linux/drivers/iommu/amd_iommu.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
   4 * Author: Joerg Roedel <jroedel@suse.de>
   5 *         Leo Duran <leo.duran@amd.com>
   6 */
   7
   8#define pr_fmt(fmt)     "AMD-Vi: " fmt
   9#define dev_fmt(fmt)    pr_fmt(fmt)
  10
  11#include <linux/ratelimit.h>
  12#include <linux/pci.h>
  13#include <linux/acpi.h>
  14#include <linux/amba/bus.h>
  15#include <linux/platform_device.h>
  16#include <linux/pci-ats.h>
  17#include <linux/bitmap.h>
  18#include <linux/slab.h>
  19#include <linux/debugfs.h>
  20#include <linux/scatterlist.h>
  21#include <linux/dma-mapping.h>
  22#include <linux/dma-direct.h>
  23#include <linux/iommu-helper.h>
  24#include <linux/iommu.h>
  25#include <linux/delay.h>
  26#include <linux/amd-iommu.h>
  27#include <linux/notifier.h>
  28#include <linux/export.h>
  29#include <linux/irq.h>
  30#include <linux/msi.h>
  31#include <linux/dma-contiguous.h>
  32#include <linux/irqdomain.h>
  33#include <linux/percpu.h>
  34#include <linux/iova.h>
  35#include <asm/irq_remapping.h>
  36#include <asm/io_apic.h>
  37#include <asm/apic.h>
  38#include <asm/hw_irq.h>
  39#include <asm/msidef.h>
  40#include <asm/proto.h>
  41#include <asm/iommu.h>
  42#include <asm/gart.h>
  43#include <asm/dma.h>
  44
  45#include "amd_iommu_proto.h"
  46#include "amd_iommu_types.h"
  47#include "irq_remapping.h"
  48
  49#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
  50
  51#define LOOP_TIMEOUT    100000
  52
  53/* IO virtual address start page frame number */
  54#define IOVA_START_PFN          (1)
  55#define IOVA_PFN(addr)          ((addr) >> PAGE_SHIFT)
  56
  57/* Reserved IOVA ranges */
  58#define MSI_RANGE_START         (0xfee00000)
  59#define MSI_RANGE_END           (0xfeefffff)
  60#define HT_RANGE_START          (0xfd00000000ULL)
  61#define HT_RANGE_END            (0xffffffffffULL)
  62
  63/*
  64 * This bitmap is used to advertise the page sizes our hardware support
  65 * to the IOMMU core, which will then use this information to split
  66 * physically contiguous memory regions it is mapping into page sizes
  67 * that we support.
  68 *
  69 * 512GB Pages are not supported due to a hardware bug
  70 */
  71#define AMD_IOMMU_PGSIZES       ((~0xFFFUL) & ~(2ULL << 38))
  72
  73static DEFINE_SPINLOCK(amd_iommu_devtable_lock);
  74static DEFINE_SPINLOCK(pd_bitmap_lock);
  75
  76/* List of all available dev_data structures */
  77static LLIST_HEAD(dev_data_list);
  78
  79LIST_HEAD(ioapic_map);
  80LIST_HEAD(hpet_map);
  81LIST_HEAD(acpihid_map);
  82
  83/*
  84 * Domain for untranslated devices - only allocated
  85 * if iommu=pt passed on kernel cmd line.
  86 */
  87const struct iommu_ops amd_iommu_ops;
  88
  89static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
  90int amd_iommu_max_glx_val = -1;
  91
  92static const struct dma_map_ops amd_iommu_dma_ops;
  93
  94/*
  95 * general struct to manage commands send to an IOMMU
  96 */
  97struct iommu_cmd {
  98        u32 data[4];
  99};
 100
 101struct kmem_cache *amd_iommu_irq_cache;
 102
 103static void update_domain(struct protection_domain *domain);
 104static int protection_domain_init(struct protection_domain *domain);
 105static void detach_device(struct device *dev);
 106static void iova_domain_flush_tlb(struct iova_domain *iovad);
 107
 108/*
 109 * Data container for a dma_ops specific protection domain
 110 */
 111struct dma_ops_domain {
 112        /* generic protection domain information */
 113        struct protection_domain domain;
 114
 115        /* IOVA RB-Tree */
 116        struct iova_domain iovad;
 117};
 118
 119static struct iova_domain reserved_iova_ranges;
 120static struct lock_class_key reserved_rbtree_key;
 121
 122/****************************************************************************
 123 *
 124 * Helper functions
 125 *
 126 ****************************************************************************/
 127
 128static inline int match_hid_uid(struct device *dev,
 129                                struct acpihid_map_entry *entry)
 130{
 131        struct acpi_device *adev = ACPI_COMPANION(dev);
 132        const char *hid, *uid;
 133
 134        if (!adev)
 135                return -ENODEV;
 136
 137        hid = acpi_device_hid(adev);
 138        uid = acpi_device_uid(adev);
 139
 140        if (!hid || !(*hid))
 141                return -ENODEV;
 142
 143        if (!uid || !(*uid))
 144                return strcmp(hid, entry->hid);
 145
 146        if (!(*entry->uid))
 147                return strcmp(hid, entry->hid);
 148
 149        return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
 150}
 151
 152static inline u16 get_pci_device_id(struct device *dev)
 153{
 154        struct pci_dev *pdev = to_pci_dev(dev);
 155
 156        return pci_dev_id(pdev);
 157}
 158
 159static inline int get_acpihid_device_id(struct device *dev,
 160                                        struct acpihid_map_entry **entry)
 161{
 162        struct acpihid_map_entry *p;
 163
 164        list_for_each_entry(p, &acpihid_map, list) {
 165                if (!match_hid_uid(dev, p)) {
 166                        if (entry)
 167                                *entry = p;
 168                        return p->devid;
 169                }
 170        }
 171        return -EINVAL;
 172}
 173
 174static inline int get_device_id(struct device *dev)
 175{
 176        int devid;
 177
 178        if (dev_is_pci(dev))
 179                devid = get_pci_device_id(dev);
 180        else
 181                devid = get_acpihid_device_id(dev, NULL);
 182
 183        return devid;
 184}
 185
 186static struct protection_domain *to_pdomain(struct iommu_domain *dom)
 187{
 188        return container_of(dom, struct protection_domain, domain);
 189}
 190
 191static struct dma_ops_domain* to_dma_ops_domain(struct protection_domain *domain)
 192{
 193        BUG_ON(domain->flags != PD_DMA_OPS_MASK);
 194        return container_of(domain, struct dma_ops_domain, domain);
 195}
 196
 197static struct iommu_dev_data *alloc_dev_data(u16 devid)
 198{
 199        struct iommu_dev_data *dev_data;
 200
 201        dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
 202        if (!dev_data)
 203                return NULL;
 204
 205        dev_data->devid = devid;
 206        ratelimit_default_init(&dev_data->rs);
 207
 208        llist_add(&dev_data->dev_data_list, &dev_data_list);
 209        return dev_data;
 210}
 211
 212static struct iommu_dev_data *search_dev_data(u16 devid)
 213{
 214        struct iommu_dev_data *dev_data;
 215        struct llist_node *node;
 216
 217        if (llist_empty(&dev_data_list))
 218                return NULL;
 219
 220        node = dev_data_list.first;
 221        llist_for_each_entry(dev_data, node, dev_data_list) {
 222                if (dev_data->devid == devid)
 223                        return dev_data;
 224        }
 225
 226        return NULL;
 227}
 228
 229static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
 230{
 231        *(u16 *)data = alias;
 232        return 0;
 233}
 234
 235static u16 get_alias(struct device *dev)
 236{
 237        struct pci_dev *pdev = to_pci_dev(dev);
 238        u16 devid, ivrs_alias, pci_alias;
 239
 240        /* The callers make sure that get_device_id() does not fail here */
 241        devid = get_device_id(dev);
 242
 243        /* For ACPI HID devices, we simply return the devid as such */
 244        if (!dev_is_pci(dev))
 245                return devid;
 246
 247        ivrs_alias = amd_iommu_alias_table[devid];
 248
 249        pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);
 250
 251        if (ivrs_alias == pci_alias)
 252                return ivrs_alias;
 253
 254        /*
 255         * DMA alias showdown
 256         *
 257         * The IVRS is fairly reliable in telling us about aliases, but it
 258         * can't know about every screwy device.  If we don't have an IVRS
 259         * reported alias, use the PCI reported alias.  In that case we may
 260         * still need to initialize the rlookup and dev_table entries if the
 261         * alias is to a non-existent device.
 262         */
 263        if (ivrs_alias == devid) {
 264                if (!amd_iommu_rlookup_table[pci_alias]) {
 265                        amd_iommu_rlookup_table[pci_alias] =
 266                                amd_iommu_rlookup_table[devid];
 267                        memcpy(amd_iommu_dev_table[pci_alias].data,
 268                               amd_iommu_dev_table[devid].data,
 269                               sizeof(amd_iommu_dev_table[pci_alias].data));
 270                }
 271
 272                return pci_alias;
 273        }
 274
 275        pci_info(pdev, "Using IVRS reported alias %02x:%02x.%d "
 276                "for device [%04x:%04x], kernel reported alias "
 277                "%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
 278                PCI_FUNC(ivrs_alias), pdev->vendor, pdev->device,
 279                PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
 280                PCI_FUNC(pci_alias));
 281
 282        /*
 283         * If we don't have a PCI DMA alias and the IVRS alias is on the same
 284         * bus, then the IVRS table may know about a quirk that we don't.
 285         */
 286        if (pci_alias == devid &&
 287            PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
 288                pci_add_dma_alias(pdev, ivrs_alias & 0xff);
 289                pci_info(pdev, "Added PCI DMA alias %02x.%d\n",
 290                        PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias));
 291        }
 292
 293        return ivrs_alias;
 294}
 295
 296static struct iommu_dev_data *find_dev_data(u16 devid)
 297{
 298        struct iommu_dev_data *dev_data;
 299        struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
 300
 301        dev_data = search_dev_data(devid);
 302
 303        if (dev_data == NULL) {
 304                dev_data = alloc_dev_data(devid);
 305                if (!dev_data)
 306                        return NULL;
 307
 308                if (translation_pre_enabled(iommu))
 309                        dev_data->defer_attach = true;
 310        }
 311
 312        return dev_data;
 313}
 314
 315struct iommu_dev_data *get_dev_data(struct device *dev)
 316{
 317        return dev->archdata.iommu;
 318}
 319EXPORT_SYMBOL(get_dev_data);
 320
 321/*
 322* Find or create an IOMMU group for a acpihid device.
 323*/
 324static struct iommu_group *acpihid_device_group(struct device *dev)
 325{
 326        struct acpihid_map_entry *p, *entry = NULL;
 327        int devid;
 328
 329        devid = get_acpihid_device_id(dev, &entry);
 330        if (devid < 0)
 331                return ERR_PTR(devid);
 332
 333        list_for_each_entry(p, &acpihid_map, list) {
 334                if ((devid == p->devid) && p->group)
 335                        entry->group = p->group;
 336        }
 337
 338        if (!entry->group)
 339                entry->group = generic_device_group(dev);
 340        else
 341                iommu_group_ref_get(entry->group);
 342
 343        return entry->group;
 344}
 345
 346static bool pci_iommuv2_capable(struct pci_dev *pdev)
 347{
 348        static const int caps[] = {
 349                PCI_EXT_CAP_ID_ATS,
 350                PCI_EXT_CAP_ID_PRI,
 351                PCI_EXT_CAP_ID_PASID,
 352        };
 353        int i, pos;
 354
 355        if (pci_ats_disabled())
 356                return false;
 357
 358        for (i = 0; i < 3; ++i) {
 359                pos = pci_find_ext_capability(pdev, caps[i]);
 360                if (pos == 0)
 361                        return false;
 362        }
 363
 364        return true;
 365}
 366
 367static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
 368{
 369        struct iommu_dev_data *dev_data;
 370
 371        dev_data = get_dev_data(&pdev->dev);
 372
 373        return dev_data->errata & (1 << erratum) ? true : false;
 374}
 375
 376/*
 377 * This function checks if the driver got a valid device from the caller to
 378 * avoid dereferencing invalid pointers.
 379 */
 380static bool check_device(struct device *dev)
 381{
 382        int devid;
 383
 384        if (!dev || !dev->dma_mask)
 385                return false;
 386
 387        devid = get_device_id(dev);
 388        if (devid < 0)
 389                return false;
 390
 391        /* Out of our scope? */
 392        if (devid > amd_iommu_last_bdf)
 393                return false;
 394
 395        if (amd_iommu_rlookup_table[devid] == NULL)
 396                return false;
 397
 398        return true;
 399}
 400
 401static void init_iommu_group(struct device *dev)
 402{
 403        struct iommu_group *group;
 404
 405        group = iommu_group_get_for_dev(dev);
 406        if (IS_ERR(group))
 407                return;
 408
 409        iommu_group_put(group);
 410}
 411
 412static int iommu_init_device(struct device *dev)
 413{
 414        struct iommu_dev_data *dev_data;
 415        struct amd_iommu *iommu;
 416        int devid;
 417
 418        if (dev->archdata.iommu)
 419                return 0;
 420
 421        devid = get_device_id(dev);
 422        if (devid < 0)
 423                return devid;
 424
 425        iommu = amd_iommu_rlookup_table[devid];
 426
 427        dev_data = find_dev_data(devid);
 428        if (!dev_data)
 429                return -ENOMEM;
 430
 431        dev_data->alias = get_alias(dev);
 432
 433        /*
 434         * By default we use passthrough mode for IOMMUv2 capable device.
 435         * But if amd_iommu=force_isolation is set (e.g. to debug DMA to
 436         * invalid address), we ignore the capability for the device so
 437         * it'll be forced to go into translation mode.
 438         */
 439        if ((iommu_pass_through || !amd_iommu_force_isolation) &&
 440            dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
 441                struct amd_iommu *iommu;
 442
 443                iommu = amd_iommu_rlookup_table[dev_data->devid];
 444                dev_data->iommu_v2 = iommu->is_iommu_v2;
 445        }
 446
 447        dev->archdata.iommu = dev_data;
 448
 449        iommu_device_link(&iommu->iommu, dev);
 450
 451        return 0;
 452}
 453
 454static void iommu_ignore_device(struct device *dev)
 455{
 456        u16 alias;
 457        int devid;
 458
 459        devid = get_device_id(dev);
 460        if (devid < 0)
 461                return;
 462
 463        alias = get_alias(dev);
 464
 465        memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
 466        memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
 467
 468        amd_iommu_rlookup_table[devid] = NULL;
 469        amd_iommu_rlookup_table[alias] = NULL;
 470}
 471
 472static void iommu_uninit_device(struct device *dev)
 473{
 474        struct iommu_dev_data *dev_data;
 475        struct amd_iommu *iommu;
 476        int devid;
 477
 478        devid = get_device_id(dev);
 479        if (devid < 0)
 480                return;
 481
 482        iommu = amd_iommu_rlookup_table[devid];
 483
 484        dev_data = search_dev_data(devid);
 485        if (!dev_data)
 486                return;
 487
 488        if (dev_data->domain)
 489                detach_device(dev);
 490
 491        iommu_device_unlink(&iommu->iommu, dev);
 492
 493        iommu_group_remove_device(dev);
 494
 495        /* Remove dma-ops */
 496        dev->dma_ops = NULL;
 497
 498        /*
 499         * We keep dev_data around for unplugged devices and reuse it when the
 500         * device is re-plugged - not doing so would introduce a ton of races.
 501         */
 502}
 503
 504/****************************************************************************
 505 *
 506 * Interrupt handling functions
 507 *
 508 ****************************************************************************/
 509
 510static void dump_dte_entry(u16 devid)
 511{
 512        int i;
 513
 514        for (i = 0; i < 4; ++i)
 515                pr_err("DTE[%d]: %016llx\n", i,
 516                        amd_iommu_dev_table[devid].data[i]);
 517}
 518
 519static void dump_command(unsigned long phys_addr)
 520{
 521        struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
 522        int i;
 523
 524        for (i = 0; i < 4; ++i)
 525                pr_err("CMD[%d]: %08x\n", i, cmd->data[i]);
 526}
 527
 528static void amd_iommu_report_page_fault(u16 devid, u16 domain_id,
 529                                        u64 address, int flags)
 530{
 531        struct iommu_dev_data *dev_data = NULL;
 532        struct pci_dev *pdev;
 533
 534        pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid),
 535                                           devid & 0xff);
 536        if (pdev)
 537                dev_data = get_dev_data(&pdev->dev);
 538
 539        if (dev_data && __ratelimit(&dev_data->rs)) {
 540                pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n",
 541                        domain_id, address, flags);
 542        } else if (printk_ratelimit()) {
 543                pr_err("Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n",
 544                        PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 545                        domain_id, address, flags);
 546        }
 547
 548        if (pdev)
 549                pci_dev_put(pdev);
 550}
 551
 552static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
 553{
 554        struct device *dev = iommu->iommu.dev;
 555        int type, devid, pasid, flags, tag;
 556        volatile u32 *event = __evt;
 557        int count = 0;
 558        u64 address;
 559
 560retry:
 561        type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
 562        devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
 563        pasid   = PPR_PASID(*(u64 *)&event[0]);
 564        flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
 565        address = (u64)(((u64)event[3]) << 32) | event[2];
 566
 567        if (type == 0) {
 568                /* Did we hit the erratum? */
 569                if (++count == LOOP_TIMEOUT) {
 570                        pr_err("No event written to event log\n");
 571                        return;
 572                }
 573                udelay(1);
 574                goto retry;
 575        }
 576
 577        if (type == EVENT_TYPE_IO_FAULT) {
 578                amd_iommu_report_page_fault(devid, pasid, address, flags);
 579                return;
 580        }
 581
 582        switch (type) {
 583        case EVENT_TYPE_ILL_DEV:
 584                dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
 585                        PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 586                        pasid, address, flags);
 587                dump_dte_entry(devid);
 588                break;
 589        case EVENT_TYPE_DEV_TAB_ERR:
 590                dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
 591                        "address=0x%llx flags=0x%04x]\n",
 592                        PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 593                        address, flags);
 594                break;
 595        case EVENT_TYPE_PAGE_TAB_ERR:
 596                dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n",
 597                        PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 598                        pasid, address, flags);
 599                break;
 600        case EVENT_TYPE_ILL_CMD:
 601                dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address);
 602                dump_command(address);
 603                break;
 604        case EVENT_TYPE_CMD_HARD_ERR:
 605                dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n",
 606                        address, flags);
 607                break;
 608        case EVENT_TYPE_IOTLB_INV_TO:
 609                dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%02x:%02x.%x address=0x%llx]\n",
 610                        PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 611                        address);
 612                break;
 613        case EVENT_TYPE_INV_DEV_REQ:
 614                dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
 615                        PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 616                        pasid, address, flags);
 617                break;
 618        case EVENT_TYPE_INV_PPR_REQ:
 619                pasid = ((event[0] >> 16) & 0xFFFF)
 620                        | ((event[1] << 6) & 0xF0000);
 621                tag = event[1] & 0x03FF;
 622                dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n",
 623                        PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 624                        pasid, address, flags, tag);
 625                break;
 626        default:
 627                dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
 628                        event[0], event[1], event[2], event[3]);
 629        }
 630
 631        memset(__evt, 0, 4 * sizeof(u32));
 632}
 633
 634static void iommu_poll_events(struct amd_iommu *iommu)
 635{
 636        u32 head, tail;
 637
 638        head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
 639        tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
 640
 641        while (head != tail) {
 642                iommu_print_event(iommu, iommu->evt_buf + head);
 643                head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
 644        }
 645
 646        writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
 647}
 648
 649static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
 650{
 651        struct amd_iommu_fault fault;
 652
 653        if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
 654                pr_err_ratelimited("Unknown PPR request received\n");
 655                return;
 656        }
 657
 658        fault.address   = raw[1];
 659        fault.pasid     = PPR_PASID(raw[0]);
 660        fault.device_id = PPR_DEVID(raw[0]);
 661        fault.tag       = PPR_TAG(raw[0]);
 662        fault.flags     = PPR_FLAGS(raw[0]);
 663
 664        atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
 665}
 666
 667static void iommu_poll_ppr_log(struct amd_iommu *iommu)
 668{
 669        u32 head, tail;
 670
 671        if (iommu->ppr_log == NULL)
 672                return;
 673
 674        head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
 675        tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
 676
 677        while (head != tail) {
 678                volatile u64 *raw;
 679                u64 entry[2];
 680                int i;
 681
 682                raw = (u64 *)(iommu->ppr_log + head);
 683
 684                /*
 685                 * Hardware bug: Interrupt may arrive before the entry is
 686                 * written to memory. If this happens we need to wait for the
 687                 * entry to arrive.
 688                 */
 689                for (i = 0; i < LOOP_TIMEOUT; ++i) {
 690                        if (PPR_REQ_TYPE(raw[0]) != 0)
 691                                break;
 692                        udelay(1);
 693                }
 694
 695                /* Avoid memcpy function-call overhead */
 696                entry[0] = raw[0];
 697                entry[1] = raw[1];
 698
 699                /*
 700                 * To detect the hardware bug we need to clear the entry
 701                 * back to zero.
 702                 */
 703                raw[0] = raw[1] = 0UL;
 704
 705                /* Update head pointer of hardware ring-buffer */
 706                head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
 707                writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
 708
 709                /* Handle PPR entry */
 710                iommu_handle_ppr_entry(iommu, entry);
 711
 712                /* Refresh ring-buffer information */
 713                head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
 714                tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
 715        }
 716}
 717
 718#ifdef CONFIG_IRQ_REMAP
 719static int (*iommu_ga_log_notifier)(u32);
 720
 721int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
 722{
 723        iommu_ga_log_notifier = notifier;
 724
 725        return 0;
 726}
 727EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
 728
 729static void iommu_poll_ga_log(struct amd_iommu *iommu)
 730{
 731        u32 head, tail, cnt = 0;
 732
 733        if (iommu->ga_log == NULL)
 734                return;
 735
 736        head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
 737        tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
 738
 739        while (head != tail) {
 740                volatile u64 *raw;
 741                u64 log_entry;
 742
 743                raw = (u64 *)(iommu->ga_log + head);
 744                cnt++;
 745
 746                /* Avoid memcpy function-call overhead */
 747                log_entry = *raw;
 748
 749                /* Update head pointer of hardware ring-buffer */
 750                head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
 751                writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
 752
 753                /* Handle GA entry */
 754                switch (GA_REQ_TYPE(log_entry)) {
 755                case GA_GUEST_NR:
 756                        if (!iommu_ga_log_notifier)
 757                                break;
 758
 759                        pr_debug("%s: devid=%#x, ga_tag=%#x\n",
 760                                 __func__, GA_DEVID(log_entry),
 761                                 GA_TAG(log_entry));
 762
 763                        if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
 764                                pr_err("GA log notifier failed.\n");
 765                        break;
 766                default:
 767                        break;
 768                }
 769        }
 770}
 771#endif /* CONFIG_IRQ_REMAP */
 772
 773#define AMD_IOMMU_INT_MASK      \
 774        (MMIO_STATUS_EVT_INT_MASK | \
 775         MMIO_STATUS_PPR_INT_MASK | \
 776         MMIO_STATUS_GALOG_INT_MASK)
 777
 778irqreturn_t amd_iommu_int_thread(int irq, void *data)
 779{
 780        struct amd_iommu *iommu = (struct amd_iommu *) data;
 781        u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
 782
 783        while (status & AMD_IOMMU_INT_MASK) {
 784                /* Enable EVT and PPR and GA interrupts again */
 785                writel(AMD_IOMMU_INT_MASK,
 786                        iommu->mmio_base + MMIO_STATUS_OFFSET);
 787
 788                if (status & MMIO_STATUS_EVT_INT_MASK) {
 789                        pr_devel("Processing IOMMU Event Log\n");
 790                        iommu_poll_events(iommu);
 791                }
 792
 793                if (status & MMIO_STATUS_PPR_INT_MASK) {
 794                        pr_devel("Processing IOMMU PPR Log\n");
 795                        iommu_poll_ppr_log(iommu);
 796                }
 797
 798#ifdef CONFIG_IRQ_REMAP
 799                if (status & MMIO_STATUS_GALOG_INT_MASK) {
 800                        pr_devel("Processing IOMMU GA Log\n");
 801                        iommu_poll_ga_log(iommu);
 802                }
 803#endif
 804
 805                /*
 806                 * Hardware bug: ERBT1312
 807                 * When re-enabling interrupt (by writing 1
 808                 * to clear the bit), the hardware might also try to set
 809                 * the interrupt bit in the event status register.
 810                 * In this scenario, the bit will be set, and disable
 811                 * subsequent interrupts.
 812                 *
 813                 * Workaround: The IOMMU driver should read back the
 814                 * status register and check if the interrupt bits are cleared.
 815                 * If not, driver will need to go through the interrupt handler
 816                 * again and re-clear the bits
 817                 */
 818                status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
 819        }
 820        return IRQ_HANDLED;
 821}
 822
 823irqreturn_t amd_iommu_int_handler(int irq, void *data)
 824{
 825        return IRQ_WAKE_THREAD;
 826}
 827
 828/****************************************************************************
 829 *
 830 * IOMMU command queuing functions
 831 *
 832 ****************************************************************************/
 833
 834static int wait_on_sem(volatile u64 *sem)
 835{
 836        int i = 0;
 837
 838        while (*sem == 0 && i < LOOP_TIMEOUT) {
 839                udelay(1);
 840                i += 1;
 841        }
 842
 843        if (i == LOOP_TIMEOUT) {
 844                pr_alert("Completion-Wait loop timed out\n");
 845                return -EIO;
 846        }
 847
 848        return 0;
 849}
 850
 851static void copy_cmd_to_buffer(struct amd_iommu *iommu,
 852                               struct iommu_cmd *cmd)
 853{
 854        u8 *target;
 855
 856        target = iommu->cmd_buf + iommu->cmd_buf_tail;
 857
 858        iommu->cmd_buf_tail += sizeof(*cmd);
 859        iommu->cmd_buf_tail %= CMD_BUFFER_SIZE;
 860
 861        /* Copy command to buffer */
 862        memcpy(target, cmd, sizeof(*cmd));
 863
 864        /* Tell the IOMMU about it */
 865        writel(iommu->cmd_buf_tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
 866}
 867
 868static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
 869{
 870        u64 paddr = iommu_virt_to_phys((void *)address);
 871
 872        WARN_ON(address & 0x7ULL);
 873
 874        memset(cmd, 0, sizeof(*cmd));
 875        cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
 876        cmd->data[1] = upper_32_bits(paddr);
 877        cmd->data[2] = 1;
 878        CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
 879}
 880
 881static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
 882{
 883        memset(cmd, 0, sizeof(*cmd));
 884        cmd->data[0] = devid;
 885        CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
 886}
 887
 888static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
 889                                  size_t size, u16 domid, int pde)
 890{
 891        u64 pages;
 892        bool s;
 893
 894        pages = iommu_num_pages(address, size, PAGE_SIZE);
 895        s     = false;
 896
 897        if (pages > 1) {
 898                /*
 899                 * If we have to flush more than one page, flush all
 900                 * TLB entries for this domain
 901                 */
 902                address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
 903                s = true;
 904        }
 905
 906        address &= PAGE_MASK;
 907
 908        memset(cmd, 0, sizeof(*cmd));
 909        cmd->data[1] |= domid;
 910        cmd->data[2]  = lower_32_bits(address);
 911        cmd->data[3]  = upper_32_bits(address);
 912        CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
 913        if (s) /* size bit - we flush more than one 4kb page */
 914                cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
 915        if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
 916                cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
 917}
 918
 919static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
 920                                  u64 address, size_t size)
 921{
 922        u64 pages;
 923        bool s;
 924
 925        pages = iommu_num_pages(address, size, PAGE_SIZE);
 926        s     = false;
 927
 928        if (pages > 1) {
 929                /*
 930                 * If we have to flush more than one page, flush all
 931                 * TLB entries for this domain
 932                 */
 933                address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
 934                s = true;
 935        }
 936
 937        address &= PAGE_MASK;
 938
 939        memset(cmd, 0, sizeof(*cmd));
 940        cmd->data[0]  = devid;
 941        cmd->data[0] |= (qdep & 0xff) << 24;
 942        cmd->data[1]  = devid;
 943        cmd->data[2]  = lower_32_bits(address);
 944        cmd->data[3]  = upper_32_bits(address);
 945        CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
 946        if (s)
 947                cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
 948}
 949
 950static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
 951                                  u64 address, bool size)
 952{
 953        memset(cmd, 0, sizeof(*cmd));
 954
 955        address &= ~(0xfffULL);
 956
 957        cmd->data[0]  = pasid;
 958        cmd->data[1]  = domid;
 959        cmd->data[2]  = lower_32_bits(address);
 960        cmd->data[3]  = upper_32_bits(address);
 961        cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
 962        cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
 963        if (size)
 964                cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
 965        CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
 966}
 967
 968static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
 969                                  int qdep, u64 address, bool size)
 970{
 971        memset(cmd, 0, sizeof(*cmd));
 972
 973        address &= ~(0xfffULL);
 974
 975        cmd->data[0]  = devid;
 976        cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
 977        cmd->data[0] |= (qdep  & 0xff) << 24;
 978        cmd->data[1]  = devid;
 979        cmd->data[1] |= (pasid & 0xff) << 16;
 980        cmd->data[2]  = lower_32_bits(address);
 981        cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
 982        cmd->data[3]  = upper_32_bits(address);
 983        if (size)
 984                cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
 985        CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
 986}
 987
 988static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
 989                               int status, int tag, bool gn)
 990{
 991        memset(cmd, 0, sizeof(*cmd));
 992
 993        cmd->data[0]  = devid;
 994        if (gn) {
 995                cmd->data[1]  = pasid;
 996                cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
 997        }
 998        cmd->data[3]  = tag & 0x1ff;
 999        cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
1000
1001        CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
1002}
1003
1004static void build_inv_all(struct iommu_cmd *cmd)
1005{
1006        memset(cmd, 0, sizeof(*cmd));
1007        CMD_SET_TYPE(cmd, CMD_INV_ALL);
1008}
1009
1010static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1011{
1012        memset(cmd, 0, sizeof(*cmd));
1013        cmd->data[0] = devid;
1014        CMD_SET_TYPE(cmd, CMD_INV_IRT);
1015}
1016
1017/*
1018 * Writes the command to the IOMMUs command buffer and informs the
1019 * hardware about the new command.
1020 */
1021static int __iommu_queue_command_sync(struct amd_iommu *iommu,
1022                                      struct iommu_cmd *cmd,
1023                                      bool sync)
1024{
1025        unsigned int count = 0;
1026        u32 left, next_tail;
1027
1028        next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1029again:
1030        left      = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1031
1032        if (left <= 0x20) {
1033                /* Skip udelay() the first time around */
1034                if (count++) {
1035                        if (count == LOOP_TIMEOUT) {
1036                                pr_err("Command buffer timeout\n");
1037                                return -EIO;
1038                        }
1039
1040                        udelay(1);
1041                }
1042
1043                /* Update head and recheck remaining space */
1044                iommu->cmd_buf_head = readl(iommu->mmio_base +
1045                                            MMIO_CMD_HEAD_OFFSET);
1046
1047                goto again;
1048        }
1049
1050        copy_cmd_to_buffer(iommu, cmd);
1051
1052        /* Do we need to make sure all commands are processed? */
1053        iommu->need_sync = sync;
1054
1055        return 0;
1056}
1057
1058static int iommu_queue_command_sync(struct amd_iommu *iommu,
1059                                    struct iommu_cmd *cmd,
1060                                    bool sync)
1061{
1062        unsigned long flags;
1063        int ret;
1064
1065        raw_spin_lock_irqsave(&iommu->lock, flags);
1066        ret = __iommu_queue_command_sync(iommu, cmd, sync);
1067        raw_spin_unlock_irqrestore(&iommu->lock, flags);
1068
1069        return ret;
1070}
1071
1072static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1073{
1074        return iommu_queue_command_sync(iommu, cmd, true);
1075}
1076
1077/*
1078 * This function queues a completion wait command into the command
1079 * buffer of an IOMMU
1080 */
1081static int iommu_completion_wait(struct amd_iommu *iommu)
1082{
1083        struct iommu_cmd cmd;
1084        unsigned long flags;
1085        int ret;
1086
1087        if (!iommu->need_sync)
1088                return 0;
1089
1090
1091        build_completion_wait(&cmd, (u64)&iommu->cmd_sem);
1092
1093        raw_spin_lock_irqsave(&iommu->lock, flags);
1094
1095        iommu->cmd_sem = 0;
1096
1097        ret = __iommu_queue_command_sync(iommu, &cmd, false);
1098        if (ret)
1099                goto out_unlock;
1100
1101        ret = wait_on_sem(&iommu->cmd_sem);
1102
1103out_unlock:
1104        raw_spin_unlock_irqrestore(&iommu->lock, flags);
1105
1106        return ret;
1107}
1108
1109static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1110{
1111        struct iommu_cmd cmd;
1112
1113        build_inv_dte(&cmd, devid);
1114
1115        return iommu_queue_command(iommu, &cmd);
1116}
1117
1118static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1119{
1120        u32 devid;
1121
1122        for (devid = 0; devid <= 0xffff; ++devid)
1123                iommu_flush_dte(iommu, devid);
1124
1125        iommu_completion_wait(iommu);
1126}
1127
1128/*
1129 * This function uses heavy locking and may disable irqs for some time. But
1130 * this is no issue because it is only called during resume.
1131 */
1132static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1133{
1134        u32 dom_id;
1135
1136        for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1137                struct iommu_cmd cmd;
1138                build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1139                                      dom_id, 1);
1140                iommu_queue_command(iommu, &cmd);
1141        }
1142
1143        iommu_completion_wait(iommu);
1144}
1145
1146static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id)
1147{
1148        struct iommu_cmd cmd;
1149
1150        build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1151                              dom_id, 1);
1152        iommu_queue_command(iommu, &cmd);
1153
1154        iommu_completion_wait(iommu);
1155}
1156
1157static void amd_iommu_flush_all(struct amd_iommu *iommu)
1158{
1159        struct iommu_cmd cmd;
1160
1161        build_inv_all(&cmd);
1162
1163        iommu_queue_command(iommu, &cmd);
1164        iommu_completion_wait(iommu);
1165}
1166
1167static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1168{
1169        struct iommu_cmd cmd;
1170
1171        build_inv_irt(&cmd, devid);
1172
1173        iommu_queue_command(iommu, &cmd);
1174}
1175
1176static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1177{
1178        u32 devid;
1179
1180        for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1181                iommu_flush_irt(iommu, devid);
1182
1183        iommu_completion_wait(iommu);
1184}
1185
1186void iommu_flush_all_caches(struct amd_iommu *iommu)
1187{
1188        if (iommu_feature(iommu, FEATURE_IA)) {
1189                amd_iommu_flush_all(iommu);
1190        } else {
1191                amd_iommu_flush_dte_all(iommu);
1192                amd_iommu_flush_irt_all(iommu);
1193                amd_iommu_flush_tlb_all(iommu);
1194        }
1195}
1196
1197/*
1198 * Command send function for flushing on-device TLB
1199 */
1200static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1201                              u64 address, size_t size)
1202{
1203        struct amd_iommu *iommu;
1204        struct iommu_cmd cmd;
1205        int qdep;
1206
1207        qdep     = dev_data->ats.qdep;
1208        iommu    = amd_iommu_rlookup_table[dev_data->devid];
1209
1210        build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1211
1212        return iommu_queue_command(iommu, &cmd);
1213}
1214
1215/*
1216 * Command send function for invalidating a device table entry
1217 */
1218static int device_flush_dte(struct iommu_dev_data *dev_data)
1219{
1220        struct amd_iommu *iommu;
1221        u16 alias;
1222        int ret;
1223
1224        iommu = amd_iommu_rlookup_table[dev_data->devid];
1225        alias = dev_data->alias;
1226
1227        ret = iommu_flush_dte(iommu, dev_data->devid);
1228        if (!ret && alias != dev_data->devid)
1229                ret = iommu_flush_dte(iommu, alias);
1230        if (ret)
1231                return ret;
1232
1233        if (dev_data->ats.enabled)
1234                ret = device_flush_iotlb(dev_data, 0, ~0UL);
1235
1236        return ret;
1237}
1238
1239/*
1240 * TLB invalidation function which is called from the mapping functions.
1241 * It invalidates a single PTE if the range to flush is within a single
1242 * page. Otherwise it flushes the whole TLB of the IOMMU.
1243 */
1244static void __domain_flush_pages(struct protection_domain *domain,
1245                                 u64 address, size_t size, int pde)
1246{
1247        struct iommu_dev_data *dev_data;
1248        struct iommu_cmd cmd;
1249        int ret = 0, i;
1250
1251        build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1252
1253        for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1254                if (!domain->dev_iommu[i])
1255                        continue;
1256
1257                /*
1258                 * Devices of this domain are behind this IOMMU
1259                 * We need a TLB flush
1260                 */
1261                ret |= iommu_queue_command(amd_iommus[i], &cmd);
1262        }
1263
1264        list_for_each_entry(dev_data, &domain->dev_list, list) {
1265
1266                if (!dev_data->ats.enabled)
1267                        continue;
1268
1269                ret |= device_flush_iotlb(dev_data, address, size);
1270        }
1271
1272        WARN_ON(ret);
1273}
1274
1275static void domain_flush_pages(struct protection_domain *domain,
1276                               u64 address, size_t size)
1277{
1278        __domain_flush_pages(domain, address, size, 0);
1279}
1280
1281/* Flush the whole IO/TLB for a given protection domain */
1282static void domain_flush_tlb(struct protection_domain *domain)
1283{
1284        __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1285}
1286
1287/* Flush the whole IO/TLB for a given protection domain - including PDE */
1288static void domain_flush_tlb_pde(struct protection_domain *domain)
1289{
1290        __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1291}
1292
1293static void domain_flush_complete(struct protection_domain *domain)
1294{
1295        int i;
1296
1297        for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1298                if (domain && !domain->dev_iommu[i])
1299                        continue;
1300
1301                /*
1302                 * Devices of this domain are behind this IOMMU
1303                 * We need to wait for completion of all commands.
1304                 */
1305                iommu_completion_wait(amd_iommus[i]);
1306        }
1307}
1308
1309/* Flush the not present cache if it exists */
1310static void domain_flush_np_cache(struct protection_domain *domain,
1311                dma_addr_t iova, size_t size)
1312{
1313        if (unlikely(amd_iommu_np_cache)) {
1314                domain_flush_pages(domain, iova, size);
1315                domain_flush_complete(domain);
1316        }
1317}
1318
1319
1320/*
1321 * This function flushes the DTEs for all devices in domain
1322 */
1323static void domain_flush_devices(struct protection_domain *domain)
1324{
1325        struct iommu_dev_data *dev_data;
1326
1327        list_for_each_entry(dev_data, &domain->dev_list, list)
1328                device_flush_dte(dev_data);
1329}
1330
1331/****************************************************************************
1332 *
1333 * The functions below are used the create the page table mappings for
1334 * unity mapped regions.
1335 *
1336 ****************************************************************************/
1337
1338static void free_page_list(struct page *freelist)
1339{
1340        while (freelist != NULL) {
1341                unsigned long p = (unsigned long)page_address(freelist);
1342                freelist = freelist->freelist;
1343                free_page(p);
1344        }
1345}
1346
1347static struct page *free_pt_page(unsigned long pt, struct page *freelist)
1348{
1349        struct page *p = virt_to_page((void *)pt);
1350
1351        p->freelist = freelist;
1352
1353        return p;
1354}
1355
1356#define DEFINE_FREE_PT_FN(LVL, FN)                                              \
1357static struct page *free_pt_##LVL (unsigned long __pt, struct page *freelist)   \
1358{                                                                               \
1359        unsigned long p;                                                        \
1360        u64 *pt;                                                                \
1361        int i;                                                                  \
1362                                                                                \
1363        pt = (u64 *)__pt;                                                       \
1364                                                                                \
1365        for (i = 0; i < 512; ++i) {                                             \
1366                /* PTE present? */                                              \
1367                if (!IOMMU_PTE_PRESENT(pt[i]))                                  \
1368                        continue;                                               \
1369                                                                                \
1370                /* Large PTE? */                                                \
1371                if (PM_PTE_LEVEL(pt[i]) == 0 ||                                 \
1372                    PM_PTE_LEVEL(pt[i]) == 7)                                   \
1373                        continue;                                               \
1374                                                                                \
1375                p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);                       \
1376                freelist = FN(p, freelist);                                     \
1377        }                                                                       \
1378                                                                                \
1379        return free_pt_page((unsigned long)pt, freelist);                       \
1380}
1381
1382DEFINE_FREE_PT_FN(l2, free_pt_page)
1383DEFINE_FREE_PT_FN(l3, free_pt_l2)
1384DEFINE_FREE_PT_FN(l4, free_pt_l3)
1385DEFINE_FREE_PT_FN(l5, free_pt_l4)
1386DEFINE_FREE_PT_FN(l6, free_pt_l5)
1387
1388static struct page *free_sub_pt(unsigned long root, int mode,
1389                                struct page *freelist)
1390{
1391        switch (mode) {
1392        case PAGE_MODE_NONE:
1393        case PAGE_MODE_7_LEVEL:
1394                break;
1395        case PAGE_MODE_1_LEVEL:
1396                freelist = free_pt_page(root, freelist);
1397                break;
1398        case PAGE_MODE_2_LEVEL:
1399                freelist = free_pt_l2(root, freelist);
1400                break;
1401        case PAGE_MODE_3_LEVEL:
1402                freelist = free_pt_l3(root, freelist);
1403                break;
1404        case PAGE_MODE_4_LEVEL:
1405                freelist = free_pt_l4(root, freelist);
1406                break;
1407        case PAGE_MODE_5_LEVEL:
1408                freelist = free_pt_l5(root, freelist);
1409                break;
1410        case PAGE_MODE_6_LEVEL:
1411                freelist = free_pt_l6(root, freelist);
1412                break;
1413        default:
1414                BUG();
1415        }
1416
1417        return freelist;
1418}
1419
1420static void free_pagetable(struct protection_domain *domain)
1421{
1422        unsigned long root = (unsigned long)domain->pt_root;
1423        struct page *freelist = NULL;
1424
1425        BUG_ON(domain->mode < PAGE_MODE_NONE ||
1426               domain->mode > PAGE_MODE_6_LEVEL);
1427
1428        free_sub_pt(root, domain->mode, freelist);
1429
1430        free_page_list(freelist);
1431}
1432
1433/*
1434 * This function is used to add another level to an IO page table. Adding
1435 * another level increases the size of the address space by 9 bits to a size up
1436 * to 64 bits.
1437 */
1438static void increase_address_space(struct protection_domain *domain,
1439                                   gfp_t gfp)
1440{
1441        unsigned long flags;
1442        u64 *pte;
1443
1444        spin_lock_irqsave(&domain->lock, flags);
1445
1446        if (WARN_ON_ONCE(domain->mode == PAGE_MODE_6_LEVEL))
1447                /* address space already 64 bit large */
1448                goto out;
1449
1450        pte = (void *)get_zeroed_page(gfp);
1451        if (!pte)
1452                goto out;
1453
1454        *pte             = PM_LEVEL_PDE(domain->mode,
1455                                        iommu_virt_to_phys(domain->pt_root));
1456        domain->pt_root  = pte;
1457        domain->mode    += 1;
1458        domain->updated  = true;
1459
1460out:
1461        spin_unlock_irqrestore(&domain->lock, flags);
1462
1463        return;
1464}
1465
1466static u64 *alloc_pte(struct protection_domain *domain,
1467                      unsigned long address,
1468                      unsigned long page_size,
1469                      u64 **pte_page,
1470                      gfp_t gfp)
1471{
1472        int level, end_lvl;
1473        u64 *pte, *page;
1474
1475        BUG_ON(!is_power_of_2(page_size));
1476
1477        while (address > PM_LEVEL_SIZE(domain->mode))
1478                increase_address_space(domain, gfp);
1479
1480        level   = domain->mode - 1;
1481        pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1482        address = PAGE_SIZE_ALIGN(address, page_size);
1483        end_lvl = PAGE_SIZE_LEVEL(page_size);
1484
1485        while (level > end_lvl) {
1486                u64 __pte, __npte;
1487                int pte_level;
1488
1489                __pte     = *pte;
1490                pte_level = PM_PTE_LEVEL(__pte);
1491
1492                if (!IOMMU_PTE_PRESENT(__pte) ||
1493                    pte_level == PAGE_MODE_7_LEVEL) {
1494                        page = (u64 *)get_zeroed_page(gfp);
1495                        if (!page)
1496                                return NULL;
1497
1498                        __npte = PM_LEVEL_PDE(level, iommu_virt_to_phys(page));
1499
1500                        /* pte could have been changed somewhere. */
1501                        if (cmpxchg64(pte, __pte, __npte) != __pte)
1502                                free_page((unsigned long)page);
1503                        else if (pte_level == PAGE_MODE_7_LEVEL)
1504                                domain->updated = true;
1505
1506                        continue;
1507                }
1508
1509                /* No level skipping support yet */
1510                if (pte_level != level)
1511                        return NULL;
1512
1513                level -= 1;
1514
1515                pte = IOMMU_PTE_PAGE(__pte);
1516
1517                if (pte_page && level == end_lvl)
1518                        *pte_page = pte;
1519
1520                pte = &pte[PM_LEVEL_INDEX(level, address)];
1521        }
1522
1523        return pte;
1524}
1525
1526/*
1527 * This function checks if there is a PTE for a given dma address. If
1528 * there is one, it returns the pointer to it.
1529 */
1530static u64 *fetch_pte(struct protection_domain *domain,
1531                      unsigned long address,
1532                      unsigned long *page_size)
1533{
1534        int level;
1535        u64 *pte;
1536
1537        *page_size = 0;
1538
1539        if (address > PM_LEVEL_SIZE(domain->mode))
1540                return NULL;
1541
1542        level      =  domain->mode - 1;
1543        pte        = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1544        *page_size =  PTE_LEVEL_PAGE_SIZE(level);
1545
1546        while (level > 0) {
1547
1548                /* Not Present */
1549                if (!IOMMU_PTE_PRESENT(*pte))
1550                        return NULL;
1551
1552                /* Large PTE */
1553                if (PM_PTE_LEVEL(*pte) == 7 ||
1554                    PM_PTE_LEVEL(*pte) == 0)
1555                        break;
1556
1557                /* No level skipping support yet */
1558                if (PM_PTE_LEVEL(*pte) != level)
1559                        return NULL;
1560
1561                level -= 1;
1562
1563                /* Walk to the next level */
1564                pte        = IOMMU_PTE_PAGE(*pte);
1565                pte        = &pte[PM_LEVEL_INDEX(level, address)];
1566                *page_size = PTE_LEVEL_PAGE_SIZE(level);
1567        }
1568
1569        if (PM_PTE_LEVEL(*pte) == 0x07) {
1570                unsigned long pte_mask;
1571
1572                /*
1573                 * If we have a series of large PTEs, make
1574                 * sure to return a pointer to the first one.
1575                 */
1576                *page_size = pte_mask = PTE_PAGE_SIZE(*pte);
1577                pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1578                pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1579        }
1580
1581        return pte;
1582}
1583
1584static struct page *free_clear_pte(u64 *pte, u64 pteval, struct page *freelist)
1585{
1586        unsigned long pt;
1587        int mode;
1588
1589        while (cmpxchg64(pte, pteval, 0) != pteval) {
1590                pr_warn("AMD-Vi: IOMMU pte changed since we read it\n");
1591                pteval = *pte;
1592        }
1593
1594        if (!IOMMU_PTE_PRESENT(pteval))
1595                return freelist;
1596
1597        pt   = (unsigned long)IOMMU_PTE_PAGE(pteval);
1598        mode = IOMMU_PTE_MODE(pteval);
1599
1600        return free_sub_pt(pt, mode, freelist);
1601}
1602
1603/*
1604 * Generic mapping functions. It maps a physical address into a DMA
1605 * address space. It allocates the page table pages if necessary.
1606 * In the future it can be extended to a generic mapping function
1607 * supporting all features of AMD IOMMU page tables like level skipping
1608 * and full 64 bit address spaces.
1609 */
1610static int iommu_map_page(struct protection_domain *dom,
1611                          unsigned long bus_addr,
1612                          unsigned long phys_addr,
1613                          unsigned long page_size,
1614                          int prot,
1615                          gfp_t gfp)
1616{
1617        struct page *freelist = NULL;
1618        u64 __pte, *pte;
1619        int i, count;
1620
1621        BUG_ON(!IS_ALIGNED(bus_addr, page_size));
1622        BUG_ON(!IS_ALIGNED(phys_addr, page_size));
1623
1624        if (!(prot & IOMMU_PROT_MASK))
1625                return -EINVAL;
1626
1627        count = PAGE_SIZE_PTE_COUNT(page_size);
1628        pte   = alloc_pte(dom, bus_addr, page_size, NULL, gfp);
1629
1630        if (!pte)
1631                return -ENOMEM;
1632
1633        for (i = 0; i < count; ++i)
1634                freelist = free_clear_pte(&pte[i], pte[i], freelist);
1635
1636        if (freelist != NULL)
1637                dom->updated = true;
1638
1639        if (count > 1) {
1640                __pte = PAGE_SIZE_PTE(__sme_set(phys_addr), page_size);
1641                __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1642        } else
1643                __pte = __sme_set(phys_addr) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1644
1645        if (prot & IOMMU_PROT_IR)
1646                __pte |= IOMMU_PTE_IR;
1647        if (prot & IOMMU_PROT_IW)
1648                __pte |= IOMMU_PTE_IW;
1649
1650        for (i = 0; i < count; ++i)
1651                pte[i] = __pte;
1652
1653        update_domain(dom);
1654
1655        /* Everything flushed out, free pages now */
1656        free_page_list(freelist);
1657
1658        return 0;
1659}
1660
1661static unsigned long iommu_unmap_page(struct protection_domain *dom,
1662                                      unsigned long bus_addr,
1663                                      unsigned long page_size)
1664{
1665        unsigned long long unmapped;
1666        unsigned long unmap_size;
1667        u64 *pte;
1668
1669        BUG_ON(!is_power_of_2(page_size));
1670
1671        unmapped = 0;
1672
1673        while (unmapped < page_size) {
1674
1675                pte = fetch_pte(dom, bus_addr, &unmap_size);
1676
1677                if (pte) {
1678                        int i, count;
1679
1680                        count = PAGE_SIZE_PTE_COUNT(unmap_size);
1681                        for (i = 0; i < count; i++)
1682                                pte[i] = 0ULL;
1683                }
1684
1685                bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1686                unmapped += unmap_size;
1687        }
1688
1689        BUG_ON(unmapped && !is_power_of_2(unmapped));
1690
1691        return unmapped;
1692}
1693
1694/****************************************************************************
1695 *
1696 * The next functions belong to the address allocator for the dma_ops
1697 * interface functions.
1698 *
1699 ****************************************************************************/
1700
1701
1702static unsigned long dma_ops_alloc_iova(struct device *dev,
1703                                        struct dma_ops_domain *dma_dom,
1704                                        unsigned int pages, u64 dma_mask)
1705{
1706        unsigned long pfn = 0;
1707
1708        pages = __roundup_pow_of_two(pages);
1709
1710        if (dma_mask > DMA_BIT_MASK(32))
1711                pfn = alloc_iova_fast(&dma_dom->iovad, pages,
1712                                      IOVA_PFN(DMA_BIT_MASK(32)), false);
1713
1714        if (!pfn)
1715                pfn = alloc_iova_fast(&dma_dom->iovad, pages,
1716                                      IOVA_PFN(dma_mask), true);
1717
1718        return (pfn << PAGE_SHIFT);
1719}
1720
1721static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
1722                              unsigned long address,
1723                              unsigned int pages)
1724{
1725        pages = __roundup_pow_of_two(pages);
1726        address >>= PAGE_SHIFT;
1727
1728        free_iova_fast(&dma_dom->iovad, address, pages);
1729}
1730
1731/****************************************************************************
1732 *
1733 * The next functions belong to the domain allocation. A domain is
1734 * allocated for every IOMMU as the default domain. If device isolation
1735 * is enabled, every device get its own domain. The most important thing
1736 * about domains is the page table mapping the DMA address space they
1737 * contain.
1738 *
1739 ****************************************************************************/
1740
1741static u16 domain_id_alloc(void)
1742{
1743        int id;
1744
1745        spin_lock(&pd_bitmap_lock);
1746        id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1747        BUG_ON(id == 0);
1748        if (id > 0 && id < MAX_DOMAIN_ID)
1749                __set_bit(id, amd_iommu_pd_alloc_bitmap);
1750        else
1751                id = 0;
1752        spin_unlock(&pd_bitmap_lock);
1753
1754        return id;
1755}
1756
1757static void domain_id_free(int id)
1758{
1759        spin_lock(&pd_bitmap_lock);
1760        if (id > 0 && id < MAX_DOMAIN_ID)
1761                __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1762        spin_unlock(&pd_bitmap_lock);
1763}
1764
1765static void free_gcr3_tbl_level1(u64 *tbl)
1766{
1767        u64 *ptr;
1768        int i;
1769
1770        for (i = 0; i < 512; ++i) {
1771                if (!(tbl[i] & GCR3_VALID))
1772                        continue;
1773
1774                ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1775
1776                free_page((unsigned long)ptr);
1777        }
1778}
1779
1780static void free_gcr3_tbl_level2(u64 *tbl)
1781{
1782        u64 *ptr;
1783        int i;
1784
1785        for (i = 0; i < 512; ++i) {
1786                if (!(tbl[i] & GCR3_VALID))
1787                        continue;
1788
1789                ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1790
1791                free_gcr3_tbl_level1(ptr);
1792        }
1793}
1794
1795static void free_gcr3_table(struct protection_domain *domain)
1796{
1797        if (domain->glx == 2)
1798                free_gcr3_tbl_level2(domain->gcr3_tbl);
1799        else if (domain->glx == 1)
1800                free_gcr3_tbl_level1(domain->gcr3_tbl);
1801        else
1802                BUG_ON(domain->glx != 0);
1803
1804        free_page((unsigned long)domain->gcr3_tbl);
1805}
1806
1807static void dma_ops_domain_flush_tlb(struct dma_ops_domain *dom)
1808{
1809        domain_flush_tlb(&dom->domain);
1810        domain_flush_complete(&dom->domain);
1811}
1812
1813static void iova_domain_flush_tlb(struct iova_domain *iovad)
1814{
1815        struct dma_ops_domain *dom;
1816
1817        dom = container_of(iovad, struct dma_ops_domain, iovad);
1818
1819        dma_ops_domain_flush_tlb(dom);
1820}
1821
1822/*
1823 * Free a domain, only used if something went wrong in the
1824 * allocation path and we need to free an already allocated page table
1825 */
1826static void dma_ops_domain_free(struct dma_ops_domain *dom)
1827{
1828        if (!dom)
1829                return;
1830
1831        put_iova_domain(&dom->iovad);
1832
1833        free_pagetable(&dom->domain);
1834
1835        if (dom->domain.id)
1836                domain_id_free(dom->domain.id);
1837
1838        kfree(dom);
1839}
1840
1841/*
1842 * Allocates a new protection domain usable for the dma_ops functions.
1843 * It also initializes the page table and the address allocator data
1844 * structures required for the dma_ops interface
1845 */
1846static struct dma_ops_domain *dma_ops_domain_alloc(void)
1847{
1848        struct dma_ops_domain *dma_dom;
1849
1850        dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1851        if (!dma_dom)
1852                return NULL;
1853
1854        if (protection_domain_init(&dma_dom->domain))
1855                goto free_dma_dom;
1856
1857        dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
1858        dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1859        dma_dom->domain.flags = PD_DMA_OPS_MASK;
1860        if (!dma_dom->domain.pt_root)
1861                goto free_dma_dom;
1862
1863        init_iova_domain(&dma_dom->iovad, PAGE_SIZE, IOVA_START_PFN);
1864
1865        if (init_iova_flush_queue(&dma_dom->iovad, iova_domain_flush_tlb, NULL))
1866                goto free_dma_dom;
1867
1868        /* Initialize reserved ranges */
1869        copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);
1870
1871        return dma_dom;
1872
1873free_dma_dom:
1874        dma_ops_domain_free(dma_dom);
1875
1876        return NULL;
1877}
1878
1879/*
1880 * little helper function to check whether a given protection domain is a
1881 * dma_ops domain
1882 */
1883static bool dma_ops_domain(struct protection_domain *domain)
1884{
1885        return domain->flags & PD_DMA_OPS_MASK;
1886}
1887
1888static void set_dte_entry(u16 devid, struct protection_domain *domain,
1889                          bool ats, bool ppr)
1890{
1891        u64 pte_root = 0;
1892        u64 flags = 0;
1893        u32 old_domid;
1894
1895        if (domain->mode != PAGE_MODE_NONE)
1896                pte_root = iommu_virt_to_phys(domain->pt_root);
1897
1898        pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1899                    << DEV_ENTRY_MODE_SHIFT;
1900        pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V | DTE_FLAG_TV;
1901
1902        flags = amd_iommu_dev_table[devid].data[1];
1903
1904        if (ats)
1905                flags |= DTE_FLAG_IOTLB;
1906
1907        if (ppr) {
1908                struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
1909
1910                if (iommu_feature(iommu, FEATURE_EPHSUP))
1911                        pte_root |= 1ULL << DEV_ENTRY_PPR;
1912        }
1913
1914        if (domain->flags & PD_IOMMUV2_MASK) {
1915                u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
1916                u64 glx  = domain->glx;
1917                u64 tmp;
1918
1919                pte_root |= DTE_FLAG_GV;
1920                pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1921
1922                /* First mask out possible old values for GCR3 table */
1923                tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1924                flags    &= ~tmp;
1925
1926                tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1927                flags    &= ~tmp;
1928
1929                /* Encode GCR3 table into DTE */
1930                tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1931                pte_root |= tmp;
1932
1933                tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1934                flags    |= tmp;
1935
1936                tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1937                flags    |= tmp;
1938        }
1939
1940        flags &= ~DEV_DOMID_MASK;
1941        flags |= domain->id;
1942
1943        old_domid = amd_iommu_dev_table[devid].data[1] & DEV_DOMID_MASK;
1944        amd_iommu_dev_table[devid].data[1]  = flags;
1945        amd_iommu_dev_table[devid].data[0]  = pte_root;
1946
1947        /*
1948         * A kdump kernel might be replacing a domain ID that was copied from
1949         * the previous kernel--if so, it needs to flush the translation cache
1950         * entries for the old domain ID that is being overwritten
1951         */
1952        if (old_domid) {
1953                struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
1954
1955                amd_iommu_flush_tlb_domid(iommu, old_domid);
1956        }
1957}
1958
1959static void clear_dte_entry(u16 devid)
1960{
1961        /* remove entry from the device table seen by the hardware */
1962        amd_iommu_dev_table[devid].data[0]  = DTE_FLAG_V | DTE_FLAG_TV;
1963        amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1964
1965        amd_iommu_apply_erratum_63(devid);
1966}
1967
1968static void do_attach(struct iommu_dev_data *dev_data,
1969                      struct protection_domain *domain)
1970{
1971        struct amd_iommu *iommu;
1972        u16 alias;
1973        bool ats;
1974
1975        iommu = amd_iommu_rlookup_table[dev_data->devid];
1976        alias = dev_data->alias;
1977        ats   = dev_data->ats.enabled;
1978
1979        /* Update data structures */
1980        dev_data->domain = domain;
1981        list_add(&dev_data->list, &domain->dev_list);
1982
1983        /* Do reference counting */
1984        domain->dev_iommu[iommu->index] += 1;
1985        domain->dev_cnt                 += 1;
1986
1987        /* Update device table */
1988        set_dte_entry(dev_data->devid, domain, ats, dev_data->iommu_v2);
1989        if (alias != dev_data->devid)
1990                set_dte_entry(alias, domain, ats, dev_data->iommu_v2);
1991
1992        device_flush_dte(dev_data);
1993}
1994
1995static void do_detach(struct iommu_dev_data *dev_data)
1996{
1997        struct protection_domain *domain = dev_data->domain;
1998        struct amd_iommu *iommu;
1999        u16 alias;
2000
2001        iommu = amd_iommu_rlookup_table[dev_data->devid];
2002        alias = dev_data->alias;
2003
2004        /* Update data structures */
2005        dev_data->domain = NULL;
2006        list_del(&dev_data->list);
2007        clear_dte_entry(dev_data->devid);
2008        if (alias != dev_data->devid)
2009                clear_dte_entry(alias);
2010
2011        /* Flush the DTE entry */
2012        device_flush_dte(dev_data);
2013
2014        /* Flush IOTLB */
2015        domain_flush_tlb_pde(domain);
2016
2017        /* Wait for the flushes to finish */
2018        domain_flush_complete(domain);
2019
2020        /* decrease reference counters - needs to happen after the flushes */
2021        domain->dev_iommu[iommu->index] -= 1;
2022        domain->dev_cnt                 -= 1;
2023}
2024
2025/*
2026 * If a device is not yet associated with a domain, this function makes the
2027 * device visible in the domain
2028 */
2029static int __attach_device(struct iommu_dev_data *dev_data,
2030                           struct protection_domain *domain)
2031{
2032        int ret;
2033
2034        /* lock domain */
2035        spin_lock(&domain->lock);
2036
2037        ret = -EBUSY;
2038        if (dev_data->domain != NULL)
2039                goto out_unlock;
2040
2041        /* Attach alias group root */
2042        do_attach(dev_data, domain);
2043
2044        ret = 0;
2045
2046out_unlock:
2047
2048        /* ready */
2049        spin_unlock(&domain->lock);
2050
2051        return ret;
2052}
2053
2054
2055static void pdev_iommuv2_disable(struct pci_dev *pdev)
2056{
2057        pci_disable_ats(pdev);
2058        pci_disable_pri(pdev);
2059        pci_disable_pasid(pdev);
2060}
2061
2062/* FIXME: Change generic reset-function to do the same */
2063static int pri_reset_while_enabled(struct pci_dev *pdev)
2064{
2065        u16 control;
2066        int pos;
2067
2068        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2069        if (!pos)
2070                return -EINVAL;
2071
2072        pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2073        control |= PCI_PRI_CTRL_RESET;
2074        pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2075
2076        return 0;
2077}
2078
2079static int pdev_iommuv2_enable(struct pci_dev *pdev)
2080{
2081        bool reset_enable;
2082        int reqs, ret;
2083
2084        /* FIXME: Hardcode number of outstanding requests for now */
2085        reqs = 32;
2086        if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2087                reqs = 1;
2088        reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2089
2090        /* Only allow access to user-accessible pages */
2091        ret = pci_enable_pasid(pdev, 0);
2092        if (ret)
2093                goto out_err;
2094
2095        /* First reset the PRI state of the device */
2096        ret = pci_reset_pri(pdev);
2097        if (ret)
2098                goto out_err;
2099
2100        /* Enable PRI */
2101        ret = pci_enable_pri(pdev, reqs);
2102        if (ret)
2103                goto out_err;
2104
2105        if (reset_enable) {
2106                ret = pri_reset_while_enabled(pdev);
2107                if (ret)
2108                        goto out_err;
2109        }
2110
2111        ret = pci_enable_ats(pdev, PAGE_SHIFT);
2112        if (ret)
2113                goto out_err;
2114
2115        return 0;
2116
2117out_err:
2118        pci_disable_pri(pdev);
2119        pci_disable_pasid(pdev);
2120
2121        return ret;
2122}
2123
2124/*
2125 * If a device is not yet associated with a domain, this function makes the
2126 * device visible in the domain
2127 */
2128static int attach_device(struct device *dev,
2129                         struct protection_domain *domain)
2130{
2131        struct pci_dev *pdev;
2132        struct iommu_dev_data *dev_data;
2133        unsigned long flags;
2134        int ret;
2135
2136        dev_data = get_dev_data(dev);
2137
2138        if (!dev_is_pci(dev))
2139                goto skip_ats_check;
2140
2141        pdev = to_pci_dev(dev);
2142        if (domain->flags & PD_IOMMUV2_MASK) {
2143                if (!dev_data->passthrough)
2144                        return -EINVAL;
2145
2146                if (dev_data->iommu_v2) {
2147                        if (pdev_iommuv2_enable(pdev) != 0)
2148                                return -EINVAL;
2149
2150                        dev_data->ats.enabled = true;
2151                        dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2152                        dev_data->pri_tlp     = pci_prg_resp_pasid_required(pdev);
2153                }
2154        } else if (amd_iommu_iotlb_sup &&
2155                   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2156                dev_data->ats.enabled = true;
2157                dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2158        }
2159
2160skip_ats_check:
2161        spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2162        ret = __attach_device(dev_data, domain);
2163        spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2164
2165        /*
2166         * We might boot into a crash-kernel here. The crashed kernel
2167         * left the caches in the IOMMU dirty. So we have to flush
2168         * here to evict all dirty stuff.
2169         */
2170        domain_flush_tlb_pde(domain);
2171
2172        return ret;
2173}
2174
2175/*
2176 * Removes a device from a protection domain (unlocked)
2177 */
2178static void __detach_device(struct iommu_dev_data *dev_data)
2179{
2180        struct protection_domain *domain;
2181
2182        domain = dev_data->domain;
2183
2184        spin_lock(&domain->lock);
2185
2186        do_detach(dev_data);
2187
2188        spin_unlock(&domain->lock);
2189}
2190
2191/*
2192 * Removes a device from a protection domain (with devtable_lock held)
2193 */
2194static void detach_device(struct device *dev)
2195{
2196        struct protection_domain *domain;
2197        struct iommu_dev_data *dev_data;
2198        unsigned long flags;
2199
2200        dev_data = get_dev_data(dev);
2201        domain   = dev_data->domain;
2202
2203        /*
2204         * First check if the device is still attached. It might already
2205         * be detached from its domain because the generic
2206         * iommu_detach_group code detached it and we try again here in
2207         * our alias handling.
2208         */
2209        if (WARN_ON(!dev_data->domain))
2210                return;
2211
2212        /* lock device table */
2213        spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2214        __detach_device(dev_data);
2215        spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2216
2217        if (!dev_is_pci(dev))
2218                return;
2219
2220        if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2221                pdev_iommuv2_disable(to_pci_dev(dev));
2222        else if (dev_data->ats.enabled)
2223                pci_disable_ats(to_pci_dev(dev));
2224
2225        dev_data->ats.enabled = false;
2226}
2227
2228static int amd_iommu_add_device(struct device *dev)
2229{
2230        struct iommu_dev_data *dev_data;
2231        struct iommu_domain *domain;
2232        struct amd_iommu *iommu;
2233        int ret, devid;
2234
2235        if (!check_device(dev) || get_dev_data(dev))
2236                return 0;
2237
2238        devid = get_device_id(dev);
2239        if (devid < 0)
2240                return devid;
2241
2242        iommu = amd_iommu_rlookup_table[devid];
2243
2244        ret = iommu_init_device(dev);
2245        if (ret) {
2246                if (ret != -ENOTSUPP)
2247                        dev_err(dev, "Failed to initialize - trying to proceed anyway\n");
2248
2249                iommu_ignore_device(dev);
2250                dev->dma_ops = NULL;
2251                goto out;
2252        }
2253        init_iommu_group(dev);
2254
2255        dev_data = get_dev_data(dev);
2256
2257        BUG_ON(!dev_data);
2258
2259        if (iommu_pass_through || dev_data->iommu_v2)
2260                iommu_request_dm_for_dev(dev);
2261
2262        /* Domains are initialized for this device - have a look what we ended up with */
2263        domain = iommu_get_domain_for_dev(dev);
2264        if (domain->type == IOMMU_DOMAIN_IDENTITY)
2265                dev_data->passthrough = true;
2266        else
2267                dev->dma_ops = &amd_iommu_dma_ops;
2268
2269out:
2270        iommu_completion_wait(iommu);
2271
2272        return 0;
2273}
2274
2275static void amd_iommu_remove_device(struct device *dev)
2276{
2277        struct amd_iommu *iommu;
2278        int devid;
2279
2280        if (!check_device(dev))
2281                return;
2282
2283        devid = get_device_id(dev);
2284        if (devid < 0)
2285                return;
2286
2287        iommu = amd_iommu_rlookup_table[devid];
2288
2289        iommu_uninit_device(dev);
2290        iommu_completion_wait(iommu);
2291}
2292
2293static struct iommu_group *amd_iommu_device_group(struct device *dev)
2294{
2295        if (dev_is_pci(dev))
2296                return pci_device_group(dev);
2297
2298        return acpihid_device_group(dev);
2299}
2300
2301/*****************************************************************************
2302 *
2303 * The next functions belong to the dma_ops mapping/unmapping code.
2304 *
2305 *****************************************************************************/
2306
2307/*
2308 * In the dma_ops path we only have the struct device. This function
2309 * finds the corresponding IOMMU, the protection domain and the
2310 * requestor id for a given device.
2311 * If the device is not yet associated with a domain this is also done
2312 * in this function.
2313 */
2314static struct protection_domain *get_domain(struct device *dev)
2315{
2316        struct protection_domain *domain;
2317        struct iommu_domain *io_domain;
2318
2319        if (!check_device(dev))
2320                return ERR_PTR(-EINVAL);
2321
2322        domain = get_dev_data(dev)->domain;
2323        if (domain == NULL && get_dev_data(dev)->defer_attach) {
2324                get_dev_data(dev)->defer_attach = false;
2325                io_domain = iommu_get_domain_for_dev(dev);
2326                domain = to_pdomain(io_domain);
2327                attach_device(dev, domain);
2328        }
2329        if (domain == NULL)
2330                return ERR_PTR(-EBUSY);
2331
2332        if (!dma_ops_domain(domain))
2333                return ERR_PTR(-EBUSY);
2334
2335        return domain;
2336}
2337
2338static void update_device_table(struct protection_domain *domain)
2339{
2340        struct iommu_dev_data *dev_data;
2341
2342        list_for_each_entry(dev_data, &domain->dev_list, list) {
2343                set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled,
2344                              dev_data->iommu_v2);
2345
2346                if (dev_data->devid == dev_data->alias)
2347                        continue;
2348
2349                /* There is an alias, update device table entry for it */
2350                set_dte_entry(dev_data->alias, domain, dev_data->ats.enabled,
2351                              dev_data->iommu_v2);
2352        }
2353}
2354
2355static void update_domain(struct protection_domain *domain)
2356{
2357        if (!domain->updated)
2358                return;
2359
2360        update_device_table(domain);
2361
2362        domain_flush_devices(domain);
2363        domain_flush_tlb_pde(domain);
2364
2365        domain->updated = false;
2366}
2367
2368static int dir2prot(enum dma_data_direction direction)
2369{
2370        if (direction == DMA_TO_DEVICE)
2371                return IOMMU_PROT_IR;
2372        else if (direction == DMA_FROM_DEVICE)
2373                return IOMMU_PROT_IW;
2374        else if (direction == DMA_BIDIRECTIONAL)
2375                return IOMMU_PROT_IW | IOMMU_PROT_IR;
2376        else
2377                return 0;
2378}
2379
2380/*
2381 * This function contains common code for mapping of a physically
2382 * contiguous memory region into DMA address space. It is used by all
2383 * mapping functions provided with this IOMMU driver.
2384 * Must be called with the domain lock held.
2385 */
2386static dma_addr_t __map_single(struct device *dev,
2387                               struct dma_ops_domain *dma_dom,
2388                               phys_addr_t paddr,
2389                               size_t size,
2390                               enum dma_data_direction direction,
2391                               u64 dma_mask)
2392{
2393        dma_addr_t offset = paddr & ~PAGE_MASK;
2394        dma_addr_t address, start, ret;
2395        unsigned int pages;
2396        int prot = 0;
2397        int i;
2398
2399        pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2400        paddr &= PAGE_MASK;
2401
2402        address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
2403        if (!address)
2404                goto out;
2405
2406        prot = dir2prot(direction);
2407
2408        start = address;
2409        for (i = 0; i < pages; ++i) {
2410                ret = iommu_map_page(&dma_dom->domain, start, paddr,
2411                                     PAGE_SIZE, prot, GFP_ATOMIC);
2412                if (ret)
2413                        goto out_unmap;
2414
2415                paddr += PAGE_SIZE;
2416                start += PAGE_SIZE;
2417        }
2418        address += offset;
2419
2420        domain_flush_np_cache(&dma_dom->domain, address, size);
2421
2422out:
2423        return address;
2424
2425out_unmap:
2426
2427        for (--i; i >= 0; --i) {
2428                start -= PAGE_SIZE;
2429                iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2430        }
2431
2432        domain_flush_tlb(&dma_dom->domain);
2433        domain_flush_complete(&dma_dom->domain);
2434
2435        dma_ops_free_iova(dma_dom, address, pages);
2436
2437        return DMA_MAPPING_ERROR;
2438}
2439
2440/*
2441 * Does the reverse of the __map_single function. Must be called with
2442 * the domain lock held too
2443 */
2444static void __unmap_single(struct dma_ops_domain *dma_dom,
2445                           dma_addr_t dma_addr,
2446                           size_t size,
2447                           int dir)
2448{
2449        dma_addr_t i, start;
2450        unsigned int pages;
2451
2452        pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2453        dma_addr &= PAGE_MASK;
2454        start = dma_addr;
2455
2456        for (i = 0; i < pages; ++i) {
2457                iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2458                start += PAGE_SIZE;
2459        }
2460
2461        if (amd_iommu_unmap_flush) {
2462                domain_flush_tlb(&dma_dom->domain);
2463                domain_flush_complete(&dma_dom->domain);
2464                dma_ops_free_iova(dma_dom, dma_addr, pages);
2465        } else {
2466                pages = __roundup_pow_of_two(pages);
2467                queue_iova(&dma_dom->iovad, dma_addr >> PAGE_SHIFT, pages, 0);
2468        }
2469}
2470
2471/*
2472 * The exported map_single function for dma_ops.
2473 */
2474static dma_addr_t map_page(struct device *dev, struct page *page,
2475                           unsigned long offset, size_t size,
2476                           enum dma_data_direction dir,
2477                           unsigned long attrs)
2478{
2479        phys_addr_t paddr = page_to_phys(page) + offset;
2480        struct protection_domain *domain;
2481        struct dma_ops_domain *dma_dom;
2482        u64 dma_mask;
2483
2484        domain = get_domain(dev);
2485        if (PTR_ERR(domain) == -EINVAL)
2486                return (dma_addr_t)paddr;
2487        else if (IS_ERR(domain))
2488                return DMA_MAPPING_ERROR;
2489
2490        dma_mask = *dev->dma_mask;
2491        dma_dom = to_dma_ops_domain(domain);
2492
2493        return __map_single(dev, dma_dom, paddr, size, dir, dma_mask);
2494}
2495
2496/*
2497 * The exported unmap_single function for dma_ops.
2498 */
2499static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2500                       enum dma_data_direction dir, unsigned long attrs)
2501{
2502        struct protection_domain *domain;
2503        struct dma_ops_domain *dma_dom;
2504
2505        domain = get_domain(dev);
2506        if (IS_ERR(domain))
2507                return;
2508
2509        dma_dom = to_dma_ops_domain(domain);
2510
2511        __unmap_single(dma_dom, dma_addr, size, dir);
2512}
2513
2514static int sg_num_pages(struct device *dev,
2515                        struct scatterlist *sglist,
2516                        int nelems)
2517{
2518        unsigned long mask, boundary_size;
2519        struct scatterlist *s;
2520        int i, npages = 0;
2521
2522        mask          = dma_get_seg_boundary(dev);
2523        boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
2524                                   1UL << (BITS_PER_LONG - PAGE_SHIFT);
2525
2526        for_each_sg(sglist, s, nelems, i) {
2527                int p, n;
2528
2529                s->dma_address = npages << PAGE_SHIFT;
2530                p = npages % boundary_size;
2531                n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2532                if (p + n > boundary_size)
2533                        npages += boundary_size - p;
2534                npages += n;
2535        }
2536
2537        return npages;
2538}
2539
2540/*
2541 * The exported map_sg function for dma_ops (handles scatter-gather
2542 * lists).
2543 */
2544static int map_sg(struct device *dev, struct scatterlist *sglist,
2545                  int nelems, enum dma_data_direction direction,
2546                  unsigned long attrs)
2547{
2548        int mapped_pages = 0, npages = 0, prot = 0, i;
2549        struct protection_domain *domain;
2550        struct dma_ops_domain *dma_dom;
2551        struct scatterlist *s;
2552        unsigned long address;
2553        u64 dma_mask;
2554        int ret;
2555
2556        domain = get_domain(dev);
2557        if (IS_ERR(domain))
2558                return 0;
2559
2560        dma_dom  = to_dma_ops_domain(domain);
2561        dma_mask = *dev->dma_mask;
2562
2563        npages = sg_num_pages(dev, sglist, nelems);
2564
2565        address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask);
2566        if (!address)
2567                goto out_err;
2568
2569        prot = dir2prot(direction);
2570
2571        /* Map all sg entries */
2572        for_each_sg(sglist, s, nelems, i) {
2573                int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2574
2575                for (j = 0; j < pages; ++j) {
2576                        unsigned long bus_addr, phys_addr;
2577
2578                        bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
2579                        phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT);
2580                        ret = iommu_map_page(domain, bus_addr, phys_addr, PAGE_SIZE, prot, GFP_ATOMIC);
2581                        if (ret)
2582                                goto out_unmap;
2583
2584                        mapped_pages += 1;
2585                }
2586        }
2587
2588        /* Everything is mapped - write the right values into s->dma_address */
2589        for_each_sg(sglist, s, nelems, i) {
2590                /*
2591                 * Add in the remaining piece of the scatter-gather offset that
2592                 * was masked out when we were determining the physical address
2593                 * via (sg_phys(s) & PAGE_MASK) earlier.
2594                 */
2595                s->dma_address += address + (s->offset & ~PAGE_MASK);
2596                s->dma_length   = s->length;
2597        }
2598
2599        if (s)
2600                domain_flush_np_cache(domain, s->dma_address, s->dma_length);
2601
2602        return nelems;
2603
2604out_unmap:
2605        dev_err(dev, "IOMMU mapping error in map_sg (io-pages: %d reason: %d)\n",
2606                npages, ret);
2607
2608        for_each_sg(sglist, s, nelems, i) {
2609                int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2610
2611                for (j = 0; j < pages; ++j) {
2612                        unsigned long bus_addr;
2613
2614                        bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
2615                        iommu_unmap_page(domain, bus_addr, PAGE_SIZE);
2616
2617                        if (--mapped_pages == 0)
2618                                goto out_free_iova;
2619                }
2620        }
2621
2622out_free_iova:
2623        free_iova_fast(&dma_dom->iovad, address >> PAGE_SHIFT, npages);
2624
2625out_err:
2626        return 0;
2627}
2628
2629/*
2630 * The exported map_sg function for dma_ops (handles scatter-gather
2631 * lists).
2632 */
2633static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2634                     int nelems, enum dma_data_direction dir,
2635                     unsigned long attrs)
2636{
2637        struct protection_domain *domain;
2638        struct dma_ops_domain *dma_dom;
2639        unsigned long startaddr;
2640        int npages;
2641
2642        domain = get_domain(dev);
2643        if (IS_ERR(domain))
2644                return;
2645
2646        startaddr = sg_dma_address(sglist) & PAGE_MASK;
2647        dma_dom   = to_dma_ops_domain(domain);
2648        npages    = sg_num_pages(dev, sglist, nelems);
2649
2650        __unmap_single(dma_dom, startaddr, npages << PAGE_SHIFT, dir);
2651}
2652
2653/*
2654 * The exported alloc_coherent function for dma_ops.
2655 */
2656static void *alloc_coherent(struct device *dev, size_t size,
2657                            dma_addr_t *dma_addr, gfp_t flag,
2658                            unsigned long attrs)
2659{
2660        u64 dma_mask = dev->coherent_dma_mask;
2661        struct protection_domain *domain;
2662        struct dma_ops_domain *dma_dom;
2663        struct page *page;
2664
2665        domain = get_domain(dev);
2666        if (PTR_ERR(domain) == -EINVAL) {
2667                page = alloc_pages(flag, get_order(size));
2668                *dma_addr = page_to_phys(page);
2669                return page_address(page);
2670        } else if (IS_ERR(domain))
2671                return NULL;
2672
2673        dma_dom   = to_dma_ops_domain(domain);
2674        size      = PAGE_ALIGN(size);
2675        dma_mask  = dev->coherent_dma_mask;
2676        flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2677        flag     |= __GFP_ZERO;
2678
2679        page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
2680        if (!page) {
2681                if (!gfpflags_allow_blocking(flag))
2682                        return NULL;
2683
2684                page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2685                                        get_order(size), flag & __GFP_NOWARN);
2686                if (!page)
2687                        return NULL;
2688        }
2689
2690        if (!dma_mask)
2691                dma_mask = *dev->dma_mask;
2692
2693        *dma_addr = __map_single(dev, dma_dom, page_to_phys(page),
2694                                 size, DMA_BIDIRECTIONAL, dma_mask);
2695
2696        if (*dma_addr == DMA_MAPPING_ERROR)
2697                goto out_free;
2698
2699        return page_address(page);
2700
2701out_free:
2702
2703        if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2704                __free_pages(page, get_order(size));
2705
2706        return NULL;
2707}
2708
2709/*
2710 * The exported free_coherent function for dma_ops.
2711 */
2712static void free_coherent(struct device *dev, size_t size,
2713                          void *virt_addr, dma_addr_t dma_addr,
2714                          unsigned long attrs)
2715{
2716        struct protection_domain *domain;
2717        struct dma_ops_domain *dma_dom;
2718        struct page *page;
2719
2720        page = virt_to_page(virt_addr);
2721        size = PAGE_ALIGN(size);
2722
2723        domain = get_domain(dev);
2724        if (IS_ERR(domain))
2725                goto free_mem;
2726
2727        dma_dom = to_dma_ops_domain(domain);
2728
2729        __unmap_single(dma_dom, dma_addr, size, DMA_BIDIRECTIONAL);
2730
2731free_mem:
2732        if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2733                __free_pages(page, get_order(size));
2734}
2735
2736/*
2737 * This function is called by the DMA layer to find out if we can handle a
2738 * particular device. It is part of the dma_ops.
2739 */
2740static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2741{
2742        if (!dma_direct_supported(dev, mask))
2743                return 0;
2744        return check_device(dev);
2745}
2746
2747static const struct dma_map_ops amd_iommu_dma_ops = {
2748        .alloc          = alloc_coherent,
2749        .free           = free_coherent,
2750        .map_page       = map_page,
2751        .unmap_page     = unmap_page,
2752        .map_sg         = map_sg,
2753        .unmap_sg       = unmap_sg,
2754        .dma_supported  = amd_iommu_dma_supported,
2755};
2756
2757static int init_reserved_iova_ranges(void)
2758{
2759        struct pci_dev *pdev = NULL;
2760        struct iova *val;
2761
2762        init_iova_domain(&reserved_iova_ranges, PAGE_SIZE, IOVA_START_PFN);
2763
2764        lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
2765                          &reserved_rbtree_key);
2766
2767        /* MSI memory range */
2768        val = reserve_iova(&reserved_iova_ranges,
2769                           IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
2770        if (!val) {
2771                pr_err("Reserving MSI range failed\n");
2772                return -ENOMEM;
2773        }
2774
2775        /* HT memory range */
2776        val = reserve_iova(&reserved_iova_ranges,
2777                           IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
2778        if (!val) {
2779                pr_err("Reserving HT range failed\n");
2780                return -ENOMEM;
2781        }
2782
2783        /*
2784         * Memory used for PCI resources
2785         * FIXME: Check whether we can reserve the PCI-hole completly
2786         */
2787        for_each_pci_dev(pdev) {
2788                int i;
2789
2790                for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
2791                        struct resource *r = &pdev->resource[i];
2792
2793                        if (!(r->flags & IORESOURCE_MEM))
2794                                continue;
2795
2796                        val = reserve_iova(&reserved_iova_ranges,
2797                                           IOVA_PFN(r->start),
2798                                           IOVA_PFN(r->end));
2799                        if (!val) {
2800                                pci_err(pdev, "Reserve pci-resource range %pR failed\n", r);
2801                                return -ENOMEM;
2802                        }
2803                }
2804        }
2805
2806        return 0;
2807}
2808
2809int __init amd_iommu_init_api(void)
2810{
2811        int ret, err = 0;
2812
2813        ret = iova_cache_get();
2814        if (ret)
2815                return ret;
2816
2817        ret = init_reserved_iova_ranges();
2818        if (ret)
2819                return ret;
2820
2821        err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2822        if (err)
2823                return err;
2824#ifdef CONFIG_ARM_AMBA
2825        err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
2826        if (err)
2827                return err;
2828#endif
2829        err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
2830        if (err)
2831                return err;
2832
2833        return 0;
2834}
2835
2836int __init amd_iommu_init_dma_ops(void)
2837{
2838        swiotlb        = (iommu_pass_through || sme_me_mask) ? 1 : 0;
2839        iommu_detected = 1;
2840
2841        if (amd_iommu_unmap_flush)
2842                pr_info("IO/TLB flush on unmap enabled\n");
2843        else
2844                pr_info("Lazy IO/TLB flushing enabled\n");
2845
2846        return 0;
2847
2848}
2849
2850/*****************************************************************************
2851 *
2852 * The following functions belong to the exported interface of AMD IOMMU
2853 *
2854 * This interface allows access to lower level functions of the IOMMU
2855 * like protection domain handling and assignement of devices to domains
2856 * which is not possible with the dma_ops interface.
2857 *
2858 *****************************************************************************/
2859
2860static void cleanup_domain(struct protection_domain *domain)
2861{
2862        struct iommu_dev_data *entry;
2863        unsigned long flags;
2864
2865        spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2866
2867        while (!list_empty(&domain->dev_list)) {
2868                entry = list_first_entry(&domain->dev_list,
2869                                         struct iommu_dev_data, list);
2870                BUG_ON(!entry->domain);
2871                __detach_device(entry);
2872        }
2873
2874        spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2875}
2876
2877static void protection_domain_free(struct protection_domain *domain)
2878{
2879        if (!domain)
2880                return;
2881
2882        if (domain->id)
2883                domain_id_free(domain->id);
2884
2885        kfree(domain);
2886}
2887
2888static int protection_domain_init(struct protection_domain *domain)
2889{
2890        spin_lock_init(&domain->lock);
2891        mutex_init(&domain->api_lock);
2892        domain->id = domain_id_alloc();
2893        if (!domain->id)
2894                return -ENOMEM;
2895        INIT_LIST_HEAD(&domain->dev_list);
2896
2897        return 0;
2898}
2899
2900static struct protection_domain *protection_domain_alloc(void)
2901{
2902        struct protection_domain *domain;
2903
2904        domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2905        if (!domain)
2906                return NULL;
2907
2908        if (protection_domain_init(domain))
2909                goto out_err;
2910
2911        return domain;
2912
2913out_err:
2914        kfree(domain);
2915
2916        return NULL;
2917}
2918
2919static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2920{
2921        struct protection_domain *pdomain;
2922        struct dma_ops_domain *dma_domain;
2923
2924        switch (type) {
2925        case IOMMU_DOMAIN_UNMANAGED:
2926                pdomain = protection_domain_alloc();
2927                if (!pdomain)
2928                        return NULL;
2929
2930                pdomain->mode    = PAGE_MODE_3_LEVEL;
2931                pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2932                if (!pdomain->pt_root) {
2933                        protection_domain_free(pdomain);
2934                        return NULL;
2935                }
2936
2937                pdomain->domain.geometry.aperture_start = 0;
2938                pdomain->domain.geometry.aperture_end   = ~0ULL;
2939                pdomain->domain.geometry.force_aperture = true;
2940
2941                break;
2942        case IOMMU_DOMAIN_DMA:
2943                dma_domain = dma_ops_domain_alloc();
2944                if (!dma_domain) {
2945                        pr_err("Failed to allocate\n");
2946                        return NULL;
2947                }
2948                pdomain = &dma_domain->domain;
2949                break;
2950        case IOMMU_DOMAIN_IDENTITY:
2951                pdomain = protection_domain_alloc();
2952                if (!pdomain)
2953                        return NULL;
2954
2955                pdomain->mode = PAGE_MODE_NONE;
2956                break;
2957        default:
2958                return NULL;
2959        }
2960
2961        return &pdomain->domain;
2962}
2963
2964static void amd_iommu_domain_free(struct iommu_domain *dom)
2965{
2966        struct protection_domain *domain;
2967        struct dma_ops_domain *dma_dom;
2968
2969        domain = to_pdomain(dom);
2970
2971        if (domain->dev_cnt > 0)
2972                cleanup_domain(domain);
2973
2974        BUG_ON(domain->dev_cnt != 0);
2975
2976        if (!dom)
2977                return;
2978
2979        switch (dom->type) {
2980        case IOMMU_DOMAIN_DMA:
2981                /* Now release the domain */
2982                dma_dom = to_dma_ops_domain(domain);
2983                dma_ops_domain_free(dma_dom);
2984                break;
2985        default:
2986                if (domain->mode != PAGE_MODE_NONE)
2987                        free_pagetable(domain);
2988
2989                if (domain->flags & PD_IOMMUV2_MASK)
2990                        free_gcr3_table(domain);
2991
2992                protection_domain_free(domain);
2993                break;
2994        }
2995}
2996
2997static void amd_iommu_detach_device(struct iommu_domain *dom,
2998                                    struct device *dev)
2999{
3000        struct iommu_dev_data *dev_data = dev->archdata.iommu;
3001        struct amd_iommu *iommu;
3002        int devid;
3003
3004        if (!check_device(dev))
3005                return;
3006
3007        devid = get_device_id(dev);
3008        if (devid < 0)
3009                return;
3010
3011        if (dev_data->domain != NULL)
3012                detach_device(dev);
3013
3014        iommu = amd_iommu_rlookup_table[devid];
3015        if (!iommu)
3016                return;
3017
3018#ifdef CONFIG_IRQ_REMAP
3019        if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
3020            (dom->type == IOMMU_DOMAIN_UNMANAGED))
3021                dev_data->use_vapic = 0;
3022#endif
3023
3024        iommu_completion_wait(iommu);
3025}
3026
3027static int amd_iommu_attach_device(struct iommu_domain *dom,
3028                                   struct device *dev)
3029{
3030        struct protection_domain *domain = to_pdomain(dom);
3031        struct iommu_dev_data *dev_data;
3032        struct amd_iommu *iommu;
3033        int ret;
3034
3035        if (!check_device(dev))
3036                return -EINVAL;
3037
3038        dev_data = dev->archdata.iommu;
3039
3040        iommu = amd_iommu_rlookup_table[dev_data->devid];
3041        if (!iommu)
3042                return -EINVAL;
3043
3044        if (dev_data->domain)
3045                detach_device(dev);
3046
3047        ret = attach_device(dev, domain);
3048
3049#ifdef CONFIG_IRQ_REMAP
3050        if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
3051                if (dom->type == IOMMU_DOMAIN_UNMANAGED)
3052                        dev_data->use_vapic = 1;
3053                else
3054                        dev_data->use_vapic = 0;
3055        }
3056#endif
3057
3058        iommu_completion_wait(iommu);
3059
3060        return ret;
3061}
3062
3063static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3064                         phys_addr_t paddr, size_t page_size, int iommu_prot)
3065{
3066        struct protection_domain *domain = to_pdomain(dom);
3067        int prot = 0;
3068        int ret;
3069
3070        if (domain->mode == PAGE_MODE_NONE)
3071                return -EINVAL;
3072
3073        if (iommu_prot & IOMMU_READ)
3074                prot |= IOMMU_PROT_IR;
3075        if (iommu_prot & IOMMU_WRITE)
3076                prot |= IOMMU_PROT_IW;
3077
3078        mutex_lock(&domain->api_lock);
3079        ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
3080        mutex_unlock(&domain->api_lock);
3081
3082        domain_flush_np_cache(domain, iova, page_size);
3083
3084        return ret;
3085}
3086
3087static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3088                           size_t page_size)
3089{
3090        struct protection_domain *domain = to_pdomain(dom);
3091        size_t unmap_size;
3092
3093        if (domain->mode == PAGE_MODE_NONE)
3094                return 0;
3095
3096        mutex_lock(&domain->api_lock);
3097        unmap_size = iommu_unmap_page(domain, iova, page_size);
3098        mutex_unlock(&domain->api_lock);
3099
3100        return unmap_size;
3101}
3102
3103static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3104                                          dma_addr_t iova)
3105{
3106        struct protection_domain *domain = to_pdomain(dom);
3107        unsigned long offset_mask, pte_pgsize;
3108        u64 *pte, __pte;
3109
3110        if (domain->mode == PAGE_MODE_NONE)
3111                return iova;
3112
3113        pte = fetch_pte(domain, iova, &pte_pgsize);
3114
3115        if (!pte || !IOMMU_PTE_PRESENT(*pte))
3116                return 0;
3117
3118        offset_mask = pte_pgsize - 1;
3119        __pte       = __sme_clr(*pte & PM_ADDR_MASK);
3120
3121        return (__pte & ~offset_mask) | (iova & offset_mask);
3122}
3123
3124static bool amd_iommu_capable(enum iommu_cap cap)
3125{
3126        switch (cap) {
3127        case IOMMU_CAP_CACHE_COHERENCY:
3128                return true;
3129        case IOMMU_CAP_INTR_REMAP:
3130                return (irq_remapping_enabled == 1);
3131        case IOMMU_CAP_NOEXEC:
3132                return false;
3133        default:
3134                break;
3135        }
3136
3137        return false;
3138}
3139
3140static void amd_iommu_get_resv_regions(struct device *dev,
3141                                       struct list_head *head)
3142{
3143        struct iommu_resv_region *region;
3144        struct unity_map_entry *entry;
3145        int devid;
3146
3147        devid = get_device_id(dev);
3148        if (devid < 0)
3149                return;
3150
3151        list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3152                int type, prot = 0;
3153                size_t length;
3154
3155                if (devid < entry->devid_start || devid > entry->devid_end)
3156                        continue;
3157
3158                type   = IOMMU_RESV_DIRECT;
3159                length = entry->address_end - entry->address_start;
3160                if (entry->prot & IOMMU_PROT_IR)
3161                        prot |= IOMMU_READ;
3162                if (entry->prot & IOMMU_PROT_IW)
3163                        prot |= IOMMU_WRITE;
3164                if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE)
3165                        /* Exclusion range */
3166                        type = IOMMU_RESV_RESERVED;
3167
3168                region = iommu_alloc_resv_region(entry->address_start,
3169                                                 length, prot, type);
3170                if (!region) {
3171                        dev_err(dev, "Out of memory allocating dm-regions\n");
3172                        return;
3173                }
3174                list_add_tail(&region->list, head);
3175        }
3176
3177        region = iommu_alloc_resv_region(MSI_RANGE_START,
3178                                         MSI_RANGE_END - MSI_RANGE_START + 1,
3179                                         0, IOMMU_RESV_MSI);
3180        if (!region)
3181                return;
3182        list_add_tail(&region->list, head);
3183
3184        region = iommu_alloc_resv_region(HT_RANGE_START,
3185                                         HT_RANGE_END - HT_RANGE_START + 1,
3186                                         0, IOMMU_RESV_RESERVED);
3187        if (!region)
3188                return;
3189        list_add_tail(&region->list, head);
3190}
3191
3192static void amd_iommu_put_resv_regions(struct device *dev,
3193                                     struct list_head *head)
3194{
3195        struct iommu_resv_region *entry, *next;
3196
3197        list_for_each_entry_safe(entry, next, head, list)
3198                kfree(entry);
3199}
3200
3201static void amd_iommu_apply_resv_region(struct device *dev,
3202                                      struct iommu_domain *domain,
3203                                      struct iommu_resv_region *region)
3204{
3205        struct dma_ops_domain *dma_dom = to_dma_ops_domain(to_pdomain(domain));
3206        unsigned long start, end;
3207
3208        start = IOVA_PFN(region->start);
3209        end   = IOVA_PFN(region->start + region->length - 1);
3210
3211        WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
3212}
3213
3214static bool amd_iommu_is_attach_deferred(struct iommu_domain *domain,
3215                                         struct device *dev)
3216{
3217        struct iommu_dev_data *dev_data = dev->archdata.iommu;
3218        return dev_data->defer_attach;
3219}
3220
3221static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
3222{
3223        struct protection_domain *dom = to_pdomain(domain);
3224
3225        domain_flush_tlb_pde(dom);
3226        domain_flush_complete(dom);
3227}
3228
3229static void amd_iommu_iotlb_range_add(struct iommu_domain *domain,
3230                                      unsigned long iova, size_t size)
3231{
3232}
3233
3234const struct iommu_ops amd_iommu_ops = {
3235        .capable = amd_iommu_capable,
3236        .domain_alloc = amd_iommu_domain_alloc,
3237        .domain_free  = amd_iommu_domain_free,
3238        .attach_dev = amd_iommu_attach_device,
3239        .detach_dev = amd_iommu_detach_device,
3240        .map = amd_iommu_map,
3241        .unmap = amd_iommu_unmap,
3242        .iova_to_phys = amd_iommu_iova_to_phys,
3243        .add_device = amd_iommu_add_device,
3244        .remove_device = amd_iommu_remove_device,
3245        .device_group = amd_iommu_device_group,
3246        .get_resv_regions = amd_iommu_get_resv_regions,
3247        .put_resv_regions = amd_iommu_put_resv_regions,
3248        .apply_resv_region = amd_iommu_apply_resv_region,
3249        .is_attach_deferred = amd_iommu_is_attach_deferred,
3250        .pgsize_bitmap  = AMD_IOMMU_PGSIZES,
3251        .flush_iotlb_all = amd_iommu_flush_iotlb_all,
3252        .iotlb_range_add = amd_iommu_iotlb_range_add,
3253        .iotlb_sync = amd_iommu_flush_iotlb_all,
3254};
3255
3256/*****************************************************************************
3257 *
3258 * The next functions do a basic initialization of IOMMU for pass through
3259 * mode
3260 *
3261 * In passthrough mode the IOMMU is initialized and enabled but not used for
3262 * DMA-API translation.
3263 *
3264 *****************************************************************************/
3265
3266/* IOMMUv2 specific functions */
3267int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3268{
3269        return atomic_notifier_chain_register(&ppr_notifier, nb);
3270}
3271EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3272
3273int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3274{
3275        return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3276}
3277EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3278
3279void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3280{
3281        struct protection_domain *domain = to_pdomain(dom);
3282        unsigned long flags;
3283
3284        spin_lock_irqsave(&domain->lock, flags);
3285
3286        /* Update data structure */
3287        domain->mode    = PAGE_MODE_NONE;
3288        domain->updated = true;
3289
3290        /* Make changes visible to IOMMUs */
3291        update_domain(domain);
3292
3293        /* Page-table is not visible to IOMMU anymore, so free it */
3294        free_pagetable(domain);
3295
3296        spin_unlock_irqrestore(&domain->lock, flags);
3297}
3298EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3299
3300int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3301{
3302        struct protection_domain *domain = to_pdomain(dom);
3303        unsigned long flags;
3304        int levels, ret;
3305
3306        if (pasids <= 0 || pasids > (PASID_MASK + 1))
3307                return -EINVAL;
3308
3309        /* Number of GCR3 table levels required */
3310        for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3311                levels += 1;
3312
3313        if (levels > amd_iommu_max_glx_val)
3314                return -EINVAL;
3315
3316        spin_lock_irqsave(&domain->lock, flags);
3317
3318        /*
3319         * Save us all sanity checks whether devices already in the
3320         * domain support IOMMUv2. Just force that the domain has no
3321         * devices attached when it is switched into IOMMUv2 mode.
3322         */
3323        ret = -EBUSY;
3324        if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3325                goto out;
3326
3327        ret = -ENOMEM;
3328        domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3329        if (domain->gcr3_tbl == NULL)
3330                goto out;
3331
3332        domain->glx      = levels;
3333        domain->flags   |= PD_IOMMUV2_MASK;
3334        domain->updated  = true;
3335
3336        update_domain(domain);
3337
3338        ret = 0;
3339
3340out:
3341        spin_unlock_irqrestore(&domain->lock, flags);
3342
3343        return ret;
3344}
3345EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3346
3347static int __flush_pasid(struct protection_domain *domain, int pasid,
3348                         u64 address, bool size)
3349{
3350        struct iommu_dev_data *dev_data;
3351        struct iommu_cmd cmd;
3352        int i, ret;
3353
3354        if (!(domain->flags & PD_IOMMUV2_MASK))
3355                return -EINVAL;
3356
3357        build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3358
3359        /*
3360         * IOMMU TLB needs to be flushed before Device TLB to
3361         * prevent device TLB refill from IOMMU TLB
3362         */
3363        for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
3364                if (domain->dev_iommu[i] == 0)
3365                        continue;
3366
3367                ret = iommu_queue_command(amd_iommus[i], &cmd);
3368                if (ret != 0)
3369                        goto out;
3370        }
3371
3372        /* Wait until IOMMU TLB flushes are complete */
3373        domain_flush_complete(domain);
3374
3375        /* Now flush device TLBs */
3376        list_for_each_entry(dev_data, &domain->dev_list, list) {
3377                struct amd_iommu *iommu;
3378                int qdep;
3379
3380                /*
3381                   There might be non-IOMMUv2 capable devices in an IOMMUv2
3382                 * domain.
3383                 */
3384                if (!dev_data->ats.enabled)
3385                        continue;
3386
3387                qdep  = dev_data->ats.qdep;
3388                iommu = amd_iommu_rlookup_table[dev_data->devid];
3389
3390                build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3391                                      qdep, address, size);
3392
3393                ret = iommu_queue_command(iommu, &cmd);
3394                if (ret != 0)
3395                        goto out;
3396        }
3397
3398        /* Wait until all device TLBs are flushed */
3399        domain_flush_complete(domain);
3400
3401        ret = 0;
3402
3403out:
3404
3405        return ret;
3406}
3407
3408static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3409                                  u64 address)
3410{
3411        return __flush_pasid(domain, pasid, address, false);
3412}
3413
3414int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3415                         u64 address)
3416{
3417        struct protection_domain *domain = to_pdomain(dom);
3418        unsigned long flags;
3419        int ret;
3420
3421        spin_lock_irqsave(&domain->lock, flags);
3422        ret = __amd_iommu_flush_page(domain, pasid, address);
3423        spin_unlock_irqrestore(&domain->lock, flags);
3424
3425        return ret;
3426}
3427EXPORT_SYMBOL(amd_iommu_flush_page);
3428
3429static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3430{
3431        return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3432                             true);
3433}
3434
3435int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3436{
3437        struct protection_domain *domain = to_pdomain(dom);
3438        unsigned long flags;
3439        int ret;
3440
3441        spin_lock_irqsave(&domain->lock, flags);
3442        ret = __amd_iommu_flush_tlb(domain, pasid);
3443        spin_unlock_irqrestore(&domain->lock, flags);
3444
3445        return ret;
3446}
3447EXPORT_SYMBOL(amd_iommu_flush_tlb);
3448
3449static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3450{
3451        int index;
3452        u64 *pte;
3453
3454        while (true) {
3455
3456                index = (pasid >> (9 * level)) & 0x1ff;
3457                pte   = &root[index];
3458
3459                if (level == 0)
3460                        break;
3461
3462                if (!(*pte & GCR3_VALID)) {
3463                        if (!alloc)
3464                                return NULL;
3465
3466                        root = (void *)get_zeroed_page(GFP_ATOMIC);
3467                        if (root == NULL)
3468                                return NULL;
3469
3470                        *pte = iommu_virt_to_phys(root) | GCR3_VALID;
3471                }
3472
3473                root = iommu_phys_to_virt(*pte & PAGE_MASK);
3474
3475                level -= 1;
3476        }
3477
3478        return pte;
3479}
3480
3481static int __set_gcr3(struct protection_domain *domain, int pasid,
3482                      unsigned long cr3)
3483{
3484        u64 *pte;
3485
3486        if (domain->mode != PAGE_MODE_NONE)
3487                return -EINVAL;
3488
3489        pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3490        if (pte == NULL)
3491                return -ENOMEM;
3492
3493        *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3494
3495        return __amd_iommu_flush_tlb(domain, pasid);
3496}
3497
3498static int __clear_gcr3(struct protection_domain *domain, int pasid)
3499{
3500        u64 *pte;
3501
3502        if (domain->mode != PAGE_MODE_NONE)
3503                return -EINVAL;
3504
3505        pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3506        if (pte == NULL)
3507                return 0;
3508
3509        *pte = 0;
3510
3511        return __amd_iommu_flush_tlb(domain, pasid);
3512}
3513
3514int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3515                              unsigned long cr3)
3516{
3517        struct protection_domain *domain = to_pdomain(dom);
3518        unsigned long flags;
3519        int ret;
3520
3521        spin_lock_irqsave(&domain->lock, flags);
3522        ret = __set_gcr3(domain, pasid, cr3);
3523        spin_unlock_irqrestore(&domain->lock, flags);
3524
3525        return ret;
3526}
3527EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3528
3529int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3530{
3531        struct protection_domain *domain = to_pdomain(dom);
3532        unsigned long flags;
3533        int ret;
3534
3535        spin_lock_irqsave(&domain->lock, flags);
3536        ret = __clear_gcr3(domain, pasid);
3537        spin_unlock_irqrestore(&domain->lock, flags);
3538
3539        return ret;
3540}
3541EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3542
3543int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3544                           int status, int tag)
3545{
3546        struct iommu_dev_data *dev_data;
3547        struct amd_iommu *iommu;
3548        struct iommu_cmd cmd;
3549
3550        dev_data = get_dev_data(&pdev->dev);
3551        iommu    = amd_iommu_rlookup_table[dev_data->devid];
3552
3553        build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3554                           tag, dev_data->pri_tlp);
3555
3556        return iommu_queue_command(iommu, &cmd);
3557}
3558EXPORT_SYMBOL(amd_iommu_complete_ppr);
3559
3560struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3561{
3562        struct protection_domain *pdomain;
3563
3564        pdomain = get_domain(&pdev->dev);
3565        if (IS_ERR(pdomain))
3566                return NULL;
3567
3568        /* Only return IOMMUv2 domains */
3569        if (!(pdomain->flags & PD_IOMMUV2_MASK))
3570                return NULL;
3571
3572        return &pdomain->domain;
3573}
3574EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3575
3576void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3577{
3578        struct iommu_dev_data *dev_data;
3579
3580        if (!amd_iommu_v2_supported())
3581                return;
3582
3583        dev_data = get_dev_data(&pdev->dev);
3584        dev_data->errata |= (1 << erratum);
3585}
3586EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3587
3588int amd_iommu_device_info(struct pci_dev *pdev,
3589                          struct amd_iommu_device_info *info)
3590{
3591        int max_pasids;
3592        int pos;
3593
3594        if (pdev == NULL || info == NULL)
3595                return -EINVAL;
3596
3597        if (!amd_iommu_v2_supported())
3598                return -EINVAL;
3599
3600        memset(info, 0, sizeof(*info));
3601
3602        if (!pci_ats_disabled()) {
3603                pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3604                if (pos)
3605                        info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3606        }
3607
3608        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3609        if (pos)
3610                info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3611
3612        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3613        if (pos) {
3614                int features;
3615
3616                max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3617                max_pasids = min(max_pasids, (1 << 20));
3618
3619                info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3620                info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3621
3622                features = pci_pasid_features(pdev);
3623                if (features & PCI_PASID_CAP_EXEC)
3624                        info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3625                if (features & PCI_PASID_CAP_PRIV)
3626                        info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3627        }
3628
3629        return 0;
3630}
3631EXPORT_SYMBOL(amd_iommu_device_info);
3632
3633#ifdef CONFIG_IRQ_REMAP
3634
3635/*****************************************************************************
3636 *
3637 * Interrupt Remapping Implementation
3638 *
3639 *****************************************************************************/
3640
3641static struct irq_chip amd_ir_chip;
3642static DEFINE_SPINLOCK(iommu_table_lock);
3643
3644static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3645{
3646        u64 dte;
3647
3648        dte     = amd_iommu_dev_table[devid].data[2];
3649        dte     &= ~DTE_IRQ_PHYS_ADDR_MASK;
3650        dte     |= iommu_virt_to_phys(table->table);
3651        dte     |= DTE_IRQ_REMAP_INTCTL;
3652        dte     |= DTE_IRQ_TABLE_LEN;
3653        dte     |= DTE_IRQ_REMAP_ENABLE;
3654
3655        amd_iommu_dev_table[devid].data[2] = dte;
3656}
3657
3658static struct irq_remap_table *get_irq_table(u16 devid)
3659{
3660        struct irq_remap_table *table;
3661
3662        if (WARN_ONCE(!amd_iommu_rlookup_table[devid],
3663                      "%s: no iommu for devid %x\n", __func__, devid))
3664                return NULL;
3665
3666        table = irq_lookup_table[devid];
3667        if (WARN_ONCE(!table, "%s: no table for devid %x\n", __func__, devid))
3668                return NULL;
3669
3670        return table;
3671}
3672
3673static struct irq_remap_table *__alloc_irq_table(void)
3674{
3675        struct irq_remap_table *table;
3676
3677        table = kzalloc(sizeof(*table), GFP_KERNEL);
3678        if (!table)
3679                return NULL;
3680
3681        table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL);
3682        if (!table->table) {
3683                kfree(table);
3684                return NULL;
3685        }
3686        raw_spin_lock_init(&table->lock);
3687
3688        if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3689                memset(table->table, 0,
3690                       MAX_IRQS_PER_TABLE * sizeof(u32));
3691        else
3692                memset(table->table, 0,
3693                       (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
3694        return table;
3695}
3696
3697static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
3698                                  struct irq_remap_table *table)
3699{
3700        irq_lookup_table[devid] = table;
3701        set_dte_irq_entry(devid, table);
3702        iommu_flush_dte(iommu, devid);
3703}
3704
3705static struct irq_remap_table *alloc_irq_table(u16 devid)
3706{
3707        struct irq_remap_table *table = NULL;
3708        struct irq_remap_table *new_table = NULL;
3709        struct amd_iommu *iommu;
3710        unsigned long flags;
3711        u16 alias;
3712
3713        spin_lock_irqsave(&iommu_table_lock, flags);
3714
3715        iommu = amd_iommu_rlookup_table[devid];
3716        if (!iommu)
3717                goto out_unlock;
3718
3719        table = irq_lookup_table[devid];
3720        if (table)
3721                goto out_unlock;
3722
3723        alias = amd_iommu_alias_table[devid];
3724        table = irq_lookup_table[alias];
3725        if (table) {
3726                set_remap_table_entry(iommu, devid, table);
3727                goto out_wait;
3728        }
3729        spin_unlock_irqrestore(&iommu_table_lock, flags);
3730
3731        /* Nothing there yet, allocate new irq remapping table */
3732        new_table = __alloc_irq_table();
3733        if (!new_table)
3734                return NULL;
3735
3736        spin_lock_irqsave(&iommu_table_lock, flags);
3737
3738        table = irq_lookup_table[devid];
3739        if (table)
3740                goto out_unlock;
3741
3742        table = irq_lookup_table[alias];
3743        if (table) {
3744                set_remap_table_entry(iommu, devid, table);
3745                goto out_wait;
3746        }
3747
3748        table = new_table;
3749        new_table = NULL;
3750
3751        set_remap_table_entry(iommu, devid, table);
3752        if (devid != alias)
3753                set_remap_table_entry(iommu, alias, table);
3754
3755out_wait:
3756        iommu_completion_wait(iommu);
3757
3758out_unlock:
3759        spin_unlock_irqrestore(&iommu_table_lock, flags);
3760
3761        if (new_table) {
3762                kmem_cache_free(amd_iommu_irq_cache, new_table->table);
3763                kfree(new_table);
3764        }
3765        return table;
3766}
3767
3768static int alloc_irq_index(u16 devid, int count, bool align)
3769{
3770        struct irq_remap_table *table;
3771        int index, c, alignment = 1;
3772        unsigned long flags;
3773        struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
3774
3775        if (!iommu)
3776                return -ENODEV;
3777
3778        table = alloc_irq_table(devid);
3779        if (!table)
3780                return -ENODEV;
3781
3782        if (align)
3783                alignment = roundup_pow_of_two(count);
3784
3785        raw_spin_lock_irqsave(&table->lock, flags);
3786
3787        /* Scan table for free entries */
3788        for (index = ALIGN(table->min_index, alignment), c = 0;
3789             index < MAX_IRQS_PER_TABLE;) {
3790                if (!iommu->irte_ops->is_allocated(table, index)) {
3791                        c += 1;
3792                } else {
3793                        c     = 0;
3794                        index = ALIGN(index + 1, alignment);
3795                        continue;
3796                }
3797
3798                if (c == count) {
3799                        for (; c != 0; --c)
3800                                iommu->irte_ops->set_allocated(table, index - c + 1);
3801
3802                        index -= count - 1;
3803                        goto out;
3804                }
3805
3806                index++;
3807        }
3808
3809        index = -ENOSPC;
3810
3811out:
3812        raw_spin_unlock_irqrestore(&table->lock, flags);
3813
3814        return index;
3815}
3816
3817static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
3818                          struct amd_ir_data *data)
3819{
3820        struct irq_remap_table *table;
3821        struct amd_iommu *iommu;
3822        unsigned long flags;
3823        struct irte_ga *entry;
3824
3825        iommu = amd_iommu_rlookup_table[devid];
3826        if (iommu == NULL)
3827                return -EINVAL;
3828
3829        table = get_irq_table(devid);
3830        if (!table)
3831                return -ENOMEM;
3832
3833        raw_spin_lock_irqsave(&table->lock, flags);
3834
3835        entry = (struct irte_ga *)table->table;
3836        entry = &entry[index];
3837        entry->lo.fields_remap.valid = 0;
3838        entry->hi.val = irte->hi.val;
3839        entry->lo.val = irte->lo.val;
3840        entry->lo.fields_remap.valid = 1;
3841        if (data)
3842                data->ref = entry;
3843
3844        raw_spin_unlock_irqrestore(&table->lock, flags);
3845
3846        iommu_flush_irt(iommu, devid);
3847        iommu_completion_wait(iommu);
3848
3849        return 0;
3850}
3851
3852static int modify_irte(u16 devid, int index, union irte *irte)
3853{
3854        struct irq_remap_table *table;
3855        struct amd_iommu *iommu;
3856        unsigned long flags;
3857
3858        iommu = amd_iommu_rlookup_table[devid];
3859        if (iommu == NULL)
3860                return -EINVAL;
3861
3862        table = get_irq_table(devid);
3863        if (!table)
3864                return -ENOMEM;
3865
3866        raw_spin_lock_irqsave(&table->lock, flags);
3867        table->table[index] = irte->val;
3868        raw_spin_unlock_irqrestore(&table->lock, flags);
3869
3870        iommu_flush_irt(iommu, devid);
3871        iommu_completion_wait(iommu);
3872
3873        return 0;
3874}
3875
3876static void free_irte(u16 devid, int index)
3877{
3878        struct irq_remap_table *table;
3879        struct amd_iommu *iommu;
3880        unsigned long flags;
3881
3882        iommu = amd_iommu_rlookup_table[devid];
3883        if (iommu == NULL)
3884                return;
3885
3886        table = get_irq_table(devid);
3887        if (!table)
3888                return;
3889
3890        raw_spin_lock_irqsave(&table->lock, flags);
3891        iommu->irte_ops->clear_allocated(table, index);
3892        raw_spin_unlock_irqrestore(&table->lock, flags);
3893
3894        iommu_flush_irt(iommu, devid);
3895        iommu_completion_wait(iommu);
3896}
3897
3898static void irte_prepare(void *entry,
3899                         u32 delivery_mode, u32 dest_mode,
3900                         u8 vector, u32 dest_apicid, int devid)
3901{
3902        union irte *irte = (union irte *) entry;
3903
3904        irte->val                = 0;
3905        irte->fields.vector      = vector;
3906        irte->fields.int_type    = delivery_mode;
3907        irte->fields.destination = dest_apicid;
3908        irte->fields.dm          = dest_mode;
3909        irte->fields.valid       = 1;
3910}
3911
3912static void irte_ga_prepare(void *entry,
3913                            u32 delivery_mode, u32 dest_mode,
3914                            u8 vector, u32 dest_apicid, int devid)
3915{
3916        struct irte_ga *irte = (struct irte_ga *) entry;
3917
3918        irte->lo.val                      = 0;
3919        irte->hi.val                      = 0;
3920        irte->lo.fields_remap.int_type    = delivery_mode;
3921        irte->lo.fields_remap.dm          = dest_mode;
3922        irte->hi.fields.vector            = vector;
3923        irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
3924        irte->hi.fields.destination       = APICID_TO_IRTE_DEST_HI(dest_apicid);
3925        irte->lo.fields_remap.valid       = 1;
3926}
3927
3928static void irte_activate(void *entry, u16 devid, u16 index)
3929{
3930        union irte *irte = (union irte *) entry;
3931
3932        irte->fields.valid = 1;
3933        modify_irte(devid, index, irte);
3934}
3935
3936static void irte_ga_activate(void *entry, u16 devid, u16 index)
3937{
3938        struct irte_ga *irte = (struct irte_ga *) entry;
3939
3940        irte->lo.fields_remap.valid = 1;
3941        modify_irte_ga(devid, index, irte, NULL);
3942}
3943
3944static void irte_deactivate(void *entry, u16 devid, u16 index)
3945{
3946        union irte *irte = (union irte *) entry;
3947
3948        irte->fields.valid = 0;
3949        modify_irte(devid, index, irte);
3950}
3951
3952static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
3953{
3954        struct irte_ga *irte = (struct irte_ga *) entry;
3955
3956        irte->lo.fields_remap.valid = 0;
3957        modify_irte_ga(devid, index, irte, NULL);
3958}
3959
3960static void irte_set_affinity(void *entry, u16 devid, u16 index,
3961                              u8 vector, u32 dest_apicid)
3962{
3963        union irte *irte = (union irte *) entry;
3964
3965        irte->fields.vector = vector;
3966        irte->fields.destination = dest_apicid;
3967        modify_irte(devid, index, irte);
3968}
3969
3970static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
3971                                 u8 vector, u32 dest_apicid)
3972{
3973        struct irte_ga *irte = (struct irte_ga *) entry;
3974
3975        if (!irte->lo.fields_remap.guest_mode) {
3976                irte->hi.fields.vector = vector;
3977                irte->lo.fields_remap.destination =
3978                                        APICID_TO_IRTE_DEST_LO(dest_apicid);
3979                irte->hi.fields.destination =
3980                                        APICID_TO_IRTE_DEST_HI(dest_apicid);
3981                modify_irte_ga(devid, index, irte, NULL);
3982        }
3983}
3984
3985#define IRTE_ALLOCATED (~1U)
3986static void irte_set_allocated(struct irq_remap_table *table, int index)
3987{
3988        table->table[index] = IRTE_ALLOCATED;
3989}
3990
3991static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
3992{
3993        struct irte_ga *ptr = (struct irte_ga *)table->table;
3994        struct irte_ga *irte = &ptr[index];
3995
3996        memset(&irte->lo.val, 0, sizeof(u64));
3997        memset(&irte->hi.val, 0, sizeof(u64));
3998        irte->hi.fields.vector = 0xff;
3999}
4000
4001static bool irte_is_allocated(struct irq_remap_table *table, int index)
4002{
4003        union irte *ptr = (union irte *)table->table;
4004        union irte *irte = &ptr[index];
4005
4006        return irte->val != 0;
4007}
4008
4009static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
4010{
4011        struct irte_ga *ptr = (struct irte_ga *)table->table;
4012        struct irte_ga *irte = &ptr[index];
4013
4014        return irte->hi.fields.vector != 0;
4015}
4016
4017static void irte_clear_allocated(struct irq_remap_table *table, int index)
4018{
4019        table->table[index] = 0;
4020}
4021
4022static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
4023{
4024        struct irte_ga *ptr = (struct irte_ga *)table->table;
4025        struct irte_ga *irte = &ptr[index];
4026
4027        memset(&irte->lo.val, 0, sizeof(u64));
4028        memset(&irte->hi.val, 0, sizeof(u64));
4029}
4030
4031static int get_devid(struct irq_alloc_info *info)
4032{
4033        int devid = -1;
4034
4035        switch (info->type) {
4036        case X86_IRQ_ALLOC_TYPE_IOAPIC:
4037                devid     = get_ioapic_devid(info->ioapic_id);
4038                break;
4039        case X86_IRQ_ALLOC_TYPE_HPET:
4040                devid     = get_hpet_devid(info->hpet_id);
4041                break;
4042        case X86_IRQ_ALLOC_TYPE_MSI:
4043        case X86_IRQ_ALLOC_TYPE_MSIX:
4044                devid = get_device_id(&info->msi_dev->dev);
4045                break;
4046        default:
4047                BUG_ON(1);
4048                break;
4049        }
4050
4051        return devid;
4052}
4053
4054static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
4055{
4056        struct amd_iommu *iommu;
4057        int devid;
4058
4059        if (!info)
4060                return NULL;
4061
4062        devid = get_devid(info);
4063        if (devid >= 0) {
4064                iommu = amd_iommu_rlookup_table[devid];
4065                if (iommu)
4066                        return iommu->ir_domain;
4067        }
4068
4069        return NULL;
4070}
4071
4072static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
4073{
4074        struct amd_iommu *iommu;
4075        int devid;
4076
4077        if (!info)
4078                return NULL;
4079
4080        switch (info->type) {
4081        case X86_IRQ_ALLOC_TYPE_MSI:
4082        case X86_IRQ_ALLOC_TYPE_MSIX:
4083                devid = get_device_id(&info->msi_dev->dev);
4084                if (devid < 0)
4085                        return NULL;
4086
4087                iommu = amd_iommu_rlookup_table[devid];
4088                if (iommu)
4089                        return iommu->msi_domain;
4090                break;
4091        default:
4092                break;
4093        }
4094
4095        return NULL;
4096}
4097
4098struct irq_remap_ops amd_iommu_irq_ops = {
4099        .prepare                = amd_iommu_prepare,
4100        .enable                 = amd_iommu_enable,
4101        .disable                = amd_iommu_disable,
4102        .reenable               = amd_iommu_reenable,
4103        .enable_faulting        = amd_iommu_enable_faulting,
4104        .get_ir_irq_domain      = get_ir_irq_domain,
4105        .get_irq_domain         = get_irq_domain,
4106};
4107
4108static void irq_remapping_prepare_irte(struct amd_ir_data *data,
4109                                       struct irq_cfg *irq_cfg,
4110                                       struct irq_alloc_info *info,
4111                                       int devid, int index, int sub_handle)
4112{
4113        struct irq_2_irte *irte_info = &data->irq_2_irte;
4114        struct msi_msg *msg = &data->msi_entry;
4115        struct IO_APIC_route_entry *entry;
4116        struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
4117
4118        if (!iommu)
4119                return;
4120
4121        data->irq_2_irte.devid = devid;
4122        data->irq_2_irte.index = index + sub_handle;
4123        iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
4124                                 apic->irq_dest_mode, irq_cfg->vector,
4125                                 irq_cfg->dest_apicid, devid);
4126
4127        switch (info->type) {
4128        case X86_IRQ_ALLOC_TYPE_IOAPIC:
4129                /* Setup IOAPIC entry */
4130                entry = info->ioapic_entry;
4131                info->ioapic_entry = NULL;
4132                memset(entry, 0, sizeof(*entry));
4133                entry->vector        = index;
4134                entry->mask          = 0;
4135                entry->trigger       = info->ioapic_trigger;
4136                entry->polarity      = info->ioapic_polarity;
4137                /* Mask level triggered irqs. */
4138                if (info->ioapic_trigger)
4139                        entry->mask = 1;
4140                break;
4141
4142        case X86_IRQ_ALLOC_TYPE_HPET:
4143        case X86_IRQ_ALLOC_TYPE_MSI:
4144        case X86_IRQ_ALLOC_TYPE_MSIX:
4145                msg->address_hi = MSI_ADDR_BASE_HI;
4146                msg->address_lo = MSI_ADDR_BASE_LO;
4147                msg->data = irte_info->index;
4148                break;
4149
4150        default:
4151                BUG_ON(1);
4152                break;
4153        }
4154}
4155
4156struct amd_irte_ops irte_32_ops = {
4157        .prepare = irte_prepare,
4158        .activate = irte_activate,
4159        .deactivate = irte_deactivate,
4160        .set_affinity = irte_set_affinity,
4161        .set_allocated = irte_set_allocated,
4162        .is_allocated = irte_is_allocated,
4163        .clear_allocated = irte_clear_allocated,
4164};
4165
4166struct amd_irte_ops irte_128_ops = {
4167        .prepare = irte_ga_prepare,
4168        .activate = irte_ga_activate,
4169        .deactivate = irte_ga_deactivate,
4170        .set_affinity = irte_ga_set_affinity,
4171        .set_allocated = irte_ga_set_allocated,
4172        .is_allocated = irte_ga_is_allocated,
4173        .clear_allocated = irte_ga_clear_allocated,
4174};
4175
4176static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
4177                               unsigned int nr_irqs, void *arg)
4178{
4179        struct irq_alloc_info *info = arg;
4180        struct irq_data *irq_data;
4181        struct amd_ir_data *data = NULL;
4182        struct irq_cfg *cfg;
4183        int i, ret, devid;
4184        int index;
4185
4186        if (!info)
4187                return -EINVAL;
4188        if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
4189            info->type != X86_IRQ_ALLOC_TYPE_MSIX)
4190                return -EINVAL;
4191
4192        /*
4193         * With IRQ remapping enabled, don't need contiguous CPU vectors
4194         * to support multiple MSI interrupts.
4195         */
4196        if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
4197                info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
4198
4199        devid = get_devid(info);
4200        if (devid < 0)
4201                return -EINVAL;
4202
4203        ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
4204        if (ret < 0)
4205                return ret;
4206
4207        if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
4208                struct irq_remap_table *table;
4209                struct amd_iommu *iommu;
4210
4211                table = alloc_irq_table(devid);
4212                if (table) {
4213                        if (!table->min_index) {
4214                                /*
4215                                 * Keep the first 32 indexes free for IOAPIC
4216                                 * interrupts.
4217                                 */
4218                                table->min_index = 32;
4219                                iommu = amd_iommu_rlookup_table[devid];
4220                                for (i = 0; i < 32; ++i)
4221                                        iommu->irte_ops->set_allocated(table, i);
4222                        }
4223                        WARN_ON(table->min_index != 32);
4224                        index = info->ioapic_pin;
4225                } else {
4226                        index = -ENOMEM;
4227                }
4228        } else {
4229                bool align = (info->type == X86_IRQ_ALLOC_TYPE_MSI);
4230
4231                index = alloc_irq_index(devid, nr_irqs, align);
4232        }
4233        if (index < 0) {
4234                pr_warn("Failed to allocate IRTE\n");
4235                ret = index;
4236                goto out_free_parent;
4237        }
4238
4239        for (i = 0; i < nr_irqs; i++) {
4240                irq_data = irq_domain_get_irq_data(domain, virq + i);
4241                cfg = irqd_cfg(irq_data);
4242                if (!irq_data || !cfg) {
4243                        ret = -EINVAL;
4244                        goto out_free_data;
4245                }
4246
4247                ret = -ENOMEM;
4248                data = kzalloc(sizeof(*data), GFP_KERNEL);
4249                if (!data)
4250                        goto out_free_data;
4251
4252                if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
4253                        data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
4254                else
4255                        data->entry = kzalloc(sizeof(struct irte_ga),
4256                                                     GFP_KERNEL);
4257                if (!data->entry) {
4258                        kfree(data);
4259                        goto out_free_data;
4260                }
4261
4262                irq_data->hwirq = (devid << 16) + i;
4263                irq_data->chip_data = data;
4264                irq_data->chip = &amd_ir_chip;
4265                irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
4266                irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
4267        }
4268
4269        return 0;
4270
4271out_free_data:
4272        for (i--; i >= 0; i--) {
4273                irq_data = irq_domain_get_irq_data(domain, virq + i);
4274                if (irq_data)
4275                        kfree(irq_data->chip_data);
4276        }
4277        for (i = 0; i < nr_irqs; i++)
4278                free_irte(devid, index + i);
4279out_free_parent:
4280        irq_domain_free_irqs_common(domain, virq, nr_irqs);
4281        return ret;
4282}
4283
4284static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
4285                               unsigned int nr_irqs)
4286{
4287        struct irq_2_irte *irte_info;
4288        struct irq_data *irq_data;
4289        struct amd_ir_data *data;
4290        int i;
4291
4292        for (i = 0; i < nr_irqs; i++) {
4293                irq_data = irq_domain_get_irq_data(domain, virq  + i);
4294                if (irq_data && irq_data->chip_data) {
4295                        data = irq_data->chip_data;
4296                        irte_info = &data->irq_2_irte;
4297                        free_irte(irte_info->devid, irte_info->index);
4298                        kfree(data->entry);
4299                        kfree(data);
4300                }
4301        }
4302        irq_domain_free_irqs_common(domain, virq, nr_irqs);
4303}
4304
4305static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
4306                               struct amd_ir_data *ir_data,
4307                               struct irq_2_irte *irte_info,
4308                               struct irq_cfg *cfg);
4309
4310static int irq_remapping_activate(struct irq_domain *domain,
4311                                  struct irq_data *irq_data, bool reserve)
4312{
4313        struct amd_ir_data *data = irq_data->chip_data;
4314        struct irq_2_irte *irte_info = &data->irq_2_irte;
4315        struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4316        struct irq_cfg *cfg = irqd_cfg(irq_data);
4317
4318        if (!iommu)
4319                return 0;
4320
4321        iommu->irte_ops->activate(data->entry, irte_info->devid,
4322                                  irte_info->index);
4323        amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
4324        return 0;
4325}
4326
4327static void irq_remapping_deactivate(struct irq_domain *domain,
4328                                     struct irq_data *irq_data)
4329{
4330        struct amd_ir_data *data = irq_data->chip_data;
4331        struct irq_2_irte *irte_info = &data->irq_2_irte;
4332        struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4333
4334        if (iommu)
4335                iommu->irte_ops->deactivate(data->entry, irte_info->devid,
4336                                            irte_info->index);
4337}
4338
4339static const struct irq_domain_ops amd_ir_domain_ops = {
4340        .alloc = irq_remapping_alloc,
4341        .free = irq_remapping_free,
4342        .activate = irq_remapping_activate,
4343        .deactivate = irq_remapping_deactivate,
4344};
4345
4346static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
4347{
4348        struct amd_iommu *iommu;
4349        struct amd_iommu_pi_data *pi_data = vcpu_info;
4350        struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
4351        struct amd_ir_data *ir_data = data->chip_data;
4352        struct irte_ga *irte = (struct irte_ga *) ir_data->entry;
4353        struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4354        struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);
4355
4356        /* Note:
4357         * This device has never been set up for guest mode.
4358         * we should not modify the IRTE
4359         */
4360        if (!dev_data || !dev_data->use_vapic)
4361                return 0;
4362
4363        pi_data->ir_data = ir_data;
4364
4365        /* Note:
4366         * SVM tries to set up for VAPIC mode, but we are in
4367         * legacy mode. So, we force legacy mode instead.
4368         */
4369        if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
4370                pr_debug("%s: Fall back to using intr legacy remap\n",
4371                         __func__);
4372                pi_data->is_guest_mode = false;
4373        }
4374
4375        iommu = amd_iommu_rlookup_table[irte_info->devid];
4376        if (iommu == NULL)
4377                return -EINVAL;
4378
4379        pi_data->prev_ga_tag = ir_data->cached_ga_tag;
4380        if (pi_data->is_guest_mode) {
4381                /* Setting */
4382                irte->hi.fields.ga_root_ptr = (pi_data->base >> 12);
4383                irte->hi.fields.vector = vcpu_pi_info->vector;
4384                irte->lo.fields_vapic.ga_log_intr = 1;
4385                irte->lo.fields_vapic.guest_mode = 1;
4386                irte->lo.fields_vapic.ga_tag = pi_data->ga_tag;
4387
4388                ir_data->cached_ga_tag = pi_data->ga_tag;
4389        } else {
4390                /* Un-Setting */
4391                struct irq_cfg *cfg = irqd_cfg(data);
4392
4393                irte->hi.val = 0;
4394                irte->lo.val = 0;
4395                irte->hi.fields.vector = cfg->vector;
4396                irte->lo.fields_remap.guest_mode = 0;
4397                irte->lo.fields_remap.destination =
4398                                APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
4399                irte->hi.fields.destination =
4400                                APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
4401                irte->lo.fields_remap.int_type = apic->irq_delivery_mode;
4402                irte->lo.fields_remap.dm = apic->irq_dest_mode;
4403
4404                /*
4405                 * This communicates the ga_tag back to the caller
4406                 * so that it can do all the necessary clean up.
4407                 */
4408                ir_data->cached_ga_tag = 0;
4409        }
4410
4411        return modify_irte_ga(irte_info->devid, irte_info->index, irte, ir_data);
4412}
4413
4414
4415static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
4416                               struct amd_ir_data *ir_data,
4417                               struct irq_2_irte *irte_info,
4418                               struct irq_cfg *cfg)
4419{
4420
4421        /*
4422         * Atomically updates the IRTE with the new destination, vector
4423         * and flushes the interrupt entry cache.
4424         */
4425        iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
4426                                      irte_info->index, cfg->vector,
4427                                      cfg->dest_apicid);
4428}
4429
4430static int amd_ir_set_affinity(struct irq_data *data,
4431                               const struct cpumask *mask, bool force)
4432{
4433        struct amd_ir_data *ir_data = data->chip_data;
4434        struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4435        struct irq_cfg *cfg = irqd_cfg(data);
4436        struct irq_data *parent = data->parent_data;
4437        struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4438        int ret;
4439
4440        if (!iommu)
4441                return -ENODEV;
4442
4443        ret = parent->chip->irq_set_affinity(parent, mask, force);
4444        if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
4445                return ret;
4446
4447        amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
4448        /*
4449         * After this point, all the interrupts will start arriving
4450         * at the new destination. So, time to cleanup the previous
4451         * vector allocation.
4452         */
4453        send_cleanup_vector(cfg);
4454
4455        return IRQ_SET_MASK_OK_DONE;
4456}
4457
4458static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4459{
4460        struct amd_ir_data *ir_data = irq_data->chip_data;
4461
4462        *msg = ir_data->msi_entry;
4463}
4464
4465static struct irq_chip amd_ir_chip = {
4466        .name                   = "AMD-IR",
4467        .irq_ack                = apic_ack_irq,
4468        .irq_set_affinity       = amd_ir_set_affinity,
4469        .irq_set_vcpu_affinity  = amd_ir_set_vcpu_affinity,
4470        .irq_compose_msi_msg    = ir_compose_msi_msg,
4471};
4472
4473int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
4474{
4475        struct fwnode_handle *fn;
4476
4477        fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
4478        if (!fn)
4479                return -ENOMEM;
4480        iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
4481        irq_domain_free_fwnode(fn);
4482        if (!iommu->ir_domain)
4483                return -ENOMEM;
4484
4485        iommu->ir_domain->parent = arch_get_ir_parent_domain();
4486        iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
4487                                                             "AMD-IR-MSI",
4488                                                             iommu->index);
4489        return 0;
4490}
4491
4492int amd_iommu_update_ga(int cpu, bool is_run, void *data)
4493{
4494        unsigned long flags;
4495        struct amd_iommu *iommu;
4496        struct irq_remap_table *table;
4497        struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
4498        int devid = ir_data->irq_2_irte.devid;
4499        struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
4500        struct irte_ga *ref = (struct irte_ga *) ir_data->ref;
4501
4502        if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
4503            !ref || !entry || !entry->lo.fields_vapic.guest_mode)
4504                return 0;
4505
4506        iommu = amd_iommu_rlookup_table[devid];
4507        if (!iommu)
4508                return -ENODEV;
4509
4510        table = get_irq_table(devid);
4511        if (!table)
4512                return -ENODEV;
4513
4514        raw_spin_lock_irqsave(&table->lock, flags);
4515
4516        if (ref->lo.fields_vapic.guest_mode) {
4517                if (cpu >= 0) {
4518                        ref->lo.fields_vapic.destination =
4519                                                APICID_TO_IRTE_DEST_LO(cpu);
4520                        ref->hi.fields.destination =
4521                                                APICID_TO_IRTE_DEST_HI(cpu);
4522                }
4523                ref->lo.fields_vapic.is_run = is_run;
4524                barrier();
4525        }
4526
4527        raw_spin_unlock_irqrestore(&table->lock, flags);
4528
4529        iommu_flush_irt(iommu, devid);
4530        iommu_completion_wait(iommu);
4531        return 0;
4532}
4533EXPORT_SYMBOL(amd_iommu_update_ga);
4534#endif
4535