 356        rvt_pr_info(rdi, "Reserving QPNs from 0x%x to 0x%x for non-verbs use\n",
 357                    rdi->dparms.qpn_res_start, rdi->dparms.qpn_res_end);
 358        for (i = rdi->dparms.qpn_res_start; i <= rdi->dparms.qpn_res_end; i++) {
 359                if (!map->page) {
 360                        get_map_page(qpt, map);
 361                        if (!map->page) {
 362                                ret = -ENOMEM;
 363                                break;
 364                        }
 365                }
 366                set_bit(offset, map->page);
 367                offset++;
 368                if (offset == RVT_BITS_PER_PAGE) {
 369                        /* next page */
 370                        qpt->nmaps++;
 371                        map++;
 372                        offset = 0;
 373                }
 374        }
 375        return ret;
 376}
 377
 378/**
 379 * free_qpn_table - free the QP number table for a device
 380 * @qpt: the QPN table
 381 */
 382static void free_qpn_table(struct rvt_qpn_table *qpt)
 383{
 384        int i;
 385
 386        for (i = 0; i < ARRAY_SIZE(qpt->map); i++)
 387                free_page((unsigned long)qpt->map[i].page);
 388}
 389
 390/**
 391 * rvt_driver_qp_init - Init driver qp resources
 392 * @rdi: rvt dev strucutre
 393 *
 394 * Return: 0 on success
 395 */
 396int rvt_driver_qp_init(struct rvt_dev_info *rdi)
 397{
 398        int i;
 399        int ret = -ENOMEM;
 400
 401        if (!rdi->dparms.qp_table_size)
 402                return -EINVAL;
 403
 404        /*
 405         * If driver is not doing any QP allocation then make sure it is
 406         * providing the necessary QP functions.
 407         */
 408        if (!rdi->driver_f.free_all_qps ||
 409            !rdi->driver_f.qp_priv_alloc ||
 410            !rdi->driver_f.qp_priv_free ||
 411            !rdi->driver_f.notify_qp_reset ||
 412            !rdi->driver_f.notify_restart_rc)
 413                return -EINVAL;
 414
 415        /* allocate parent object */
 416        rdi->qp_dev = kzalloc_node(sizeof(*rdi->qp_dev), GFP_KERNEL,
 417                                   rdi->dparms.node);
 418        if (!rdi->qp_dev)
 419                return -ENOMEM;
 420
 421        /* allocate hash table */
 422        rdi->qp_dev->qp_table_size = rdi->dparms.qp_table_size;
 423        rdi->qp_dev->qp_table_bits = ilog2(rdi->dparms.qp_table_size);
 424        rdi->qp_dev->qp_table =
 425                kmalloc_array_node(rdi->qp_dev->qp_table_size,
 426                             sizeof(*rdi->qp_dev->qp_table),
 427                             GFP_KERNEL, rdi->dparms.node);
 428        if (!rdi->qp_dev->qp_table)
 429                goto no_qp_table;
 430
 431        for (i = 0; i < rdi->qp_dev->qp_table_size; i++)
 432                RCU_INIT_POINTER(rdi->qp_dev->qp_table[i], NULL);
 433
 434        spin_lock_init(&rdi->qp_dev->qpt_lock);
 435
 436        /* initialize qpn map */
 437        if (init_qpn_table(rdi, &rdi->qp_dev->qpn_table))
 438                goto fail_table;
 439
 440        spin_lock_init(&rdi->n_qps_lock);
 441
 442        return 0;
 443
 444fail_table:
 445        kfree(rdi->qp_dev->qp_table);
 446        free_qpn_table(&rdi->qp_dev->qpn_table);
 447
 448no_qp_table:
 449        kfree(rdi->qp_dev);
 450
 451        return ret;
 452}
 453
 454/**
 455 * free_all_qps - check for QPs still in use
 456 * @rdi: rvt device info structure
 457 *
 458 * There should not be any QPs still in use.
 459 * Free memory for table.
 460 */
 461static unsigned rvt_free_all_qps(struct rvt_dev_info *rdi)
 462{
 463        unsigned long flags;
 464        struct rvt_qp *qp;
 465        unsigned n, qp_inuse = 0;
 466        spinlock_t *ql; /* work around too long line below */
 467
 468        if (rdi->driver_f.free_all_qps)
 469                qp_inuse = rdi->driver_f.free_all_qps(rdi);
 470
 471        qp_inuse += rvt_mcast_tree_empty(rdi);
 472
 473        if (!rdi->qp_dev)
 474                return qp_inuse;
 475
 476        ql = &rdi->qp_dev->qpt_lock;
 477        spin_lock_irqsave(ql, flags);
 478        for (n = 0; n < rdi->qp_dev->qp_table_size; n++) {
 479                qp = rcu_dereference_protected(rdi->qp_dev->qp_table[n],
 480                                               lockdep_is_held(ql));
 481                RCU_INIT_POINTER(rdi->qp_dev->qp_table[n], NULL);
 482
 483                for (; qp; qp = rcu_dereference_protected(qp->next,
 484                                                          lockdep_is_held(ql)))
 485                        qp_inuse++;
 486        }
 487        spin_unlock_irqrestore(ql, flags);
 488        synchronize_rcu();
 489        return qp_inuse;
 490}
 491
 492/**
 493 * rvt_qp_exit - clean up qps on device exit
 494 * @rdi: rvt dev structure
 495 *
 496 * Check for qp leaks and free resources.
 497 */
 498void rvt_qp_exit(struct rvt_dev_info *rdi)
 499{
 500        u32 qps_inuse = rvt_free_all_qps(rdi);
 501
 502        if (qps_inuse)
 503                rvt_pr_err(rdi, "QP memory leak! %u still in use\n",
 504                           qps_inuse);
 505        if (!rdi->qp_dev)
 506                return;
 507
 508        kfree(rdi->qp_dev->qp_table);
 509        free_qpn_table(&rdi->qp_dev->qpn_table);
 510        kfree(rdi->qp_dev);
 511}
 512
 513static inline unsigned mk_qpn(struct rvt_qpn_table *qpt,
 514                              struct rvt_qpn_map *map, unsigned off)
 515{
 516        return (map - qpt->map) * RVT_BITS_PER_PAGE + off;
 517}
 518
 519/**
 520 * alloc_qpn - Allocate the next available qpn or zero/one for QP type
 521 *             IB_QPT_SMI/IB_QPT_GSI
 522 * @rdi: rvt device info structure
 523 * @qpt: queue pair number table pointer
 524 * @port_num: IB port number, 1 based, comes from core
 525 *
 526 * Return: The queue pair number
 527 */
 528static int alloc_qpn(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt,
 529                     enum ib_qp_type type, u8 port_num)
 530{
 531        u32 i, offset, max_scan, qpn;
 532        struct rvt_qpn_map *map;
 533        u32 ret;
 534
 535        if (rdi->driver_f.alloc_qpn)
 536                return rdi->driver_f.alloc_qpn(rdi, qpt, type, port_num);
 537
 538        if (type == IB_QPT_SMI || type == IB_QPT_GSI) {
 539                unsigned n;
 540
 541                ret = type == IB_QPT_GSI;
 542                n = 1 << (ret + 2 * (port_num - 1));
 543                spin_lock(&qpt->lock);
 544                if (qpt->flags & n)
 545                        ret = -EINVAL;
 546                else
 547                        qpt->flags |= n;
 548                spin_unlock(&qpt->lock);
 549                goto bail;
 550        }
 551
 552        qpn = qpt->last + qpt->incr;
 553        if (qpn >= RVT_QPN_MAX)
 554                qpn = qpt->incr | ((qpt->last & 1) ^ 1);
 555        /* offset carries bit 0 */
 556        offset = qpn & RVT_BITS_PER_PAGE_MASK;
 557        map = &qpt->map[qpn / RVT_BITS_PER_PAGE];
 558        max_scan = qpt->nmaps - !offset;
 559        for (i = 0;;) {
 560                if (unlikely(!map->page)) {
 561                        get_map_page(qpt, map);
 562                        if (unlikely(!map->page))
 563                                break;
 564                }
 565                do {
 566                        if (!test_and_set_bit(offset, map->page)) {
 567                                qpt->last = qpn;
 568                                ret = qpn;
 569                                goto bail;
 570                        }
 571                        offset += qpt->incr;
 572                        /*
 573                         * This qpn might be bogus if offset >= BITS_PER_PAGE.
 574                         * That is OK.   It gets re-assigned below
 575                         */
 576                        qpn = mk_qpn(qpt, map, offset);
 577                } while (offset < RVT_BITS_PER_PAGE && qpn < RVT_QPN_MAX);
 578                /*
 579                 * In order to keep the number of pages allocated to a
 580                 * minimum, we scan the all existing pages before increasing
 581                 * the size of the bitmap table.
 582                 */
 583                if (++i > max_scan) {
 584                        if (qpt->nmaps == RVT_QPNMAP_ENTRIES)
 585                                break;
 586                        map = &qpt->map[qpt->nmaps++];
 587                        /* start at incr with current bit 0 */
 588                        offset = qpt->incr | (offset & 1);
 589                } else if (map < &qpt->map[qpt->nmaps]) {
 590                        ++map;
 591                        /* start at incr with current bit 0 */
 592                        offset = qpt->incr | (offset & 1);
 593                } else {
 594                        map = &qpt->map[0];
 595                        /* wrap to first map page, invert bit 0 */
 596                        offset = qpt->incr | ((offset & 1) ^ 1);
 597                }
 598                /* there can be no set bits in low-order QoS bits */
 599                WARN_ON(rdi->dparms.qos_shift > 1 &&
 600                        offset & ((BIT(rdi->dparms.qos_shift - 1) - 1) << 1));
 601                qpn = mk_qpn(qpt, map, offset);
 602        }
 603
 604        ret = -ENOMEM;
 605
 606bail:
 607        return ret;
 608}
 609
 610/**
 611 * rvt_clear_mr_refs - Drop help mr refs
 612 * @qp: rvt qp data structure
 613 * @clr_sends: If shoudl clear send side or not
 614 */
 615static void rvt_clear_mr_refs(struct rvt_qp *qp, int clr_sends)
 616{
 617        unsigned n;
 618        struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
 619
 620        if (test_and_clear_bit(RVT_R_REWIND_SGE, &qp->r_aflags))
 621                rvt_put_ss(&qp->s_rdma_read_sge);
 622
 623        rvt_put_ss(&qp->r_sge);
 624
 625        if (clr_sends) {
 626                while (qp->s_last != qp->s_head) {
 627                        struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, qp->s_last);
 628
 629                        rvt_put_qp_swqe(qp, wqe);
 630                        if (++qp->s_last >= qp->s_size)
 631                                qp->s_last = 0;
 632                        smp_wmb(); /* see qp_set_savail */
 633                }
 634                if (qp->s_rdma_mr) {
 635                        rvt_put_mr(qp->s_rdma_mr);
 636                        qp->s_rdma_mr = NULL;
 637                }
 638        }
 639
 640        for (n = 0; qp->s_ack_queue && n < rvt_max_atomic(rdi); n++) {
 641                struct rvt_ack_entry *e = &qp->s_ack_queue[n];
 642
 643                if (e->rdma_sge.mr) {
 644                        rvt_put_mr(e->rdma_sge.mr);
 645                        e->rdma_sge.mr = NULL;
 646                }
 647        }
 648}
 649
 650/**
 651 * rvt_swqe_has_lkey - return true if lkey is used by swqe
 652 * @wqe - the send wqe
 653 * @lkey - the lkey
 654 *
 655 * Test the swqe for using lkey
 656 */
 657static bool rvt_swqe_has_lkey(struct rvt_swqe *wqe, u32 lkey)
 658{
 659        int i;
 660
 661        for (i = 0; i < wqe->wr.num_sge; i++) {
 662                struct rvt_sge *sge = &wqe->sg_list[i];
 663
 664                if (rvt_mr_has_lkey(sge->mr, lkey))
 665                        return true;
 666        }
 667        return false;
 668}
 669
 670/**
 671 * rvt_qp_sends_has_lkey - return true is qp sends use lkey
 672 * @qp - the rvt_qp
 673 * @lkey - the lkey
 674 */
 675static bool rvt_qp_sends_has_lkey(struct rvt_qp *qp, u32 lkey)
 676{
 677        u32 s_last = qp->s_last;
 678
 679        while (s_last != qp->s_head) {
 680                struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, s_last);
 681
 682                if (rvt_swqe_has_lkey(wqe, lkey))
 683                        return true;
 684
 685                if (++s_last >= qp->s_size)
 686                        s_last = 0;
 687        }
 688        if (qp->s_rdma_mr)
 689                if (rvt_mr_has_lkey(qp->s_rdma_mr, lkey))
 690                        return true;
 691        return false;
 692}
 693
 694/**
 695 * rvt_qp_acks_has_lkey - return true if acks have lkey
 696 * @qp - the qp
 697 * @lkey - the lkey
 698 */
 699static bool rvt_qp_acks_has_lkey(struct rvt_qp *qp, u32 lkey)
 700{
 701        int i;
 702        struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
 703
 704        for (i = 0; qp->s_ack_queue && i < rvt_max_atomic(rdi); i++) {
 705                struct rvt_ack_entry *e = &qp->s_ack_queue[i];
 706
 707                if (rvt_mr_has_lkey(e->rdma_sge.mr, lkey))
 708                        return true;
 709        }
 710        return false;
 711}
 712
 713/*
 714 * rvt_qp_mr_clean - clean up remote ops for lkey
 715 * @qp - the qp
 716 * @lkey - the lkey that is being de-registered
 717 *
 718 * This routine checks if the lkey is being used by
 719 * the qp.
 720 *
 721 * If so, the qp is put into an error state to elminate
 722 * any references from the qp.
 723 */
 724void rvt_qp_mr_clean(struct rvt_qp *qp, u32 lkey)
 725{
 726        bool lastwqe = false;
 727
 728        if (qp->ibqp.qp_type == IB_QPT_SMI ||
 729            qp->ibqp.qp_type == IB_QPT_GSI)
 730                /* avoid special QPs */
 731                return;
 732        spin_lock_irq(&qp->r_lock);
 733        spin_lock(&qp->s_hlock);
 734        spin_lock(&qp->s_lock);
 735
 736        if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
 737                goto check_lwqe;
 738
 739        if (rvt_ss_has_lkey(&qp->r_sge, lkey) ||
 740            rvt_qp_sends_has_lkey(qp, lkey) ||
 741            rvt_qp_acks_has_lkey(qp, lkey))
 742                lastwqe = rvt_error_qp(qp, IB_WC_LOC_PROT_ERR);
 743check_lwqe:
 744        spin_unlock(&qp->s_lock);
 745        spin_unlock(&qp->s_hlock);
 746        spin_unlock_irq(&qp->r_lock);
 747        if (lastwqe) {
 748                struct ib_event ev;
 749
 750                ev.device = qp->ibqp.device;
 751                ev.element.qp = &qp->ibqp;
 752                ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
 753                qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
 754        }
 755}
 756
 757/**
 758 * rvt_remove_qp - remove qp form table
 759 * @rdi: rvt dev struct
 760 * @qp: qp to remove
 761 *
 762 * Remove the QP from the table so it can't be found asynchronously by
 763 * the receive routine.
 764 */
 765static void rvt_remove_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
 766{
 767        struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
 768        u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
 769        unsigned long flags;
 770        int removed = 1;
 771
 772        spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
 773
 774        if (rcu_dereference_protected(rvp->qp[0],
 775                        lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
 776                RCU_INIT_POINTER(rvp->qp[0], NULL);
 777        } else if (rcu_dereference_protected(rvp->qp[1],
 778                        lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
 779                RCU_INIT_POINTER(rvp->qp[1], NULL);
 780        } else {
 781                struct rvt_qp *q;
 782                struct rvt_qp __rcu **qpp;
 783
 784                removed = 0;
 785                qpp = &rdi->qp_dev->qp_table[n];
 786                for (; (q = rcu_dereference_protected(*qpp,
 787                        lockdep_is_held(&rdi->qp_dev->qpt_lock))) != NULL;
 788                        qpp = &q->next) {
 789                        if (q == qp) {
 790                                RCU_INIT_POINTER(*qpp,
 791                                     rcu_dereference_protected(qp->next,
 792                                     lockdep_is_held(&rdi->qp_dev->qpt_lock)));
 793                                removed = 1;
 794                                trace_rvt_qpremove(qp, n);
 795                                break;
 796                        }
 797                }
 798        }
 799
 800        spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
 801        if (removed) {
 802                synchronize_rcu();
 803                rvt_put_qp(qp);
 804        }
 805}
 806
 807/**
 808 * rvt_alloc_rq - allocate memory for user or kernel buffer
 809 * @rq: receive queue data structure
 810 * @size: number of request queue entries
 811 * @node: The NUMA node
 812 * @udata: True if user data is available or not false
 813 *
 814 * Return: If memory allocation failed, return -ENONEM
 815 * This function is used by both shared receive
 816 * queues and non-shared receive queues to allocate
 817 * memory.
 818 */
 819int rvt_alloc_rq(struct rvt_rq *rq, u32 size, int node,
 820                 struct ib_udata *udata)
 821{
 822        if (udata) {
 823                rq->wq = vmalloc_user(sizeof(struct rvt_rwq) + size);
 824                if (!rq->wq)
 825                        goto bail;
 826                /* need kwq with no buffers */
 827                rq->kwq = kzalloc_node(sizeof(*rq->kwq), GFP_KERNEL, node);
 828                if (!rq->kwq)
 829                        goto bail;
 830                rq->kwq->curr_wq = rq->wq->wq;
 831        } else {
 832                /* need kwq with buffers */
 833                rq->kwq =
 834                        vzalloc_node(sizeof(struct rvt_krwq) + size, node);
 835                if (!rq->kwq)
 836                        goto bail;
 837                rq->kwq->curr_wq = rq->kwq->wq;
 838        }
 839
 840        spin_lock_init(&rq->kwq->p_lock);
 841        spin_lock_init(&rq->kwq->c_lock);
 842        return 0;
 843bail:
 844        rvt_free_rq(rq);
 845        return -ENOMEM;
 846}
 847
 848/**
 849 * rvt_init_qp - initialize the QP state to the reset state
 850 * @qp: the QP to init or reinit
 851 * @type: the QP type
 852 *
 853 * This function is called from both rvt_create_qp() and
 854 * rvt_reset_qp().   The difference is that the reset
 855 * patch the necessary locks to protect against concurent
 856 * access.
 857 */
 858static void rvt_init_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
 859                        enum ib_qp_type type)
 860{
 861        qp->remote_qpn = 0;
 862        qp->qkey = 0;
 863        qp->qp_access_flags = 0;
 864        qp->s_flags &= RVT_S_SIGNAL_REQ_WR;
 865        qp->s_hdrwords = 0;
 866        qp->s_wqe = NULL;
 867        qp->s_draining = 0;
 868        qp->s_next_psn = 0;
 869        qp->s_last_psn = 0;
 870        qp->s_sending_psn = 0;
 871        qp->s_sending_hpsn = 0;
 872        qp->s_psn = 0;
 873        qp->r_psn = 0;
 874        qp->r_msn = 0;
 875        if (type == IB_QPT_RC) {
 876                qp->s_state = IB_OPCODE_RC_SEND_LAST;
 877                qp->r_state = IB_OPCODE_RC_SEND_LAST;
 878        } else {
 879                qp->s_state = IB_OPCODE_UC_SEND_LAST;
 880                qp->r_state = IB_OPCODE_UC_SEND_LAST;
 881        }
 882        qp->s_ack_state = IB_OPCODE_RC_ACKNOWLEDGE;
 883        qp->r_nak_state = 0;
 884        qp->r_aflags = 0;
 885        qp->r_flags = 0;
 886        qp->s_head = 0;
 887        qp->s_tail = 0;
 888        qp->s_cur = 0;
 889        qp->s_acked = 0;
 890        qp->s_last = 0;
 891        qp->s_ssn = 1;
 892        qp->s_lsn = 0;
 893        qp->s_mig_state = IB_MIG_MIGRATED;
 894        qp->r_head_ack_queue = 0;
 895        qp->s_tail_ack_queue = 0;
 896        qp->s_acked_ack_queue = 0;
 897        qp->s_num_rd_atomic = 0;
 898        if (qp->r_rq.kwq)
 899                qp->r_rq.kwq->count = qp->r_rq.size;
 900        qp->r_sge.num_sge = 0;
 901        atomic_set(&qp->s_reserved_used, 0);
 902}
 903
 904/**
 905 * rvt_reset_qp - initialize the QP state to the reset state
 906 * @qp: the QP to reset
 907 * @type: the QP type
 908 *
 909 * r_lock, s_hlock, and s_lock are required to be held by the caller
 910 */
 911static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
 912                         enum ib_qp_type type)
 913        __must_hold(&qp->s_lock)
 914        __must_hold(&qp->s_hlock)
 915        __must_hold(&qp->r_lock)
 916{
 917        lockdep_assert_held(&qp->r_lock);
 918        lockdep_assert_held(&qp->s_hlock);
 919        lockdep_assert_held(&qp->s_lock);
 920        if (qp->state != IB_QPS_RESET) {
 921                qp->state = IB_QPS_RESET;
 922
 923                /* Let drivers flush their waitlist */
 924                rdi->driver_f.flush_qp_waiters(qp);
 925                rvt_stop_rc_timers(qp);
 926                qp->s_flags &= ~(RVT_S_TIMER | RVT_S_ANY_WAIT);
 927                spin_unlock(&qp->s_lock);
 928                spin_unlock(&qp->s_hlock);
 929                spin_unlock_irq(&qp->r_lock);
 930
 931                /* Stop the send queue and the retry timer */
 932                rdi->driver_f.stop_send_queue(qp);
 933                rvt_del_timers_sync(qp);
 934                /* Wait for things to stop */
 935                rdi->driver_f.quiesce_qp(qp);
 936
 937                /* take qp out the hash and wait for it to be unused */
 938                rvt_remove_qp(rdi, qp);
 939
 940                /* grab the lock b/c it was locked at call time */
 941                spin_lock_irq(&qp->r_lock);
 942                spin_lock(&qp->s_hlock);
 943                spin_lock(&qp->s_lock);
 944
 945                rvt_clear_mr_refs(qp, 1);
 946                /*
 947                 * Let the driver do any tear down or re-init it needs to for
 948                 * a qp that has been reset
 949                 */
 950                rdi->driver_f.notify_qp_reset(qp);
 951        }
 952        rvt_init_qp(rdi, qp, type);
 953        lockdep_assert_held(&qp->r_lock);
 954        lockdep_assert_held(&qp->s_hlock);
 955        lockdep_assert_held(&qp->s_lock);
 956}
 957
 958/** rvt_free_qpn - Free a qpn from the bit map
 959 * @qpt: QP table
 960 * @qpn: queue pair number to free
 961 */
 962static void rvt_free_qpn(struct rvt_qpn_table *qpt, u32 qpn)
 963{
 964        struct rvt_qpn_map *map;
 965
 966        map = qpt->map + (qpn & RVT_QPN_MASK) / RVT_BITS_PER_PAGE;
 967        if (map->page)
 968                clear_bit(qpn & RVT_BITS_PER_PAGE_MASK, map->page);
 969}
 970
 971/**
 972 * get_allowed_ops - Given a QP type return the appropriate allowed OP
 973 * @type: valid, supported, QP type
 974 */
 975static u8 get_allowed_ops(enum ib_qp_type type)
 976{
 977        return type == IB_QPT_RC ? IB_OPCODE_RC : type == IB_QPT_UC ?
 978                IB_OPCODE_UC : IB_OPCODE_UD;
 979}
 980
 981/**
 982 * free_ud_wq_attr - Clean up AH attribute cache for UD QPs
 983 * @qp: Valid QP with allowed_ops set
 984 *
 985 * The rvt_swqe data structure being used is a union, so this is
 986 * only valid for UD QPs.
 987 */
 988static void free_ud_wq_attr(struct rvt_qp *qp)
 989{
 990        struct rvt_swqe *wqe;
 991        int i;
 992
 993        for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) {
 994                wqe = rvt_get_swqe_ptr(qp, i);
 995                kfree(wqe->ud_wr.attr);
 996                wqe->ud_wr.attr = NULL;
 997        }
 998}
 999
1000/**
1001 * alloc_ud_wq_attr - AH attribute cache for UD QPs
1002 * @qp: Valid QP with allowed_ops set
1003 * @node: Numa node for allocation
1004 *
1005 * The rvt_swqe data structure being used is a union, so this is
1006 * only valid for UD QPs.
1007 */
1008static int alloc_ud_wq_attr(struct rvt_qp *qp, int node)
1009{
1010        struct rvt_swqe *wqe;
1011        int i;
1012
1013        for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) {
1014                wqe = rvt_get_swqe_ptr(qp, i);
1015                wqe->ud_wr.attr = kzalloc_node(sizeof(*wqe->ud_wr.attr),
1016                                               GFP_KERNEL, node);
1017                if (!wqe->ud_wr.attr) {
1018                        free_ud_wq_attr(qp);
1019                        return -ENOMEM;
1020                }
1021        }
1022
1023        return 0;
1024}
1025
1026/**
1027 * rvt_create_qp - create a queue pair for a device
1028 * @ibpd: the protection domain who's device we create the queue pair for
1029 * @init_attr: the attributes of the queue pair
1030 * @udata: user data for libibverbs.so
1031 *
1032 * Queue pair creation is mostly an rvt issue. However, drivers have their own
1033 * unique idea of what queue pair numbers mean. For instance there is a reserved
1034 * range for PSM.
1035 *
1036 * Return: the queue pair on success, otherwise returns an errno.
1037 *
1038 * Called by the ib_create_qp() core verbs function.
1039 */
1040struct ib_qp *rvt_create_qp(struct ib_pd *ibpd,
1041                            struct ib_qp_init_attr *init_attr,
1042                            struct ib_udata *udata)
1043{
1044        struct rvt_qp *qp;
1045        int err;
1046        struct rvt_swqe *swq = NULL;
1047        size_t sz;
1048        size_t sg_list_sz;
1049        struct ib_qp *ret = ERR_PTR(-ENOMEM);
1050        struct rvt_dev_info *rdi = ib_to_rvt(ibpd->device);
1051        void *priv = NULL;
1052        size_t sqsize;
1053
1054        if (!rdi)
1055                return ERR_PTR(-EINVAL);
1056
1057        if (init_attr->cap.max_send_sge > rdi->dparms.props.max_send_sge ||
1058            init_attr->cap.max_send_wr > rdi->dparms.props.max_qp_wr ||
1059            init_attr->create_flags)
1060                return ERR_PTR(-EINVAL);
1061
1062        /* Check receive queue parameters if no SRQ is specified. */
1063        if (!init_attr->srq) {
1064                if (init_attr->cap.max_recv_sge >
1065                    rdi->dparms.props.max_recv_sge ||
1066                    init_attr->cap.max_recv_wr > rdi->dparms.props.max_qp_wr)
1067                        return ERR_PTR(-EINVAL);
1068
1069                if (init_attr->cap.max_send_sge +
1070                    init_attr->cap.max_send_wr +
1071                    init_attr->cap.max_recv_sge +
1072                    init_attr->cap.max_recv_wr == 0)
1073                        return ERR_PTR(-EINVAL);
1074        }
1075        sqsize =
1076                init_attr->cap.max_send_wr + 1 +
1077                rdi->dparms.reserved_operations;
1078        switch (init_attr->qp_type) {
1079        case IB_QPT_SMI:
1080        case IB_QPT_GSI:
1081                if (init_attr->port_num == 0 ||
1082                    init_attr->port_num > ibpd->device->phys_port_cnt)
1083                        return ERR_PTR(-EINVAL);
1084                /* fall through */
1085        case IB_QPT_UC:
1086        case IB_QPT_RC:
1087        case IB_QPT_UD:
1088                sz = struct_size(swq, sg_list, init_attr->cap.max_send_sge);
1089                swq = vzalloc_node(array_size(sz, sqsize), rdi->dparms.node);
1090                if (!swq)
1091                        return ERR_PTR(-ENOMEM);
1092
1093                sz = sizeof(*qp);
1094                sg_list_sz = 0;
1095                if (init_attr->srq) {
1096                        struct rvt_srq *srq = ibsrq_to_rvtsrq(init_attr->srq);
1097
1098                        if (srq->rq.max_sge > 1)
1099                                sg_list_sz = sizeof(*qp->r_sg_list) *
1100                                        (srq->rq.max_sge - 1);
1101                } else if (init_attr->cap.max_recv_sge > 1)
1102                        sg_list_sz = sizeof(*qp->r_sg_list) *
1103                                (init_attr->cap.max_recv_sge - 1);
1104                qp = kzalloc_node(sz + sg_list_sz, GFP_KERNEL,
1105                                  rdi->dparms.node);
1106                if (!qp)
1107                        goto bail_swq;
1108                qp->allowed_ops = get_allowed_ops(init_attr->qp_type);
1109
1110                RCU_INIT_POINTER(qp->next, NULL);
1111                if (init_attr->qp_type == IB_QPT_RC) {
1112                        qp->s_ack_queue =
1113                                kcalloc_node(rvt_max_atomic(rdi),
1114                                             sizeof(*qp->s_ack_queue),
1115                                             GFP_KERNEL,
1116                                             rdi->dparms.node);
1117                        if (!qp->s_ack_queue)
1118                                goto bail_qp;
1119                }
1120                /* initialize timers needed for rc qp */
1121                timer_setup(&qp->s_timer, rvt_rc_timeout, 0);
1122                hrtimer_init(&qp->s_rnr_timer, CLOCK_MONOTONIC,
1123                             HRTIMER_MODE_REL);
1124                qp->s_rnr_timer.function = rvt_rc_rnr_retry;
1125
1126                /*
1127                 * Driver needs to set up it's private QP structure and do any
1128                 * initialization that is needed.
1129                 */
1130                priv = rdi->driver_f.qp_priv_alloc(rdi, qp);
1131                if (IS_ERR(priv)) {
1132                        ret = priv;
1133                        goto bail_qp;
1134                }
1135                qp->priv = priv;
1136                qp->timeout_jiffies =
1137                        usecs_to_jiffies((4096UL * (1UL << qp->timeout)) /
1138                                1000UL);
1139                if (init_attr->srq) {
1140                        sz = 0;
1141                } else {
1142                        qp->r_rq.size = init_attr->cap.max_recv_wr + 1;
1143                        qp->r_rq.max_sge = init_attr->cap.max_recv_sge;
1144                        sz = (sizeof(struct ib_sge) * qp->r_rq.max_sge) +
1145                                sizeof(struct rvt_rwqe);
1146                        err = rvt_alloc_rq(&qp->r_rq, qp->r_rq.size * sz,
1147                                           rdi->dparms.node, udata);
1148                        if (err) {
1149                                ret = ERR_PTR(err);
1150                                goto bail_driver_priv;
1151                        }
1152                }
1153
1154                /*
1155                 * ib_create_qp() will initialize qp->ibqp
1156                 * except for qp->ibqp.qp_num.
1157                 */
1158                spin_lock_init(&qp->r_lock);
1159                spin_lock_init(&qp->s_hlock);
1160                spin_lock_init(&qp->s_lock);
1161                atomic_set(&qp->refcount, 0);
1162                atomic_set(&qp->local_ops_pending, 0);
1163                init_waitqueue_head(&qp->wait);
1164                INIT_LIST_HEAD(&qp->rspwait);
1165                qp->state = IB_QPS_RESET;
1166                qp->s_wq = swq;
1167                qp->s_size = sqsize;
1168                qp->s_avail = init_attr->cap.max_send_wr;
1169                qp->s_max_sge = init_attr->cap.max_send_sge;
1170                if (init_attr->sq_sig_type == IB_SIGNAL_REQ_WR)
1171                        qp->s_flags = RVT_S_SIGNAL_REQ_WR;
1172                err = alloc_ud_wq_attr(qp, rdi->dparms.node);
1173                if (err) {
1174                        ret = (ERR_PTR(err));
1175                        goto bail_driver_priv;
1176                }
1177
1178                err = alloc_qpn(rdi, &rdi->qp_dev->qpn_table,
1179                                init_attr->qp_type,
1180                                init_attr->port_num);
1181                if (err < 0) {
1182                        ret = ERR_PTR(err);
1183                        goto bail_rq_wq;
1184                }
1185                qp->ibqp.qp_num = err;
1186                qp->port_num = init_attr->port_num;
1187                rvt_init_qp(rdi, qp, init_attr->qp_type);
1188                if (rdi->driver_f.qp_priv_init) {
1189                        err = rdi->driver_f.qp_priv_init(rdi, qp, init_attr);
1190                        if (err) {
1191                                ret = ERR_PTR(err);
1192                                goto bail_rq_wq;
1193                        }
1194                }
1195                break;
1196
1197        default:
1198                /* Don't support raw QPs */
1199                return ERR_PTR(-EINVAL);
1200        }
1201
1202        init_attr->cap.max_inline_data = 0;
1203
1204        /*
1205         * Return the address of the RWQ as the offset to mmap.
1206         * See rvt_mmap() for details.
1207         */
1208        if (udata && udata->outlen >= sizeof(__u64)) {
1209                if (!qp->r_rq.wq) {
1210                        __u64 offset = 0;
1211
1212                        err = ib_copy_to_udata(udata, &offset,
1213                                               sizeof(offset));
1214                        if (err) {
1215                                ret = ERR_PTR(err);
1216                                goto bail_qpn;
1217                        }
1218                } else {
1219                        u32 s = sizeof(struct rvt_rwq) + qp->r_rq.size * sz;
1220
1221                        qp->ip = rvt_create_mmap_info(rdi, s, udata,
1222                                                      qp->r_rq.wq);
1223                        if (!qp->ip) {
1224                                ret = ERR_PTR(-ENOMEM);
1225                                goto bail_qpn;
1226                        }
1227
1228                        err = ib_copy_to_udata(udata, &qp->ip->offset,
1229                                               sizeof(qp->ip->offset));
1230                        if (err) {
1231                                ret = ERR_PTR(err);
1232                                goto bail_ip;
1233                        }
1234                }
1235                qp->pid = current->pid;
1236        }
1237
1238        spin_lock(&rdi->n_qps_lock);
1239        if (rdi->n_qps_allocated == rdi->dparms.props.max_qp) {
1240                spin_unlock(&rdi->n_qps_lock);
1241                ret = ERR_PTR(-ENOMEM);
1242                goto bail_ip;
1243        }
1244
1245        rdi->n_qps_allocated++;
1246        /*
1247         * Maintain a busy_jiffies variable that will be added to the timeout
1248         * period in mod_retry_timer and add_retry_timer. This busy jiffies
1249         * is scaled by the number of rc qps created for the device to reduce
1250         * the number of timeouts occurring when there is a large number of
1251         * qps. busy_jiffies is incremented every rc qp scaling interval.
1252         * The scaling interval is selected based on extensive performance
1253         * evaluation of targeted workloads.
1254         */
1255        if (init_attr->qp_type == IB_QPT_RC) {
1256                rdi->n_rc_qps++;
1257                rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
1258        }
1259        spin_unlock(&rdi->n_qps_lock);
1260
1261        if (qp->ip) {
1262                spin_lock_irq(&rdi->pending_lock);
1263                list_add(&qp->ip->pending_mmaps, &rdi->pending_mmaps);
1264                spin_unlock_irq(&rdi->pending_lock);
1265        }
1266
1267        ret = &qp->ibqp;
1268
1269        return ret;
1270
1271bail_ip:
1272        if (qp->ip)
1273                kref_put(&qp->ip->ref, rvt_release_mmap_info);
1274
1275bail_qpn:
1276        rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1277
1278bail_rq_wq:
1279        rvt_free_rq(&qp->r_rq);
1280        free_ud_wq_attr(qp);
1281
1282bail_driver_priv:
1283        rdi->driver_f.qp_priv_free(rdi, qp);
1284
1285bail_qp:
1286        kfree(qp->s_ack_queue);
1287        kfree(qp);
1288
1289bail_swq:
1290        vfree(swq);
1291
1292        return ret;
1293}
1294
1295/**
1296 * rvt_error_qp - put a QP into the error state
1297 * @qp: the QP to put into the error state
1298 * @err: the receive completion error to signal if a RWQE is active
1299 *
1300 * Flushes both send and receive work queues.
1301 *
1302 * Return: true if last WQE event should be generated.
1303 * The QP r_lock and s_lock should be held and interrupts disabled.
1304 * If we are already in error state, just return.
1305 */
1306int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err)
1307{
1308        struct ib_wc wc;
1309        int ret = 0;
1310        struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
1311
1312        lockdep_assert_held(&qp->r_lock);
1313        lockdep_assert_held(&qp->s_lock);
1314        if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
1315                goto bail;
1316
1317        qp->state = IB_QPS_ERR;
1318
1319        if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
1320                qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
1321                del_timer(&qp->s_timer);
1322        }
1323
1324        if (qp->s_flags & RVT_S_ANY_WAIT_SEND)
1325                qp->s_flags &= ~RVT_S_ANY_WAIT_SEND;
1326
1327        rdi->driver_f.notify_error_qp(qp);
1328
1329        /* Schedule the sending tasklet to drain the send work queue. */
1330        if (READ_ONCE(qp->s_last) != qp->s_head)
1331                rdi->driver_f.schedule_send(qp);
1332
1333        rvt_clear_mr_refs(qp, 0);
1334
1335        memset(&wc, 0, sizeof(wc));
1336        wc.qp = &qp->ibqp;
1337        wc.opcode = IB_WC_RECV;
1338
1339        if (test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) {
1340                wc.wr_id = qp->r_wr_id;
1341                wc.status = err;
1342                rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1343        }
1344        wc.status = IB_WC_WR_FLUSH_ERR;
1345
1346        if (qp->r_rq.kwq) {
1347                u32 head;
1348                u32 tail;
1349                struct rvt_rwq *wq = NULL;
1350                struct rvt_krwq *kwq = NULL;
1351
1352                spin_lock(&qp->r_rq.kwq->c_lock);
1353                /* qp->ip used to validate if there is a  user buffer mmaped */
1354                if (qp->ip) {
1355                        wq = qp->r_rq.wq;
1356                        head = RDMA_READ_UAPI_ATOMIC(wq->head);
1357                        tail = RDMA_READ_UAPI_ATOMIC(wq->tail);
1358                } else {
1359                        kwq = qp->r_rq.kwq;
1360                        head = kwq->head;
1361                        tail = kwq->tail;
1362                }
1363                /* sanity check pointers before trusting them */
1364                if (head >= qp->r_rq.size)
1365                        head = 0;
1366                if (tail >= qp->r_rq.size)
1367                        tail = 0;
1368                while (tail != head) {
1369                        wc.wr_id = rvt_get_rwqe_ptr(&qp->r_rq, tail)->wr_id;
1370                        if (++tail >= qp->r_rq.size)
1371                                tail = 0;
1372                        rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1373                }
1374                if (qp->ip)
1375                        RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail);
1376                else
1377                        kwq->tail = tail;
1378                spin_unlock(&qp->r_rq.kwq->c_lock);
1379        } else if (qp->ibqp.event_handler) {
1380                ret = 1;
1381        }
1382
1383bail:
1384        return ret;
1385}
1386EXPORT_SYMBOL(rvt_error_qp);
1387
1388/*
1389 * Put the QP into the hash table.
1390 * The hash table holds a reference to the QP.
1391 */
1392static void rvt_insert_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
1393{
1394        struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
1395        unsigned long flags;
1396
1397        rvt_get_qp(qp);
1398        spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
1399
1400        if (qp->ibqp.qp_num <= 1) {
1401                rcu_assign_pointer(rvp->qp[qp->ibqp.qp_num], qp);
1402        } else {
1403                u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
1404
1405                qp->next = rdi->qp_dev->qp_table[n];
1406                rcu_assign_pointer(rdi->qp_dev->qp_table[n], qp);
1407                trace_rvt_qpinsert(qp, n);
1408        }
1409
1410        spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
1411}
1412
1413/**
1414 * rvt_modify_qp - modify the attributes of a queue pair
1415 * @ibqp: the queue pair who's attributes we're modifying
1416 * @attr: the new attributes
1417 * @attr_mask: the mask of attributes to modify
1418 * @udata: user data for libibverbs.so
1419 *
1420 * Return: 0 on success, otherwise returns an errno.
1421 */
1422int rvt_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1423                  int attr_mask, struct ib_udata *udata)
1424{
1425        struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1426        struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1427        enum ib_qp_state cur_state, new_state;
1428        struct ib_event ev;
1429        int lastwqe = 0;
1430        int mig = 0;
1431        int pmtu = 0; /* for gcc warning only */
1432        int opa_ah;
1433
1434        spin_lock_irq(&qp->r_lock);
1435        spin_lock(&qp->s_hlock);
1436        spin_lock(&qp->s_lock);
1437
1438        cur_state = attr_mask & IB_QP_CUR_STATE ?
1439                attr->cur_qp_state : qp->state;
1440        new_state = attr_mask & IB_QP_STATE ? attr->qp_state : cur_state;
1441        opa_ah = rdma_cap_opa_ah(ibqp->device, qp->port_num);
1442
1443        if (!ib_modify_qp_is_ok(cur_state, new_state, ibqp->qp_type,
1444                                attr_mask))
1445                goto inval;
1446
1447        if (rdi->driver_f.check_modify_qp &&
1448            rdi->driver_f.check_modify_qp(qp, attr, attr_mask, udata))
1449                goto inval;
1450
1451        if (attr_mask & IB_QP_AV) {
1452                if (opa_ah) {
1453                        if (rdma_ah_get_dlid(&attr->ah_attr) >=
1454                                opa_get_mcast_base(OPA_MCAST_NR))
1455                                goto inval;
1456                } else {
1457                        if (rdma_ah_get_dlid(&attr->ah_attr) >=
1458                                be16_to_cpu(IB_MULTICAST_LID_BASE))
1459                                goto inval;
1460                }
1461
1462                if (rvt_check_ah(qp->ibqp.device, &attr->ah_attr))
1463                        goto inval;
1464        }
1465
1466        if (attr_mask & IB_QP_ALT_PATH) {
1467                if (opa_ah) {
1468                        if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1469                                opa_get_mcast_base(OPA_MCAST_NR))
1470                                goto inval;
1471                } else {
1472                        if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1473                                be16_to_cpu(IB_MULTICAST_LID_BASE))
1474                                goto inval;
1475                }
1476
1477                if (rvt_check_ah(qp->ibqp.device, &attr->alt_ah_attr))
1478                        goto inval;
1479                if (attr->alt_pkey_index >= rvt_get_npkeys(rdi))
1480                        goto inval;
1481        }
1482
1483        if (attr_mask & IB_QP_PKEY_INDEX)
1484                if (attr->pkey_index >= rvt_get_npkeys(rdi))
1485                        goto inval;
1486
1487        if (attr_mask & IB_QP_MIN_RNR_TIMER)
1488                if (attr->min_rnr_timer > 31)
1489                        goto inval;
1490
1491        if (attr_mask & IB_QP_PORT)
1492                if (qp->ibqp.qp_type == IB_QPT_SMI ||
1493                    qp->ibqp.qp_type == IB_QPT_GSI ||
1494                    attr->port_num == 0 ||
1495                    attr->port_num > ibqp->device->phys_port_cnt)
1496                        goto inval;
1497
1498        if (attr_mask & IB_QP_DEST_QPN)
1499                if (attr->dest_qp_num > RVT_QPN_MASK)
1500                        goto inval;
1501
1502        if (attr_mask & IB_QP_RETRY_CNT)
1503                if (attr->retry_cnt > 7)
1504                        goto inval;
1505
1506        if (attr_mask & IB_QP_RNR_RETRY)
1507                if (attr->rnr_retry > 7)
1508                        goto inval;
1509
1510        /*
1511         * Don't allow invalid path_mtu values.  OK to set greater
1512         * than the active mtu (or even the max_cap, if we have tuned
1513         * that to a small mtu.  We'll set qp->path_mtu
1514         * to the lesser of requested attribute mtu and active,
1515         * for packetizing messages.
1516         * Note that the QP port has to be set in INIT and MTU in RTR.
1517         */
1518        if (attr_mask & IB_QP_PATH_MTU) {
1519                pmtu = rdi->driver_f.get_pmtu_from_attr(rdi, qp, attr);
1520                if (pmtu < 0)
1521                        goto inval;
1522        }
1523
1524        if (attr_mask & IB_QP_PATH_MIG_STATE) {
1525                if (attr->path_mig_state == IB_MIG_REARM) {
1526                        if (qp->s_mig_state == IB_MIG_ARMED)
1527                                goto inval;
1528                        if (new_state != IB_QPS_RTS)
1529                                goto inval;
1530                } else if (attr->path_mig_state == IB_MIG_MIGRATED) {
1531                        if (qp->s_mig_state == IB_MIG_REARM)
1532                                goto inval;
1533                        if (new_state != IB_QPS_RTS && new_state != IB_QPS_SQD)
1534                                goto inval;
1535                        if (qp->s_mig_state == IB_MIG_ARMED)
1536                                mig = 1;
1537                } else {
1538                        goto inval;
1539                }
1540        }
1541
1542        if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1543                if (attr->max_dest_rd_atomic > rdi->dparms.max_rdma_atomic)
1544                        goto inval;
1545
1546        switch (new_state) {
1547        case IB_QPS_RESET:
1548                if (qp->state != IB_QPS_RESET)
1549                        rvt_reset_qp(rdi, qp, ibqp->qp_type);
1550                break;
1551
1552        case IB_QPS_RTR:
1553                /* Allow event to re-trigger if QP set to RTR more than once */
1554                qp->r_flags &= ~RVT_R_COMM_EST;
1555                qp->state = new_state;
1556                break;
1557
1558        case IB_QPS_SQD:
1559                qp->s_draining = qp->s_last != qp->s_cur;
1560                qp->state = new_state;
1561                break;
1562
1563        case IB_QPS_SQE:
1564                if (qp->ibqp.qp_type == IB_QPT_RC)
1565                        goto inval;
1566                qp->state = new_state;
1567                break;
1568
1569        case IB_QPS_ERR:
1570                lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
1571                break;
1572
1573        default:
1574                qp->state = new_state;
1575                break;
1576        }
1577
1578        if (attr_mask & IB_QP_PKEY_INDEX)
1579                qp->s_pkey_index = attr->pkey_index;
1580
1581        if (attr_mask & IB_QP_PORT)
1582                qp->port_num = attr->port_num;
1583
1584        if (attr_mask & IB_QP_DEST_QPN)
1585                qp->remote_qpn = attr->dest_qp_num;
1586
1587        if (attr_mask & IB_QP_SQ_PSN) {
1588                qp->s_next_psn = attr->sq_psn & rdi->dparms.psn_modify_mask;
1589                qp->s_psn = qp->s_next_psn;
1590                qp->s_sending_psn = qp->s_next_psn;
1591                qp->s_last_psn = qp->s_next_psn - 1;
1592                qp->s_sending_hpsn = qp->s_last_psn;
1593        }
1594
1595        if (attr_mask & IB_QP_RQ_PSN)
1596                qp->r_psn = attr->rq_psn & rdi->dparms.psn_modify_mask;
1597
1598        if (attr_mask & IB_QP_ACCESS_FLAGS)
1599                qp->qp_access_flags = attr->qp_access_flags;
1600
1601        if (attr_mask & IB_QP_AV) {
1602                rdma_replace_ah_attr(&qp->remote_ah_attr, &attr->ah_attr);
1603                qp->s_srate = rdma_ah_get_static_rate(&attr->ah_attr);
1604                qp->srate_mbps = ib_rate_to_mbps(qp->s_srate);
1605        }
1606
1607        if (attr_mask & IB_QP_ALT_PATH) {
1608                rdma_replace_ah_attr(&qp->alt_ah_attr, &attr->alt_ah_attr);
1609                qp->s_alt_pkey_index = attr->alt_pkey_index;
1610        }
1611
1612        if (attr_mask & IB_QP_PATH_MIG_STATE) {
1613                qp->s_mig_state = attr->path_mig_state;
1614                if (mig) {
1615                        qp->remote_ah_attr = qp->alt_ah_attr;
1616                        qp->port_num = rdma_ah_get_port_num(&qp->alt_ah_attr);
1617                        qp->s_pkey_index = qp->s_alt_pkey_index;
1618                }
1619        }
1620
1621        if (attr_mask & IB_QP_PATH_MTU) {
1622                qp->pmtu = rdi->driver_f.mtu_from_qp(rdi, qp, pmtu);
1623                qp->log_pmtu = ilog2(qp->pmtu);
1624        }
1625
1626        if (attr_mask & IB_QP_RETRY_CNT) {
1627                qp->s_retry_cnt = attr->retry_cnt;
1628                qp->s_retry = attr->retry_cnt;
1629        }
1630
1631        if (attr_mask & IB_QP_RNR_RETRY) {
1632                qp->s_rnr_retry_cnt = attr->rnr_retry;
1633                qp->s_rnr_retry = attr->rnr_retry;
1634        }
1635
1636        if (attr_mask & IB_QP_MIN_RNR_TIMER)
1637                qp->r_min_rnr_timer = attr->min_rnr_timer;
1638
1639        if (attr_mask & IB_QP_TIMEOUT) {
1640                qp->timeout = attr->timeout;
1641                qp->timeout_jiffies = rvt_timeout_to_jiffies(qp->timeout);
1642        }
1643
1644        if (attr_mask & IB_QP_QKEY)
1645                qp->qkey = attr->qkey;
1646
1647        if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1648                qp->r_max_rd_atomic = attr->max_dest_rd_atomic;
1649
1650        if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC)
1651                qp->s_max_rd_atomic = attr->max_rd_atomic;
1652
1653        if (rdi->driver_f.modify_qp)
1654                rdi->driver_f.modify_qp(qp, attr, attr_mask, udata);
1655
1656        spin_unlock(&qp->s_lock);
1657        spin_unlock(&qp->s_hlock);
1658        spin_unlock_irq(&qp->r_lock);
1659
1660        if (cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT)
1661                rvt_insert_qp(rdi, qp);
1662
1663        if (lastwqe) {
1664                ev.device = qp->ibqp.device;
1665                ev.element.qp = &qp->ibqp;
1666                ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
1667                qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1668        }
1669        if (mig) {
1670                ev.device = qp->ibqp.device;
1671                ev.element.qp = &qp->ibqp;
1672                ev.event = IB_EVENT_PATH_MIG;
1673                qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1674        }
1675        return 0;
1676
1677inval:
1678        spin_unlock(&qp->s_lock);
1679        spin_unlock(&qp->s_hlock);
1680        spin_unlock_irq(&qp->r_lock);
1681        return -EINVAL;
1682}
1683
1684/**
1685 * rvt_destroy_qp - destroy a queue pair
1686 * @ibqp: the queue pair to destroy
1687 *
1688 * Note that this can be called while the QP is actively sending or
1689 * receiving!
1690 *
1691 * Return: 0 on success.
1692 */
1693int rvt_destroy_qp(struct ib_qp *ibqp, struct ib_udata *udata)
1694{
1695        struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1696        struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1697
1698        spin_lock_irq(&qp->r_lock);
1699        spin_lock(&qp->s_hlock);
1700        spin_lock(&qp->s_lock);
1701        rvt_reset_qp(rdi, qp, ibqp->qp_type);
1702        spin_unlock(&qp->s_lock);
1703        spin_unlock(&qp->s_hlock);
1704        spin_unlock_irq(&qp->r_lock);
1705
1706        wait_event(qp->wait, !atomic_read(&qp->refcount));
1707        /* qpn is now available for use again */
1708        rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1709
1710        spin_lock(&rdi->n_qps_lock);
1711        rdi->n_qps_allocated--;
1712        if (qp->ibqp.qp_type == IB_QPT_RC) {
1713                rdi->n_rc_qps--;
1714                rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
1715        }
1716        spin_unlock(&rdi->n_qps_lock);
1717
1718        if (qp->ip)
1719                kref_put(&qp->ip->ref, rvt_release_mmap_info);
1720        kvfree(qp->r_rq.kwq);
1721        rdi->driver_f.qp_priv_free(rdi, qp);
1722        kfree(qp->s_ack_queue);
1723        rdma_destroy_ah_attr(&qp->remote_ah_attr);
1724        rdma_destroy_ah_attr(&qp->alt_ah_attr);
1725        free_ud_wq_attr(qp);
1726        vfree(qp->s_wq);
1727        kfree(qp);
1728        return 0;
1729}
1730
1731/**
1732 * rvt_query_qp - query an ipbq
1733 * @ibqp: IB qp to query
1734 * @attr: attr struct to fill in
1735 * @attr_mask: attr mask ignored
1736 * @init_attr: struct to fill in
1737 *
1738 * Return: always 0
1739 */
1740int rvt_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1741                 int attr_mask, struct ib_qp_init_attr *init_attr)
1742{
1743        struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1744        struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1745
1746        attr->qp_state = qp->state;
1747        attr->cur_qp_state = attr->qp_state;
1748        attr->path_mtu = rdi->driver_f.mtu_to_path_mtu(qp->pmtu);
1749        attr->path_mig_state = qp->s_mig_state;
1750        attr->qkey = qp->qkey;
1751        attr->rq_psn = qp->r_psn & rdi->dparms.psn_mask;
1752        attr->sq_psn = qp->s_next_psn & rdi->dparms.psn_mask;
1753        attr->dest_qp_num = qp->remote_qpn;
1754        attr->qp_access_flags = qp->qp_access_flags;
1755        attr->cap.max_send_wr = qp->s_size - 1 -
1756                rdi->dparms.reserved_operations;
1757        attr->cap.max_recv_wr = qp->ibqp.srq ? 0 : qp->r_rq.size - 1;
1758        attr->cap.max_send_sge = qp->s_max_sge;
1759        attr->cap.max_recv_sge = qp->r_rq.max_sge;
1760        attr->cap.max_inline_data = 0;
1761        attr->ah_attr = qp->remote_ah_attr;
1762        attr->alt_ah_attr = qp->alt_ah_attr;
1763        attr->pkey_index = qp->s_pkey_index;
1764        attr->alt_pkey_index = qp->s_alt_pkey_index;
1765        attr->en_sqd_async_notify = 0;
1766        attr->sq_draining = qp->s_draining;
1767        attr->max_rd_atomic = qp->s_max_rd_atomic;
1768        attr->max_dest_rd_atomic = qp->r_max_rd_atomic;
1769        attr->min_rnr_timer = qp->r_min_rnr_timer;
1770        attr->port_num = qp->port_num;
1771        attr->timeout = qp->timeout;
1772        attr->retry_cnt = qp->s_retry_cnt;
1773        attr->rnr_retry = qp->s_rnr_retry_cnt;
1774        attr->alt_port_num =
1775                rdma_ah_get_port_num(&qp->alt_ah_attr);
1776        attr->alt_timeout = qp->alt_timeout;
1777
1778        init_attr->event_handler = qp->ibqp.event_handler;
1779        init_attr->qp_context = qp->ibqp.qp_context;
1780        init_attr->send_cq = qp->ibqp.send_cq;
1781        init_attr->recv_cq = qp->ibqp.recv_cq;
1782        init_attr->srq = qp->ibqp.srq;
1783        init_attr->cap = attr->cap;
1784        if (qp->s_flags & RVT_S_SIGNAL_REQ_WR)
1785                init_attr->sq_sig_type = IB_SIGNAL_REQ_WR;
1786        else
1787                init_attr->sq_sig_type = IB_SIGNAL_ALL_WR;
1788        init_attr->qp_type = qp->ibqp.qp_type;
1789        init_attr->port_num = qp->port_num;
1790        return 0;
1791}
1792
1793/**
1794 * rvt_post_receive - post a receive on a QP
1795 * @ibqp: the QP to post the receive on
1796 * @wr: the WR to post
1797 * @bad_wr: the first bad WR is put here
1798 *
1799 * This may be called from interrupt context.
1800 *
1801 * Return: 0 on success otherwise errno
1802 */
1803int rvt_post_recv(struct ib_qp *ibqp, const struct ib_recv_wr *wr,
1804                  const struct ib_recv_wr **bad_wr)
1805{
1806        struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1807        struct rvt_krwq *wq = qp->r_rq.kwq;
1808        unsigned long flags;
1809        int qp_err_flush = (ib_rvt_state_ops[qp->state] & RVT_FLUSH_RECV) &&
1810                                !qp->ibqp.srq;
1811
1812        /* Check that state is OK to post receive. */
1813        if (!(ib_rvt_state_ops[qp->state] & RVT_POST_RECV_OK) || !wq) {
1814                *bad_wr = wr;
1815                return -EINVAL;
1816        }
1817
1818        for (; wr; wr = wr->next) {
1819                struct rvt_rwqe *wqe;
1820                u32 next;
1821                int i;
1822
1823                if ((unsigned)wr->num_sge > qp->r_rq.max_sge) {
1824                        *bad_wr = wr;
1825                        return -EINVAL;
1826                }
1827
1828                spin_lock_irqsave(&qp->r_rq.kwq->p_lock, flags);
1829                next = wq->head + 1;
1830                if (next >= qp->r_rq.size)
1831                        next = 0;
1832                if (next == READ_ONCE(wq->tail)) {
1833                        spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags);
1834                        *bad_wr = wr;
1835                        return -ENOMEM;
1836                }
1837                if (unlikely(qp_err_flush)) {
1838                        struct ib_wc wc;
1839
1840                        memset(&wc, 0, sizeof(wc));
1841                        wc.qp = &qp->ibqp;
1842                        wc.opcode = IB_WC_RECV;
1843                        wc.wr_id = wr->wr_id;
1844                        wc.status = IB_WC_WR_FLUSH_ERR;
1845                        rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1846                } else {
1847                        wqe = rvt_get_rwqe_ptr(&qp->r_rq, wq->head);
1848                        wqe->wr_id = wr->wr_id;
1849                        wqe->num_sge = wr->num_sge;
1850                        for (i = 0; i < wr->num_sge; i++) {
1851                                wqe->sg_list[i].addr = wr->sg_list[i].addr;
1852                                wqe->sg_list[i].length = wr->sg_list[i].length;
1853                                wqe->sg_list[i].lkey = wr->sg_list[i].lkey;
1854                        }
1855                        /*
1856                         * Make sure queue entry is written
1857                         * before the head index.
1858                         */
1859                        smp_store_release(&wq->head, next);
1860                }
1861                spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags);
1862        }
1863        return 0;
1864}
1865
1866/**
1867 * rvt_qp_valid_operation - validate post send wr request
1868 * @qp - the qp
1869 * @post-parms - the post send table for the driver
1870 * @wr - the work request
1871 *
1872 * The routine validates the operation based on the
1873 * validation table an returns the length of the operation
1874 * which can extend beyond the ib_send_bw.  Operation
1875 * dependent flags key atomic operation validation.
1876 *
1877 * There is an exception for UD qps that validates the pd and
1878 * overrides the length to include the additional UD specific
1879 * length.
1880 *
1881 * Returns a negative error or the length of the work request
1882 * for building the swqe.
1883 */
1884static inline int rvt_qp_valid_operation(
1885        struct rvt_qp *qp,
1886        const struct rvt_operation_params *post_parms,
1887        const struct ib_send_wr *wr)
1888{
1889        int len;
1890
1891        if (wr->opcode >= RVT_OPERATION_MAX || !post_parms[wr->opcode].length)
1892                return -EINVAL;
1893        if (!(post_parms[wr->opcode].qpt_support & BIT(qp->ibqp.qp_type)))
1894                return -EINVAL;
1895        if ((post_parms[wr->opcode].flags & RVT_OPERATION_PRIV) &&
1896            ibpd_to_rvtpd(qp->ibqp.pd)->user)
1897                return -EINVAL;
1898        if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC_SGE &&
1899            (wr->num_sge == 0 ||
1900             wr->sg_list[0].length < sizeof(u64) ||
1901             wr->sg_list[0].addr & (sizeof(u64) - 1)))
1902                return -EINVAL;
1903        if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC &&
1904            !qp->s_max_rd_atomic)
1905                return -EINVAL;
1906        len = post_parms[wr->opcode].length;
1907        /* UD specific */
1908        if (qp->ibqp.qp_type != IB_QPT_UC &&
1909            qp->ibqp.qp_type != IB_QPT_RC) {
1910                if (qp->ibqp.pd != ud_wr(wr)->ah->pd)
1911                        return -EINVAL;
1912                len = sizeof(struct ib_ud_wr);
1913        }
1914        return len;
1915}
1916
1917/**
1918 * rvt_qp_is_avail - determine queue capacity
1919 * @qp: the qp
1920 * @rdi: the rdmavt device
1921 * @reserved_op: is reserved operation
1922 *
1923 * This assumes the s_hlock is held but the s_last
1924 * qp variable is uncontrolled.
1925 *
1926 * For non reserved operations, the qp->s_avail
1927 * may be changed.
1928 *
1929 * The return value is zero or a -ENOMEM.
1930 */
1931static inline int rvt_qp_is_avail(
1932        struct rvt_qp *qp,
1933        struct rvt_dev_info *rdi,
1934        bool reserved_op)
1935{
1936        u32 slast;
1937        u32 avail;
1938        u32 reserved_used;
1939
1940        /* see rvt_qp_wqe_unreserve() */
1941        smp_mb__before_atomic();
1942        if (unlikely(reserved_op)) {
1943                /* see rvt_qp_wqe_unreserve() */
1944                reserved_used = atomic_read(&qp->s_reserved_used);
1945                if (reserved_used >= rdi->dparms.reserved_operations)
1946                        return -ENOMEM;
1947                return 0;
1948        }
1949        /* non-reserved operations */
1950        if (likely(qp->s_avail))
1951                return 0;
1952        /* See rvt_qp_complete_swqe() */
1953        slast = smp_load_acquire(&qp->s_last);
1954        if (qp->s_head >= slast)
1955                avail = qp->s_size - (qp->s_head - slast);
1956        else
1957                avail = slast - qp->s_head;
1958
1959        reserved_used = atomic_read(&qp->s_reserved_used);
1960        avail =  avail - 1 -
1961                (rdi->dparms.reserved_operations - reserved_used);
1962        /* insure we don't assign a negative s_avail */
1963        if ((s32)avail <= 0)
1964                return -ENOMEM;
1965        qp->s_avail = avail;
1966        if (WARN_ON(qp->s_avail >
1967                    (qp->s_size - 1 - rdi->dparms.reserved_operations)))
1968                rvt_pr_err(rdi,
1969                           "More avail entries than QP RB size.\nQP: %u, size: %u, avail: %u\nhead: %u, tail: %u, cur: %u, acked: %u, last: %u",
1970                           qp->ibqp.qp_num, qp->s_size, qp->s_avail,
1971                           qp->s_head, qp->s_tail, qp->s_cur,
1972                           qp->s_acked, qp->s_last);
1973        return 0;
1974}
1975
1976/**
1977 * rvt_post_one_wr - post one RC, UC, or UD send work request
1978 * @qp: the QP to post on
1979 * @wr: the work request to send
1980 */
1981static int rvt_post_one_wr(struct rvt_qp *qp,
1982                           const struct ib_send_wr *wr,
1983                           bool *call_send)
1984{
1985        struct rvt_swqe *wqe;
1986        u32 next;
1987        int i;
1988        int j;
1989        int acc;
1990        struct rvt_lkey_table *rkt;
1991        struct rvt_pd *pd;
1992        struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
1993        u8 log_pmtu;
1994        int ret;
1995        size_t cplen;
1996        bool reserved_op;
1997        int local_ops_delayed = 0;
1998
1999        BUILD_BUG_ON(IB_QPT_MAX >= (sizeof(u32) * BITS_PER_BYTE));
2000
2001        /* IB spec says that num_sge == 0 is OK. */
2002        if (unlikely(wr->num_sge > qp->s_max_sge))
2003                return -EINVAL;
2004
2005        ret = rvt_qp_valid_operation(qp, rdi->post_parms, wr);
2006        if (ret < 0)
2007                return ret;
2008        cplen = ret;
2009
2010        /*
2011         * Local operations include fast register and local invalidate.
2012         * Fast register needs to be processed immediately because the
2013         * registered lkey may be used by following work requests and the
2014         * lkey needs to be valid at the time those requests are posted.
2015         * Local invalidate can be processed immediately if fencing is
2016         * not required and no previous local invalidate ops are pending.
2017         * Signaled local operations that have been processed immediately
2018         * need to have requests with "completion only" flags set posted
2019         * to the send queue in order to generate completions.
2020         */
2021        if ((rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) {
2022                switch (wr->opcode) {
2023                case IB_WR_REG_MR:
2024                        ret = rvt_fast_reg_mr(qp,
2025                                              reg_wr(wr)->mr,
2026                                              reg_wr(wr)->key,
2027                                              reg_wr(wr)->access);
2028                        if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
2029                                return ret;
2030                        break;
2031                case IB_WR_LOCAL_INV:
2032                        if ((wr->send_flags & IB_SEND_FENCE) ||
2033                            atomic_read(&qp->local_ops_pending)) {
2034                                local_ops_delayed = 1;
2035                        } else {
2036                                ret = rvt_invalidate_rkey(
2037                                        qp, wr->ex.invalidate_rkey);
2038                                if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
2039                                        return ret;
2040                        }
2041                        break;
2042                default:
2043                        return -EINVAL;
2044                }
2045        }
2046
2047        reserved_op = rdi->post_parms[wr->opcode].flags &
2048                        RVT_OPERATION_USE_RESERVE;
2049        /* check for avail */
2050        ret = rvt_qp_is_avail(qp, rdi, reserved_op);
2051        if (ret)
2052                return ret;
2053        next = qp->s_head + 1;
2054        if (next >= qp->s_size)
2055                next = 0;
2056
2057        rkt = &rdi->lkey_table;
2058        pd = ibpd_to_rvtpd(qp->ibqp.pd);
2059        wqe = rvt_get_swqe_ptr(qp, qp->s_head);
2060
2061        /* cplen has length from above */
2062        memcpy(&wqe->wr, wr, cplen);
2063
2064        wqe->length = 0;
2065        j = 0;
2066        if (wr->num_sge) {
2067                struct rvt_sge *last_sge = NULL;
2068
2069                acc = wr->opcode >= IB_WR_RDMA_READ ?
2070                        IB_ACCESS_LOCAL_WRITE : 0;
2071                for (i = 0; i < wr->num_sge; i++) {
2072                        u32 length = wr->sg_list[i].length;
2073
2074                        if (length == 0)
2075                                continue;
2076                        ret = rvt_lkey_ok(rkt, pd, &wqe->sg_list[j], last_sge,
2077                                          &wr->sg_list[i], acc);
2078                        if (unlikely(ret < 0))
2079                                goto bail_inval_free;
2080                        wqe->length += length;
2081                        if (ret)
2082                                last_sge = &wqe->sg_list[j];
2083                        j += ret;
2084                }
2085                wqe->wr.num_sge = j;
2086        }
2087
2088        /*
2089         * Calculate and set SWQE PSN values prior to handing it off
2090         * to the driver's check routine. This give the driver the
2091         * opportunity to adjust PSN values based on internal checks.
2092         */
2093        log_pmtu = qp->log_pmtu;
2094        if (qp->allowed_ops == IB_OPCODE_UD) {
2095                struct rvt_ah *ah = rvt_get_swqe_ah(wqe);
2096
2097                log_pmtu = ah->log_pmtu;
2098                rdma_copy_ah_attr(wqe->ud_wr.attr, &ah->attr);
2099        }
2100
2101        if (rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL) {
2102                if (local_ops_delayed)
2103                        atomic_inc(&qp->local_ops_pending);
2104                else
2105                        wqe->wr.send_flags |= RVT_SEND_COMPLETION_ONLY;
2106                wqe->ssn = 0;
2107                wqe->psn = 0;
2108                wqe->lpsn = 0;
2109        } else {
2110                wqe->ssn = qp->s_ssn++;
2111                wqe->psn = qp->s_next_psn;
2112                wqe->lpsn = wqe->psn +
2113                                (wqe->length ?
2114                                        ((wqe->length - 1) >> log_pmtu) :
2115                                        0);
2116        }
2117
2118        /* general part of wqe valid - allow for driver checks */
2119        if (rdi->driver_f.setup_wqe) {
2120                ret = rdi->driver_f.setup_wqe(qp, wqe, call_send);
2121                if (ret < 0)
2122                        goto bail_inval_free_ref;
2123        }
2124
2125        if (!(rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL))
2126                qp->s_next_psn = wqe->lpsn + 1;
2127
2128        if (unlikely(reserved_op)) {
2129                wqe->wr.send_flags |= RVT_SEND_RESERVE_USED;
2130                rvt_qp_wqe_reserve(qp, wqe);
2131        } else {
2132                wqe->wr.send_flags &= ~RVT_SEND_RESERVE_USED;
2133                qp->s_avail--;
2134        }
2135        trace_rvt_post_one_wr(qp, wqe, wr->num_sge);
2136        smp_wmb(); /* see request builders */
2137        qp->s_head = next;
2138
2139        return 0;
2140
2141bail_inval_free_ref:
2142        if (qp->allowed_ops == IB_OPCODE_UD)
2143                rdma_destroy_ah_attr(wqe->ud_wr.attr);
2144bail_inval_free:
2145        /* release mr holds */
2146        while (j) {
2147                struct rvt_sge *sge = &wqe->sg_list[--j];
2148
2149                rvt_put_mr(sge->mr);
2150        }
2151        return ret;
2152}
2153
2154/**
2155 * rvt_post_send - post a send on a QP
2156 * @ibqp: the QP to post the send on
2157 * @wr: the list of work requests to post
2158 * @bad_wr: the first bad WR is put here
2159 *
2160 * This may be called from interrupt context.
2161 *
2162 * Return: 0 on success else errno
2163 */
2164int rvt_post_send(struct ib_qp *ibqp, const struct ib_send_wr *wr,
2165                  const struct ib_send_wr **bad_wr)
2166{
2167        struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
2168        struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
2169        unsigned long flags = 0;
2170        bool call_send;
2171        unsigned nreq = 0;
2172        int err = 0;
2173
2174        spin_lock_irqsave(&qp->s_hlock, flags);
2175
2176        /*
2177         * Ensure QP state is such that we can send. If not bail out early,
2178         * there is no need to do this every time we post a send.
2179         */
2180        if (unlikely(!(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK))) {
2181                spin_unlock_irqrestore(&qp->s_hlock, flags);
2182                return -EINVAL;
2183        }
2184
2185        /*
2186         * If the send queue is empty, and we only have a single WR then just go
2187         * ahead and kick the send engine into gear. Otherwise we will always
2188         * just schedule the send to happen later.
2189         */
2190        call_send = qp->s_head == READ_ONCE(qp->s_last) && !wr->next;
2191
2192        for (; wr; wr = wr->next) {
2193                err = rvt_post_one_wr(qp, wr, &call_send);
2194                if (unlikely(err)) {
2195                        *bad_wr = wr;
2196                        goto bail;
2197                }
2198                nreq++;
2199        }
2200bail:
2201        spin_unlock_irqrestore(&qp->s_hlock, flags);
2202        if (nreq) {
2203                /*
2204                 * Only call do_send if there is exactly one packet, and the
2205                 * driver said it was ok.
2206                 */
2207                if (nreq == 1 && call_send)
2208                        rdi->driver_f.do_send(qp);
2209                else
2210                        rdi->driver_f.schedule_send_no_lock(qp);
2211        }
2212        return err;
2213}
2214
2215/**
2216 * rvt_post_srq_receive - post a receive on a shared receive queue
2217 * @ibsrq: the SRQ to post the receive on
2218 * @wr: the list of work requests to post
2219 * @bad_wr: A pointer to the first WR to cause a problem is put here
2220 *
2221 * This may be called from interrupt context.
2222 *
2223 * Return: 0 on success else errno
2224 */
2225int rvt_post_srq_recv(struct ib_srq *ibsrq, const struct ib_recv_wr *wr,
2226                      const struct ib_recv_wr **bad_wr)
2227{
2228        struct rvt_srq *srq = ibsrq_to_rvtsrq(ibsrq);
2229        struct rvt_krwq *wq;
2230        unsigned long flags;
2231
2232        for (; wr; wr = wr->next) {
2233                struct rvt_rwqe *wqe;
2234                u32 next;
2235                int i;
2236
2237                if ((unsigned)wr->num_sge > srq->rq.max_sge) {
2238                        *bad_wr = wr;
2239                        return -EINVAL;
2240                }
2241
2242                spin_lock_irqsave(&srq->rq.kwq->p_lock, flags);
2243                wq = srq->rq.kwq;
2244                next = wq->head + 1;
2245                if (next >= srq->rq.size)
2246                        next = 0;
2247                if (next == READ_ONCE(wq->tail)) {
2248                        spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags);
2249                        *bad_wr = wr;
2250                        return -ENOMEM;
2251                }
2252
2253                wqe = rvt_get_rwqe_ptr(&srq->rq, wq->head);
2254                wqe->wr_id = wr->wr_id;
2255                wqe->num_sge = wr->num_sge;
2256                for (i = 0; i < wr->num_sge; i++) {
2257                        wqe->sg_list[i].addr = wr->sg_list[i].addr;
2258                        wqe->sg_list[i].length = wr->sg_list[i].length;
2259                        wqe->sg_list[i].lkey = wr->sg_list[i].lkey;
2260                }
2261                /* Make sure queue entry is written before the head index. */
2262                smp_store_release(&wq->head, next);
2263                spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags);
2264        }
2265        return 0;
2266}
2267
2268/*
2269 * rvt used the internal kernel struct as part of its ABI, for now make sure
2270 * the kernel struct does not change layout. FIXME: rvt should never cast the
2271 * user struct to a kernel struct.
2272 */
2273static struct ib_sge *rvt_cast_sge(struct rvt_wqe_sge *sge)
2274{
2275        BUILD_BUG_ON(offsetof(struct ib_sge, addr) !=
2276                     offsetof(struct rvt_wqe_sge, addr));
2277        BUILD_BUG_ON(offsetof(struct ib_sge, length) !=
2278                     offsetof(struct rvt_wqe_sge, length));
2279        BUILD_BUG_ON(offsetof(struct ib_sge, lkey) !=
2280                     offsetof(struct rvt_wqe_sge, lkey));
2281        return (struct ib_sge *)sge;
2282}
2283
2284/*
2285 * Validate a RWQE and fill in the SGE state.
2286 * Return 1 if OK.
2287 */
2288static int init_sge(struct rvt_qp *qp, struct rvt_rwqe *wqe)
2289{
2290        int i, j, ret;
2291        struct ib_wc wc;
2292        struct rvt_lkey_table *rkt;
2293        struct rvt_pd *pd;
2294        struct rvt_sge_state *ss;
2295        struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2296
2297        rkt = &rdi->lkey_table;
2298        pd = ibpd_to_rvtpd(qp->ibqp.srq ? qp->ibqp.srq->pd : qp->ibqp.pd);
2299        ss = &qp->r_sge;
2300        ss->sg_list = qp->r_sg_list;
2301        qp->r_len = 0;
2302        for (i = j = 0; i < wqe->num_sge; i++) {
2303                if (wqe->sg_list[i].length == 0)
2304                        continue;
2305                /* Check LKEY */
2306                ret = rvt_lkey_ok(rkt, pd, j ? &ss->sg_list[j - 1] : &ss->sge,
2307                                  NULL, rvt_cast_sge(&wqe->sg_list[i]),
2308                                  IB_ACCESS_LOCAL_WRITE);
2309                if (unlikely(ret <= 0))
2310                        goto bad_lkey;
2311                qp->r_len += wqe->sg_list[i].length;
2312                j++;
2313        }
2314        ss->num_sge = j;
2315        ss->total_len = qp->r_len;
2316        return 1;
2317
2318bad_lkey:
2319        while (j) {
2320                struct rvt_sge *sge = --j ? &ss->sg_list[j - 1] : &ss->sge;
2321
2322                rvt_put_mr(sge->mr);
2323        }
2324        ss->num_sge = 0;
2325        memset(&wc, 0, sizeof(wc));
2326        wc.wr_id = wqe->wr_id;
2327        wc.status = IB_WC_LOC_PROT_ERR;
2328        wc.opcode = IB_WC_RECV;
2329        wc.qp = &qp->ibqp;
2330        /* Signal solicited completion event. */
2331        rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
2332        return 0;
2333}
2334
2335/**
2336 * get_count - count numbers of request work queue entries
2337 * in circular buffer
2338 * @rq: data structure for request queue entry
2339 * @tail: tail indices of the circular buffer
2340 * @head: head indices of the circular buffer
2341 *
2342 * Return - total number of entries in the circular buffer
2343 */
2344static u32 get_count(struct rvt_rq *rq, u32 tail, u32 head)
2345{
2346        u32 count;
2347
2348        count = head;
2349
2350        if (count >= rq->size)
2351                count = 0;
2352        if (count < tail)
2353                count += rq->size - tail;
2354        else
2355                count -= tail;
2356
2357        return count;
2358}
2359
2360/**
2361 * get_rvt_head - get head indices of the circular buffer
2362 * @rq: data structure for request queue entry
2363 * @ip: the QP
2364 *
2365 * Return - head index value
2366 */
2367static inline u32 get_rvt_head(struct rvt_rq *rq, void *ip)
2368{
2369        u32 head;
2370
2371        if (ip)
2372                head = RDMA_READ_UAPI_ATOMIC(rq->wq->head);
2373        else
2374                head = rq->kwq->head;
2375
2376        return head;
2377}
2378
2379/**
2380 * rvt_get_rwqe - copy the next RWQE into the QP's RWQE
2381 * @qp: the QP
2382 * @wr_id_only: update qp->r_wr_id only, not qp->r_sge
2383 *
2384 * Return -1 if there is a local error, 0 if no RWQE is available,
2385 * otherwise return 1.
2386 *
2387 * Can be called from interrupt level.
2388 */
2389int rvt_get_rwqe(struct rvt_qp *qp, bool wr_id_only)
2390{
2391        unsigned long flags;
2392        struct rvt_rq *rq;
2393        struct rvt_krwq *kwq = NULL;
2394        struct rvt_rwq *wq;
2395        struct rvt_srq *srq;
2396        struct rvt_rwqe *wqe;
2397        void (*handler)(struct ib_event *, void *);
2398        u32 tail;
2399        u32 head;
2400        int ret;
2401        void *ip = NULL;
2402
2403        if (qp->ibqp.srq) {
2404                srq = ibsrq_to_rvtsrq(qp->ibqp.srq);
2405                handler = srq->ibsrq.event_handler;
2406                rq = &srq->rq;
2407                ip = srq->ip;
2408        } else {
2409                srq = NULL;
2410                handler = NULL;
2411                rq = &qp->r_rq;
2412                ip = qp->ip;
2413        }
2414
2415        spin_lock_irqsave(&rq->kwq->c_lock, flags);
2416        if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) {
2417                ret = 0;
2418                goto unlock;
2419        }
2420        kwq = rq->kwq;
2421        if (ip) {
2422                wq = rq->wq;
2423                tail = RDMA_READ_UAPI_ATOMIC(wq->tail);
2424        } else {
2425                tail = kwq->tail;
2426        }
2427
2428        /* Validate tail before using it since it is user writable. */
2429        if (tail >= rq->size)
2430                tail = 0;
2431
2432        if (kwq->count < RVT_RWQ_COUNT_THRESHOLD) {
2433                head = get_rvt_head(rq, ip);
2434                kwq->count = get_count(rq, tail, head);
2435        }
2436        if (unlikely(kwq->count == 0)) {
2437                ret = 0;
2438                goto unlock;
2439        }
2440        /* Make sure entry is read after the count is read. */
2441        smp_rmb();
2442        wqe = rvt_get_rwqe_ptr(rq, tail);
2443        /*
2444         * Even though we update the tail index in memory, the verbs
2445         * consumer is not supposed to post more entries until a
2446         * completion is generated.
2447         */
2448        if (++tail >= rq->size)
2449                tail = 0;
2450        if (ip)
2451                RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail);
2452        else
2453                kwq->tail = tail;
2454        if (!wr_id_only && !init_sge(qp, wqe)) {
2455                ret = -1;
2456                goto unlock;
2457        }
2458        qp->r_wr_id = wqe->wr_id;
2459
2460        kwq->count--;
2461        ret = 1;
2462        set_bit(RVT_R_WRID_VALID, &qp->r_aflags);
2463        if (handler) {
2464                /*
2465                 * Validate head pointer value and compute
2466                 * the number of remaining WQEs.
2467                 */
2468                if (kwq->count < srq->limit) {
2469                        kwq->count = get_count(rq, tail, get_rvt_head(rq, ip));
2470                        if (kwq->count < srq->limit) {
2471                                struct ib_event ev;
2472
2473                                srq->limit = 0;
2474                                spin_unlock_irqrestore(&rq->kwq->c_lock, flags);
2475                                ev.device = qp->ibqp.device;
2476                                ev.element.srq = qp->ibqp.srq;
2477                                ev.event = IB_EVENT_SRQ_LIMIT_REACHED;
2478                                handler(&ev, srq->ibsrq.srq_context);
2479                                goto bail;
2480                        }
2481                }
2482        }
2483unlock:
2484        spin_unlock_irqrestore(&rq->kwq->c_lock, flags);
2485bail:
2486        return ret;
2487}
2488EXPORT_SYMBOL(rvt_get_rwqe);
2489
2490/**
2491 * qp_comm_est - handle trap with QP established
2492 * @qp: the QP
2493 */
2494void rvt_comm_est(struct rvt_qp *qp)
2495{
2496        qp->r_flags |= RVT_R_COMM_EST;
2497        if (qp->ibqp.event_handler) {
2498                struct ib_event ev;
2499
2500                ev.device = qp->ibqp.device;
2501                ev.element.qp = &qp->ibqp;
2502                ev.event = IB_EVENT_COMM_EST;
2503                qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2504        }
2505}
2506EXPORT_SYMBOL(rvt_comm_est);
2507
2508void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err)
2509{
2510        unsigned long flags;
2511        int lastwqe;
2512
2513        spin_lock_irqsave(&qp->s_lock, flags);
2514        lastwqe = rvt_error_qp(qp, err);
2515        spin_unlock_irqrestore(&qp->s_lock, flags);
2516
2517        if (lastwqe) {
2518                struct ib_event ev;
2519
2520                ev.device = qp->ibqp.device;
2521                ev.element.qp = &qp->ibqp;
2522                ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
2523                qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2524        }
2525}
2526EXPORT_SYMBOL(rvt_rc_error);
2527
2528/*
2529 *  rvt_rnr_tbl_to_usec - return index into ib_rvt_rnr_table
2530 *  @index - the index
2531 *  return usec from an index into ib_rvt_rnr_table
2532 */
2533unsigned long rvt_rnr_tbl_to_usec(u32 index)
2534{
2535        return ib_rvt_rnr_table[(index & IB_AETH_CREDIT_MASK)];
2536}
2537EXPORT_SYMBOL(rvt_rnr_tbl_to_usec);
2538
2539static inline unsigned long rvt_aeth_to_usec(u32 aeth)
2540{
2541        return ib_rvt_rnr_table[(aeth >> IB_AETH_CREDIT_SHIFT) &
2542                                  IB_AETH_CREDIT_MASK];
2543}
2544
2545/*
2546 *  rvt_add_retry_timer_ext - add/start a retry timer
2547 *  @qp - the QP
2548 *  @shift - timeout shift to wait for multiple packets
2549 *  add a retry timer on the QP
2550 */
2551void rvt_add_retry_timer_ext(struct rvt_qp *qp, u8 shift)
2552{
2553        struct ib_qp *ibqp = &qp->ibqp;
2554        struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
2555
2556        lockdep_assert_held(&qp->s_lock);
2557        qp->s_flags |= RVT_S_TIMER;
2558       /* 4.096 usec. * (1 << qp->timeout) */
2559        qp->s_timer.expires = jiffies + rdi->busy_jiffies +
2560                              (qp->timeout_jiffies << shift);
2561        add_timer(&qp->s_timer);
2562}
2563EXPORT_SYMBOL(rvt_add_retry_timer_ext);
2564
2565/**
2566 * rvt_add_rnr_timer - add/start an rnr timer
2567 * @qp - the QP
2568 * @aeth - aeth of RNR timeout, simulated aeth for loopback
2569 * add an rnr timer on the QP
2570 */
2571void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth)
2572{
2573        u32 to;
2574
2575        lockdep_assert_held(&qp->s_lock);
2576        qp->s_flags |= RVT_S_WAIT_RNR;
2577        to = rvt_aeth_to_usec(aeth);
2578        trace_rvt_rnrnak_add(qp, to);
2579        hrtimer_start(&qp->s_rnr_timer,
2580                      ns_to_ktime(1000 * to), HRTIMER_MODE_REL_PINNED);
2581}
2582EXPORT_SYMBOL(rvt_add_rnr_timer);
2583
2584/**
2585 * rvt_stop_rc_timers - stop all timers
2586 * @qp - the QP
2587 * stop any pending timers
2588 */
2589void rvt_stop_rc_timers(struct rvt_qp *qp)
2590{
2591        lockdep_assert_held(&qp->s_lock);
2592        /* Remove QP from all timers */
2593        if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
2594                qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
2595                del_timer(&qp->s_timer);
2596                hrtimer_try_to_cancel(&qp->s_rnr_timer);
2597        }
2598}
2599EXPORT_SYMBOL(rvt_stop_rc_timers);
2600
2601/**
2602 * rvt_stop_rnr_timer - stop an rnr timer
2603 * @qp - the QP
2604 *
2605 * stop an rnr timer and return if the timer
2606 * had been pending.
2607 */
2608static void rvt_stop_rnr_timer(struct rvt_qp *qp)
2609{
2610        lockdep_assert_held(&qp->s_lock);
2611        /* Remove QP from rnr timer */
2612        if (qp->s_flags & RVT_S_WAIT_RNR) {
2613                qp->s_flags &= ~RVT_S_WAIT_RNR;
2614                trace_rvt_rnrnak_stop(qp, 0);
2615        }
2616}
2617
2618/**
2619 * rvt_del_timers_sync - wait for any timeout routines to exit
2620 * @qp - the QP
2621 */
2622void rvt_del_timers_sync(struct rvt_qp *qp)
2623{
2624        del_timer_sync(&qp->s_timer);
2625        hrtimer_cancel(&qp->s_rnr_timer);
2626}
2627EXPORT_SYMBOL(rvt_del_timers_sync);
2628
2629/**
2630 * This is called from s_timer for missing responses.
2631 */
2632static void rvt_rc_timeout(struct timer_list *t)
2633{
2634        struct rvt_qp *qp = from_timer(qp, t, s_timer);
2635        struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2636        unsigned long flags;
2637
2638        spin_lock_irqsave(&qp->r_lock, flags);
2639        spin_lock(&qp->s_lock);
2640        if (qp->s_flags & RVT_S_TIMER) {
2641                struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
2642
2643                qp->s_flags &= ~RVT_S_TIMER;
2644                rvp->n_rc_timeouts++;
2645                del_timer(&qp->s_timer);
2646                trace_rvt_rc_timeout(qp, qp->s_last_psn + 1);
2647                if (rdi->driver_f.notify_restart_rc)
2648                        rdi->driver_f.notify_restart_rc(qp,
2649                                                        qp->s_last_psn + 1,
2650                                                        1);
2651                rdi->driver_f.schedule_send(qp);
2652        }
2653        spin_unlock(&qp->s_lock);
2654        spin_unlock_irqrestore(&qp->r_lock, flags);
2655}
2656
2657/*
2658 * This is called from s_timer for RNR timeouts.
2659 */
2660enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t)
2661{
2662        struct rvt_qp *qp = container_of(t, struct rvt_qp, s_rnr_timer);
2663        struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2664        unsigned long flags;
2665
2666        spin_lock_irqsave(&qp->s_lock, flags);
2667        rvt_stop_rnr_timer(qp);
2668        trace_rvt_rnrnak_timeout(qp, 0);
2669        rdi->driver_f.schedule_send(qp);
2670        spin_unlock_irqrestore(&qp->s_lock, flags);
2671        return HRTIMER_NORESTART;
2672}
2673EXPORT_SYMBOL(rvt_rc_rnr_retry);
2674
2675/**
2676 * rvt_qp_iter_init - initial for QP iteration
2677 * @rdi: rvt devinfo
2678 * @v: u64 value
2679 *
2680 * This returns an iterator suitable for iterating QPs
2681 * in the system.
2682 *
2683 * The @cb is a user defined callback and @v is a 64
2684 * bit value passed to and relevant for processing in the
2685 * @cb.  An example use case would be to alter QP processing
2686 * based on criteria not part of the rvt_qp.
2687 *
2688 * Use cases that require memory allocation to succeed
2689 * must preallocate appropriately.
2690 *
2691 * Return: a pointer to an rvt_qp_iter or NULL
2692 */
2693struct rvt_qp_iter *rvt_qp_iter_init(struct rvt_dev_info *rdi,
2694                                     u64 v,
2695                                     void (*cb)(struct rvt_qp *qp, u64 v))
2696{
2697        struct rvt_qp_iter *i;
2698
2699        i = kzalloc(sizeof(*i), GFP_KERNEL);
2700        if (!i)
2701                return NULL;
2702
2703        i->rdi = rdi;
2704        /* number of special QPs (SMI/GSI) for device */
2705        i->specials = rdi->ibdev.phys_port_cnt * 2;
2706        i->v = v;
2707        i->cb = cb;
2708
2709        return i;
2710}
2711EXPORT_SYMBOL(rvt_qp_iter_init);
2712
2713/**
2714 * rvt_qp_iter_next - return the next QP in iter
2715 * @iter - the iterator
2716 *
2717 * Fine grained QP iterator suitable for use
2718 * with debugfs seq_file mechanisms.
2719 *
2720 * Updates iter->qp with the current QP when the return
2721 * value is 0.
2722 *
2723 * Return: 0 - iter->qp is valid 1 - no more QPs
2724 */
2725int rvt_qp_iter_next(struct rvt_qp_iter *iter)
2726        __must_hold(RCU)
2727{
2728        int n = iter->n;
2729        int ret = 1;
2730        struct rvt_qp *pqp = iter->qp;
2731        struct rvt_qp *qp;
2732        struct rvt_dev_info *rdi = iter->rdi;
2733
2734        /*
2735         * The approach is to consider the special qps
2736         * as additional table entries before the
2737         * real hash table.  Since the qp code sets
2738         * the qp->next hash link to NULL, this works just fine.
2739         *
2740         * iter->specials is 2 * # ports
2741         *
2742         * n = 0..iter->specials is the special qp indices
2743         *
2744         * n = iter->specials..rdi->qp_dev->qp_table_size+iter->specials are
2745         * the potential hash bucket entries
2746         *
2747         */
2748        for (; n <  rdi->qp_dev->qp_table_size + iter->specials; n++) {
2749                if (pqp) {
2750                        qp = rcu_dereference(pqp->next);
2751                } else {
2752                        if (n < iter->specials) {
2753                                struct rvt_ibport *rvp;
2754                                int pidx;
2755
2756                                pidx = n % rdi->ibdev.phys_port_cnt;
2757                                rvp = rdi->ports[pidx];
2758                                qp = rcu_dereference(rvp->qp[n & 1]);
2759                        } else {
2760                                qp = rcu_dereference(
2761                                        rdi->qp_dev->qp_table[
2762                                                (n - iter->specials)]);
2763                        }
2764                }
2765                pqp = qp;
2766                if (qp) {
2767                        iter->qp = qp;
2768                        iter->n = n;
2769                        return 0;
2770                }
2771        }
2772        return ret;
2773}
2774EXPORT_SYMBOL(rvt_qp_iter_next);
2775
2776/**
2777 * rvt_qp_iter - iterate all QPs
2778 * @rdi - rvt devinfo
2779 * @v - a 64 bit value
2780 * @cb - a callback
2781 *
2782 * This provides a way for iterating all QPs.
2783 *
2784 * The @cb is a user defined callback and @v is a 64
2785 * bit value passed to and relevant for processing in the
2786 * cb.  An example use case would be to alter QP processing
2787 * based on criteria not part of the rvt_qp.
2788 *
2789 * The code has an internal iterator to simplify
2790 * non seq_file use cases.
2791 */
2792void rvt_qp_iter(struct rvt_dev_info *rdi,
2793                 u64 v,
2794                 void (*cb)(struct rvt_qp *qp, u64 v))
2795{
2796        int ret;
2797        struct rvt_qp_iter i = {
2798                .rdi = rdi,
2799                .specials = rdi->ibdev.phys_port_cnt * 2,
2800                .v = v,
2801                .cb = cb
2802        };
2803
2804        rcu_read_lock();
2805        do {
2806                ret = rvt_qp_iter_next(&i);
2807                if (!ret) {
2808                        rvt_get_qp(i.qp);
2809                        rcu_read_unlock();
2810                        i.cb(i.qp, i.v);
2811                        rcu_read_lock();
2812                        rvt_put_qp(i.qp);
2813                }
2814        } while (!ret);
2815        rcu_read_unlock();
2816}
2817EXPORT_SYMBOL(rvt_qp_iter);
2818
2819/*
2820 * This should be called with s_lock held.
2821 */
2822void rvt_send_complete(struct rvt_qp *qp, struct rvt_swqe *wqe,
2823                       enum ib_wc_status status)
2824{
2825        u32 old_last, last;
2826        struct rvt_dev_info *rdi;
2827
2828        if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_OR_FLUSH_SEND))
2829                return;
2830        rdi = ib_to_rvt(qp->ibqp.device);
2831
2832        old_last = qp->s_last;
2833        trace_rvt_qp_send_completion(qp, wqe, old_last);
2834        last = rvt_qp_complete_swqe(qp, wqe, rdi->wc_opcode[wqe->wr.opcode],
2835                                    status);
2836        if (qp->s_acked == old_last)
2837                qp->s_acked = last;
2838        if (qp->s_cur == old_last)
2839                qp->s_cur = last;
2840        if (qp->s_tail == old_last)
2841                qp->s_tail = last;
2842        if (qp->state == IB_QPS_SQD && last == qp->s_cur)
2843                qp->s_draining = 0;
2844}
2845EXPORT_SYMBOL(rvt_send_complete);
2846
2847/**
2848 * rvt_copy_sge - copy data to SGE memory
2849 * @qp: associated QP
2850 * @ss: the SGE state
2851 * @data: the data to copy
2852 * @length: the length of the data
2853 * @release: boolean to release MR
2854 * @copy_last: do a separate copy of the last 8 bytes
2855 */
2856void rvt_copy_sge(struct rvt_qp *qp, struct rvt_sge_state *ss,
2857                  void *data, u32 length,
2858                  bool release, bool copy_last)
2859{
2860        struct rvt_sge *sge = &ss->sge;
2861        int i;
2862        bool in_last = false;
2863        bool cacheless_copy = false;
2864        struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2865        struct rvt_wss *wss = rdi->wss;
2866        unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode;
2867
2868        if (sge_copy_mode == RVT_SGE_COPY_CACHELESS) {
2869                cacheless_copy = length >= PAGE_SIZE;
2870        } else if (sge_copy_mode == RVT_SGE_COPY_ADAPTIVE) {
2871                if (length >= PAGE_SIZE) {
2872                        /*
2873                         * NOTE: this *assumes*:
2874                         * o The first vaddr is the dest.
2875                         * o If multiple pages, then vaddr is sequential.
2876                         */
2877                        wss_insert(wss, sge->vaddr);
2878                        if (length >= (2 * PAGE_SIZE))
2879                                wss_insert(wss, (sge->vaddr + PAGE_SIZE));
2880
2881                        cacheless_copy = wss_exceeds_threshold(wss);
2882                } else {
2883                        wss_advance_clean_counter(wss);
2884                }
2885        }
2886
2887        if (copy_last) {
2888                if (length > 8) {
2889                        length -= 8;
2890                } else {
2891                        copy_last = false;
2892                        in_last = true;
2893                }
2894        }
2895
2896again:
2897        while (length) {
2898                u32 len = rvt_get_sge_length(sge, length);
2899
2900                WARN_ON_ONCE(len == 0);
2901                if (unlikely(in_last)) {
2902                        /* enforce byte transfer ordering */
2903                        for (i = 0; i < len; i++)
2904                                ((u8 *)sge->vaddr)[i] = ((u8 *)data)[i];
2905                } else if (cacheless_copy) {
2906                        cacheless_memcpy(sge->vaddr, data, len);
2907                } else {
2908                        memcpy(sge->vaddr, data, len);
2909                }
2910                rvt_update_sge(ss, len, release);
2911                data += len;
2912                length -= len;
2913        }
2914
2915        if (copy_last) {
2916                copy_last = false;
2917                in_last = true;
2918                length = 8;
2919                goto again;
2920        }
2921}
2922EXPORT_SYMBOL(rvt_copy_sge);
2923
2924static enum ib_wc_status loopback_qp_drop(struct rvt_ibport *rvp,
2925                                          struct rvt_qp *sqp)
2926{
2927        rvp->n_pkt_drops++;
2928        /*
2929         * For RC, the requester would timeout and retry so
2930         * shortcut the timeouts and just signal too many retries.
2931         */
2932        return sqp->ibqp.qp_type == IB_QPT_RC ?
2933                IB_WC_RETRY_EXC_ERR : IB_WC_SUCCESS;
2934}
2935
2936/**
2937 * ruc_loopback - handle UC and RC loopback requests
2938 * @sqp: the sending QP
2939 *
2940 * This is called from rvt_do_send() to forward a WQE addressed to the same HFI
2941 * Note that although we are single threaded due to the send engine, we still
2942 * have to protect against post_send().  We don't have to worry about
2943 * receive interrupts since this is a connected protocol and all packets
2944 * will pass through here.
2945 */
2946void rvt_ruc_loopback(struct rvt_qp *sqp)
2947{
2948        struct rvt_ibport *rvp =  NULL;
2949        struct rvt_dev_info *rdi = ib_to_rvt(sqp->ibqp.device);
2950        struct rvt_qp *qp;
2951        struct rvt_swqe *wqe;
2952        struct rvt_sge *sge;
2953        unsigned long flags;
2954        struct ib_wc wc;
2955        u64 sdata;
2956        atomic64_t *maddr;
2957        enum ib_wc_status send_status;
2958        bool release;
2959        int ret;
2960        bool copy_last = false;
2961        int local_ops = 0;
2962
2963        rcu_read_lock();
2964        rvp = rdi->ports[sqp->port_num - 1];
2965
2966        /*
2967         * Note that we check the responder QP state after
2968         * checking the requester's state.
2969         */
2970
2971        qp = rvt_lookup_qpn(ib_to_rvt(sqp->ibqp.device), rvp,
2972                            sqp->remote_qpn);
2973
2974        spin_lock_irqsave(&sqp->s_lock, flags);
2975
2976        /* Return if we are already busy processing a work request. */
2977        if ((sqp->s_flags & (RVT_S_BUSY | RVT_S_ANY_WAIT)) ||
2978            !(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_OR_FLUSH_SEND))
2979                goto unlock;
2980
2981        sqp->s_flags |= RVT_S_BUSY;
2982
2983again:
2984        if (sqp->s_last == READ_ONCE(sqp->s_head))
2985                goto clr_busy;
2986        wqe = rvt_get_swqe_ptr(sqp, sqp->s_last);
2987
2988        /* Return if it is not OK to start a new work request. */
2989        if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_NEXT_SEND_OK)) {
2990                if (!(ib_rvt_state_ops[sqp->state] & RVT_FLUSH_SEND))
2991                        goto clr_busy;
2992                /* We are in the error state, flush the work request. */
2993                send_status = IB_WC_WR_FLUSH_ERR;
2994                goto flush_send;
2995        }
2996
2997        /*
2998         * We can rely on the entry not changing without the s_lock
2999         * being held until we update s_last.
3000         * We increment s_cur to indicate s_last is in progress.
3001         */
3002        if (sqp->s_last == sqp->s_cur) {
3003                if (++sqp->s_cur >= sqp->s_size)
3004                        sqp->s_cur = 0;
3005        }
3006        spin_unlock_irqrestore(&sqp->s_lock, flags);
3007
3008        if (!qp) {
3009                send_status = loopback_qp_drop(rvp, sqp);
3010                goto serr_no_r_lock;
3011        }
3012        spin_lock_irqsave(&qp->r_lock, flags);
3013        if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) ||
3014            qp->ibqp.qp_type != sqp->ibqp.qp_type) {
3015                send_status = loopback_qp_drop(rvp, sqp);
3016                goto serr;
3017        }
3018
3019        memset(&wc, 0, sizeof(wc));
3020        send_status = IB_WC_SUCCESS;
3021
3022        release = true;
3023        sqp->s_sge.sge = wqe->sg_list[0];
3024        sqp->s_sge.sg_list = wqe->sg_list + 1;
3025        sqp->s_sge.num_sge = wqe->wr.num_sge;
3026        sqp->s_len = wqe->length;
3027        switch (wqe->wr.opcode) {
3028        case IB_WR_REG_MR:
3029                goto send_comp;
3030
3031        case IB_WR_LOCAL_INV:
3032                if (!(wqe->wr.send_flags & RVT_SEND_COMPLETION_ONLY)) {
3033                        if (rvt_invalidate_rkey(sqp,
3034                                                wqe->wr.ex.invalidate_rkey))
3035                                send_status = IB_WC_LOC_PROT_ERR;
3036                        local_ops = 1;
3037                }
3038                goto send_comp;
3039
3040        case IB_WR_SEND_WITH_INV:
3041        case IB_WR_SEND_WITH_IMM:
3042        case IB_WR_SEND:
3043                ret = rvt_get_rwqe(qp, false);
3044                if (ret < 0)
3045                        goto op_err;
3046                if (!ret)
3047                        goto rnr_nak;
3048                if (wqe->length > qp->r_len)
3049                        goto inv_err;
3050                switch (wqe->wr.opcode) {
3051                case IB_WR_SEND_WITH_INV:
3052                        if (!rvt_invalidate_rkey(qp,
3053                                                 wqe->wr.ex.invalidate_rkey)) {
3054                                wc.wc_flags = IB_WC_WITH_INVALIDATE;
3055                                wc.ex.invalidate_rkey =
3056                                        wqe->wr.ex.invalidate_rkey;
3057                        }
3058                        break;
3059                case IB_WR_SEND_WITH_IMM:
3060                        wc.wc_flags = IB_WC_WITH_IMM;
3061                        wc.ex.imm_data = wqe->wr.ex.imm_data;
3062                        break;
3063                default:
3064                        break;
3065                }
3066                break;
3067
3068        case IB_WR_RDMA_WRITE_WITH_IMM:
3069                if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
3070                        goto inv_err;
3071                wc.wc_flags = IB_WC_WITH_IMM;
3072                wc.ex.imm_data = wqe->wr.ex.imm_data;
3073                ret = rvt_get_rwqe(qp, true);
3074                if (ret < 0)
3075                        goto op_err;
3076                if (!ret)
3077                        goto rnr_nak;
3078                /* skip copy_last set and qp_access_flags recheck */
3079                goto do_write;
3080        case IB_WR_RDMA_WRITE:
3081                copy_last = rvt_is_user_qp(qp);
3082                if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
3083                        goto inv_err;
3084do_write:
3085                if (wqe->length == 0)
3086                        break;
3087                if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, wqe->length,
3088                                          wqe->rdma_wr.remote_addr,
3089                                          wqe->rdma_wr.rkey,
3090                                          IB_ACCESS_REMOTE_WRITE)))
3091                        goto acc_err;
3092                qp->r_sge.sg_list = NULL;
3093                qp->r_sge.num_sge = 1;
3094                qp->r_sge.total_len = wqe->length;
3095                break;
3096
3097        case IB_WR_RDMA_READ:
3098                if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ)))
3099                        goto inv_err;
3100                if (unlikely(!rvt_rkey_ok(qp, &sqp->s_sge.sge, wqe->length,
3101                                          wqe->rdma_wr.remote_addr,
3102                                          wqe->rdma_wr.rkey,
3103                                          IB_ACCESS_REMOTE_READ)))
3104                        goto acc_err;
3105                release = false;
3106                sqp->s_sge.sg_list = NULL;
3107                sqp->s_sge.num_sge = 1;
3108                qp->r_sge.sge = wqe->sg_list[0];
3109                qp->r_sge.sg_list = wqe->sg_list + 1;
3110                qp->r_sge.num_sge = wqe->wr.num_sge;
3111                qp->r_sge.total_len = wqe->length;
3112                break;
3113
3114        case IB_WR_ATOMIC_CMP_AND_SWP:
3115        case IB_WR_ATOMIC_FETCH_AND_ADD:
3116                if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_ATOMIC)))
3117                        goto inv_err;
3118                if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, sizeof(u64),
3119                                          wqe->atomic_wr.remote_addr,
3120                                          wqe->atomic_wr.rkey,
3121                                          IB_ACCESS_REMOTE_ATOMIC)))
3122                        goto acc_err;
3123                /* Perform atomic OP and save result. */
3124                maddr = (atomic64_t *)qp->r_sge.sge.vaddr;
3125                sdata = wqe->atomic_wr.compare_add;
3126                *(u64 *)sqp->s_sge.sge.vaddr =
3127                        (wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) ?
3128                        (u64)atomic64_add_return(sdata, maddr) - sdata :
3129                        (u64)cmpxchg((u64 *)qp->r_sge.sge.vaddr,
3130                                      sdata, wqe->atomic_wr.swap);
3131                rvt_put_mr(qp->r_sge.sge.mr);
3132                qp->r_sge.num_sge = 0;
3133                goto send_comp;
3134
3135        default:
3136                send_status = IB_WC_LOC_QP_OP_ERR;
3137                goto serr;
3138        }
3139
3140        sge = &sqp->s_sge.sge;
3141        while (sqp->s_len) {
3142                u32 len = rvt_get_sge_length(sge, sqp->s_len);
3143
3144                WARN_ON_ONCE(len == 0);
3145                rvt_copy_sge(qp, &qp->r_sge, sge->vaddr,
3146                             len, release, copy_last);
3147                rvt_update_sge(&sqp->s_sge, len, !release);
3148                sqp->s_len -= len;
3149        }
3150        if (release)
3151                rvt_put_ss(&qp->r_sge);
3152
3153        if (!test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags))
3154                goto send_comp;
3155
3156        if (wqe->wr.opcode == IB_WR_RDMA_WRITE_WITH_IMM)
3157                wc.opcode = IB_WC_RECV_RDMA_WITH_IMM;
3158        else
3159                wc.opcode = IB_WC_RECV;
3160        wc.wr_id = qp->r_wr_id;
3161        wc.status = IB_WC_SUCCESS;
3162        wc.byte_len = wqe->length;
3163        wc.qp = &qp->ibqp;
3164        wc.src_qp = qp->remote_qpn;
3165        wc.slid = rdma_ah_get_dlid(&qp->remote_ah_attr) & U16_MAX;
3166        wc.sl = rdma_ah_get_sl(&qp->remote_ah_attr);
3167        wc.port_num = 1;
3168        /* Signal completion event if the solicited bit is set. */
3169        rvt_recv_cq(qp, &wc, wqe->wr.send_flags & IB_SEND_SOLICITED);
3170
3171send_comp:
3172        spin_unlock_irqrestore(&qp->r_lock, flags);
3173        spin_lock_irqsave(&sqp->s_lock, flags);
3174        rvp->n_loop_pkts++;
3175flush_send:
3176        sqp->s_rnr_retry = sqp->s_rnr_retry_cnt;
3177        rvt_send_complete(sqp, wqe, send_status);
3178        if (local_ops) {
3179                atomic_dec(&sqp->local_ops_pending);
3180                local_ops = 0;
3181        }
3182        goto again;
3183
3184rnr_nak:
3185        /* Handle RNR NAK */
3186        if (qp->ibqp.qp_type == IB_QPT_UC)
3187                goto send_comp;
3188        rvp->n_rnr_naks++;
3189        /*
3190         * Note: we don't need the s_lock held since the BUSY flag
3191         * makes this single threaded.
3192         */
3193        if (sqp->s_rnr_retry == 0) {
3194                send_status = IB_WC_RNR_RETRY_EXC_ERR;
3195                goto serr;
3196        }
3197        if (sqp->s_rnr_retry_cnt < 7)
3198                sqp->s_rnr_retry--;
3199        spin_unlock_irqrestore(&qp->r_lock, flags);
3200        spin_lock_irqsave(&sqp->s_lock, flags);
3201        if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_RECV_OK))
3202                goto clr_busy;
3203        rvt_add_rnr_timer(sqp, qp->r_min_rnr_timer <<
3204                                IB_AETH_CREDIT_SHIFT);
3205        goto clr_busy;
3206
3207op_err:
3208        send_status = IB_WC_REM_OP_ERR;
3209        wc.status = IB_WC_LOC_QP_OP_ERR;
3210        goto err;
3211
3212inv_err:
3213        send_status =
3214                sqp->ibqp.qp_type == IB_QPT_RC ?
3215                        IB_WC_REM_INV_REQ_ERR :
3216                        IB_WC_SUCCESS;
3217        wc.status = IB_WC_LOC_QP_OP_ERR;
3218        goto err;
3219
3220acc_err:
3221        send_status = IB_WC_REM_ACCESS_ERR;
3222        wc.status = IB_WC_LOC_PROT_ERR;
3223err:
3224        /* responder goes to error state */
3225        rvt_rc_error(qp, wc.status);
3226
3227serr:
3228        spin_unlock_irqrestore(&qp->r_lock, flags);
3229serr_no_r_lock:
3230        spin_lock_irqsave(&sqp->s_lock, flags);
3231        rvt_send_complete(sqp, wqe, send_status);
3232        if (sqp->ibqp.qp_type == IB_QPT_RC) {
3233                int lastwqe = rvt_error_qp(sqp, IB_WC_WR_FLUSH_ERR);
3234
3235                sqp->s_flags &= ~RVT_S_BUSY;
3236                spin_unlock_irqrestore(&sqp->s_lock, flags);
3237                if (lastwqe) {
3238                        struct ib_event ev;
3239
3240                        ev.device = sqp->ibqp.device;
3241                        ev.element.qp = &sqp->ibqp;
3242                        ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
3243                        sqp->ibqp.event_handler(&ev, sqp->ibqp.qp_context);
3244                }
3245                goto done;
3246        }
3247clr_busy:
3248        sqp->s_flags &= ~RVT_S_BUSY;
3249unlock:
3250        spin_unlock_irqrestore(&sqp->s_lock, flags);
3251done:
3252        rcu_read_unlock();
3253}
3254EXPORT_SYMBOL(rvt_ruc_loopback);
3255