linux/drivers/iommu/dma-iommu.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * A fairly generic DMA-API to IOMMU-API glue layer.
   4 *
   5 * Copyright (C) 2014-2015 ARM Ltd.
   6 *
   7 * based in part on arch/arm/mm/dma-mapping.c:
   8 * Copyright (C) 2000-2004 Russell King
   9 */
  10
  11#include <linux/acpi_iort.h>
  12#include <linux/device.h>
  13#include <linux/dma-contiguous.h>
  14#include <linux/dma-iommu.h>
  15#include <linux/dma-noncoherent.h>
  16#include <linux/gfp.h>
  17#include <linux/huge_mm.h>
  18#include <linux/iommu.h>
  19#include <linux/iova.h>
  20#include <linux/irq.h>
  21#include <linux/mm.h>
  22#include <linux/pci.h>
  23#include <linux/scatterlist.h>
  24#include <linux/vmalloc.h>
  25
  26struct iommu_dma_msi_page {
  27        struct list_head        list;
  28        dma_addr_t              iova;
  29        phys_addr_t             phys;
  30};
  31
  32enum iommu_dma_cookie_type {
  33        IOMMU_DMA_IOVA_COOKIE,
  34        IOMMU_DMA_MSI_COOKIE,
  35};
  36
  37struct iommu_dma_cookie {
  38        enum iommu_dma_cookie_type      type;
  39        union {
  40                /* Full allocator for IOMMU_DMA_IOVA_COOKIE */
  41                struct iova_domain      iovad;
  42                /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
  43                dma_addr_t              msi_iova;
  44        };
  45        struct list_head                msi_page_list;
  46        spinlock_t                      msi_lock;
  47
  48        /* Domain for flush queue callback; NULL if flush queue not in use */
  49        struct iommu_domain             *fq_domain;
  50};
  51
  52static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
  53{
  54        if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
  55                return cookie->iovad.granule;
  56        return PAGE_SIZE;
  57}
  58
  59static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
  60{
  61        struct iommu_dma_cookie *cookie;
  62
  63        cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
  64        if (cookie) {
  65                spin_lock_init(&cookie->msi_lock);
  66                INIT_LIST_HEAD(&cookie->msi_page_list);
  67                cookie->type = type;
  68        }
  69        return cookie;
  70}
  71
  72/**
  73 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
  74 * @domain: IOMMU domain to prepare for DMA-API usage
  75 *
  76 * IOMMU drivers should normally call this from their domain_alloc
  77 * callback when domain->type == IOMMU_DOMAIN_DMA.
  78 */
  79int iommu_get_dma_cookie(struct iommu_domain *domain)
  80{
  81        if (domain->iova_cookie)
  82                return -EEXIST;
  83
  84        domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
  85        if (!domain->iova_cookie)
  86                return -ENOMEM;
  87
  88        return 0;
  89}
  90EXPORT_SYMBOL(iommu_get_dma_cookie);
  91
  92/**
  93 * iommu_get_msi_cookie - Acquire just MSI remapping resources
  94 * @domain: IOMMU domain to prepare
  95 * @base: Start address of IOVA region for MSI mappings
  96 *
  97 * Users who manage their own IOVA allocation and do not want DMA API support,
  98 * but would still like to take advantage of automatic MSI remapping, can use
  99 * this to initialise their own domain appropriately. Users should reserve a
 100 * contiguous IOVA region, starting at @base, large enough to accommodate the
 101 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
 102 * used by the devices attached to @domain.
 103 */
 104int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
 105{
 106        struct iommu_dma_cookie *cookie;
 107
 108        if (domain->type != IOMMU_DOMAIN_UNMANAGED)
 109                return -EINVAL;
 110
 111        if (domain->iova_cookie)
 112                return -EEXIST;
 113
 114        cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
 115        if (!cookie)
 116                return -ENOMEM;
 117
 118        cookie->msi_iova = base;
 119        domain->iova_cookie = cookie;
 120        return 0;
 121}
 122EXPORT_SYMBOL(iommu_get_msi_cookie);
 123
 124/**
 125 * iommu_put_dma_cookie - Release a domain's DMA mapping resources
 126 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
 127 *          iommu_get_msi_cookie()
 128 *
 129 * IOMMU drivers should normally call this from their domain_free callback.
 130 */
 131void iommu_put_dma_cookie(struct iommu_domain *domain)
 132{
 133        struct iommu_dma_cookie *cookie = domain->iova_cookie;
 134        struct iommu_dma_msi_page *msi, *tmp;
 135
 136        if (!cookie)
 137                return;
 138
 139        if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
 140                put_iova_domain(&cookie->iovad);
 141
 142        list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
 143                list_del(&msi->list);
 144                kfree(msi);
 145        }
 146        kfree(cookie);
 147        domain->iova_cookie = NULL;
 148}
 149EXPORT_SYMBOL(iommu_put_dma_cookie);
 150
 151/**
 152 * iommu_dma_get_resv_regions - Reserved region driver helper
 153 * @dev: Device from iommu_get_resv_regions()
 154 * @list: Reserved region list from iommu_get_resv_regions()
 155 *
 156 * IOMMU drivers can use this to implement their .get_resv_regions callback
 157 * for general non-IOMMU-specific reservations. Currently, this covers GICv3
 158 * ITS region reservation on ACPI based ARM platforms that may require HW MSI
 159 * reservation.
 160 */
 161void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
 162{
 163
 164        if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
 165                iort_iommu_msi_get_resv_regions(dev, list);
 166
 167}
 168EXPORT_SYMBOL(iommu_dma_get_resv_regions);
 169
 170static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
 171                phys_addr_t start, phys_addr_t end)
 172{
 173        struct iova_domain *iovad = &cookie->iovad;
 174        struct iommu_dma_msi_page *msi_page;
 175        int i, num_pages;
 176
 177        start -= iova_offset(iovad, start);
 178        num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
 179
 180        msi_page = kcalloc(num_pages, sizeof(*msi_page), GFP_KERNEL);
 181        if (!msi_page)
 182                return -ENOMEM;
 183
 184        for (i = 0; i < num_pages; i++) {
 185                msi_page[i].phys = start;
 186                msi_page[i].iova = start;
 187                INIT_LIST_HEAD(&msi_page[i].list);
 188                list_add(&msi_page[i].list, &cookie->msi_page_list);
 189                start += iovad->granule;
 190        }
 191
 192        return 0;
 193}
 194
 195static int iova_reserve_pci_windows(struct pci_dev *dev,
 196                struct iova_domain *iovad)
 197{
 198        struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
 199        struct resource_entry *window;
 200        unsigned long lo, hi;
 201        phys_addr_t start = 0, end;
 202
 203        resource_list_for_each_entry(window, &bridge->windows) {
 204                if (resource_type(window->res) != IORESOURCE_MEM)
 205                        continue;
 206
 207                lo = iova_pfn(iovad, window->res->start - window->offset);
 208                hi = iova_pfn(iovad, window->res->end - window->offset);
 209                reserve_iova(iovad, lo, hi);
 210        }
 211
 212        /* Get reserved DMA windows from host bridge */
 213        resource_list_for_each_entry(window, &bridge->dma_ranges) {
 214                end = window->res->start - window->offset;
 215resv_iova:
 216                if (end > start) {
 217                        lo = iova_pfn(iovad, start);
 218                        hi = iova_pfn(iovad, end);
 219                        reserve_iova(iovad, lo, hi);
 220                } else {
 221                        /* dma_ranges list should be sorted */
 222                        dev_err(&dev->dev, "Failed to reserve IOVA\n");
 223                        return -EINVAL;
 224                }
 225
 226                start = window->res->end - window->offset + 1;
 227                /* If window is last entry */
 228                if (window->node.next == &bridge->dma_ranges &&
 229                    end != ~(phys_addr_t)0) {
 230                        end = ~(phys_addr_t)0;
 231                        goto resv_iova;
 232                }
 233        }
 234
 235        return 0;
 236}
 237
 238static int iova_reserve_iommu_regions(struct device *dev,
 239                struct iommu_domain *domain)
 240{
 241        struct iommu_dma_cookie *cookie = domain->iova_cookie;
 242        struct iova_domain *iovad = &cookie->iovad;
 243        struct iommu_resv_region *region;
 244        LIST_HEAD(resv_regions);
 245        int ret = 0;
 246
 247        if (dev_is_pci(dev)) {
 248                ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
 249                if (ret)
 250                        return ret;
 251        }
 252
 253        iommu_get_resv_regions(dev, &resv_regions);
 254        list_for_each_entry(region, &resv_regions, list) {
 255                unsigned long lo, hi;
 256
 257                /* We ARE the software that manages these! */
 258                if (region->type == IOMMU_RESV_SW_MSI)
 259                        continue;
 260
 261                lo = iova_pfn(iovad, region->start);
 262                hi = iova_pfn(iovad, region->start + region->length - 1);
 263                reserve_iova(iovad, lo, hi);
 264
 265                if (region->type == IOMMU_RESV_MSI)
 266                        ret = cookie_init_hw_msi_region(cookie, region->start,
 267                                        region->start + region->length);
 268                if (ret)
 269                        break;
 270        }
 271        iommu_put_resv_regions(dev, &resv_regions);
 272
 273        return ret;
 274}
 275
 276static void iommu_dma_flush_iotlb_all(struct iova_domain *iovad)
 277{
 278        struct iommu_dma_cookie *cookie;
 279        struct iommu_domain *domain;
 280
 281        cookie = container_of(iovad, struct iommu_dma_cookie, iovad);
 282        domain = cookie->fq_domain;
 283        /*
 284         * The IOMMU driver supporting DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE
 285         * implies that ops->flush_iotlb_all must be non-NULL.
 286         */
 287        domain->ops->flush_iotlb_all(domain);
 288}
 289
 290/**
 291 * iommu_dma_init_domain - Initialise a DMA mapping domain
 292 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
 293 * @base: IOVA at which the mappable address space starts
 294 * @size: Size of IOVA space
 295 * @dev: Device the domain is being initialised for
 296 *
 297 * @base and @size should be exact multiples of IOMMU page granularity to
 298 * avoid rounding surprises. If necessary, we reserve the page at address 0
 299 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
 300 * any change which could make prior IOVAs invalid will fail.
 301 */
 302static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
 303                u64 size, struct device *dev)
 304{
 305        struct iommu_dma_cookie *cookie = domain->iova_cookie;
 306        struct iova_domain *iovad = &cookie->iovad;
 307        unsigned long order, base_pfn;
 308        int attr;
 309
 310        if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
 311                return -EINVAL;
 312
 313        /* Use the smallest supported page size for IOVA granularity */
 314        order = __ffs(domain->pgsize_bitmap);
 315        base_pfn = max_t(unsigned long, 1, base >> order);
 316
 317        /* Check the domain allows at least some access to the device... */
 318        if (domain->geometry.force_aperture) {
 319                if (base > domain->geometry.aperture_end ||
 320                    base + size <= domain->geometry.aperture_start) {
 321                        pr_warn("specified DMA range outside IOMMU capability\n");
 322                        return -EFAULT;
 323                }
 324                /* ...then finally give it a kicking to make sure it fits */
 325                base_pfn = max_t(unsigned long, base_pfn,
 326                                domain->geometry.aperture_start >> order);
 327        }
 328
 329        /* start_pfn is always nonzero for an already-initialised domain */
 330        if (iovad->start_pfn) {
 331                if (1UL << order != iovad->granule ||
 332                    base_pfn != iovad->start_pfn) {
 333                        pr_warn("Incompatible range for DMA domain\n");
 334                        return -EFAULT;
 335                }
 336
 337                return 0;
 338        }
 339
 340        init_iova_domain(iovad, 1UL << order, base_pfn);
 341
 342        if (!cookie->fq_domain && !iommu_domain_get_attr(domain,
 343                        DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE, &attr) && attr) {
 344                cookie->fq_domain = domain;
 345                init_iova_flush_queue(iovad, iommu_dma_flush_iotlb_all, NULL);
 346        }
 347
 348        if (!dev)
 349                return 0;
 350
 351        return iova_reserve_iommu_regions(dev, domain);
 352}
 353
 354/**
 355 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
 356 *                    page flags.
 357 * @dir: Direction of DMA transfer
 358 * @coherent: Is the DMA master cache-coherent?
 359 * @attrs: DMA attributes for the mapping
 360 *
 361 * Return: corresponding IOMMU API page protection flags
 362 */
 363static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
 364                     unsigned long attrs)
 365{
 366        int prot = coherent ? IOMMU_CACHE : 0;
 367
 368        if (attrs & DMA_ATTR_PRIVILEGED)
 369                prot |= IOMMU_PRIV;
 370
 371        switch (dir) {
 372        case DMA_BIDIRECTIONAL:
 373                return prot | IOMMU_READ | IOMMU_WRITE;
 374        case DMA_TO_DEVICE:
 375                return prot | IOMMU_READ;
 376        case DMA_FROM_DEVICE:
 377                return prot | IOMMU_WRITE;
 378        default:
 379                return 0;
 380        }
 381}
 382
 383static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
 384                size_t size, dma_addr_t dma_limit, struct device *dev)
 385{
 386        struct iommu_dma_cookie *cookie = domain->iova_cookie;
 387        struct iova_domain *iovad = &cookie->iovad;
 388        unsigned long shift, iova_len, iova = 0;
 389
 390        if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
 391                cookie->msi_iova += size;
 392                return cookie->msi_iova - size;
 393        }
 394
 395        shift = iova_shift(iovad);
 396        iova_len = size >> shift;
 397        /*
 398         * Freeing non-power-of-two-sized allocations back into the IOVA caches
 399         * will come back to bite us badly, so we have to waste a bit of space
 400         * rounding up anything cacheable to make sure that can't happen. The
 401         * order of the unadjusted size will still match upon freeing.
 402         */
 403        if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1)))
 404                iova_len = roundup_pow_of_two(iova_len);
 405
 406        if (dev->bus_dma_mask)
 407                dma_limit &= dev->bus_dma_mask;
 408
 409        if (domain->geometry.force_aperture)
 410                dma_limit = min(dma_limit, domain->geometry.aperture_end);
 411
 412        /* Try to get PCI devices a SAC address */
 413        if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev))
 414                iova = alloc_iova_fast(iovad, iova_len,
 415                                       DMA_BIT_MASK(32) >> shift, false);
 416
 417        if (!iova)
 418                iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
 419                                       true);
 420
 421        return (dma_addr_t)iova << shift;
 422}
 423
 424static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
 425                dma_addr_t iova, size_t size)
 426{
 427        struct iova_domain *iovad = &cookie->iovad;
 428
 429        /* The MSI case is only ever cleaning up its most recent allocation */
 430        if (cookie->type == IOMMU_DMA_MSI_COOKIE)
 431                cookie->msi_iova -= size;
 432        else if (cookie->fq_domain)     /* non-strict mode */
 433                queue_iova(iovad, iova_pfn(iovad, iova),
 434                                size >> iova_shift(iovad), 0);
 435        else
 436                free_iova_fast(iovad, iova_pfn(iovad, iova),
 437                                size >> iova_shift(iovad));
 438}
 439
 440static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
 441                size_t size)
 442{
 443        struct iommu_domain *domain = iommu_get_dma_domain(dev);
 444        struct iommu_dma_cookie *cookie = domain->iova_cookie;
 445        struct iova_domain *iovad = &cookie->iovad;
 446        size_t iova_off = iova_offset(iovad, dma_addr);
 447
 448        dma_addr -= iova_off;
 449        size = iova_align(iovad, size + iova_off);
 450
 451        WARN_ON(iommu_unmap_fast(domain, dma_addr, size) != size);
 452        if (!cookie->fq_domain)
 453                iommu_tlb_sync(domain);
 454        iommu_dma_free_iova(cookie, dma_addr, size);
 455}
 456
 457static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
 458                size_t size, int prot)
 459{
 460        struct iommu_domain *domain = iommu_get_dma_domain(dev);
 461        struct iommu_dma_cookie *cookie = domain->iova_cookie;
 462        struct iova_domain *iovad = &cookie->iovad;
 463        size_t iova_off = iova_offset(iovad, phys);
 464        dma_addr_t iova;
 465
 466        size = iova_align(iovad, size + iova_off);
 467
 468        iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
 469        if (!iova)
 470                return DMA_MAPPING_ERROR;
 471
 472        if (iommu_map(domain, iova, phys - iova_off, size, prot)) {
 473                iommu_dma_free_iova(cookie, iova, size);
 474                return DMA_MAPPING_ERROR;
 475        }
 476        return iova + iova_off;
 477}
 478
 479static void __iommu_dma_free_pages(struct page **pages, int count)
 480{
 481        while (count--)
 482                __free_page(pages[count]);
 483        kvfree(pages);
 484}
 485
 486static struct page **__iommu_dma_alloc_pages(struct device *dev,
 487                unsigned int count, unsigned long order_mask, gfp_t gfp)
 488{
 489        struct page **pages;
 490        unsigned int i = 0, nid = dev_to_node(dev);
 491
 492        order_mask &= (2U << MAX_ORDER) - 1;
 493        if (!order_mask)
 494                return NULL;
 495
 496        pages = kvzalloc(count * sizeof(*pages), GFP_KERNEL);
 497        if (!pages)
 498                return NULL;
 499
 500        /* IOMMU can map any pages, so himem can also be used here */
 501        gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
 502
 503        while (count) {
 504                struct page *page = NULL;
 505                unsigned int order_size;
 506
 507                /*
 508                 * Higher-order allocations are a convenience rather
 509                 * than a necessity, hence using __GFP_NORETRY until
 510                 * falling back to minimum-order allocations.
 511                 */
 512                for (order_mask &= (2U << __fls(count)) - 1;
 513                     order_mask; order_mask &= ~order_size) {
 514                        unsigned int order = __fls(order_mask);
 515                        gfp_t alloc_flags = gfp;
 516
 517                        order_size = 1U << order;
 518                        if (order_mask > order_size)
 519                                alloc_flags |= __GFP_NORETRY;
 520                        page = alloc_pages_node(nid, alloc_flags, order);
 521                        if (!page)
 522                                continue;
 523                        if (!order)
 524                                break;
 525                        if (!PageCompound(page)) {
 526                                split_page(page, order);
 527                                break;
 528                        } else if (!split_huge_page(page)) {
 529                                break;
 530                        }
 531                        __free_pages(page, order);
 532                }
 533                if (!page) {
 534                        __iommu_dma_free_pages(pages, i);
 535                        return NULL;
 536                }
 537                count -= order_size;
 538                while (order_size--)
 539                        pages[i++] = page++;
 540        }
 541        return pages;
 542}
 543
 544static struct page **__iommu_dma_get_pages(void *cpu_addr)
 545{
 546        struct vm_struct *area = find_vm_area(cpu_addr);
 547
 548        if (!area || !area->pages)
 549                return NULL;
 550        return area->pages;
 551}
 552
 553/**
 554 * iommu_dma_alloc_remap - Allocate and map a buffer contiguous in IOVA space
 555 * @dev: Device to allocate memory for. Must be a real device
 556 *       attached to an iommu_dma_domain
 557 * @size: Size of buffer in bytes
 558 * @dma_handle: Out argument for allocated DMA handle
 559 * @gfp: Allocation flags
 560 * @attrs: DMA attributes for this allocation
 561 *
 562 * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
 563 * but an IOMMU which supports smaller pages might not map the whole thing.
 564 *
 565 * Return: Mapped virtual address, or NULL on failure.
 566 */
 567static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
 568                dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
 569{
 570        struct iommu_domain *domain = iommu_get_dma_domain(dev);
 571        struct iommu_dma_cookie *cookie = domain->iova_cookie;
 572        struct iova_domain *iovad = &cookie->iovad;
 573        bool coherent = dev_is_dma_coherent(dev);
 574        int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
 575        pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
 576        unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
 577        struct page **pages;
 578        struct sg_table sgt;
 579        dma_addr_t iova;
 580        void *vaddr;
 581
 582        *dma_handle = DMA_MAPPING_ERROR;
 583
 584        min_size = alloc_sizes & -alloc_sizes;
 585        if (min_size < PAGE_SIZE) {
 586                min_size = PAGE_SIZE;
 587                alloc_sizes |= PAGE_SIZE;
 588        } else {
 589                size = ALIGN(size, min_size);
 590        }
 591        if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
 592                alloc_sizes = min_size;
 593
 594        count = PAGE_ALIGN(size) >> PAGE_SHIFT;
 595        pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
 596                                        gfp);
 597        if (!pages)
 598                return NULL;
 599
 600        size = iova_align(iovad, size);
 601        iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
 602        if (!iova)
 603                goto out_free_pages;
 604
 605        if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
 606                goto out_free_iova;
 607
 608        if (!(ioprot & IOMMU_CACHE)) {
 609                struct scatterlist *sg;
 610                int i;
 611
 612                for_each_sg(sgt.sgl, sg, sgt.orig_nents, i)
 613                        arch_dma_prep_coherent(sg_page(sg), sg->length);
 614        }
 615
 616        if (iommu_map_sg(domain, iova, sgt.sgl, sgt.orig_nents, ioprot)
 617                        < size)
 618                goto out_free_sg;
 619
 620        vaddr = dma_common_pages_remap(pages, size, VM_USERMAP, prot,
 621                        __builtin_return_address(0));
 622        if (!vaddr)
 623                goto out_unmap;
 624
 625        *dma_handle = iova;
 626        sg_free_table(&sgt);
 627        return vaddr;
 628
 629out_unmap:
 630        __iommu_dma_unmap(dev, iova, size);
 631out_free_sg:
 632        sg_free_table(&sgt);
 633out_free_iova:
 634        iommu_dma_free_iova(cookie, iova, size);
 635out_free_pages:
 636        __iommu_dma_free_pages(pages, count);
 637        return NULL;
 638}
 639
 640/**
 641 * __iommu_dma_mmap - Map a buffer into provided user VMA
 642 * @pages: Array representing buffer from __iommu_dma_alloc()
 643 * @size: Size of buffer in bytes
 644 * @vma: VMA describing requested userspace mapping
 645 *
 646 * Maps the pages of the buffer in @pages into @vma. The caller is responsible
 647 * for verifying the correct size and protection of @vma beforehand.
 648 */
 649static int __iommu_dma_mmap(struct page **pages, size_t size,
 650                struct vm_area_struct *vma)
 651{
 652        return vm_map_pages(vma, pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
 653}
 654
 655static void iommu_dma_sync_single_for_cpu(struct device *dev,
 656                dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
 657{
 658        phys_addr_t phys;
 659
 660        if (dev_is_dma_coherent(dev))
 661                return;
 662
 663        phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
 664        arch_sync_dma_for_cpu(dev, phys, size, dir);
 665}
 666
 667static void iommu_dma_sync_single_for_device(struct device *dev,
 668                dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
 669{
 670        phys_addr_t phys;
 671
 672        if (dev_is_dma_coherent(dev))
 673                return;
 674
 675        phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
 676        arch_sync_dma_for_device(dev, phys, size, dir);
 677}
 678
 679static void iommu_dma_sync_sg_for_cpu(struct device *dev,
 680                struct scatterlist *sgl, int nelems,
 681                enum dma_data_direction dir)
 682{
 683        struct scatterlist *sg;
 684        int i;
 685
 686        if (dev_is_dma_coherent(dev))
 687                return;
 688
 689        for_each_sg(sgl, sg, nelems, i)
 690                arch_sync_dma_for_cpu(dev, sg_phys(sg), sg->length, dir);
 691}
 692
 693static void iommu_dma_sync_sg_for_device(struct device *dev,
 694                struct scatterlist *sgl, int nelems,
 695                enum dma_data_direction dir)
 696{
 697        struct scatterlist *sg;
 698        int i;
 699
 700        if (dev_is_dma_coherent(dev))
 701                return;
 702
 703        for_each_sg(sgl, sg, nelems, i)
 704                arch_sync_dma_for_device(dev, sg_phys(sg), sg->length, dir);
 705}
 706
 707static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
 708                unsigned long offset, size_t size, enum dma_data_direction dir,
 709                unsigned long attrs)
 710{
 711        phys_addr_t phys = page_to_phys(page) + offset;
 712        bool coherent = dev_is_dma_coherent(dev);
 713        int prot = dma_info_to_prot(dir, coherent, attrs);
 714        dma_addr_t dma_handle;
 715
 716        dma_handle =__iommu_dma_map(dev, phys, size, prot);
 717        if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
 718            dma_handle != DMA_MAPPING_ERROR)
 719                arch_sync_dma_for_device(dev, phys, size, dir);
 720        return dma_handle;
 721}
 722
 723static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
 724                size_t size, enum dma_data_direction dir, unsigned long attrs)
 725{
 726        if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
 727                iommu_dma_sync_single_for_cpu(dev, dma_handle, size, dir);
 728        __iommu_dma_unmap(dev, dma_handle, size);
 729}
 730
 731/*
 732 * Prepare a successfully-mapped scatterlist to give back to the caller.
 733 *
 734 * At this point the segments are already laid out by iommu_dma_map_sg() to
 735 * avoid individually crossing any boundaries, so we merely need to check a
 736 * segment's start address to avoid concatenating across one.
 737 */
 738static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
 739                dma_addr_t dma_addr)
 740{
 741        struct scatterlist *s, *cur = sg;
 742        unsigned long seg_mask = dma_get_seg_boundary(dev);
 743        unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
 744        int i, count = 0;
 745
 746        for_each_sg(sg, s, nents, i) {
 747                /* Restore this segment's original unaligned fields first */
 748                unsigned int s_iova_off = sg_dma_address(s);
 749                unsigned int s_length = sg_dma_len(s);
 750                unsigned int s_iova_len = s->length;
 751
 752                s->offset += s_iova_off;
 753                s->length = s_length;
 754                sg_dma_address(s) = DMA_MAPPING_ERROR;
 755                sg_dma_len(s) = 0;
 756
 757                /*
 758                 * Now fill in the real DMA data. If...
 759                 * - there is a valid output segment to append to
 760                 * - and this segment starts on an IOVA page boundary
 761                 * - but doesn't fall at a segment boundary
 762                 * - and wouldn't make the resulting output segment too long
 763                 */
 764                if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
 765                    (max_len - cur_len >= s_length)) {
 766                        /* ...then concatenate it with the previous one */
 767                        cur_len += s_length;
 768                } else {
 769                        /* Otherwise start the next output segment */
 770                        if (i > 0)
 771                                cur = sg_next(cur);
 772                        cur_len = s_length;
 773                        count++;
 774
 775                        sg_dma_address(cur) = dma_addr + s_iova_off;
 776                }
 777
 778                sg_dma_len(cur) = cur_len;
 779                dma_addr += s_iova_len;
 780
 781                if (s_length + s_iova_off < s_iova_len)
 782                        cur_len = 0;
 783        }
 784        return count;
 785}
 786
 787/*
 788 * If mapping failed, then just restore the original list,
 789 * but making sure the DMA fields are invalidated.
 790 */
 791static void __invalidate_sg(struct scatterlist *sg, int nents)
 792{
 793        struct scatterlist *s;
 794        int i;
 795
 796        for_each_sg(sg, s, nents, i) {
 797                if (sg_dma_address(s) != DMA_MAPPING_ERROR)
 798                        s->offset += sg_dma_address(s);
 799                if (sg_dma_len(s))
 800                        s->length = sg_dma_len(s);
 801                sg_dma_address(s) = DMA_MAPPING_ERROR;
 802                sg_dma_len(s) = 0;
 803        }
 804}
 805
 806/*
 807 * The DMA API client is passing in a scatterlist which could describe
 808 * any old buffer layout, but the IOMMU API requires everything to be
 809 * aligned to IOMMU pages. Hence the need for this complicated bit of
 810 * impedance-matching, to be able to hand off a suitably-aligned list,
 811 * but still preserve the original offsets and sizes for the caller.
 812 */
 813static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
 814                int nents, enum dma_data_direction dir, unsigned long attrs)
 815{
 816        struct iommu_domain *domain = iommu_get_dma_domain(dev);
 817        struct iommu_dma_cookie *cookie = domain->iova_cookie;
 818        struct iova_domain *iovad = &cookie->iovad;
 819        struct scatterlist *s, *prev = NULL;
 820        int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
 821        dma_addr_t iova;
 822        size_t iova_len = 0;
 823        unsigned long mask = dma_get_seg_boundary(dev);
 824        int i;
 825
 826        if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
 827                iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
 828
 829        /*
 830         * Work out how much IOVA space we need, and align the segments to
 831         * IOVA granules for the IOMMU driver to handle. With some clever
 832         * trickery we can modify the list in-place, but reversibly, by
 833         * stashing the unaligned parts in the as-yet-unused DMA fields.
 834         */
 835        for_each_sg(sg, s, nents, i) {
 836                size_t s_iova_off = iova_offset(iovad, s->offset);
 837                size_t s_length = s->length;
 838                size_t pad_len = (mask - iova_len + 1) & mask;
 839
 840                sg_dma_address(s) = s_iova_off;
 841                sg_dma_len(s) = s_length;
 842                s->offset -= s_iova_off;
 843                s_length = iova_align(iovad, s_length + s_iova_off);
 844                s->length = s_length;
 845
 846                /*
 847                 * Due to the alignment of our single IOVA allocation, we can
 848                 * depend on these assumptions about the segment boundary mask:
 849                 * - If mask size >= IOVA size, then the IOVA range cannot
 850                 *   possibly fall across a boundary, so we don't care.
 851                 * - If mask size < IOVA size, then the IOVA range must start
 852                 *   exactly on a boundary, therefore we can lay things out
 853                 *   based purely on segment lengths without needing to know
 854                 *   the actual addresses beforehand.
 855                 * - The mask must be a power of 2, so pad_len == 0 if
 856                 *   iova_len == 0, thus we cannot dereference prev the first
 857                 *   time through here (i.e. before it has a meaningful value).
 858                 */
 859                if (pad_len && pad_len < s_length - 1) {
 860                        prev->length += pad_len;
 861                        iova_len += pad_len;
 862                }
 863
 864                iova_len += s_length;
 865                prev = s;
 866        }
 867
 868        iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
 869        if (!iova)
 870                goto out_restore_sg;
 871
 872        /*
 873         * We'll leave any physical concatenation to the IOMMU driver's
 874         * implementation - it knows better than we do.
 875         */
 876        if (iommu_map_sg(domain, iova, sg, nents, prot) < iova_len)
 877                goto out_free_iova;
 878
 879        return __finalise_sg(dev, sg, nents, iova);
 880
 881out_free_iova:
 882        iommu_dma_free_iova(cookie, iova, iova_len);
 883out_restore_sg:
 884        __invalidate_sg(sg, nents);
 885        return 0;
 886}
 887
 888static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
 889                int nents, enum dma_data_direction dir, unsigned long attrs)
 890{
 891        dma_addr_t start, end;
 892        struct scatterlist *tmp;
 893        int i;
 894
 895        if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
 896                iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
 897
 898        /*
 899         * The scatterlist segments are mapped into a single
 900         * contiguous IOVA allocation, so this is incredibly easy.
 901         */
 902        start = sg_dma_address(sg);
 903        for_each_sg(sg_next(sg), tmp, nents - 1, i) {
 904                if (sg_dma_len(tmp) == 0)
 905                        break;
 906                sg = tmp;
 907        }
 908        end = sg_dma_address(sg) + sg_dma_len(sg);
 909        __iommu_dma_unmap(dev, start, end - start);
 910}
 911
 912static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
 913                size_t size, enum dma_data_direction dir, unsigned long attrs)
 914{
 915        return __iommu_dma_map(dev, phys, size,
 916                        dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO);
 917}
 918
 919static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
 920                size_t size, enum dma_data_direction dir, unsigned long attrs)
 921{
 922        __iommu_dma_unmap(dev, handle, size);
 923}
 924
 925static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
 926{
 927        size_t alloc_size = PAGE_ALIGN(size);
 928        int count = alloc_size >> PAGE_SHIFT;
 929        struct page *page = NULL, **pages = NULL;
 930
 931        /* Non-coherent atomic allocation? Easy */
 932        if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
 933            dma_free_from_pool(cpu_addr, alloc_size))
 934                return;
 935
 936        if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
 937                /*
 938                 * If it the address is remapped, then it's either non-coherent
 939                 * or highmem CMA, or an iommu_dma_alloc_remap() construction.
 940                 */
 941                pages = __iommu_dma_get_pages(cpu_addr);
 942                if (!pages)
 943                        page = vmalloc_to_page(cpu_addr);
 944                dma_common_free_remap(cpu_addr, alloc_size, VM_USERMAP);
 945        } else {
 946                /* Lowmem means a coherent atomic or CMA allocation */
 947                page = virt_to_page(cpu_addr);
 948        }
 949
 950        if (pages)
 951                __iommu_dma_free_pages(pages, count);
 952        if (page)
 953                dma_free_contiguous(dev, page, alloc_size);
 954}
 955
 956static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
 957                dma_addr_t handle, unsigned long attrs)
 958{
 959        __iommu_dma_unmap(dev, handle, size);
 960        __iommu_dma_free(dev, size, cpu_addr);
 961}
 962
 963static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
 964                struct page **pagep, gfp_t gfp, unsigned long attrs)
 965{
 966        bool coherent = dev_is_dma_coherent(dev);
 967        size_t alloc_size = PAGE_ALIGN(size);
 968        int node = dev_to_node(dev);
 969        struct page *page = NULL;
 970        void *cpu_addr;
 971
 972        page = dma_alloc_contiguous(dev, alloc_size, gfp);
 973        if (!page)
 974                page = alloc_pages_node(node, gfp, get_order(alloc_size));
 975        if (!page)
 976                return NULL;
 977
 978        if (IS_ENABLED(CONFIG_DMA_REMAP) && (!coherent || PageHighMem(page))) {
 979                pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
 980
 981                cpu_addr = dma_common_contiguous_remap(page, alloc_size,
 982                                VM_USERMAP, prot, __builtin_return_address(0));
 983                if (!cpu_addr)
 984                        goto out_free_pages;
 985
 986                if (!coherent)
 987                        arch_dma_prep_coherent(page, size);
 988        } else {
 989                cpu_addr = page_address(page);
 990        }
 991
 992        *pagep = page;
 993        memset(cpu_addr, 0, alloc_size);
 994        return cpu_addr;
 995out_free_pages:
 996        dma_free_contiguous(dev, page, alloc_size);
 997        return NULL;
 998}
 999
1000static void *iommu_dma_alloc(struct device *dev, size_t size,
1001                dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1002{
1003        bool coherent = dev_is_dma_coherent(dev);
1004        int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
1005        struct page *page = NULL;
1006        void *cpu_addr;
1007
1008        gfp |= __GFP_ZERO;
1009
1010        if (IS_ENABLED(CONFIG_DMA_REMAP) && gfpflags_allow_blocking(gfp) &&
1011            !(attrs & DMA_ATTR_FORCE_CONTIGUOUS))
1012                return iommu_dma_alloc_remap(dev, size, handle, gfp, attrs);
1013
1014        if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1015            !gfpflags_allow_blocking(gfp) && !coherent)
1016                cpu_addr = dma_alloc_from_pool(PAGE_ALIGN(size), &page, gfp);
1017        else
1018                cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
1019        if (!cpu_addr)
1020                return NULL;
1021
1022        *handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot);
1023        if (*handle == DMA_MAPPING_ERROR) {
1024                __iommu_dma_free(dev, size, cpu_addr);
1025                return NULL;
1026        }
1027
1028        return cpu_addr;
1029}
1030
1031static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1032                void *cpu_addr, dma_addr_t dma_addr, size_t size,
1033                unsigned long attrs)
1034{
1035        unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1036        unsigned long pfn, off = vma->vm_pgoff;
1037        int ret;
1038
1039        vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
1040
1041        if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
1042                return ret;
1043
1044        if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1045                return -ENXIO;
1046
1047        if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1048                struct page **pages = __iommu_dma_get_pages(cpu_addr);
1049
1050                if (pages)
1051                        return __iommu_dma_mmap(pages, size, vma);
1052                pfn = vmalloc_to_pfn(cpu_addr);
1053        } else {
1054                pfn = page_to_pfn(virt_to_page(cpu_addr));
1055        }
1056
1057        return remap_pfn_range(vma, vma->vm_start, pfn + off,
1058                               vma->vm_end - vma->vm_start,
1059                               vma->vm_page_prot);
1060}
1061
1062static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1063                void *cpu_addr, dma_addr_t dma_addr, size_t size,
1064                unsigned long attrs)
1065{
1066        struct page *page;
1067        int ret;
1068
1069        if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1070                struct page **pages = __iommu_dma_get_pages(cpu_addr);
1071
1072                if (pages) {
1073                        return sg_alloc_table_from_pages(sgt, pages,
1074                                        PAGE_ALIGN(size) >> PAGE_SHIFT,
1075                                        0, size, GFP_KERNEL);
1076                }
1077
1078                page = vmalloc_to_page(cpu_addr);
1079        } else {
1080                page = virt_to_page(cpu_addr);
1081        }
1082
1083        ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1084        if (!ret)
1085                sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
1086        return ret;
1087}
1088
1089static const struct dma_map_ops iommu_dma_ops = {
1090        .alloc                  = iommu_dma_alloc,
1091        .free                   = iommu_dma_free,
1092        .mmap                   = iommu_dma_mmap,
1093        .get_sgtable            = iommu_dma_get_sgtable,
1094        .map_page               = iommu_dma_map_page,
1095        .unmap_page             = iommu_dma_unmap_page,
1096        .map_sg                 = iommu_dma_map_sg,
1097        .unmap_sg               = iommu_dma_unmap_sg,
1098        .sync_single_for_cpu    = iommu_dma_sync_single_for_cpu,
1099        .sync_single_for_device = iommu_dma_sync_single_for_device,
1100        .sync_sg_for_cpu        = iommu_dma_sync_sg_for_cpu,
1101        .sync_sg_for_device     = iommu_dma_sync_sg_for_device,
1102        .map_resource           = iommu_dma_map_resource,
1103        .unmap_resource         = iommu_dma_unmap_resource,
1104};
1105
1106/*
1107 * The IOMMU core code allocates the default DMA domain, which the underlying
1108 * IOMMU driver needs to support via the dma-iommu layer.
1109 */
1110void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size)
1111{
1112        struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1113
1114        if (!domain)
1115                goto out_err;
1116
1117        /*
1118         * The IOMMU core code allocates the default DMA domain, which the
1119         * underlying IOMMU driver needs to support via the dma-iommu layer.
1120         */
1121        if (domain->type == IOMMU_DOMAIN_DMA) {
1122                if (iommu_dma_init_domain(domain, dma_base, size, dev))
1123                        goto out_err;
1124                dev->dma_ops = &iommu_dma_ops;
1125        }
1126
1127        return;
1128out_err:
1129         pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
1130                 dev_name(dev));
1131}
1132
1133static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
1134                phys_addr_t msi_addr, struct iommu_domain *domain)
1135{
1136        struct iommu_dma_cookie *cookie = domain->iova_cookie;
1137        struct iommu_dma_msi_page *msi_page;
1138        dma_addr_t iova;
1139        int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1140        size_t size = cookie_msi_granule(cookie);
1141
1142        msi_addr &= ~(phys_addr_t)(size - 1);
1143        list_for_each_entry(msi_page, &cookie->msi_page_list, list)
1144                if (msi_page->phys == msi_addr)
1145                        return msi_page;
1146
1147        msi_page = kzalloc(sizeof(*msi_page), GFP_ATOMIC);
1148        if (!msi_page)
1149                return NULL;
1150
1151        iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
1152        if (!iova)
1153                goto out_free_page;
1154
1155        if (iommu_map(domain, iova, msi_addr, size, prot))
1156                goto out_free_iova;
1157
1158        INIT_LIST_HEAD(&msi_page->list);
1159        msi_page->phys = msi_addr;
1160        msi_page->iova = iova;
1161        list_add(&msi_page->list, &cookie->msi_page_list);
1162        return msi_page;
1163
1164out_free_iova:
1165        iommu_dma_free_iova(cookie, iova, size);
1166out_free_page:
1167        kfree(msi_page);
1168        return NULL;
1169}
1170
1171int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
1172{
1173        struct device *dev = msi_desc_to_dev(desc);
1174        struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1175        struct iommu_dma_cookie *cookie;
1176        struct iommu_dma_msi_page *msi_page;
1177        unsigned long flags;
1178
1179        if (!domain || !domain->iova_cookie) {
1180                desc->iommu_cookie = NULL;
1181                return 0;
1182        }
1183
1184        cookie = domain->iova_cookie;
1185
1186        /*
1187         * We disable IRQs to rule out a possible inversion against
1188         * irq_desc_lock if, say, someone tries to retarget the affinity
1189         * of an MSI from within an IPI handler.
1190         */
1191        spin_lock_irqsave(&cookie->msi_lock, flags);
1192        msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
1193        spin_unlock_irqrestore(&cookie->msi_lock, flags);
1194
1195        msi_desc_set_iommu_cookie(desc, msi_page);
1196
1197        if (!msi_page)
1198                return -ENOMEM;
1199        return 0;
1200}
1201
1202void iommu_dma_compose_msi_msg(struct msi_desc *desc,
1203                               struct msi_msg *msg)
1204{
1205        struct device *dev = msi_desc_to_dev(desc);
1206        const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1207        const struct iommu_dma_msi_page *msi_page;
1208
1209        msi_page = msi_desc_get_iommu_cookie(desc);
1210
1211        if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
1212                return;
1213
1214        msg->address_hi = upper_32_bits(msi_page->iova);
1215        msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
1216        msg->address_lo += lower_32_bits(msi_page->iova);
1217}
1218
1219static int iommu_dma_init(void)
1220{
1221        return iova_cache_get();
1222}
1223arch_initcall(iommu_dma_init);
1224