linux/drivers/input/input.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * The input core
   4 *
   5 * Copyright (c) 1999-2002 Vojtech Pavlik
   6 */
   7
   8
   9#define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
  10
  11#include <linux/init.h>
  12#include <linux/types.h>
  13#include <linux/idr.h>
  14#include <linux/input/mt.h>
  15#include <linux/module.h>
  16#include <linux/slab.h>
  17#include <linux/random.h>
  18#include <linux/major.h>
  19#include <linux/proc_fs.h>
  20#include <linux/sched.h>
  21#include <linux/seq_file.h>
  22#include <linux/poll.h>
  23#include <linux/device.h>
  24#include <linux/mutex.h>
  25#include <linux/rcupdate.h>
  26#include "input-compat.h"
  27
  28MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
  29MODULE_DESCRIPTION("Input core");
  30MODULE_LICENSE("GPL");
  31
  32#define INPUT_MAX_CHAR_DEVICES          1024
  33#define INPUT_FIRST_DYNAMIC_DEV         256
  34static DEFINE_IDA(input_ida);
  35
  36static LIST_HEAD(input_dev_list);
  37static LIST_HEAD(input_handler_list);
  38
  39/*
  40 * input_mutex protects access to both input_dev_list and input_handler_list.
  41 * This also causes input_[un]register_device and input_[un]register_handler
  42 * be mutually exclusive which simplifies locking in drivers implementing
  43 * input handlers.
  44 */
  45static DEFINE_MUTEX(input_mutex);
  46
  47static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
  48
  49static inline int is_event_supported(unsigned int code,
  50                                     unsigned long *bm, unsigned int max)
  51{
  52        return code <= max && test_bit(code, bm);
  53}
  54
  55static int input_defuzz_abs_event(int value, int old_val, int fuzz)
  56{
  57        if (fuzz) {
  58                if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
  59                        return old_val;
  60
  61                if (value > old_val - fuzz && value < old_val + fuzz)
  62                        return (old_val * 3 + value) / 4;
  63
  64                if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
  65                        return (old_val + value) / 2;
  66        }
  67
  68        return value;
  69}
  70
  71static void input_start_autorepeat(struct input_dev *dev, int code)
  72{
  73        if (test_bit(EV_REP, dev->evbit) &&
  74            dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
  75            dev->timer.function) {
  76                dev->repeat_key = code;
  77                mod_timer(&dev->timer,
  78                          jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
  79        }
  80}
  81
  82static void input_stop_autorepeat(struct input_dev *dev)
  83{
  84        del_timer(&dev->timer);
  85}
  86
  87/*
  88 * Pass event first through all filters and then, if event has not been
  89 * filtered out, through all open handles. This function is called with
  90 * dev->event_lock held and interrupts disabled.
  91 */
  92static unsigned int input_to_handler(struct input_handle *handle,
  93                        struct input_value *vals, unsigned int count)
  94{
  95        struct input_handler *handler = handle->handler;
  96        struct input_value *end = vals;
  97        struct input_value *v;
  98
  99        if (handler->filter) {
 100                for (v = vals; v != vals + count; v++) {
 101                        if (handler->filter(handle, v->type, v->code, v->value))
 102                                continue;
 103                        if (end != v)
 104                                *end = *v;
 105                        end++;
 106                }
 107                count = end - vals;
 108        }
 109
 110        if (!count)
 111                return 0;
 112
 113        if (handler->events)
 114                handler->events(handle, vals, count);
 115        else if (handler->event)
 116                for (v = vals; v != vals + count; v++)
 117                        handler->event(handle, v->type, v->code, v->value);
 118
 119        return count;
 120}
 121
 122/*
 123 * Pass values first through all filters and then, if event has not been
 124 * filtered out, through all open handles. This function is called with
 125 * dev->event_lock held and interrupts disabled.
 126 */
 127static void input_pass_values(struct input_dev *dev,
 128                              struct input_value *vals, unsigned int count)
 129{
 130        struct input_handle *handle;
 131        struct input_value *v;
 132
 133        if (!count)
 134                return;
 135
 136        rcu_read_lock();
 137
 138        handle = rcu_dereference(dev->grab);
 139        if (handle) {
 140                count = input_to_handler(handle, vals, count);
 141        } else {
 142                list_for_each_entry_rcu(handle, &dev->h_list, d_node)
 143                        if (handle->open) {
 144                                count = input_to_handler(handle, vals, count);
 145                                if (!count)
 146                                        break;
 147                        }
 148        }
 149
 150        rcu_read_unlock();
 151
 152        /* trigger auto repeat for key events */
 153        if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
 154                for (v = vals; v != vals + count; v++) {
 155                        if (v->type == EV_KEY && v->value != 2) {
 156                                if (v->value)
 157                                        input_start_autorepeat(dev, v->code);
 158                                else
 159                                        input_stop_autorepeat(dev);
 160                        }
 161                }
 162        }
 163}
 164
 165static void input_pass_event(struct input_dev *dev,
 166                             unsigned int type, unsigned int code, int value)
 167{
 168        struct input_value vals[] = { { type, code, value } };
 169
 170        input_pass_values(dev, vals, ARRAY_SIZE(vals));
 171}
 172
 173/*
 174 * Generate software autorepeat event. Note that we take
 175 * dev->event_lock here to avoid racing with input_event
 176 * which may cause keys get "stuck".
 177 */
 178static void input_repeat_key(struct timer_list *t)
 179{
 180        struct input_dev *dev = from_timer(dev, t, timer);
 181        unsigned long flags;
 182
 183        spin_lock_irqsave(&dev->event_lock, flags);
 184
 185        if (test_bit(dev->repeat_key, dev->key) &&
 186            is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
 187                struct input_value vals[] =  {
 188                        { EV_KEY, dev->repeat_key, 2 },
 189                        input_value_sync
 190                };
 191
 192                input_pass_values(dev, vals, ARRAY_SIZE(vals));
 193
 194                if (dev->rep[REP_PERIOD])
 195                        mod_timer(&dev->timer, jiffies +
 196                                        msecs_to_jiffies(dev->rep[REP_PERIOD]));
 197        }
 198
 199        spin_unlock_irqrestore(&dev->event_lock, flags);
 200}
 201
 202#define INPUT_IGNORE_EVENT      0
 203#define INPUT_PASS_TO_HANDLERS  1
 204#define INPUT_PASS_TO_DEVICE    2
 205#define INPUT_SLOT              4
 206#define INPUT_FLUSH             8
 207#define INPUT_PASS_TO_ALL       (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
 208
 209static int input_handle_abs_event(struct input_dev *dev,
 210                                  unsigned int code, int *pval)
 211{
 212        struct input_mt *mt = dev->mt;
 213        bool is_mt_event;
 214        int *pold;
 215
 216        if (code == ABS_MT_SLOT) {
 217                /*
 218                 * "Stage" the event; we'll flush it later, when we
 219                 * get actual touch data.
 220                 */
 221                if (mt && *pval >= 0 && *pval < mt->num_slots)
 222                        mt->slot = *pval;
 223
 224                return INPUT_IGNORE_EVENT;
 225        }
 226
 227        is_mt_event = input_is_mt_value(code);
 228
 229        if (!is_mt_event) {
 230                pold = &dev->absinfo[code].value;
 231        } else if (mt) {
 232                pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
 233        } else {
 234                /*
 235                 * Bypass filtering for multi-touch events when
 236                 * not employing slots.
 237                 */
 238                pold = NULL;
 239        }
 240
 241        if (pold) {
 242                *pval = input_defuzz_abs_event(*pval, *pold,
 243                                                dev->absinfo[code].fuzz);
 244                if (*pold == *pval)
 245                        return INPUT_IGNORE_EVENT;
 246
 247                *pold = *pval;
 248        }
 249
 250        /* Flush pending "slot" event */
 251        if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
 252                input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
 253                return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
 254        }
 255
 256        return INPUT_PASS_TO_HANDLERS;
 257}
 258
 259static int input_get_disposition(struct input_dev *dev,
 260                          unsigned int type, unsigned int code, int *pval)
 261{
 262        int disposition = INPUT_IGNORE_EVENT;
 263        int value = *pval;
 264
 265        switch (type) {
 266
 267        case EV_SYN:
 268                switch (code) {
 269                case SYN_CONFIG:
 270                        disposition = INPUT_PASS_TO_ALL;
 271                        break;
 272
 273                case SYN_REPORT:
 274                        disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
 275                        break;
 276                case SYN_MT_REPORT:
 277                        disposition = INPUT_PASS_TO_HANDLERS;
 278                        break;
 279                }
 280                break;
 281
 282        case EV_KEY:
 283                if (is_event_supported(code, dev->keybit, KEY_MAX)) {
 284
 285                        /* auto-repeat bypasses state updates */
 286                        if (value == 2) {
 287                                disposition = INPUT_PASS_TO_HANDLERS;
 288                                break;
 289                        }
 290
 291                        if (!!test_bit(code, dev->key) != !!value) {
 292
 293                                __change_bit(code, dev->key);
 294                                disposition = INPUT_PASS_TO_HANDLERS;
 295                        }
 296                }
 297                break;
 298
 299        case EV_SW:
 300                if (is_event_supported(code, dev->swbit, SW_MAX) &&
 301                    !!test_bit(code, dev->sw) != !!value) {
 302
 303                        __change_bit(code, dev->sw);
 304                        disposition = INPUT_PASS_TO_HANDLERS;
 305                }
 306                break;
 307
 308        case EV_ABS:
 309                if (is_event_supported(code, dev->absbit, ABS_MAX))
 310                        disposition = input_handle_abs_event(dev, code, &value);
 311
 312                break;
 313
 314        case EV_REL:
 315                if (is_event_supported(code, dev->relbit, REL_MAX) && value)
 316                        disposition = INPUT_PASS_TO_HANDLERS;
 317
 318                break;
 319
 320        case EV_MSC:
 321                if (is_event_supported(code, dev->mscbit, MSC_MAX))
 322                        disposition = INPUT_PASS_TO_ALL;
 323
 324                break;
 325
 326        case EV_LED:
 327                if (is_event_supported(code, dev->ledbit, LED_MAX) &&
 328                    !!test_bit(code, dev->led) != !!value) {
 329
 330                        __change_bit(code, dev->led);
 331                        disposition = INPUT_PASS_TO_ALL;
 332                }
 333                break;
 334
 335        case EV_SND:
 336                if (is_event_supported(code, dev->sndbit, SND_MAX)) {
 337
 338                        if (!!test_bit(code, dev->snd) != !!value)
 339                                __change_bit(code, dev->snd);
 340                        disposition = INPUT_PASS_TO_ALL;
 341                }
 342                break;
 343
 344        case EV_REP:
 345                if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
 346                        dev->rep[code] = value;
 347                        disposition = INPUT_PASS_TO_ALL;
 348                }
 349                break;
 350
 351        case EV_FF:
 352                if (value >= 0)
 353                        disposition = INPUT_PASS_TO_ALL;
 354                break;
 355
 356        case EV_PWR:
 357                disposition = INPUT_PASS_TO_ALL;
 358                break;
 359        }
 360
 361        *pval = value;
 362        return disposition;
 363}
 364
 365static void input_handle_event(struct input_dev *dev,
 366                               unsigned int type, unsigned int code, int value)
 367{
 368        int disposition = input_get_disposition(dev, type, code, &value);
 369
 370        if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
 371                add_input_randomness(type, code, value);
 372
 373        if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
 374                dev->event(dev, type, code, value);
 375
 376        if (!dev->vals)
 377                return;
 378
 379        if (disposition & INPUT_PASS_TO_HANDLERS) {
 380                struct input_value *v;
 381
 382                if (disposition & INPUT_SLOT) {
 383                        v = &dev->vals[dev->num_vals++];
 384                        v->type = EV_ABS;
 385                        v->code = ABS_MT_SLOT;
 386                        v->value = dev->mt->slot;
 387                }
 388
 389                v = &dev->vals[dev->num_vals++];
 390                v->type = type;
 391                v->code = code;
 392                v->value = value;
 393        }
 394
 395        if (disposition & INPUT_FLUSH) {
 396                if (dev->num_vals >= 2)
 397                        input_pass_values(dev, dev->vals, dev->num_vals);
 398                dev->num_vals = 0;
 399        } else if (dev->num_vals >= dev->max_vals - 2) {
 400                dev->vals[dev->num_vals++] = input_value_sync;
 401                input_pass_values(dev, dev->vals, dev->num_vals);
 402                dev->num_vals = 0;
 403        }
 404
 405}
 406
 407/**
 408 * input_event() - report new input event
 409 * @dev: device that generated the event
 410 * @type: type of the event
 411 * @code: event code
 412 * @value: value of the event
 413 *
 414 * This function should be used by drivers implementing various input
 415 * devices to report input events. See also input_inject_event().
 416 *
 417 * NOTE: input_event() may be safely used right after input device was
 418 * allocated with input_allocate_device(), even before it is registered
 419 * with input_register_device(), but the event will not reach any of the
 420 * input handlers. Such early invocation of input_event() may be used
 421 * to 'seed' initial state of a switch or initial position of absolute
 422 * axis, etc.
 423 */
 424void input_event(struct input_dev *dev,
 425                 unsigned int type, unsigned int code, int value)
 426{
 427        unsigned long flags;
 428
 429        if (is_event_supported(type, dev->evbit, EV_MAX)) {
 430
 431                spin_lock_irqsave(&dev->event_lock, flags);
 432                input_handle_event(dev, type, code, value);
 433                spin_unlock_irqrestore(&dev->event_lock, flags);
 434        }
 435}
 436EXPORT_SYMBOL(input_event);
 437
 438/**
 439 * input_inject_event() - send input event from input handler
 440 * @handle: input handle to send event through
 441 * @type: type of the event
 442 * @code: event code
 443 * @value: value of the event
 444 *
 445 * Similar to input_event() but will ignore event if device is
 446 * "grabbed" and handle injecting event is not the one that owns
 447 * the device.
 448 */
 449void input_inject_event(struct input_handle *handle,
 450                        unsigned int type, unsigned int code, int value)
 451{
 452        struct input_dev *dev = handle->dev;
 453        struct input_handle *grab;
 454        unsigned long flags;
 455
 456        if (is_event_supported(type, dev->evbit, EV_MAX)) {
 457                spin_lock_irqsave(&dev->event_lock, flags);
 458
 459                rcu_read_lock();
 460                grab = rcu_dereference(dev->grab);
 461                if (!grab || grab == handle)
 462                        input_handle_event(dev, type, code, value);
 463                rcu_read_unlock();
 464
 465                spin_unlock_irqrestore(&dev->event_lock, flags);
 466        }
 467}
 468EXPORT_SYMBOL(input_inject_event);
 469
 470/**
 471 * input_alloc_absinfo - allocates array of input_absinfo structs
 472 * @dev: the input device emitting absolute events
 473 *
 474 * If the absinfo struct the caller asked for is already allocated, this
 475 * functions will not do anything.
 476 */
 477void input_alloc_absinfo(struct input_dev *dev)
 478{
 479        if (dev->absinfo)
 480                return;
 481
 482        dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
 483        if (!dev->absinfo) {
 484                dev_err(dev->dev.parent ?: &dev->dev,
 485                        "%s: unable to allocate memory\n", __func__);
 486                /*
 487                 * We will handle this allocation failure in
 488                 * input_register_device() when we refuse to register input
 489                 * device with ABS bits but without absinfo.
 490                 */
 491        }
 492}
 493EXPORT_SYMBOL(input_alloc_absinfo);
 494
 495void input_set_abs_params(struct input_dev *dev, unsigned int axis,
 496                          int min, int max, int fuzz, int flat)
 497{
 498        struct input_absinfo *absinfo;
 499
 500        input_alloc_absinfo(dev);
 501        if (!dev->absinfo)
 502                return;
 503
 504        absinfo = &dev->absinfo[axis];
 505        absinfo->minimum = min;
 506        absinfo->maximum = max;
 507        absinfo->fuzz = fuzz;
 508        absinfo->flat = flat;
 509
 510        __set_bit(EV_ABS, dev->evbit);
 511        __set_bit(axis, dev->absbit);
 512}
 513EXPORT_SYMBOL(input_set_abs_params);
 514
 515
 516/**
 517 * input_grab_device - grabs device for exclusive use
 518 * @handle: input handle that wants to own the device
 519 *
 520 * When a device is grabbed by an input handle all events generated by
 521 * the device are delivered only to this handle. Also events injected
 522 * by other input handles are ignored while device is grabbed.
 523 */
 524int input_grab_device(struct input_handle *handle)
 525{
 526        struct input_dev *dev = handle->dev;
 527        int retval;
 528
 529        retval = mutex_lock_interruptible(&dev->mutex);
 530        if (retval)
 531                return retval;
 532
 533        if (dev->grab) {
 534                retval = -EBUSY;
 535                goto out;
 536        }
 537
 538        rcu_assign_pointer(dev->grab, handle);
 539
 540 out:
 541        mutex_unlock(&dev->mutex);
 542        return retval;
 543}
 544EXPORT_SYMBOL(input_grab_device);
 545
 546static void __input_release_device(struct input_handle *handle)
 547{
 548        struct input_dev *dev = handle->dev;
 549        struct input_handle *grabber;
 550
 551        grabber = rcu_dereference_protected(dev->grab,
 552                                            lockdep_is_held(&dev->mutex));
 553        if (grabber == handle) {
 554                rcu_assign_pointer(dev->grab, NULL);
 555                /* Make sure input_pass_event() notices that grab is gone */
 556                synchronize_rcu();
 557
 558                list_for_each_entry(handle, &dev->h_list, d_node)
 559                        if (handle->open && handle->handler->start)
 560                                handle->handler->start(handle);
 561        }
 562}
 563
 564/**
 565 * input_release_device - release previously grabbed device
 566 * @handle: input handle that owns the device
 567 *
 568 * Releases previously grabbed device so that other input handles can
 569 * start receiving input events. Upon release all handlers attached
 570 * to the device have their start() method called so they have a change
 571 * to synchronize device state with the rest of the system.
 572 */
 573void input_release_device(struct input_handle *handle)
 574{
 575        struct input_dev *dev = handle->dev;
 576
 577        mutex_lock(&dev->mutex);
 578        __input_release_device(handle);
 579        mutex_unlock(&dev->mutex);
 580}
 581EXPORT_SYMBOL(input_release_device);
 582
 583/**
 584 * input_open_device - open input device
 585 * @handle: handle through which device is being accessed
 586 *
 587 * This function should be called by input handlers when they
 588 * want to start receive events from given input device.
 589 */
 590int input_open_device(struct input_handle *handle)
 591{
 592        struct input_dev *dev = handle->dev;
 593        int retval;
 594
 595        retval = mutex_lock_interruptible(&dev->mutex);
 596        if (retval)
 597                return retval;
 598
 599        if (dev->going_away) {
 600                retval = -ENODEV;
 601                goto out;
 602        }
 603
 604        handle->open++;
 605
 606        if (!dev->users++ && dev->open)
 607                retval = dev->open(dev);
 608
 609        if (retval) {
 610                dev->users--;
 611                if (!--handle->open) {
 612                        /*
 613                         * Make sure we are not delivering any more events
 614                         * through this handle
 615                         */
 616                        synchronize_rcu();
 617                }
 618        }
 619
 620 out:
 621        mutex_unlock(&dev->mutex);
 622        return retval;
 623}
 624EXPORT_SYMBOL(input_open_device);
 625
 626int input_flush_device(struct input_handle *handle, struct file *file)
 627{
 628        struct input_dev *dev = handle->dev;
 629        int retval;
 630
 631        retval = mutex_lock_interruptible(&dev->mutex);
 632        if (retval)
 633                return retval;
 634
 635        if (dev->flush)
 636                retval = dev->flush(dev, file);
 637
 638        mutex_unlock(&dev->mutex);
 639        return retval;
 640}
 641EXPORT_SYMBOL(input_flush_device);
 642
 643/**
 644 * input_close_device - close input device
 645 * @handle: handle through which device is being accessed
 646 *
 647 * This function should be called by input handlers when they
 648 * want to stop receive events from given input device.
 649 */
 650void input_close_device(struct input_handle *handle)
 651{
 652        struct input_dev *dev = handle->dev;
 653
 654        mutex_lock(&dev->mutex);
 655
 656        __input_release_device(handle);
 657
 658        if (!--dev->users && dev->close)
 659                dev->close(dev);
 660
 661        if (!--handle->open) {
 662                /*
 663                 * synchronize_rcu() makes sure that input_pass_event()
 664                 * completed and that no more input events are delivered
 665                 * through this handle
 666                 */
 667                synchronize_rcu();
 668        }
 669
 670        mutex_unlock(&dev->mutex);
 671}
 672EXPORT_SYMBOL(input_close_device);
 673
 674/*
 675 * Simulate keyup events for all keys that are marked as pressed.
 676 * The function must be called with dev->event_lock held.
 677 */
 678static void input_dev_release_keys(struct input_dev *dev)
 679{
 680        bool need_sync = false;
 681        int code;
 682
 683        if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
 684                for_each_set_bit(code, dev->key, KEY_CNT) {
 685                        input_pass_event(dev, EV_KEY, code, 0);
 686                        need_sync = true;
 687                }
 688
 689                if (need_sync)
 690                        input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
 691
 692                memset(dev->key, 0, sizeof(dev->key));
 693        }
 694}
 695
 696/*
 697 * Prepare device for unregistering
 698 */
 699static void input_disconnect_device(struct input_dev *dev)
 700{
 701        struct input_handle *handle;
 702
 703        /*
 704         * Mark device as going away. Note that we take dev->mutex here
 705         * not to protect access to dev->going_away but rather to ensure
 706         * that there are no threads in the middle of input_open_device()
 707         */
 708        mutex_lock(&dev->mutex);
 709        dev->going_away = true;
 710        mutex_unlock(&dev->mutex);
 711
 712        spin_lock_irq(&dev->event_lock);
 713
 714        /*
 715         * Simulate keyup events for all pressed keys so that handlers
 716         * are not left with "stuck" keys. The driver may continue
 717         * generate events even after we done here but they will not
 718         * reach any handlers.
 719         */
 720        input_dev_release_keys(dev);
 721
 722        list_for_each_entry(handle, &dev->h_list, d_node)
 723                handle->open = 0;
 724
 725        spin_unlock_irq(&dev->event_lock);
 726}
 727
 728/**
 729 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
 730 * @ke: keymap entry containing scancode to be converted.
 731 * @scancode: pointer to the location where converted scancode should
 732 *      be stored.
 733 *
 734 * This function is used to convert scancode stored in &struct keymap_entry
 735 * into scalar form understood by legacy keymap handling methods. These
 736 * methods expect scancodes to be represented as 'unsigned int'.
 737 */
 738int input_scancode_to_scalar(const struct input_keymap_entry *ke,
 739                             unsigned int *scancode)
 740{
 741        switch (ke->len) {
 742        case 1:
 743                *scancode = *((u8 *)ke->scancode);
 744                break;
 745
 746        case 2:
 747                *scancode = *((u16 *)ke->scancode);
 748                break;
 749
 750        case 4:
 751                *scancode = *((u32 *)ke->scancode);
 752                break;
 753
 754        default:
 755                return -EINVAL;
 756        }
 757
 758        return 0;
 759}
 760EXPORT_SYMBOL(input_scancode_to_scalar);
 761
 762/*
 763 * Those routines handle the default case where no [gs]etkeycode() is
 764 * defined. In this case, an array indexed by the scancode is used.
 765 */
 766
 767static unsigned int input_fetch_keycode(struct input_dev *dev,
 768                                        unsigned int index)
 769{
 770        switch (dev->keycodesize) {
 771        case 1:
 772                return ((u8 *)dev->keycode)[index];
 773
 774        case 2:
 775                return ((u16 *)dev->keycode)[index];
 776
 777        default:
 778                return ((u32 *)dev->keycode)[index];
 779        }
 780}
 781
 782static int input_default_getkeycode(struct input_dev *dev,
 783                                    struct input_keymap_entry *ke)
 784{
 785        unsigned int index;
 786        int error;
 787
 788        if (!dev->keycodesize)
 789                return -EINVAL;
 790
 791        if (ke->flags & INPUT_KEYMAP_BY_INDEX)
 792                index = ke->index;
 793        else {
 794                error = input_scancode_to_scalar(ke, &index);
 795                if (error)
 796                        return error;
 797        }
 798
 799        if (index >= dev->keycodemax)
 800                return -EINVAL;
 801
 802        ke->keycode = input_fetch_keycode(dev, index);
 803        ke->index = index;
 804        ke->len = sizeof(index);
 805        memcpy(ke->scancode, &index, sizeof(index));
 806
 807        return 0;
 808}
 809
 810static int input_default_setkeycode(struct input_dev *dev,
 811                                    const struct input_keymap_entry *ke,
 812                                    unsigned int *old_keycode)
 813{
 814        unsigned int index;
 815        int error;
 816        int i;
 817
 818        if (!dev->keycodesize)
 819                return -EINVAL;
 820
 821        if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
 822                index = ke->index;
 823        } else {
 824                error = input_scancode_to_scalar(ke, &index);
 825                if (error)
 826                        return error;
 827        }
 828
 829        if (index >= dev->keycodemax)
 830                return -EINVAL;
 831
 832        if (dev->keycodesize < sizeof(ke->keycode) &&
 833                        (ke->keycode >> (dev->keycodesize * 8)))
 834                return -EINVAL;
 835
 836        switch (dev->keycodesize) {
 837                case 1: {
 838                        u8 *k = (u8 *)dev->keycode;
 839                        *old_keycode = k[index];
 840                        k[index] = ke->keycode;
 841                        break;
 842                }
 843                case 2: {
 844                        u16 *k = (u16 *)dev->keycode;
 845                        *old_keycode = k[index];
 846                        k[index] = ke->keycode;
 847                        break;
 848                }
 849                default: {
 850                        u32 *k = (u32 *)dev->keycode;
 851                        *old_keycode = k[index];
 852                        k[index] = ke->keycode;
 853                        break;
 854                }
 855        }
 856
 857        __clear_bit(*old_keycode, dev->keybit);
 858        __set_bit(ke->keycode, dev->keybit);
 859
 860        for (i = 0; i < dev->keycodemax; i++) {
 861                if (input_fetch_keycode(dev, i) == *old_keycode) {
 862                        __set_bit(*old_keycode, dev->keybit);
 863                        break; /* Setting the bit twice is useless, so break */
 864                }
 865        }
 866
 867        return 0;
 868}
 869
 870/**
 871 * input_get_keycode - retrieve keycode currently mapped to a given scancode
 872 * @dev: input device which keymap is being queried
 873 * @ke: keymap entry
 874 *
 875 * This function should be called by anyone interested in retrieving current
 876 * keymap. Presently evdev handlers use it.
 877 */
 878int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
 879{
 880        unsigned long flags;
 881        int retval;
 882
 883        spin_lock_irqsave(&dev->event_lock, flags);
 884        retval = dev->getkeycode(dev, ke);
 885        spin_unlock_irqrestore(&dev->event_lock, flags);
 886
 887        return retval;
 888}
 889EXPORT_SYMBOL(input_get_keycode);
 890
 891/**
 892 * input_set_keycode - attribute a keycode to a given scancode
 893 * @dev: input device which keymap is being updated
 894 * @ke: new keymap entry
 895 *
 896 * This function should be called by anyone needing to update current
 897 * keymap. Presently keyboard and evdev handlers use it.
 898 */
 899int input_set_keycode(struct input_dev *dev,
 900                      const struct input_keymap_entry *ke)
 901{
 902        unsigned long flags;
 903        unsigned int old_keycode;
 904        int retval;
 905
 906        if (ke->keycode > KEY_MAX)
 907                return -EINVAL;
 908
 909        spin_lock_irqsave(&dev->event_lock, flags);
 910
 911        retval = dev->setkeycode(dev, ke, &old_keycode);
 912        if (retval)
 913                goto out;
 914
 915        /* Make sure KEY_RESERVED did not get enabled. */
 916        __clear_bit(KEY_RESERVED, dev->keybit);
 917
 918        /*
 919         * Simulate keyup event if keycode is not present
 920         * in the keymap anymore
 921         */
 922        if (test_bit(EV_KEY, dev->evbit) &&
 923            !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
 924            __test_and_clear_bit(old_keycode, dev->key)) {
 925                struct input_value vals[] =  {
 926                        { EV_KEY, old_keycode, 0 },
 927                        input_value_sync
 928                };
 929
 930                input_pass_values(dev, vals, ARRAY_SIZE(vals));
 931        }
 932
 933 out:
 934        spin_unlock_irqrestore(&dev->event_lock, flags);
 935
 936        return retval;
 937}
 938EXPORT_SYMBOL(input_set_keycode);
 939
 940bool input_match_device_id(const struct input_dev *dev,
 941                           const struct input_device_id *id)
 942{
 943        if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
 944                if (id->bustype != dev->id.bustype)
 945                        return false;
 946
 947        if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
 948                if (id->vendor != dev->id.vendor)
 949                        return false;
 950
 951        if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
 952                if (id->product != dev->id.product)
 953                        return false;
 954
 955        if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
 956                if (id->version != dev->id.version)
 957                        return false;
 958
 959        if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
 960            !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
 961            !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
 962            !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
 963            !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
 964            !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
 965            !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
 966            !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
 967            !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
 968            !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
 969                return false;
 970        }
 971
 972        return true;
 973}
 974EXPORT_SYMBOL(input_match_device_id);
 975
 976static const struct input_device_id *input_match_device(struct input_handler *handler,
 977                                                        struct input_dev *dev)
 978{
 979        const struct input_device_id *id;
 980
 981        for (id = handler->id_table; id->flags || id->driver_info; id++) {
 982                if (input_match_device_id(dev, id) &&
 983                    (!handler->match || handler->match(handler, dev))) {
 984                        return id;
 985                }
 986        }
 987
 988        return NULL;
 989}
 990
 991static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
 992{
 993        const struct input_device_id *id;
 994        int error;
 995
 996        id = input_match_device(handler, dev);
 997        if (!id)
 998                return -ENODEV;
 999
1000        error = handler->connect(handler, dev, id);
1001        if (error && error != -ENODEV)
1002                pr_err("failed to attach handler %s to device %s, error: %d\n",
1003                       handler->name, kobject_name(&dev->dev.kobj), error);
1004
1005        return error;
1006}
1007
1008#ifdef CONFIG_COMPAT
1009
1010static int input_bits_to_string(char *buf, int buf_size,
1011                                unsigned long bits, bool skip_empty)
1012{
1013        int len = 0;
1014
1015        if (in_compat_syscall()) {
1016                u32 dword = bits >> 32;
1017                if (dword || !skip_empty)
1018                        len += snprintf(buf, buf_size, "%x ", dword);
1019
1020                dword = bits & 0xffffffffUL;
1021                if (dword || !skip_empty || len)
1022                        len += snprintf(buf + len, max(buf_size - len, 0),
1023                                        "%x", dword);
1024        } else {
1025                if (bits || !skip_empty)
1026                        len += snprintf(buf, buf_size, "%lx", bits);
1027        }
1028
1029        return len;
1030}
1031
1032#else /* !CONFIG_COMPAT */
1033
1034static int input_bits_to_string(char *buf, int buf_size,
1035                                unsigned long bits, bool skip_empty)
1036{
1037        return bits || !skip_empty ?
1038                snprintf(buf, buf_size, "%lx", bits) : 0;
1039}
1040
1041#endif
1042
1043#ifdef CONFIG_PROC_FS
1044
1045static struct proc_dir_entry *proc_bus_input_dir;
1046static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1047static int input_devices_state;
1048
1049static inline void input_wakeup_procfs_readers(void)
1050{
1051        input_devices_state++;
1052        wake_up(&input_devices_poll_wait);
1053}
1054
1055static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
1056{
1057        poll_wait(file, &input_devices_poll_wait, wait);
1058        if (file->f_version != input_devices_state) {
1059                file->f_version = input_devices_state;
1060                return EPOLLIN | EPOLLRDNORM;
1061        }
1062
1063        return 0;
1064}
1065
1066union input_seq_state {
1067        struct {
1068                unsigned short pos;
1069                bool mutex_acquired;
1070        };
1071        void *p;
1072};
1073
1074static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1075{
1076        union input_seq_state *state = (union input_seq_state *)&seq->private;
1077        int error;
1078
1079        /* We need to fit into seq->private pointer */
1080        BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1081
1082        error = mutex_lock_interruptible(&input_mutex);
1083        if (error) {
1084                state->mutex_acquired = false;
1085                return ERR_PTR(error);
1086        }
1087
1088        state->mutex_acquired = true;
1089
1090        return seq_list_start(&input_dev_list, *pos);
1091}
1092
1093static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1094{
1095        return seq_list_next(v, &input_dev_list, pos);
1096}
1097
1098static void input_seq_stop(struct seq_file *seq, void *v)
1099{
1100        union input_seq_state *state = (union input_seq_state *)&seq->private;
1101
1102        if (state->mutex_acquired)
1103                mutex_unlock(&input_mutex);
1104}
1105
1106static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1107                                   unsigned long *bitmap, int max)
1108{
1109        int i;
1110        bool skip_empty = true;
1111        char buf[18];
1112
1113        seq_printf(seq, "B: %s=", name);
1114
1115        for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1116                if (input_bits_to_string(buf, sizeof(buf),
1117                                         bitmap[i], skip_empty)) {
1118                        skip_empty = false;
1119                        seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1120                }
1121        }
1122
1123        /*
1124         * If no output was produced print a single 0.
1125         */
1126        if (skip_empty)
1127                seq_putc(seq, '0');
1128
1129        seq_putc(seq, '\n');
1130}
1131
1132static int input_devices_seq_show(struct seq_file *seq, void *v)
1133{
1134        struct input_dev *dev = container_of(v, struct input_dev, node);
1135        const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1136        struct input_handle *handle;
1137
1138        seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1139                   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1140
1141        seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1142        seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1143        seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1144        seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1145        seq_puts(seq, "H: Handlers=");
1146
1147        list_for_each_entry(handle, &dev->h_list, d_node)
1148                seq_printf(seq, "%s ", handle->name);
1149        seq_putc(seq, '\n');
1150
1151        input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1152
1153        input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1154        if (test_bit(EV_KEY, dev->evbit))
1155                input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1156        if (test_bit(EV_REL, dev->evbit))
1157                input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1158        if (test_bit(EV_ABS, dev->evbit))
1159                input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1160        if (test_bit(EV_MSC, dev->evbit))
1161                input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1162        if (test_bit(EV_LED, dev->evbit))
1163                input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1164        if (test_bit(EV_SND, dev->evbit))
1165                input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1166        if (test_bit(EV_FF, dev->evbit))
1167                input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1168        if (test_bit(EV_SW, dev->evbit))
1169                input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1170
1171        seq_putc(seq, '\n');
1172
1173        kfree(path);
1174        return 0;
1175}
1176
1177static const struct seq_operations input_devices_seq_ops = {
1178        .start  = input_devices_seq_start,
1179        .next   = input_devices_seq_next,
1180        .stop   = input_seq_stop,
1181        .show   = input_devices_seq_show,
1182};
1183
1184static int input_proc_devices_open(struct inode *inode, struct file *file)
1185{
1186        return seq_open(file, &input_devices_seq_ops);
1187}
1188
1189static const struct file_operations input_devices_fileops = {
1190        .owner          = THIS_MODULE,
1191        .open           = input_proc_devices_open,
1192        .poll           = input_proc_devices_poll,
1193        .read           = seq_read,
1194        .llseek         = seq_lseek,
1195        .release        = seq_release,
1196};
1197
1198static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1199{
1200        union input_seq_state *state = (union input_seq_state *)&seq->private;
1201        int error;
1202
1203        /* We need to fit into seq->private pointer */
1204        BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1205
1206        error = mutex_lock_interruptible(&input_mutex);
1207        if (error) {
1208                state->mutex_acquired = false;
1209                return ERR_PTR(error);
1210        }
1211
1212        state->mutex_acquired = true;
1213        state->pos = *pos;
1214
1215        return seq_list_start(&input_handler_list, *pos);
1216}
1217
1218static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1219{
1220        union input_seq_state *state = (union input_seq_state *)&seq->private;
1221
1222        state->pos = *pos + 1;
1223        return seq_list_next(v, &input_handler_list, pos);
1224}
1225
1226static int input_handlers_seq_show(struct seq_file *seq, void *v)
1227{
1228        struct input_handler *handler = container_of(v, struct input_handler, node);
1229        union input_seq_state *state = (union input_seq_state *)&seq->private;
1230
1231        seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1232        if (handler->filter)
1233                seq_puts(seq, " (filter)");
1234        if (handler->legacy_minors)
1235                seq_printf(seq, " Minor=%d", handler->minor);
1236        seq_putc(seq, '\n');
1237
1238        return 0;
1239}
1240
1241static const struct seq_operations input_handlers_seq_ops = {
1242        .start  = input_handlers_seq_start,
1243        .next   = input_handlers_seq_next,
1244        .stop   = input_seq_stop,
1245        .show   = input_handlers_seq_show,
1246};
1247
1248static int input_proc_handlers_open(struct inode *inode, struct file *file)
1249{
1250        return seq_open(file, &input_handlers_seq_ops);
1251}
1252
1253static const struct file_operations input_handlers_fileops = {
1254        .owner          = THIS_MODULE,
1255        .open           = input_proc_handlers_open,
1256        .read           = seq_read,
1257        .llseek         = seq_lseek,
1258        .release        = seq_release,
1259};
1260
1261static int __init input_proc_init(void)
1262{
1263        struct proc_dir_entry *entry;
1264
1265        proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1266        if (!proc_bus_input_dir)
1267                return -ENOMEM;
1268
1269        entry = proc_create("devices", 0, proc_bus_input_dir,
1270                            &input_devices_fileops);
1271        if (!entry)
1272                goto fail1;
1273
1274        entry = proc_create("handlers", 0, proc_bus_input_dir,
1275                            &input_handlers_fileops);
1276        if (!entry)
1277                goto fail2;
1278
1279        return 0;
1280
1281 fail2: remove_proc_entry("devices", proc_bus_input_dir);
1282 fail1: remove_proc_entry("bus/input", NULL);
1283        return -ENOMEM;
1284}
1285
1286static void input_proc_exit(void)
1287{
1288        remove_proc_entry("devices", proc_bus_input_dir);
1289        remove_proc_entry("handlers", proc_bus_input_dir);
1290        remove_proc_entry("bus/input", NULL);
1291}
1292
1293#else /* !CONFIG_PROC_FS */
1294static inline void input_wakeup_procfs_readers(void) { }
1295static inline int input_proc_init(void) { return 0; }
1296static inline void input_proc_exit(void) { }
1297#endif
1298
1299#define INPUT_DEV_STRING_ATTR_SHOW(name)                                \
1300static ssize_t input_dev_show_##name(struct device *dev,                \
1301                                     struct device_attribute *attr,     \
1302                                     char *buf)                         \
1303{                                                                       \
1304        struct input_dev *input_dev = to_input_dev(dev);                \
1305                                                                        \
1306        return scnprintf(buf, PAGE_SIZE, "%s\n",                        \
1307                         input_dev->name ? input_dev->name : "");       \
1308}                                                                       \
1309static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1310
1311INPUT_DEV_STRING_ATTR_SHOW(name);
1312INPUT_DEV_STRING_ATTR_SHOW(phys);
1313INPUT_DEV_STRING_ATTR_SHOW(uniq);
1314
1315static int input_print_modalias_bits(char *buf, int size,
1316                                     char name, unsigned long *bm,
1317                                     unsigned int min_bit, unsigned int max_bit)
1318{
1319        int len = 0, i;
1320
1321        len += snprintf(buf, max(size, 0), "%c", name);
1322        for (i = min_bit; i < max_bit; i++)
1323                if (bm[BIT_WORD(i)] & BIT_MASK(i))
1324                        len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1325        return len;
1326}
1327
1328static int input_print_modalias(char *buf, int size, struct input_dev *id,
1329                                int add_cr)
1330{
1331        int len;
1332
1333        len = snprintf(buf, max(size, 0),
1334                       "input:b%04Xv%04Xp%04Xe%04X-",
1335                       id->id.bustype, id->id.vendor,
1336                       id->id.product, id->id.version);
1337
1338        len += input_print_modalias_bits(buf + len, size - len,
1339                                'e', id->evbit, 0, EV_MAX);
1340        len += input_print_modalias_bits(buf + len, size - len,
1341                                'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1342        len += input_print_modalias_bits(buf + len, size - len,
1343                                'r', id->relbit, 0, REL_MAX);
1344        len += input_print_modalias_bits(buf + len, size - len,
1345                                'a', id->absbit, 0, ABS_MAX);
1346        len += input_print_modalias_bits(buf + len, size - len,
1347                                'm', id->mscbit, 0, MSC_MAX);
1348        len += input_print_modalias_bits(buf + len, size - len,
1349                                'l', id->ledbit, 0, LED_MAX);
1350        len += input_print_modalias_bits(buf + len, size - len,
1351                                's', id->sndbit, 0, SND_MAX);
1352        len += input_print_modalias_bits(buf + len, size - len,
1353                                'f', id->ffbit, 0, FF_MAX);
1354        len += input_print_modalias_bits(buf + len, size - len,
1355                                'w', id->swbit, 0, SW_MAX);
1356
1357        if (add_cr)
1358                len += snprintf(buf + len, max(size - len, 0), "\n");
1359
1360        return len;
1361}
1362
1363static ssize_t input_dev_show_modalias(struct device *dev,
1364                                       struct device_attribute *attr,
1365                                       char *buf)
1366{
1367        struct input_dev *id = to_input_dev(dev);
1368        ssize_t len;
1369
1370        len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1371
1372        return min_t(int, len, PAGE_SIZE);
1373}
1374static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1375
1376static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1377                              int max, int add_cr);
1378
1379static ssize_t input_dev_show_properties(struct device *dev,
1380                                         struct device_attribute *attr,
1381                                         char *buf)
1382{
1383        struct input_dev *input_dev = to_input_dev(dev);
1384        int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1385                                     INPUT_PROP_MAX, true);
1386        return min_t(int, len, PAGE_SIZE);
1387}
1388static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1389
1390static struct attribute *input_dev_attrs[] = {
1391        &dev_attr_name.attr,
1392        &dev_attr_phys.attr,
1393        &dev_attr_uniq.attr,
1394        &dev_attr_modalias.attr,
1395        &dev_attr_properties.attr,
1396        NULL
1397};
1398
1399static const struct attribute_group input_dev_attr_group = {
1400        .attrs  = input_dev_attrs,
1401};
1402
1403#define INPUT_DEV_ID_ATTR(name)                                         \
1404static ssize_t input_dev_show_id_##name(struct device *dev,             \
1405                                        struct device_attribute *attr,  \
1406                                        char *buf)                      \
1407{                                                                       \
1408        struct input_dev *input_dev = to_input_dev(dev);                \
1409        return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1410}                                                                       \
1411static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1412
1413INPUT_DEV_ID_ATTR(bustype);
1414INPUT_DEV_ID_ATTR(vendor);
1415INPUT_DEV_ID_ATTR(product);
1416INPUT_DEV_ID_ATTR(version);
1417
1418static struct attribute *input_dev_id_attrs[] = {
1419        &dev_attr_bustype.attr,
1420        &dev_attr_vendor.attr,
1421        &dev_attr_product.attr,
1422        &dev_attr_version.attr,
1423        NULL
1424};
1425
1426static const struct attribute_group input_dev_id_attr_group = {
1427        .name   = "id",
1428        .attrs  = input_dev_id_attrs,
1429};
1430
1431static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1432                              int max, int add_cr)
1433{
1434        int i;
1435        int len = 0;
1436        bool skip_empty = true;
1437
1438        for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1439                len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1440                                            bitmap[i], skip_empty);
1441                if (len) {
1442                        skip_empty = false;
1443                        if (i > 0)
1444                                len += snprintf(buf + len, max(buf_size - len, 0), " ");
1445                }
1446        }
1447
1448        /*
1449         * If no output was produced print a single 0.
1450         */
1451        if (len == 0)
1452                len = snprintf(buf, buf_size, "%d", 0);
1453
1454        if (add_cr)
1455                len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1456
1457        return len;
1458}
1459
1460#define INPUT_DEV_CAP_ATTR(ev, bm)                                      \
1461static ssize_t input_dev_show_cap_##bm(struct device *dev,              \
1462                                       struct device_attribute *attr,   \
1463                                       char *buf)                       \
1464{                                                                       \
1465        struct input_dev *input_dev = to_input_dev(dev);                \
1466        int len = input_print_bitmap(buf, PAGE_SIZE,                    \
1467                                     input_dev->bm##bit, ev##_MAX,      \
1468                                     true);                             \
1469        return min_t(int, len, PAGE_SIZE);                              \
1470}                                                                       \
1471static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1472
1473INPUT_DEV_CAP_ATTR(EV, ev);
1474INPUT_DEV_CAP_ATTR(KEY, key);
1475INPUT_DEV_CAP_ATTR(REL, rel);
1476INPUT_DEV_CAP_ATTR(ABS, abs);
1477INPUT_DEV_CAP_ATTR(MSC, msc);
1478INPUT_DEV_CAP_ATTR(LED, led);
1479INPUT_DEV_CAP_ATTR(SND, snd);
1480INPUT_DEV_CAP_ATTR(FF, ff);
1481INPUT_DEV_CAP_ATTR(SW, sw);
1482
1483static struct attribute *input_dev_caps_attrs[] = {
1484        &dev_attr_ev.attr,
1485        &dev_attr_key.attr,
1486        &dev_attr_rel.attr,
1487        &dev_attr_abs.attr,
1488        &dev_attr_msc.attr,
1489        &dev_attr_led.attr,
1490        &dev_attr_snd.attr,
1491        &dev_attr_ff.attr,
1492        &dev_attr_sw.attr,
1493        NULL
1494};
1495
1496static const struct attribute_group input_dev_caps_attr_group = {
1497        .name   = "capabilities",
1498        .attrs  = input_dev_caps_attrs,
1499};
1500
1501static const struct attribute_group *input_dev_attr_groups[] = {
1502        &input_dev_attr_group,
1503        &input_dev_id_attr_group,
1504        &input_dev_caps_attr_group,
1505        NULL
1506};
1507
1508static void input_dev_release(struct device *device)
1509{
1510        struct input_dev *dev = to_input_dev(device);
1511
1512        input_ff_destroy(dev);
1513        input_mt_destroy_slots(dev);
1514        kfree(dev->absinfo);
1515        kfree(dev->vals);
1516        kfree(dev);
1517
1518        module_put(THIS_MODULE);
1519}
1520
1521/*
1522 * Input uevent interface - loading event handlers based on
1523 * device bitfields.
1524 */
1525static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1526                                   const char *name, unsigned long *bitmap, int max)
1527{
1528        int len;
1529
1530        if (add_uevent_var(env, "%s", name))
1531                return -ENOMEM;
1532
1533        len = input_print_bitmap(&env->buf[env->buflen - 1],
1534                                 sizeof(env->buf) - env->buflen,
1535                                 bitmap, max, false);
1536        if (len >= (sizeof(env->buf) - env->buflen))
1537                return -ENOMEM;
1538
1539        env->buflen += len;
1540        return 0;
1541}
1542
1543static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1544                                         struct input_dev *dev)
1545{
1546        int len;
1547
1548        if (add_uevent_var(env, "MODALIAS="))
1549                return -ENOMEM;
1550
1551        len = input_print_modalias(&env->buf[env->buflen - 1],
1552                                   sizeof(env->buf) - env->buflen,
1553                                   dev, 0);
1554        if (len >= (sizeof(env->buf) - env->buflen))
1555                return -ENOMEM;
1556
1557        env->buflen += len;
1558        return 0;
1559}
1560
1561#define INPUT_ADD_HOTPLUG_VAR(fmt, val...)                              \
1562        do {                                                            \
1563                int err = add_uevent_var(env, fmt, val);                \
1564                if (err)                                                \
1565                        return err;                                     \
1566        } while (0)
1567
1568#define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)                         \
1569        do {                                                            \
1570                int err = input_add_uevent_bm_var(env, name, bm, max);  \
1571                if (err)                                                \
1572                        return err;                                     \
1573        } while (0)
1574
1575#define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)                             \
1576        do {                                                            \
1577                int err = input_add_uevent_modalias_var(env, dev);      \
1578                if (err)                                                \
1579                        return err;                                     \
1580        } while (0)
1581
1582static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1583{
1584        struct input_dev *dev = to_input_dev(device);
1585
1586        INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1587                                dev->id.bustype, dev->id.vendor,
1588                                dev->id.product, dev->id.version);
1589        if (dev->name)
1590                INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1591        if (dev->phys)
1592                INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1593        if (dev->uniq)
1594                INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1595
1596        INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1597
1598        INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1599        if (test_bit(EV_KEY, dev->evbit))
1600                INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1601        if (test_bit(EV_REL, dev->evbit))
1602                INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1603        if (test_bit(EV_ABS, dev->evbit))
1604                INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1605        if (test_bit(EV_MSC, dev->evbit))
1606                INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1607        if (test_bit(EV_LED, dev->evbit))
1608                INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1609        if (test_bit(EV_SND, dev->evbit))
1610                INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1611        if (test_bit(EV_FF, dev->evbit))
1612                INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1613        if (test_bit(EV_SW, dev->evbit))
1614                INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1615
1616        INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1617
1618        return 0;
1619}
1620
1621#define INPUT_DO_TOGGLE(dev, type, bits, on)                            \
1622        do {                                                            \
1623                int i;                                                  \
1624                bool active;                                            \
1625                                                                        \
1626                if (!test_bit(EV_##type, dev->evbit))                   \
1627                        break;                                          \
1628                                                                        \
1629                for_each_set_bit(i, dev->bits##bit, type##_CNT) {       \
1630                        active = test_bit(i, dev->bits);                \
1631                        if (!active && !on)                             \
1632                                continue;                               \
1633                                                                        \
1634                        dev->event(dev, EV_##type, i, on ? active : 0); \
1635                }                                                       \
1636        } while (0)
1637
1638static void input_dev_toggle(struct input_dev *dev, bool activate)
1639{
1640        if (!dev->event)
1641                return;
1642
1643        INPUT_DO_TOGGLE(dev, LED, led, activate);
1644        INPUT_DO_TOGGLE(dev, SND, snd, activate);
1645
1646        if (activate && test_bit(EV_REP, dev->evbit)) {
1647                dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1648                dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1649        }
1650}
1651
1652/**
1653 * input_reset_device() - reset/restore the state of input device
1654 * @dev: input device whose state needs to be reset
1655 *
1656 * This function tries to reset the state of an opened input device and
1657 * bring internal state and state if the hardware in sync with each other.
1658 * We mark all keys as released, restore LED state, repeat rate, etc.
1659 */
1660void input_reset_device(struct input_dev *dev)
1661{
1662        unsigned long flags;
1663
1664        mutex_lock(&dev->mutex);
1665        spin_lock_irqsave(&dev->event_lock, flags);
1666
1667        input_dev_toggle(dev, true);
1668        input_dev_release_keys(dev);
1669
1670        spin_unlock_irqrestore(&dev->event_lock, flags);
1671        mutex_unlock(&dev->mutex);
1672}
1673EXPORT_SYMBOL(input_reset_device);
1674
1675#ifdef CONFIG_PM_SLEEP
1676static int input_dev_suspend(struct device *dev)
1677{
1678        struct input_dev *input_dev = to_input_dev(dev);
1679
1680        spin_lock_irq(&input_dev->event_lock);
1681
1682        /*
1683         * Keys that are pressed now are unlikely to be
1684         * still pressed when we resume.
1685         */
1686        input_dev_release_keys(input_dev);
1687
1688        /* Turn off LEDs and sounds, if any are active. */
1689        input_dev_toggle(input_dev, false);
1690
1691        spin_unlock_irq(&input_dev->event_lock);
1692
1693        return 0;
1694}
1695
1696static int input_dev_resume(struct device *dev)
1697{
1698        struct input_dev *input_dev = to_input_dev(dev);
1699
1700        spin_lock_irq(&input_dev->event_lock);
1701
1702        /* Restore state of LEDs and sounds, if any were active. */
1703        input_dev_toggle(input_dev, true);
1704
1705        spin_unlock_irq(&input_dev->event_lock);
1706
1707        return 0;
1708}
1709
1710static int input_dev_freeze(struct device *dev)
1711{
1712        struct input_dev *input_dev = to_input_dev(dev);
1713
1714        spin_lock_irq(&input_dev->event_lock);
1715
1716        /*
1717         * Keys that are pressed now are unlikely to be
1718         * still pressed when we resume.
1719         */
1720        input_dev_release_keys(input_dev);
1721
1722        spin_unlock_irq(&input_dev->event_lock);
1723
1724        return 0;
1725}
1726
1727static int input_dev_poweroff(struct device *dev)
1728{
1729        struct input_dev *input_dev = to_input_dev(dev);
1730
1731        spin_lock_irq(&input_dev->event_lock);
1732
1733        /* Turn off LEDs and sounds, if any are active. */
1734        input_dev_toggle(input_dev, false);
1735
1736        spin_unlock_irq(&input_dev->event_lock);
1737
1738        return 0;
1739}
1740
1741static const struct dev_pm_ops input_dev_pm_ops = {
1742        .suspend        = input_dev_suspend,
1743        .resume         = input_dev_resume,
1744        .freeze         = input_dev_freeze,
1745        .poweroff       = input_dev_poweroff,
1746        .restore        = input_dev_resume,
1747};
1748#endif /* CONFIG_PM */
1749
1750static const struct device_type input_dev_type = {
1751        .groups         = input_dev_attr_groups,
1752        .release        = input_dev_release,
1753        .uevent         = input_dev_uevent,
1754#ifdef CONFIG_PM_SLEEP
1755        .pm             = &input_dev_pm_ops,
1756#endif
1757};
1758
1759static char *input_devnode(struct device *dev, umode_t *mode)
1760{
1761        return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1762}
1763
1764struct class input_class = {
1765        .name           = "input",
1766        .devnode        = input_devnode,
1767};
1768EXPORT_SYMBOL_GPL(input_class);
1769
1770/**
1771 * input_allocate_device - allocate memory for new input device
1772 *
1773 * Returns prepared struct input_dev or %NULL.
1774 *
1775 * NOTE: Use input_free_device() to free devices that have not been
1776 * registered; input_unregister_device() should be used for already
1777 * registered devices.
1778 */
1779struct input_dev *input_allocate_device(void)
1780{
1781        static atomic_t input_no = ATOMIC_INIT(-1);
1782        struct input_dev *dev;
1783
1784        dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1785        if (dev) {
1786                dev->dev.type = &input_dev_type;
1787                dev->dev.class = &input_class;
1788                device_initialize(&dev->dev);
1789                mutex_init(&dev->mutex);
1790                spin_lock_init(&dev->event_lock);
1791                timer_setup(&dev->timer, NULL, 0);
1792                INIT_LIST_HEAD(&dev->h_list);
1793                INIT_LIST_HEAD(&dev->node);
1794
1795                dev_set_name(&dev->dev, "input%lu",
1796                             (unsigned long)atomic_inc_return(&input_no));
1797
1798                __module_get(THIS_MODULE);
1799        }
1800
1801        return dev;
1802}
1803EXPORT_SYMBOL(input_allocate_device);
1804
1805struct input_devres {
1806        struct input_dev *input;
1807};
1808
1809static int devm_input_device_match(struct device *dev, void *res, void *data)
1810{
1811        struct input_devres *devres = res;
1812
1813        return devres->input == data;
1814}
1815
1816static void devm_input_device_release(struct device *dev, void *res)
1817{
1818        struct input_devres *devres = res;
1819        struct input_dev *input = devres->input;
1820
1821        dev_dbg(dev, "%s: dropping reference to %s\n",
1822                __func__, dev_name(&input->dev));
1823        input_put_device(input);
1824}
1825
1826/**
1827 * devm_input_allocate_device - allocate managed input device
1828 * @dev: device owning the input device being created
1829 *
1830 * Returns prepared struct input_dev or %NULL.
1831 *
1832 * Managed input devices do not need to be explicitly unregistered or
1833 * freed as it will be done automatically when owner device unbinds from
1834 * its driver (or binding fails). Once managed input device is allocated,
1835 * it is ready to be set up and registered in the same fashion as regular
1836 * input device. There are no special devm_input_device_[un]register()
1837 * variants, regular ones work with both managed and unmanaged devices,
1838 * should you need them. In most cases however, managed input device need
1839 * not be explicitly unregistered or freed.
1840 *
1841 * NOTE: the owner device is set up as parent of input device and users
1842 * should not override it.
1843 */
1844struct input_dev *devm_input_allocate_device(struct device *dev)
1845{
1846        struct input_dev *input;
1847        struct input_devres *devres;
1848
1849        devres = devres_alloc(devm_input_device_release,
1850                              sizeof(*devres), GFP_KERNEL);
1851        if (!devres)
1852                return NULL;
1853
1854        input = input_allocate_device();
1855        if (!input) {
1856                devres_free(devres);
1857                return NULL;
1858        }
1859
1860        input->dev.parent = dev;
1861        input->devres_managed = true;
1862
1863        devres->input = input;
1864        devres_add(dev, devres);
1865
1866        return input;
1867}
1868EXPORT_SYMBOL(devm_input_allocate_device);
1869
1870/**
1871 * input_free_device - free memory occupied by input_dev structure
1872 * @dev: input device to free
1873 *
1874 * This function should only be used if input_register_device()
1875 * was not called yet or if it failed. Once device was registered
1876 * use input_unregister_device() and memory will be freed once last
1877 * reference to the device is dropped.
1878 *
1879 * Device should be allocated by input_allocate_device().
1880 *
1881 * NOTE: If there are references to the input device then memory
1882 * will not be freed until last reference is dropped.
1883 */
1884void input_free_device(struct input_dev *dev)
1885{
1886        if (dev) {
1887                if (dev->devres_managed)
1888                        WARN_ON(devres_destroy(dev->dev.parent,
1889                                                devm_input_device_release,
1890                                                devm_input_device_match,
1891                                                dev));
1892                input_put_device(dev);
1893        }
1894}
1895EXPORT_SYMBOL(input_free_device);
1896
1897/**
1898 * input_set_capability - mark device as capable of a certain event
1899 * @dev: device that is capable of emitting or accepting event
1900 * @type: type of the event (EV_KEY, EV_REL, etc...)
1901 * @code: event code
1902 *
1903 * In addition to setting up corresponding bit in appropriate capability
1904 * bitmap the function also adjusts dev->evbit.
1905 */
1906void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1907{
1908        switch (type) {
1909        case EV_KEY:
1910                __set_bit(code, dev->keybit);
1911                break;
1912
1913        case EV_REL:
1914                __set_bit(code, dev->relbit);
1915                break;
1916
1917        case EV_ABS:
1918                input_alloc_absinfo(dev);
1919                if (!dev->absinfo)
1920                        return;
1921
1922                __set_bit(code, dev->absbit);
1923                break;
1924
1925        case EV_MSC:
1926                __set_bit(code, dev->mscbit);
1927                break;
1928
1929        case EV_SW:
1930                __set_bit(code, dev->swbit);
1931                break;
1932
1933        case EV_LED:
1934                __set_bit(code, dev->ledbit);
1935                break;
1936
1937        case EV_SND:
1938                __set_bit(code, dev->sndbit);
1939                break;
1940
1941        case EV_FF:
1942                __set_bit(code, dev->ffbit);
1943                break;
1944
1945        case EV_PWR:
1946                /* do nothing */
1947                break;
1948
1949        default:
1950                pr_err("%s: unknown type %u (code %u)\n", __func__, type, code);
1951                dump_stack();
1952                return;
1953        }
1954
1955        __set_bit(type, dev->evbit);
1956}
1957EXPORT_SYMBOL(input_set_capability);
1958
1959static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
1960{
1961        int mt_slots;
1962        int i;
1963        unsigned int events;
1964
1965        if (dev->mt) {
1966                mt_slots = dev->mt->num_slots;
1967        } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
1968                mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
1969                           dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
1970                mt_slots = clamp(mt_slots, 2, 32);
1971        } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
1972                mt_slots = 2;
1973        } else {
1974                mt_slots = 0;
1975        }
1976
1977        events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
1978
1979        if (test_bit(EV_ABS, dev->evbit))
1980                for_each_set_bit(i, dev->absbit, ABS_CNT)
1981                        events += input_is_mt_axis(i) ? mt_slots : 1;
1982
1983        if (test_bit(EV_REL, dev->evbit))
1984                events += bitmap_weight(dev->relbit, REL_CNT);
1985
1986        /* Make room for KEY and MSC events */
1987        events += 7;
1988
1989        return events;
1990}
1991
1992#define INPUT_CLEANSE_BITMASK(dev, type, bits)                          \
1993        do {                                                            \
1994                if (!test_bit(EV_##type, dev->evbit))                   \
1995                        memset(dev->bits##bit, 0,                       \
1996                                sizeof(dev->bits##bit));                \
1997        } while (0)
1998
1999static void input_cleanse_bitmasks(struct input_dev *dev)
2000{
2001        INPUT_CLEANSE_BITMASK(dev, KEY, key);
2002        INPUT_CLEANSE_BITMASK(dev, REL, rel);
2003        INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2004        INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2005        INPUT_CLEANSE_BITMASK(dev, LED, led);
2006        INPUT_CLEANSE_BITMASK(dev, SND, snd);
2007        INPUT_CLEANSE_BITMASK(dev, FF, ff);
2008        INPUT_CLEANSE_BITMASK(dev, SW, sw);
2009}
2010
2011static void __input_unregister_device(struct input_dev *dev)
2012{
2013        struct input_handle *handle, *next;
2014
2015        input_disconnect_device(dev);
2016
2017        mutex_lock(&input_mutex);
2018
2019        list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2020                handle->handler->disconnect(handle);
2021        WARN_ON(!list_empty(&dev->h_list));
2022
2023        del_timer_sync(&dev->timer);
2024        list_del_init(&dev->node);
2025
2026        input_wakeup_procfs_readers();
2027
2028        mutex_unlock(&input_mutex);
2029
2030        device_del(&dev->dev);
2031}
2032
2033static void devm_input_device_unregister(struct device *dev, void *res)
2034{
2035        struct input_devres *devres = res;
2036        struct input_dev *input = devres->input;
2037
2038        dev_dbg(dev, "%s: unregistering device %s\n",
2039                __func__, dev_name(&input->dev));
2040        __input_unregister_device(input);
2041}
2042
2043/**
2044 * input_enable_softrepeat - enable software autorepeat
2045 * @dev: input device
2046 * @delay: repeat delay
2047 * @period: repeat period
2048 *
2049 * Enable software autorepeat on the input device.
2050 */
2051void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2052{
2053        dev->timer.function = input_repeat_key;
2054        dev->rep[REP_DELAY] = delay;
2055        dev->rep[REP_PERIOD] = period;
2056}
2057EXPORT_SYMBOL(input_enable_softrepeat);
2058
2059/**
2060 * input_register_device - register device with input core
2061 * @dev: device to be registered
2062 *
2063 * This function registers device with input core. The device must be
2064 * allocated with input_allocate_device() and all it's capabilities
2065 * set up before registering.
2066 * If function fails the device must be freed with input_free_device().
2067 * Once device has been successfully registered it can be unregistered
2068 * with input_unregister_device(); input_free_device() should not be
2069 * called in this case.
2070 *
2071 * Note that this function is also used to register managed input devices
2072 * (ones allocated with devm_input_allocate_device()). Such managed input
2073 * devices need not be explicitly unregistered or freed, their tear down
2074 * is controlled by the devres infrastructure. It is also worth noting
2075 * that tear down of managed input devices is internally a 2-step process:
2076 * registered managed input device is first unregistered, but stays in
2077 * memory and can still handle input_event() calls (although events will
2078 * not be delivered anywhere). The freeing of managed input device will
2079 * happen later, when devres stack is unwound to the point where device
2080 * allocation was made.
2081 */
2082int input_register_device(struct input_dev *dev)
2083{
2084        struct input_devres *devres = NULL;
2085        struct input_handler *handler;
2086        unsigned int packet_size;
2087        const char *path;
2088        int error;
2089
2090        if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2091                dev_err(&dev->dev,
2092                        "Absolute device without dev->absinfo, refusing to register\n");
2093                return -EINVAL;
2094        }
2095
2096        if (dev->devres_managed) {
2097                devres = devres_alloc(devm_input_device_unregister,
2098                                      sizeof(*devres), GFP_KERNEL);
2099                if (!devres)
2100                        return -ENOMEM;
2101
2102                devres->input = dev;
2103        }
2104
2105        /* Every input device generates EV_SYN/SYN_REPORT events. */
2106        __set_bit(EV_SYN, dev->evbit);
2107
2108        /* KEY_RESERVED is not supposed to be transmitted to userspace. */
2109        __clear_bit(KEY_RESERVED, dev->keybit);
2110
2111        /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2112        input_cleanse_bitmasks(dev);
2113
2114        packet_size = input_estimate_events_per_packet(dev);
2115        if (dev->hint_events_per_packet < packet_size)
2116                dev->hint_events_per_packet = packet_size;
2117
2118        dev->max_vals = dev->hint_events_per_packet + 2;
2119        dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2120        if (!dev->vals) {
2121                error = -ENOMEM;
2122                goto err_devres_free;
2123        }
2124
2125        /*
2126         * If delay and period are pre-set by the driver, then autorepeating
2127         * is handled by the driver itself and we don't do it in input.c.
2128         */
2129        if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2130                input_enable_softrepeat(dev, 250, 33);
2131
2132        if (!dev->getkeycode)
2133                dev->getkeycode = input_default_getkeycode;
2134
2135        if (!dev->setkeycode)
2136                dev->setkeycode = input_default_setkeycode;
2137
2138        error = device_add(&dev->dev);
2139        if (error)
2140                goto err_free_vals;
2141
2142        path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2143        pr_info("%s as %s\n",
2144                dev->name ? dev->name : "Unspecified device",
2145                path ? path : "N/A");
2146        kfree(path);
2147
2148        error = mutex_lock_interruptible(&input_mutex);
2149        if (error)
2150                goto err_device_del;
2151
2152        list_add_tail(&dev->node, &input_dev_list);
2153
2154        list_for_each_entry(handler, &input_handler_list, node)
2155                input_attach_handler(dev, handler);
2156
2157        input_wakeup_procfs_readers();
2158
2159        mutex_unlock(&input_mutex);
2160
2161        if (dev->devres_managed) {
2162                dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2163                        __func__, dev_name(&dev->dev));
2164                devres_add(dev->dev.parent, devres);
2165        }
2166        return 0;
2167
2168err_device_del:
2169        device_del(&dev->dev);
2170err_free_vals:
2171        kfree(dev->vals);
2172        dev->vals = NULL;
2173err_devres_free:
2174        devres_free(devres);
2175        return error;
2176}
2177EXPORT_SYMBOL(input_register_device);
2178
2179/**
2180 * input_unregister_device - unregister previously registered device
2181 * @dev: device to be unregistered
2182 *
2183 * This function unregisters an input device. Once device is unregistered
2184 * the caller should not try to access it as it may get freed at any moment.
2185 */
2186void input_unregister_device(struct input_dev *dev)
2187{
2188        if (dev->devres_managed) {
2189                WARN_ON(devres_destroy(dev->dev.parent,
2190                                        devm_input_device_unregister,
2191                                        devm_input_device_match,
2192                                        dev));
2193                __input_unregister_device(dev);
2194                /*
2195                 * We do not do input_put_device() here because it will be done
2196                 * when 2nd devres fires up.
2197                 */
2198        } else {
2199                __input_unregister_device(dev);
2200                input_put_device(dev);
2201        }
2202}
2203EXPORT_SYMBOL(input_unregister_device);
2204
2205/**
2206 * input_register_handler - register a new input handler
2207 * @handler: handler to be registered
2208 *
2209 * This function registers a new input handler (interface) for input
2210 * devices in the system and attaches it to all input devices that
2211 * are compatible with the handler.
2212 */
2213int input_register_handler(struct input_handler *handler)
2214{
2215        struct input_dev *dev;
2216        int error;
2217
2218        error = mutex_lock_interruptible(&input_mutex);
2219        if (error)
2220                return error;
2221
2222        INIT_LIST_HEAD(&handler->h_list);
2223
2224        list_add_tail(&handler->node, &input_handler_list);
2225
2226        list_for_each_entry(dev, &input_dev_list, node)
2227                input_attach_handler(dev, handler);
2228
2229        input_wakeup_procfs_readers();
2230
2231        mutex_unlock(&input_mutex);
2232        return 0;
2233}
2234EXPORT_SYMBOL(input_register_handler);
2235
2236/**
2237 * input_unregister_handler - unregisters an input handler
2238 * @handler: handler to be unregistered
2239 *
2240 * This function disconnects a handler from its input devices and
2241 * removes it from lists of known handlers.
2242 */
2243void input_unregister_handler(struct input_handler *handler)
2244{
2245        struct input_handle *handle, *next;
2246
2247        mutex_lock(&input_mutex);
2248
2249        list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2250                handler->disconnect(handle);
2251        WARN_ON(!list_empty(&handler->h_list));
2252
2253        list_del_init(&handler->node);
2254
2255        input_wakeup_procfs_readers();
2256
2257        mutex_unlock(&input_mutex);
2258}
2259EXPORT_SYMBOL(input_unregister_handler);
2260
2261/**
2262 * input_handler_for_each_handle - handle iterator
2263 * @handler: input handler to iterate
2264 * @data: data for the callback
2265 * @fn: function to be called for each handle
2266 *
2267 * Iterate over @bus's list of devices, and call @fn for each, passing
2268 * it @data and stop when @fn returns a non-zero value. The function is
2269 * using RCU to traverse the list and therefore may be using in atomic
2270 * contexts. The @fn callback is invoked from RCU critical section and
2271 * thus must not sleep.
2272 */
2273int input_handler_for_each_handle(struct input_handler *handler, void *data,
2274                                  int (*fn)(struct input_handle *, void *))
2275{
2276        struct input_handle *handle;
2277        int retval = 0;
2278
2279        rcu_read_lock();
2280
2281        list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2282                retval = fn(handle, data);
2283                if (retval)
2284                        break;
2285        }
2286
2287        rcu_read_unlock();
2288
2289        return retval;
2290}
2291EXPORT_SYMBOL(input_handler_for_each_handle);
2292
2293/**
2294 * input_register_handle - register a new input handle
2295 * @handle: handle to register
2296 *
2297 * This function puts a new input handle onto device's
2298 * and handler's lists so that events can flow through
2299 * it once it is opened using input_open_device().
2300 *
2301 * This function is supposed to be called from handler's
2302 * connect() method.
2303 */
2304int input_register_handle(struct input_handle *handle)
2305{
2306        struct input_handler *handler = handle->handler;
2307        struct input_dev *dev = handle->dev;
2308        int error;
2309
2310        /*
2311         * We take dev->mutex here to prevent race with
2312         * input_release_device().
2313         */
2314        error = mutex_lock_interruptible(&dev->mutex);
2315        if (error)
2316                return error;
2317
2318        /*
2319         * Filters go to the head of the list, normal handlers
2320         * to the tail.
2321         */
2322        if (handler->filter)
2323                list_add_rcu(&handle->d_node, &dev->h_list);
2324        else
2325                list_add_tail_rcu(&handle->d_node, &dev->h_list);
2326
2327        mutex_unlock(&dev->mutex);
2328
2329        /*
2330         * Since we are supposed to be called from ->connect()
2331         * which is mutually exclusive with ->disconnect()
2332         * we can't be racing with input_unregister_handle()
2333         * and so separate lock is not needed here.
2334         */
2335        list_add_tail_rcu(&handle->h_node, &handler->h_list);
2336
2337        if (handler->start)
2338                handler->start(handle);
2339
2340        return 0;
2341}
2342EXPORT_SYMBOL(input_register_handle);
2343
2344/**
2345 * input_unregister_handle - unregister an input handle
2346 * @handle: handle to unregister
2347 *
2348 * This function removes input handle from device's
2349 * and handler's lists.
2350 *
2351 * This function is supposed to be called from handler's
2352 * disconnect() method.
2353 */
2354void input_unregister_handle(struct input_handle *handle)
2355{
2356        struct input_dev *dev = handle->dev;
2357
2358        list_del_rcu(&handle->h_node);
2359
2360        /*
2361         * Take dev->mutex to prevent race with input_release_device().
2362         */
2363        mutex_lock(&dev->mutex);
2364        list_del_rcu(&handle->d_node);
2365        mutex_unlock(&dev->mutex);
2366
2367        synchronize_rcu();
2368}
2369EXPORT_SYMBOL(input_unregister_handle);
2370
2371/**
2372 * input_get_new_minor - allocates a new input minor number
2373 * @legacy_base: beginning or the legacy range to be searched
2374 * @legacy_num: size of legacy range
2375 * @allow_dynamic: whether we can also take ID from the dynamic range
2376 *
2377 * This function allocates a new device minor for from input major namespace.
2378 * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2379 * parameters and whether ID can be allocated from dynamic range if there are
2380 * no free IDs in legacy range.
2381 */
2382int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2383                        bool allow_dynamic)
2384{
2385        /*
2386         * This function should be called from input handler's ->connect()
2387         * methods, which are serialized with input_mutex, so no additional
2388         * locking is needed here.
2389         */
2390        if (legacy_base >= 0) {
2391                int minor = ida_simple_get(&input_ida,
2392                                           legacy_base,
2393                                           legacy_base + legacy_num,
2394                                           GFP_KERNEL);
2395                if (minor >= 0 || !allow_dynamic)
2396                        return minor;
2397        }
2398
2399        return ida_simple_get(&input_ida,
2400                              INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2401                              GFP_KERNEL);
2402}
2403EXPORT_SYMBOL(input_get_new_minor);
2404
2405/**
2406 * input_free_minor - release previously allocated minor
2407 * @minor: minor to be released
2408 *
2409 * This function releases previously allocated input minor so that it can be
2410 * reused later.
2411 */
2412void input_free_minor(unsigned int minor)
2413{
2414        ida_simple_remove(&input_ida, minor);
2415}
2416EXPORT_SYMBOL(input_free_minor);
2417
2418static int __init input_init(void)
2419{
2420        int err;
2421
2422        err = class_register(&input_class);
2423        if (err) {
2424                pr_err("unable to register input_dev class\n");
2425                return err;
2426        }
2427
2428        err = input_proc_init();
2429        if (err)
2430                goto fail1;
2431
2432        err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2433                                     INPUT_MAX_CHAR_DEVICES, "input");
2434        if (err) {
2435                pr_err("unable to register char major %d", INPUT_MAJOR);
2436                goto fail2;
2437        }
2438
2439        return 0;
2440
2441 fail2: input_proc_exit();
2442 fail1: class_unregister(&input_class);
2443        return err;
2444}
2445
2446static void __exit input_exit(void)
2447{
2448        input_proc_exit();
2449        unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2450                                 INPUT_MAX_CHAR_DEVICES);
2451        class_unregister(&input_class);
2452}
2453
2454subsys_initcall(input_init);
2455module_exit(input_exit);
2456