linux/drivers/iommu/dmar.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2006, Intel Corporation.
   4 *
   5 * Copyright (C) 2006-2008 Intel Corporation
   6 * Author: Ashok Raj <ashok.raj@intel.com>
   7 * Author: Shaohua Li <shaohua.li@intel.com>
   8 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
   9 *
  10 * This file implements early detection/parsing of Remapping Devices
  11 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
  12 * tables.
  13 *
  14 * These routines are used by both DMA-remapping and Interrupt-remapping
  15 */
  16
  17#define pr_fmt(fmt)     "DMAR: " fmt
  18
  19#include <linux/pci.h>
  20#include <linux/dmar.h>
  21#include <linux/iova.h>
  22#include <linux/intel-iommu.h>
  23#include <linux/timer.h>
  24#include <linux/irq.h>
  25#include <linux/interrupt.h>
  26#include <linux/tboot.h>
  27#include <linux/dmi.h>
  28#include <linux/slab.h>
  29#include <linux/iommu.h>
  30#include <linux/numa.h>
  31#include <asm/irq_remapping.h>
  32#include <asm/iommu_table.h>
  33
  34#include "irq_remapping.h"
  35
  36typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *);
  37struct dmar_res_callback {
  38        dmar_res_handler_t      cb[ACPI_DMAR_TYPE_RESERVED];
  39        void                    *arg[ACPI_DMAR_TYPE_RESERVED];
  40        bool                    ignore_unhandled;
  41        bool                    print_entry;
  42};
  43
  44/*
  45 * Assumptions:
  46 * 1) The hotplug framework guarentees that DMAR unit will be hot-added
  47 *    before IO devices managed by that unit.
  48 * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
  49 *    after IO devices managed by that unit.
  50 * 3) Hotplug events are rare.
  51 *
  52 * Locking rules for DMA and interrupt remapping related global data structures:
  53 * 1) Use dmar_global_lock in process context
  54 * 2) Use RCU in interrupt context
  55 */
  56DECLARE_RWSEM(dmar_global_lock);
  57LIST_HEAD(dmar_drhd_units);
  58
  59struct acpi_table_header * __initdata dmar_tbl;
  60static int dmar_dev_scope_status = 1;
  61static unsigned long dmar_seq_ids[BITS_TO_LONGS(DMAR_UNITS_SUPPORTED)];
  62
  63static int alloc_iommu(struct dmar_drhd_unit *drhd);
  64static void free_iommu(struct intel_iommu *iommu);
  65
  66extern const struct iommu_ops intel_iommu_ops;
  67
  68static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
  69{
  70        /*
  71         * add INCLUDE_ALL at the tail, so scan the list will find it at
  72         * the very end.
  73         */
  74        if (drhd->include_all)
  75                list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
  76        else
  77                list_add_rcu(&drhd->list, &dmar_drhd_units);
  78}
  79
  80void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
  81{
  82        struct acpi_dmar_device_scope *scope;
  83
  84        *cnt = 0;
  85        while (start < end) {
  86                scope = start;
  87                if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE ||
  88                    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
  89                    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
  90                        (*cnt)++;
  91                else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
  92                        scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
  93                        pr_warn("Unsupported device scope\n");
  94                }
  95                start += scope->length;
  96        }
  97        if (*cnt == 0)
  98                return NULL;
  99
 100        return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
 101}
 102
 103void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
 104{
 105        int i;
 106        struct device *tmp_dev;
 107
 108        if (*devices && *cnt) {
 109                for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
 110                        put_device(tmp_dev);
 111                kfree(*devices);
 112        }
 113
 114        *devices = NULL;
 115        *cnt = 0;
 116}
 117
 118/* Optimize out kzalloc()/kfree() for normal cases */
 119static char dmar_pci_notify_info_buf[64];
 120
 121static struct dmar_pci_notify_info *
 122dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
 123{
 124        int level = 0;
 125        size_t size;
 126        struct pci_dev *tmp;
 127        struct dmar_pci_notify_info *info;
 128
 129        BUG_ON(dev->is_virtfn);
 130
 131        /* Only generate path[] for device addition event */
 132        if (event == BUS_NOTIFY_ADD_DEVICE)
 133                for (tmp = dev; tmp; tmp = tmp->bus->self)
 134                        level++;
 135
 136        size = struct_size(info, path, level);
 137        if (size <= sizeof(dmar_pci_notify_info_buf)) {
 138                info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
 139        } else {
 140                info = kzalloc(size, GFP_KERNEL);
 141                if (!info) {
 142                        pr_warn("Out of memory when allocating notify_info "
 143                                "for %s.\n", pci_name(dev));
 144                        if (dmar_dev_scope_status == 0)
 145                                dmar_dev_scope_status = -ENOMEM;
 146                        return NULL;
 147                }
 148        }
 149
 150        info->event = event;
 151        info->dev = dev;
 152        info->seg = pci_domain_nr(dev->bus);
 153        info->level = level;
 154        if (event == BUS_NOTIFY_ADD_DEVICE) {
 155                for (tmp = dev; tmp; tmp = tmp->bus->self) {
 156                        level--;
 157                        info->path[level].bus = tmp->bus->number;
 158                        info->path[level].device = PCI_SLOT(tmp->devfn);
 159                        info->path[level].function = PCI_FUNC(tmp->devfn);
 160                        if (pci_is_root_bus(tmp->bus))
 161                                info->bus = tmp->bus->number;
 162                }
 163        }
 164
 165        return info;
 166}
 167
 168static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
 169{
 170        if ((void *)info != dmar_pci_notify_info_buf)
 171                kfree(info);
 172}
 173
 174static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
 175                                struct acpi_dmar_pci_path *path, int count)
 176{
 177        int i;
 178
 179        if (info->bus != bus)
 180                goto fallback;
 181        if (info->level != count)
 182                goto fallback;
 183
 184        for (i = 0; i < count; i++) {
 185                if (path[i].device != info->path[i].device ||
 186                    path[i].function != info->path[i].function)
 187                        goto fallback;
 188        }
 189
 190        return true;
 191
 192fallback:
 193
 194        if (count != 1)
 195                return false;
 196
 197        i = info->level - 1;
 198        if (bus              == info->path[i].bus &&
 199            path[0].device   == info->path[i].device &&
 200            path[0].function == info->path[i].function) {
 201                pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n",
 202                        bus, path[0].device, path[0].function);
 203                return true;
 204        }
 205
 206        return false;
 207}
 208
 209/* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
 210int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
 211                          void *start, void*end, u16 segment,
 212                          struct dmar_dev_scope *devices,
 213                          int devices_cnt)
 214{
 215        int i, level;
 216        struct device *tmp, *dev = &info->dev->dev;
 217        struct acpi_dmar_device_scope *scope;
 218        struct acpi_dmar_pci_path *path;
 219
 220        if (segment != info->seg)
 221                return 0;
 222
 223        for (; start < end; start += scope->length) {
 224                scope = start;
 225                if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
 226                    scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
 227                        continue;
 228
 229                path = (struct acpi_dmar_pci_path *)(scope + 1);
 230                level = (scope->length - sizeof(*scope)) / sizeof(*path);
 231                if (!dmar_match_pci_path(info, scope->bus, path, level))
 232                        continue;
 233
 234                /*
 235                 * We expect devices with endpoint scope to have normal PCI
 236                 * headers, and devices with bridge scope to have bridge PCI
 237                 * headers.  However PCI NTB devices may be listed in the
 238                 * DMAR table with bridge scope, even though they have a
 239                 * normal PCI header.  NTB devices are identified by class
 240                 * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch
 241                 * for this special case.
 242                 */
 243                if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
 244                     info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) ||
 245                    (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE &&
 246                     (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
 247                      info->dev->class >> 8 != PCI_CLASS_BRIDGE_OTHER))) {
 248                        pr_warn("Device scope type does not match for %s\n",
 249                                pci_name(info->dev));
 250                        return -EINVAL;
 251                }
 252
 253                for_each_dev_scope(devices, devices_cnt, i, tmp)
 254                        if (tmp == NULL) {
 255                                devices[i].bus = info->dev->bus->number;
 256                                devices[i].devfn = info->dev->devfn;
 257                                rcu_assign_pointer(devices[i].dev,
 258                                                   get_device(dev));
 259                                return 1;
 260                        }
 261                BUG_ON(i >= devices_cnt);
 262        }
 263
 264        return 0;
 265}
 266
 267int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
 268                          struct dmar_dev_scope *devices, int count)
 269{
 270        int index;
 271        struct device *tmp;
 272
 273        if (info->seg != segment)
 274                return 0;
 275
 276        for_each_active_dev_scope(devices, count, index, tmp)
 277                if (tmp == &info->dev->dev) {
 278                        RCU_INIT_POINTER(devices[index].dev, NULL);
 279                        synchronize_rcu();
 280                        put_device(tmp);
 281                        return 1;
 282                }
 283
 284        return 0;
 285}
 286
 287static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
 288{
 289        int ret = 0;
 290        struct dmar_drhd_unit *dmaru;
 291        struct acpi_dmar_hardware_unit *drhd;
 292
 293        for_each_drhd_unit(dmaru) {
 294                if (dmaru->include_all)
 295                        continue;
 296
 297                drhd = container_of(dmaru->hdr,
 298                                    struct acpi_dmar_hardware_unit, header);
 299                ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
 300                                ((void *)drhd) + drhd->header.length,
 301                                dmaru->segment,
 302                                dmaru->devices, dmaru->devices_cnt);
 303                if (ret)
 304                        break;
 305        }
 306        if (ret >= 0)
 307                ret = dmar_iommu_notify_scope_dev(info);
 308        if (ret < 0 && dmar_dev_scope_status == 0)
 309                dmar_dev_scope_status = ret;
 310
 311        return ret;
 312}
 313
 314static void  dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
 315{
 316        struct dmar_drhd_unit *dmaru;
 317
 318        for_each_drhd_unit(dmaru)
 319                if (dmar_remove_dev_scope(info, dmaru->segment,
 320                        dmaru->devices, dmaru->devices_cnt))
 321                        break;
 322        dmar_iommu_notify_scope_dev(info);
 323}
 324
 325static int dmar_pci_bus_notifier(struct notifier_block *nb,
 326                                 unsigned long action, void *data)
 327{
 328        struct pci_dev *pdev = to_pci_dev(data);
 329        struct dmar_pci_notify_info *info;
 330
 331        /* Only care about add/remove events for physical functions.
 332         * For VFs we actually do the lookup based on the corresponding
 333         * PF in device_to_iommu() anyway. */
 334        if (pdev->is_virtfn)
 335                return NOTIFY_DONE;
 336        if (action != BUS_NOTIFY_ADD_DEVICE &&
 337            action != BUS_NOTIFY_REMOVED_DEVICE)
 338                return NOTIFY_DONE;
 339
 340        info = dmar_alloc_pci_notify_info(pdev, action);
 341        if (!info)
 342                return NOTIFY_DONE;
 343
 344        down_write(&dmar_global_lock);
 345        if (action == BUS_NOTIFY_ADD_DEVICE)
 346                dmar_pci_bus_add_dev(info);
 347        else if (action == BUS_NOTIFY_REMOVED_DEVICE)
 348                dmar_pci_bus_del_dev(info);
 349        up_write(&dmar_global_lock);
 350
 351        dmar_free_pci_notify_info(info);
 352
 353        return NOTIFY_OK;
 354}
 355
 356static struct notifier_block dmar_pci_bus_nb = {
 357        .notifier_call = dmar_pci_bus_notifier,
 358        .priority = INT_MIN,
 359};
 360
 361static struct dmar_drhd_unit *
 362dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd)
 363{
 364        struct dmar_drhd_unit *dmaru;
 365
 366        list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list)
 367                if (dmaru->segment == drhd->segment &&
 368                    dmaru->reg_base_addr == drhd->address)
 369                        return dmaru;
 370
 371        return NULL;
 372}
 373
 374/**
 375 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
 376 * structure which uniquely represent one DMA remapping hardware unit
 377 * present in the platform
 378 */
 379static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg)
 380{
 381        struct acpi_dmar_hardware_unit *drhd;
 382        struct dmar_drhd_unit *dmaru;
 383        int ret;
 384
 385        drhd = (struct acpi_dmar_hardware_unit *)header;
 386        dmaru = dmar_find_dmaru(drhd);
 387        if (dmaru)
 388                goto out;
 389
 390        dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL);
 391        if (!dmaru)
 392                return -ENOMEM;
 393
 394        /*
 395         * If header is allocated from slab by ACPI _DSM method, we need to
 396         * copy the content because the memory buffer will be freed on return.
 397         */
 398        dmaru->hdr = (void *)(dmaru + 1);
 399        memcpy(dmaru->hdr, header, header->length);
 400        dmaru->reg_base_addr = drhd->address;
 401        dmaru->segment = drhd->segment;
 402        dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
 403        dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
 404                                              ((void *)drhd) + drhd->header.length,
 405                                              &dmaru->devices_cnt);
 406        if (dmaru->devices_cnt && dmaru->devices == NULL) {
 407                kfree(dmaru);
 408                return -ENOMEM;
 409        }
 410
 411        ret = alloc_iommu(dmaru);
 412        if (ret) {
 413                dmar_free_dev_scope(&dmaru->devices,
 414                                    &dmaru->devices_cnt);
 415                kfree(dmaru);
 416                return ret;
 417        }
 418        dmar_register_drhd_unit(dmaru);
 419
 420out:
 421        if (arg)
 422                (*(int *)arg)++;
 423
 424        return 0;
 425}
 426
 427static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
 428{
 429        if (dmaru->devices && dmaru->devices_cnt)
 430                dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
 431        if (dmaru->iommu)
 432                free_iommu(dmaru->iommu);
 433        kfree(dmaru);
 434}
 435
 436static int __init dmar_parse_one_andd(struct acpi_dmar_header *header,
 437                                      void *arg)
 438{
 439        struct acpi_dmar_andd *andd = (void *)header;
 440
 441        /* Check for NUL termination within the designated length */
 442        if (strnlen(andd->device_name, header->length - 8) == header->length - 8) {
 443                WARN_TAINT(1, TAINT_FIRMWARE_WORKAROUND,
 444                           "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
 445                           "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
 446                           dmi_get_system_info(DMI_BIOS_VENDOR),
 447                           dmi_get_system_info(DMI_BIOS_VERSION),
 448                           dmi_get_system_info(DMI_PRODUCT_VERSION));
 449                return -EINVAL;
 450        }
 451        pr_info("ANDD device: %x name: %s\n", andd->device_number,
 452                andd->device_name);
 453
 454        return 0;
 455}
 456
 457#ifdef CONFIG_ACPI_NUMA
 458static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg)
 459{
 460        struct acpi_dmar_rhsa *rhsa;
 461        struct dmar_drhd_unit *drhd;
 462
 463        rhsa = (struct acpi_dmar_rhsa *)header;
 464        for_each_drhd_unit(drhd) {
 465                if (drhd->reg_base_addr == rhsa->base_address) {
 466                        int node = acpi_map_pxm_to_node(rhsa->proximity_domain);
 467
 468                        if (!node_online(node))
 469                                node = NUMA_NO_NODE;
 470                        drhd->iommu->node = node;
 471                        return 0;
 472                }
 473        }
 474        WARN_TAINT(
 475                1, TAINT_FIRMWARE_WORKAROUND,
 476                "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
 477                "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
 478                drhd->reg_base_addr,
 479                dmi_get_system_info(DMI_BIOS_VENDOR),
 480                dmi_get_system_info(DMI_BIOS_VERSION),
 481                dmi_get_system_info(DMI_PRODUCT_VERSION));
 482
 483        return 0;
 484}
 485#else
 486#define dmar_parse_one_rhsa             dmar_res_noop
 487#endif
 488
 489static void
 490dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
 491{
 492        struct acpi_dmar_hardware_unit *drhd;
 493        struct acpi_dmar_reserved_memory *rmrr;
 494        struct acpi_dmar_atsr *atsr;
 495        struct acpi_dmar_rhsa *rhsa;
 496
 497        switch (header->type) {
 498        case ACPI_DMAR_TYPE_HARDWARE_UNIT:
 499                drhd = container_of(header, struct acpi_dmar_hardware_unit,
 500                                    header);
 501                pr_info("DRHD base: %#016Lx flags: %#x\n",
 502                        (unsigned long long)drhd->address, drhd->flags);
 503                break;
 504        case ACPI_DMAR_TYPE_RESERVED_MEMORY:
 505                rmrr = container_of(header, struct acpi_dmar_reserved_memory,
 506                                    header);
 507                pr_info("RMRR base: %#016Lx end: %#016Lx\n",
 508                        (unsigned long long)rmrr->base_address,
 509                        (unsigned long long)rmrr->end_address);
 510                break;
 511        case ACPI_DMAR_TYPE_ROOT_ATS:
 512                atsr = container_of(header, struct acpi_dmar_atsr, header);
 513                pr_info("ATSR flags: %#x\n", atsr->flags);
 514                break;
 515        case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
 516                rhsa = container_of(header, struct acpi_dmar_rhsa, header);
 517                pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
 518                       (unsigned long long)rhsa->base_address,
 519                       rhsa->proximity_domain);
 520                break;
 521        case ACPI_DMAR_TYPE_NAMESPACE:
 522                /* We don't print this here because we need to sanity-check
 523                   it first. So print it in dmar_parse_one_andd() instead. */
 524                break;
 525        }
 526}
 527
 528/**
 529 * dmar_table_detect - checks to see if the platform supports DMAR devices
 530 */
 531static int __init dmar_table_detect(void)
 532{
 533        acpi_status status = AE_OK;
 534
 535        /* if we could find DMAR table, then there are DMAR devices */
 536        status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl);
 537
 538        if (ACPI_SUCCESS(status) && !dmar_tbl) {
 539                pr_warn("Unable to map DMAR\n");
 540                status = AE_NOT_FOUND;
 541        }
 542
 543        return ACPI_SUCCESS(status) ? 0 : -ENOENT;
 544}
 545
 546static int dmar_walk_remapping_entries(struct acpi_dmar_header *start,
 547                                       size_t len, struct dmar_res_callback *cb)
 548{
 549        struct acpi_dmar_header *iter, *next;
 550        struct acpi_dmar_header *end = ((void *)start) + len;
 551
 552        for (iter = start; iter < end; iter = next) {
 553                next = (void *)iter + iter->length;
 554                if (iter->length == 0) {
 555                        /* Avoid looping forever on bad ACPI tables */
 556                        pr_debug(FW_BUG "Invalid 0-length structure\n");
 557                        break;
 558                } else if (next > end) {
 559                        /* Avoid passing table end */
 560                        pr_warn(FW_BUG "Record passes table end\n");
 561                        return -EINVAL;
 562                }
 563
 564                if (cb->print_entry)
 565                        dmar_table_print_dmar_entry(iter);
 566
 567                if (iter->type >= ACPI_DMAR_TYPE_RESERVED) {
 568                        /* continue for forward compatibility */
 569                        pr_debug("Unknown DMAR structure type %d\n",
 570                                 iter->type);
 571                } else if (cb->cb[iter->type]) {
 572                        int ret;
 573
 574                        ret = cb->cb[iter->type](iter, cb->arg[iter->type]);
 575                        if (ret)
 576                                return ret;
 577                } else if (!cb->ignore_unhandled) {
 578                        pr_warn("No handler for DMAR structure type %d\n",
 579                                iter->type);
 580                        return -EINVAL;
 581                }
 582        }
 583
 584        return 0;
 585}
 586
 587static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar,
 588                                       struct dmar_res_callback *cb)
 589{
 590        return dmar_walk_remapping_entries((void *)(dmar + 1),
 591                        dmar->header.length - sizeof(*dmar), cb);
 592}
 593
 594/**
 595 * parse_dmar_table - parses the DMA reporting table
 596 */
 597static int __init
 598parse_dmar_table(void)
 599{
 600        struct acpi_table_dmar *dmar;
 601        int drhd_count = 0;
 602        int ret;
 603        struct dmar_res_callback cb = {
 604                .print_entry = true,
 605                .ignore_unhandled = true,
 606                .arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count,
 607                .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd,
 608                .cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr,
 609                .cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr,
 610                .cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa,
 611                .cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd,
 612        };
 613
 614        /*
 615         * Do it again, earlier dmar_tbl mapping could be mapped with
 616         * fixed map.
 617         */
 618        dmar_table_detect();
 619
 620        /*
 621         * ACPI tables may not be DMA protected by tboot, so use DMAR copy
 622         * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
 623         */
 624        dmar_tbl = tboot_get_dmar_table(dmar_tbl);
 625
 626        dmar = (struct acpi_table_dmar *)dmar_tbl;
 627        if (!dmar)
 628                return -ENODEV;
 629
 630        if (dmar->width < PAGE_SHIFT - 1) {
 631                pr_warn("Invalid DMAR haw\n");
 632                return -EINVAL;
 633        }
 634
 635        pr_info("Host address width %d\n", dmar->width + 1);
 636        ret = dmar_walk_dmar_table(dmar, &cb);
 637        if (ret == 0 && drhd_count == 0)
 638                pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
 639
 640        return ret;
 641}
 642
 643static int dmar_pci_device_match(struct dmar_dev_scope devices[],
 644                                 int cnt, struct pci_dev *dev)
 645{
 646        int index;
 647        struct device *tmp;
 648
 649        while (dev) {
 650                for_each_active_dev_scope(devices, cnt, index, tmp)
 651                        if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
 652                                return 1;
 653
 654                /* Check our parent */
 655                dev = dev->bus->self;
 656        }
 657
 658        return 0;
 659}
 660
 661struct dmar_drhd_unit *
 662dmar_find_matched_drhd_unit(struct pci_dev *dev)
 663{
 664        struct dmar_drhd_unit *dmaru;
 665        struct acpi_dmar_hardware_unit *drhd;
 666
 667        dev = pci_physfn(dev);
 668
 669        rcu_read_lock();
 670        for_each_drhd_unit(dmaru) {
 671                drhd = container_of(dmaru->hdr,
 672                                    struct acpi_dmar_hardware_unit,
 673                                    header);
 674
 675                if (dmaru->include_all &&
 676                    drhd->segment == pci_domain_nr(dev->bus))
 677                        goto out;
 678
 679                if (dmar_pci_device_match(dmaru->devices,
 680                                          dmaru->devices_cnt, dev))
 681                        goto out;
 682        }
 683        dmaru = NULL;
 684out:
 685        rcu_read_unlock();
 686
 687        return dmaru;
 688}
 689
 690static void __init dmar_acpi_insert_dev_scope(u8 device_number,
 691                                              struct acpi_device *adev)
 692{
 693        struct dmar_drhd_unit *dmaru;
 694        struct acpi_dmar_hardware_unit *drhd;
 695        struct acpi_dmar_device_scope *scope;
 696        struct device *tmp;
 697        int i;
 698        struct acpi_dmar_pci_path *path;
 699
 700        for_each_drhd_unit(dmaru) {
 701                drhd = container_of(dmaru->hdr,
 702                                    struct acpi_dmar_hardware_unit,
 703                                    header);
 704
 705                for (scope = (void *)(drhd + 1);
 706                     (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
 707                     scope = ((void *)scope) + scope->length) {
 708                        if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE)
 709                                continue;
 710                        if (scope->enumeration_id != device_number)
 711                                continue;
 712
 713                        path = (void *)(scope + 1);
 714                        pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
 715                                dev_name(&adev->dev), dmaru->reg_base_addr,
 716                                scope->bus, path->device, path->function);
 717                        for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
 718                                if (tmp == NULL) {
 719                                        dmaru->devices[i].bus = scope->bus;
 720                                        dmaru->devices[i].devfn = PCI_DEVFN(path->device,
 721                                                                            path->function);
 722                                        rcu_assign_pointer(dmaru->devices[i].dev,
 723                                                           get_device(&adev->dev));
 724                                        return;
 725                                }
 726                        BUG_ON(i >= dmaru->devices_cnt);
 727                }
 728        }
 729        pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
 730                device_number, dev_name(&adev->dev));
 731}
 732
 733static int __init dmar_acpi_dev_scope_init(void)
 734{
 735        struct acpi_dmar_andd *andd;
 736
 737        if (dmar_tbl == NULL)
 738                return -ENODEV;
 739
 740        for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
 741             ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length;
 742             andd = ((void *)andd) + andd->header.length) {
 743                if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) {
 744                        acpi_handle h;
 745                        struct acpi_device *adev;
 746
 747                        if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
 748                                                          andd->device_name,
 749                                                          &h))) {
 750                                pr_err("Failed to find handle for ACPI object %s\n",
 751                                       andd->device_name);
 752                                continue;
 753                        }
 754                        if (acpi_bus_get_device(h, &adev)) {
 755                                pr_err("Failed to get device for ACPI object %s\n",
 756                                       andd->device_name);
 757                                continue;
 758                        }
 759                        dmar_acpi_insert_dev_scope(andd->device_number, adev);
 760                }
 761        }
 762        return 0;
 763}
 764
 765int __init dmar_dev_scope_init(void)
 766{
 767        struct pci_dev *dev = NULL;
 768        struct dmar_pci_notify_info *info;
 769
 770        if (dmar_dev_scope_status != 1)
 771                return dmar_dev_scope_status;
 772
 773        if (list_empty(&dmar_drhd_units)) {
 774                dmar_dev_scope_status = -ENODEV;
 775        } else {
 776                dmar_dev_scope_status = 0;
 777
 778                dmar_acpi_dev_scope_init();
 779
 780                for_each_pci_dev(dev) {
 781                        if (dev->is_virtfn)
 782                                continue;
 783
 784                        info = dmar_alloc_pci_notify_info(dev,
 785                                        BUS_NOTIFY_ADD_DEVICE);
 786                        if (!info) {
 787                                return dmar_dev_scope_status;
 788                        } else {
 789                                dmar_pci_bus_add_dev(info);
 790                                dmar_free_pci_notify_info(info);
 791                        }
 792                }
 793        }
 794
 795        return dmar_dev_scope_status;
 796}
 797
 798void __init dmar_register_bus_notifier(void)
 799{
 800        bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
 801}
 802
 803
 804int __init dmar_table_init(void)
 805{
 806        static int dmar_table_initialized;
 807        int ret;
 808
 809        if (dmar_table_initialized == 0) {
 810                ret = parse_dmar_table();
 811                if (ret < 0) {
 812                        if (ret != -ENODEV)
 813                                pr_info("Parse DMAR table failure.\n");
 814                } else  if (list_empty(&dmar_drhd_units)) {
 815                        pr_info("No DMAR devices found\n");
 816                        ret = -ENODEV;
 817                }
 818
 819                if (ret < 0)
 820                        dmar_table_initialized = ret;
 821                else
 822                        dmar_table_initialized = 1;
 823        }
 824
 825        return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
 826}
 827
 828static void warn_invalid_dmar(u64 addr, const char *message)
 829{
 830        WARN_TAINT_ONCE(
 831                1, TAINT_FIRMWARE_WORKAROUND,
 832                "Your BIOS is broken; DMAR reported at address %llx%s!\n"
 833                "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
 834                addr, message,
 835                dmi_get_system_info(DMI_BIOS_VENDOR),
 836                dmi_get_system_info(DMI_BIOS_VERSION),
 837                dmi_get_system_info(DMI_PRODUCT_VERSION));
 838}
 839
 840static int __ref
 841dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg)
 842{
 843        struct acpi_dmar_hardware_unit *drhd;
 844        void __iomem *addr;
 845        u64 cap, ecap;
 846
 847        drhd = (void *)entry;
 848        if (!drhd->address) {
 849                warn_invalid_dmar(0, "");
 850                return -EINVAL;
 851        }
 852
 853        if (arg)
 854                addr = ioremap(drhd->address, VTD_PAGE_SIZE);
 855        else
 856                addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
 857        if (!addr) {
 858                pr_warn("Can't validate DRHD address: %llx\n", drhd->address);
 859                return -EINVAL;
 860        }
 861
 862        cap = dmar_readq(addr + DMAR_CAP_REG);
 863        ecap = dmar_readq(addr + DMAR_ECAP_REG);
 864
 865        if (arg)
 866                iounmap(addr);
 867        else
 868                early_iounmap(addr, VTD_PAGE_SIZE);
 869
 870        if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
 871                warn_invalid_dmar(drhd->address, " returns all ones");
 872                return -EINVAL;
 873        }
 874
 875        return 0;
 876}
 877
 878int __init detect_intel_iommu(void)
 879{
 880        int ret;
 881        struct dmar_res_callback validate_drhd_cb = {
 882                .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd,
 883                .ignore_unhandled = true,
 884        };
 885
 886        down_write(&dmar_global_lock);
 887        ret = dmar_table_detect();
 888        if (!ret)
 889                ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl,
 890                                           &validate_drhd_cb);
 891        if (!ret && !no_iommu && !iommu_detected && !dmar_disabled) {
 892                iommu_detected = 1;
 893                /* Make sure ACS will be enabled */
 894                pci_request_acs();
 895        }
 896
 897#ifdef CONFIG_X86
 898        if (!ret)
 899                x86_init.iommu.iommu_init = intel_iommu_init;
 900#endif
 901
 902        if (dmar_tbl) {
 903                acpi_put_table(dmar_tbl);
 904                dmar_tbl = NULL;
 905        }
 906        up_write(&dmar_global_lock);
 907
 908        return ret ? ret : 1;
 909}
 910
 911static void unmap_iommu(struct intel_iommu *iommu)
 912{
 913        iounmap(iommu->reg);
 914        release_mem_region(iommu->reg_phys, iommu->reg_size);
 915}
 916
 917/**
 918 * map_iommu: map the iommu's registers
 919 * @iommu: the iommu to map
 920 * @phys_addr: the physical address of the base resgister
 921 *
 922 * Memory map the iommu's registers.  Start w/ a single page, and
 923 * possibly expand if that turns out to be insufficent.
 924 */
 925static int map_iommu(struct intel_iommu *iommu, u64 phys_addr)
 926{
 927        int map_size, err=0;
 928
 929        iommu->reg_phys = phys_addr;
 930        iommu->reg_size = VTD_PAGE_SIZE;
 931
 932        if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
 933                pr_err("Can't reserve memory\n");
 934                err = -EBUSY;
 935                goto out;
 936        }
 937
 938        iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
 939        if (!iommu->reg) {
 940                pr_err("Can't map the region\n");
 941                err = -ENOMEM;
 942                goto release;
 943        }
 944
 945        iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
 946        iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
 947
 948        if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
 949                err = -EINVAL;
 950                warn_invalid_dmar(phys_addr, " returns all ones");
 951                goto unmap;
 952        }
 953
 954        /* the registers might be more than one page */
 955        map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
 956                         cap_max_fault_reg_offset(iommu->cap));
 957        map_size = VTD_PAGE_ALIGN(map_size);
 958        if (map_size > iommu->reg_size) {
 959                iounmap(iommu->reg);
 960                release_mem_region(iommu->reg_phys, iommu->reg_size);
 961                iommu->reg_size = map_size;
 962                if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
 963                                        iommu->name)) {
 964                        pr_err("Can't reserve memory\n");
 965                        err = -EBUSY;
 966                        goto out;
 967                }
 968                iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
 969                if (!iommu->reg) {
 970                        pr_err("Can't map the region\n");
 971                        err = -ENOMEM;
 972                        goto release;
 973                }
 974        }
 975        err = 0;
 976        goto out;
 977
 978unmap:
 979        iounmap(iommu->reg);
 980release:
 981        release_mem_region(iommu->reg_phys, iommu->reg_size);
 982out:
 983        return err;
 984}
 985
 986static int dmar_alloc_seq_id(struct intel_iommu *iommu)
 987{
 988        iommu->seq_id = find_first_zero_bit(dmar_seq_ids,
 989                                            DMAR_UNITS_SUPPORTED);
 990        if (iommu->seq_id >= DMAR_UNITS_SUPPORTED) {
 991                iommu->seq_id = -1;
 992        } else {
 993                set_bit(iommu->seq_id, dmar_seq_ids);
 994                sprintf(iommu->name, "dmar%d", iommu->seq_id);
 995        }
 996
 997        return iommu->seq_id;
 998}
 999
1000static void dmar_free_seq_id(struct intel_iommu *iommu)
1001{
1002        if (iommu->seq_id >= 0) {
1003                clear_bit(iommu->seq_id, dmar_seq_ids);
1004                iommu->seq_id = -1;
1005        }
1006}
1007
1008static int alloc_iommu(struct dmar_drhd_unit *drhd)
1009{
1010        struct intel_iommu *iommu;
1011        u32 ver, sts;
1012        int agaw = 0;
1013        int msagaw = 0;
1014        int err;
1015
1016        if (!drhd->reg_base_addr) {
1017                warn_invalid_dmar(0, "");
1018                return -EINVAL;
1019        }
1020
1021        iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1022        if (!iommu)
1023                return -ENOMEM;
1024
1025        if (dmar_alloc_seq_id(iommu) < 0) {
1026                pr_err("Failed to allocate seq_id\n");
1027                err = -ENOSPC;
1028                goto error;
1029        }
1030
1031        err = map_iommu(iommu, drhd->reg_base_addr);
1032        if (err) {
1033                pr_err("Failed to map %s\n", iommu->name);
1034                goto error_free_seq_id;
1035        }
1036
1037        err = -EINVAL;
1038        agaw = iommu_calculate_agaw(iommu);
1039        if (agaw < 0) {
1040                pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
1041                        iommu->seq_id);
1042                goto err_unmap;
1043        }
1044        msagaw = iommu_calculate_max_sagaw(iommu);
1045        if (msagaw < 0) {
1046                pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
1047                        iommu->seq_id);
1048                goto err_unmap;
1049        }
1050        iommu->agaw = agaw;
1051        iommu->msagaw = msagaw;
1052        iommu->segment = drhd->segment;
1053
1054        iommu->node = NUMA_NO_NODE;
1055
1056        ver = readl(iommu->reg + DMAR_VER_REG);
1057        pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
1058                iommu->name,
1059                (unsigned long long)drhd->reg_base_addr,
1060                DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
1061                (unsigned long long)iommu->cap,
1062                (unsigned long long)iommu->ecap);
1063
1064        /* Reflect status in gcmd */
1065        sts = readl(iommu->reg + DMAR_GSTS_REG);
1066        if (sts & DMA_GSTS_IRES)
1067                iommu->gcmd |= DMA_GCMD_IRE;
1068        if (sts & DMA_GSTS_TES)
1069                iommu->gcmd |= DMA_GCMD_TE;
1070        if (sts & DMA_GSTS_QIES)
1071                iommu->gcmd |= DMA_GCMD_QIE;
1072
1073        raw_spin_lock_init(&iommu->register_lock);
1074
1075        if (intel_iommu_enabled) {
1076                err = iommu_device_sysfs_add(&iommu->iommu, NULL,
1077                                             intel_iommu_groups,
1078                                             "%s", iommu->name);
1079                if (err)
1080                        goto err_unmap;
1081
1082                iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
1083
1084                err = iommu_device_register(&iommu->iommu);
1085                if (err)
1086                        goto err_unmap;
1087        }
1088
1089        drhd->iommu = iommu;
1090
1091        return 0;
1092
1093err_unmap:
1094        unmap_iommu(iommu);
1095error_free_seq_id:
1096        dmar_free_seq_id(iommu);
1097error:
1098        kfree(iommu);
1099        return err;
1100}
1101
1102static void free_iommu(struct intel_iommu *iommu)
1103{
1104        if (intel_iommu_enabled) {
1105                iommu_device_unregister(&iommu->iommu);
1106                iommu_device_sysfs_remove(&iommu->iommu);
1107        }
1108
1109        if (iommu->irq) {
1110                if (iommu->pr_irq) {
1111                        free_irq(iommu->pr_irq, iommu);
1112                        dmar_free_hwirq(iommu->pr_irq);
1113                        iommu->pr_irq = 0;
1114                }
1115                free_irq(iommu->irq, iommu);
1116                dmar_free_hwirq(iommu->irq);
1117                iommu->irq = 0;
1118        }
1119
1120        if (iommu->qi) {
1121                free_page((unsigned long)iommu->qi->desc);
1122                kfree(iommu->qi->desc_status);
1123                kfree(iommu->qi);
1124        }
1125
1126        if (iommu->reg)
1127                unmap_iommu(iommu);
1128
1129        dmar_free_seq_id(iommu);
1130        kfree(iommu);
1131}
1132
1133/*
1134 * Reclaim all the submitted descriptors which have completed its work.
1135 */
1136static inline void reclaim_free_desc(struct q_inval *qi)
1137{
1138        while (qi->desc_status[qi->free_tail] == QI_DONE ||
1139               qi->desc_status[qi->free_tail] == QI_ABORT) {
1140                qi->desc_status[qi->free_tail] = QI_FREE;
1141                qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
1142                qi->free_cnt++;
1143        }
1144}
1145
1146static int qi_check_fault(struct intel_iommu *iommu, int index)
1147{
1148        u32 fault;
1149        int head, tail;
1150        struct q_inval *qi = iommu->qi;
1151        int wait_index = (index + 1) % QI_LENGTH;
1152        int shift = qi_shift(iommu);
1153
1154        if (qi->desc_status[wait_index] == QI_ABORT)
1155                return -EAGAIN;
1156
1157        fault = readl(iommu->reg + DMAR_FSTS_REG);
1158
1159        /*
1160         * If IQE happens, the head points to the descriptor associated
1161         * with the error. No new descriptors are fetched until the IQE
1162         * is cleared.
1163         */
1164        if (fault & DMA_FSTS_IQE) {
1165                head = readl(iommu->reg + DMAR_IQH_REG);
1166                if ((head >> shift) == index) {
1167                        struct qi_desc *desc = qi->desc + head;
1168
1169                        /*
1170                         * desc->qw2 and desc->qw3 are either reserved or
1171                         * used by software as private data. We won't print
1172                         * out these two qw's for security consideration.
1173                         */
1174                        pr_err("VT-d detected invalid descriptor: qw0 = %llx, qw1 = %llx\n",
1175                               (unsigned long long)desc->qw0,
1176                               (unsigned long long)desc->qw1);
1177                        memcpy(desc, qi->desc + (wait_index << shift),
1178                               1 << shift);
1179                        writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
1180                        return -EINVAL;
1181                }
1182        }
1183
1184        /*
1185         * If ITE happens, all pending wait_desc commands are aborted.
1186         * No new descriptors are fetched until the ITE is cleared.
1187         */
1188        if (fault & DMA_FSTS_ITE) {
1189                head = readl(iommu->reg + DMAR_IQH_REG);
1190                head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1191                head |= 1;
1192                tail = readl(iommu->reg + DMAR_IQT_REG);
1193                tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1194
1195                writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
1196
1197                do {
1198                        if (qi->desc_status[head] == QI_IN_USE)
1199                                qi->desc_status[head] = QI_ABORT;
1200                        head = (head - 2 + QI_LENGTH) % QI_LENGTH;
1201                } while (head != tail);
1202
1203                if (qi->desc_status[wait_index] == QI_ABORT)
1204                        return -EAGAIN;
1205        }
1206
1207        if (fault & DMA_FSTS_ICE)
1208                writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
1209
1210        return 0;
1211}
1212
1213/*
1214 * Submit the queued invalidation descriptor to the remapping
1215 * hardware unit and wait for its completion.
1216 */
1217int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
1218{
1219        int rc;
1220        struct q_inval *qi = iommu->qi;
1221        int offset, shift, length;
1222        struct qi_desc wait_desc;
1223        int wait_index, index;
1224        unsigned long flags;
1225
1226        if (!qi)
1227                return 0;
1228
1229restart:
1230        rc = 0;
1231
1232        raw_spin_lock_irqsave(&qi->q_lock, flags);
1233        while (qi->free_cnt < 3) {
1234                raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1235                cpu_relax();
1236                raw_spin_lock_irqsave(&qi->q_lock, flags);
1237        }
1238
1239        index = qi->free_head;
1240        wait_index = (index + 1) % QI_LENGTH;
1241        shift = qi_shift(iommu);
1242        length = 1 << shift;
1243
1244        qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;
1245
1246        offset = index << shift;
1247        memcpy(qi->desc + offset, desc, length);
1248        wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) |
1249                        QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1250        wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]);
1251        wait_desc.qw2 = 0;
1252        wait_desc.qw3 = 0;
1253
1254        offset = wait_index << shift;
1255        memcpy(qi->desc + offset, &wait_desc, length);
1256
1257        qi->free_head = (qi->free_head + 2) % QI_LENGTH;
1258        qi->free_cnt -= 2;
1259
1260        /*
1261         * update the HW tail register indicating the presence of
1262         * new descriptors.
1263         */
1264        writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG);
1265
1266        while (qi->desc_status[wait_index] != QI_DONE) {
1267                /*
1268                 * We will leave the interrupts disabled, to prevent interrupt
1269                 * context to queue another cmd while a cmd is already submitted
1270                 * and waiting for completion on this cpu. This is to avoid
1271                 * a deadlock where the interrupt context can wait indefinitely
1272                 * for free slots in the queue.
1273                 */
1274                rc = qi_check_fault(iommu, index);
1275                if (rc)
1276                        break;
1277
1278                raw_spin_unlock(&qi->q_lock);
1279                cpu_relax();
1280                raw_spin_lock(&qi->q_lock);
1281        }
1282
1283        qi->desc_status[index] = QI_DONE;
1284
1285        reclaim_free_desc(qi);
1286        raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1287
1288        if (rc == -EAGAIN)
1289                goto restart;
1290
1291        return rc;
1292}
1293
1294/*
1295 * Flush the global interrupt entry cache.
1296 */
1297void qi_global_iec(struct intel_iommu *iommu)
1298{
1299        struct qi_desc desc;
1300
1301        desc.qw0 = QI_IEC_TYPE;
1302        desc.qw1 = 0;
1303        desc.qw2 = 0;
1304        desc.qw3 = 0;
1305
1306        /* should never fail */
1307        qi_submit_sync(&desc, iommu);
1308}
1309
1310void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1311                      u64 type)
1312{
1313        struct qi_desc desc;
1314
1315        desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1316                        | QI_CC_GRAN(type) | QI_CC_TYPE;
1317        desc.qw1 = 0;
1318        desc.qw2 = 0;
1319        desc.qw3 = 0;
1320
1321        qi_submit_sync(&desc, iommu);
1322}
1323
1324void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1325                    unsigned int size_order, u64 type)
1326{
1327        u8 dw = 0, dr = 0;
1328
1329        struct qi_desc desc;
1330        int ih = 0;
1331
1332        if (cap_write_drain(iommu->cap))
1333                dw = 1;
1334
1335        if (cap_read_drain(iommu->cap))
1336                dr = 1;
1337
1338        desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1339                | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1340        desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1341                | QI_IOTLB_AM(size_order);
1342        desc.qw2 = 0;
1343        desc.qw3 = 0;
1344
1345        qi_submit_sync(&desc, iommu);
1346}
1347
1348void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1349                        u16 qdep, u64 addr, unsigned mask)
1350{
1351        struct qi_desc desc;
1352
1353        if (mask) {
1354                WARN_ON_ONCE(addr & ((1ULL << (VTD_PAGE_SHIFT + mask)) - 1));
1355                addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1356                desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1357        } else
1358                desc.qw1 = QI_DEV_IOTLB_ADDR(addr);
1359
1360        if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1361                qdep = 0;
1362
1363        desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1364                   QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid);
1365        desc.qw2 = 0;
1366        desc.qw3 = 0;
1367
1368        qi_submit_sync(&desc, iommu);
1369}
1370
1371/*
1372 * Disable Queued Invalidation interface.
1373 */
1374void dmar_disable_qi(struct intel_iommu *iommu)
1375{
1376        unsigned long flags;
1377        u32 sts;
1378        cycles_t start_time = get_cycles();
1379
1380        if (!ecap_qis(iommu->ecap))
1381                return;
1382
1383        raw_spin_lock_irqsave(&iommu->register_lock, flags);
1384
1385        sts =  readl(iommu->reg + DMAR_GSTS_REG);
1386        if (!(sts & DMA_GSTS_QIES))
1387                goto end;
1388
1389        /*
1390         * Give a chance to HW to complete the pending invalidation requests.
1391         */
1392        while ((readl(iommu->reg + DMAR_IQT_REG) !=
1393                readl(iommu->reg + DMAR_IQH_REG)) &&
1394                (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1395                cpu_relax();
1396
1397        iommu->gcmd &= ~DMA_GCMD_QIE;
1398        writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1399
1400        IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1401                      !(sts & DMA_GSTS_QIES), sts);
1402end:
1403        raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1404}
1405
1406/*
1407 * Enable queued invalidation.
1408 */
1409static void __dmar_enable_qi(struct intel_iommu *iommu)
1410{
1411        u32 sts;
1412        unsigned long flags;
1413        struct q_inval *qi = iommu->qi;
1414        u64 val = virt_to_phys(qi->desc);
1415
1416        qi->free_head = qi->free_tail = 0;
1417        qi->free_cnt = QI_LENGTH;
1418
1419        /*
1420         * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability
1421         * is present.
1422         */
1423        if (ecap_smts(iommu->ecap))
1424                val |= (1 << 11) | 1;
1425
1426        raw_spin_lock_irqsave(&iommu->register_lock, flags);
1427
1428        /* write zero to the tail reg */
1429        writel(0, iommu->reg + DMAR_IQT_REG);
1430
1431        dmar_writeq(iommu->reg + DMAR_IQA_REG, val);
1432
1433        iommu->gcmd |= DMA_GCMD_QIE;
1434        writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1435
1436        /* Make sure hardware complete it */
1437        IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1438
1439        raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1440}
1441
1442/*
1443 * Enable Queued Invalidation interface. This is a must to support
1444 * interrupt-remapping. Also used by DMA-remapping, which replaces
1445 * register based IOTLB invalidation.
1446 */
1447int dmar_enable_qi(struct intel_iommu *iommu)
1448{
1449        struct q_inval *qi;
1450        struct page *desc_page;
1451
1452        if (!ecap_qis(iommu->ecap))
1453                return -ENOENT;
1454
1455        /*
1456         * queued invalidation is already setup and enabled.
1457         */
1458        if (iommu->qi)
1459                return 0;
1460
1461        iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1462        if (!iommu->qi)
1463                return -ENOMEM;
1464
1465        qi = iommu->qi;
1466
1467        /*
1468         * Need two pages to accommodate 256 descriptors of 256 bits each
1469         * if the remapping hardware supports scalable mode translation.
1470         */
1471        desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO,
1472                                     !!ecap_smts(iommu->ecap));
1473        if (!desc_page) {
1474                kfree(qi);
1475                iommu->qi = NULL;
1476                return -ENOMEM;
1477        }
1478
1479        qi->desc = page_address(desc_page);
1480
1481        qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC);
1482        if (!qi->desc_status) {
1483                free_page((unsigned long) qi->desc);
1484                kfree(qi);
1485                iommu->qi = NULL;
1486                return -ENOMEM;
1487        }
1488
1489        raw_spin_lock_init(&qi->q_lock);
1490
1491        __dmar_enable_qi(iommu);
1492
1493        return 0;
1494}
1495
1496/* iommu interrupt handling. Most stuff are MSI-like. */
1497
1498enum faulttype {
1499        DMA_REMAP,
1500        INTR_REMAP,
1501        UNKNOWN,
1502};
1503
1504static const char *dma_remap_fault_reasons[] =
1505{
1506        "Software",
1507        "Present bit in root entry is clear",
1508        "Present bit in context entry is clear",
1509        "Invalid context entry",
1510        "Access beyond MGAW",
1511        "PTE Write access is not set",
1512        "PTE Read access is not set",
1513        "Next page table ptr is invalid",
1514        "Root table address invalid",
1515        "Context table ptr is invalid",
1516        "non-zero reserved fields in RTP",
1517        "non-zero reserved fields in CTP",
1518        "non-zero reserved fields in PTE",
1519        "PCE for translation request specifies blocking",
1520};
1521
1522static const char *irq_remap_fault_reasons[] =
1523{
1524        "Detected reserved fields in the decoded interrupt-remapped request",
1525        "Interrupt index exceeded the interrupt-remapping table size",
1526        "Present field in the IRTE entry is clear",
1527        "Error accessing interrupt-remapping table pointed by IRTA_REG",
1528        "Detected reserved fields in the IRTE entry",
1529        "Blocked a compatibility format interrupt request",
1530        "Blocked an interrupt request due to source-id verification failure",
1531};
1532
1533static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1534{
1535        if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1536                                        ARRAY_SIZE(irq_remap_fault_reasons))) {
1537                *fault_type = INTR_REMAP;
1538                return irq_remap_fault_reasons[fault_reason - 0x20];
1539        } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1540                *fault_type = DMA_REMAP;
1541                return dma_remap_fault_reasons[fault_reason];
1542        } else {
1543                *fault_type = UNKNOWN;
1544                return "Unknown";
1545        }
1546}
1547
1548
1549static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq)
1550{
1551        if (iommu->irq == irq)
1552                return DMAR_FECTL_REG;
1553        else if (iommu->pr_irq == irq)
1554                return DMAR_PECTL_REG;
1555        else
1556                BUG();
1557}
1558
1559void dmar_msi_unmask(struct irq_data *data)
1560{
1561        struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1562        int reg = dmar_msi_reg(iommu, data->irq);
1563        unsigned long flag;
1564
1565        /* unmask it */
1566        raw_spin_lock_irqsave(&iommu->register_lock, flag);
1567        writel(0, iommu->reg + reg);
1568        /* Read a reg to force flush the post write */
1569        readl(iommu->reg + reg);
1570        raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1571}
1572
1573void dmar_msi_mask(struct irq_data *data)
1574{
1575        struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1576        int reg = dmar_msi_reg(iommu, data->irq);
1577        unsigned long flag;
1578
1579        /* mask it */
1580        raw_spin_lock_irqsave(&iommu->register_lock, flag);
1581        writel(DMA_FECTL_IM, iommu->reg + reg);
1582        /* Read a reg to force flush the post write */
1583        readl(iommu->reg + reg);
1584        raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1585}
1586
1587void dmar_msi_write(int irq, struct msi_msg *msg)
1588{
1589        struct intel_iommu *iommu = irq_get_handler_data(irq);
1590        int reg = dmar_msi_reg(iommu, irq);
1591        unsigned long flag;
1592
1593        raw_spin_lock_irqsave(&iommu->register_lock, flag);
1594        writel(msg->data, iommu->reg + reg + 4);
1595        writel(msg->address_lo, iommu->reg + reg + 8);
1596        writel(msg->address_hi, iommu->reg + reg + 12);
1597        raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1598}
1599
1600void dmar_msi_read(int irq, struct msi_msg *msg)
1601{
1602        struct intel_iommu *iommu = irq_get_handler_data(irq);
1603        int reg = dmar_msi_reg(iommu, irq);
1604        unsigned long flag;
1605
1606        raw_spin_lock_irqsave(&iommu->register_lock, flag);
1607        msg->data = readl(iommu->reg + reg + 4);
1608        msg->address_lo = readl(iommu->reg + reg + 8);
1609        msg->address_hi = readl(iommu->reg + reg + 12);
1610        raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1611}
1612
1613static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1614                u8 fault_reason, u16 source_id, unsigned long long addr)
1615{
1616        const char *reason;
1617        int fault_type;
1618
1619        reason = dmar_get_fault_reason(fault_reason, &fault_type);
1620
1621        if (fault_type == INTR_REMAP)
1622                pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index %llx [fault reason %02d] %s\n",
1623                        source_id >> 8, PCI_SLOT(source_id & 0xFF),
1624                        PCI_FUNC(source_id & 0xFF), addr >> 48,
1625                        fault_reason, reason);
1626        else
1627                pr_err("[%s] Request device [%02x:%02x.%d] fault addr %llx [fault reason %02d] %s\n",
1628                       type ? "DMA Read" : "DMA Write",
1629                       source_id >> 8, PCI_SLOT(source_id & 0xFF),
1630                       PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
1631        return 0;
1632}
1633
1634#define PRIMARY_FAULT_REG_LEN (16)
1635irqreturn_t dmar_fault(int irq, void *dev_id)
1636{
1637        struct intel_iommu *iommu = dev_id;
1638        int reg, fault_index;
1639        u32 fault_status;
1640        unsigned long flag;
1641        static DEFINE_RATELIMIT_STATE(rs,
1642                                      DEFAULT_RATELIMIT_INTERVAL,
1643                                      DEFAULT_RATELIMIT_BURST);
1644
1645        raw_spin_lock_irqsave(&iommu->register_lock, flag);
1646        fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1647        if (fault_status && __ratelimit(&rs))
1648                pr_err("DRHD: handling fault status reg %x\n", fault_status);
1649
1650        /* TBD: ignore advanced fault log currently */
1651        if (!(fault_status & DMA_FSTS_PPF))
1652                goto unlock_exit;
1653
1654        fault_index = dma_fsts_fault_record_index(fault_status);
1655        reg = cap_fault_reg_offset(iommu->cap);
1656        while (1) {
1657                /* Disable printing, simply clear the fault when ratelimited */
1658                bool ratelimited = !__ratelimit(&rs);
1659                u8 fault_reason;
1660                u16 source_id;
1661                u64 guest_addr;
1662                int type;
1663                u32 data;
1664
1665                /* highest 32 bits */
1666                data = readl(iommu->reg + reg +
1667                                fault_index * PRIMARY_FAULT_REG_LEN + 12);
1668                if (!(data & DMA_FRCD_F))
1669                        break;
1670
1671                if (!ratelimited) {
1672                        fault_reason = dma_frcd_fault_reason(data);
1673                        type = dma_frcd_type(data);
1674
1675                        data = readl(iommu->reg + reg +
1676                                     fault_index * PRIMARY_FAULT_REG_LEN + 8);
1677                        source_id = dma_frcd_source_id(data);
1678
1679                        guest_addr = dmar_readq(iommu->reg + reg +
1680                                        fault_index * PRIMARY_FAULT_REG_LEN);
1681                        guest_addr = dma_frcd_page_addr(guest_addr);
1682                }
1683
1684                /* clear the fault */
1685                writel(DMA_FRCD_F, iommu->reg + reg +
1686                        fault_index * PRIMARY_FAULT_REG_LEN + 12);
1687
1688                raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1689
1690                if (!ratelimited)
1691                        dmar_fault_do_one(iommu, type, fault_reason,
1692                                          source_id, guest_addr);
1693
1694                fault_index++;
1695                if (fault_index >= cap_num_fault_regs(iommu->cap))
1696                        fault_index = 0;
1697                raw_spin_lock_irqsave(&iommu->register_lock, flag);
1698        }
1699
1700        writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO,
1701               iommu->reg + DMAR_FSTS_REG);
1702
1703unlock_exit:
1704        raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1705        return IRQ_HANDLED;
1706}
1707
1708int dmar_set_interrupt(struct intel_iommu *iommu)
1709{
1710        int irq, ret;
1711
1712        /*
1713         * Check if the fault interrupt is already initialized.
1714         */
1715        if (iommu->irq)
1716                return 0;
1717
1718        irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu);
1719        if (irq > 0) {
1720                iommu->irq = irq;
1721        } else {
1722                pr_err("No free IRQ vectors\n");
1723                return -EINVAL;
1724        }
1725
1726        ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
1727        if (ret)
1728                pr_err("Can't request irq\n");
1729        return ret;
1730}
1731
1732int __init enable_drhd_fault_handling(void)
1733{
1734        struct dmar_drhd_unit *drhd;
1735        struct intel_iommu *iommu;
1736
1737        /*
1738         * Enable fault control interrupt.
1739         */
1740        for_each_iommu(iommu, drhd) {
1741                u32 fault_status;
1742                int ret = dmar_set_interrupt(iommu);
1743
1744                if (ret) {
1745                        pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
1746                               (unsigned long long)drhd->reg_base_addr, ret);
1747                        return -1;
1748                }
1749
1750                /*
1751                 * Clear any previous faults.
1752                 */
1753                dmar_fault(iommu->irq, iommu);
1754                fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1755                writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1756        }
1757
1758        return 0;
1759}
1760
1761/*
1762 * Re-enable Queued Invalidation interface.
1763 */
1764int dmar_reenable_qi(struct intel_iommu *iommu)
1765{
1766        if (!ecap_qis(iommu->ecap))
1767                return -ENOENT;
1768
1769        if (!iommu->qi)
1770                return -ENOENT;
1771
1772        /*
1773         * First disable queued invalidation.
1774         */
1775        dmar_disable_qi(iommu);
1776        /*
1777         * Then enable queued invalidation again. Since there is no pending
1778         * invalidation requests now, it's safe to re-enable queued
1779         * invalidation.
1780         */
1781        __dmar_enable_qi(iommu);
1782
1783        return 0;
1784}
1785
1786/*
1787 * Check interrupt remapping support in DMAR table description.
1788 */
1789int __init dmar_ir_support(void)
1790{
1791        struct acpi_table_dmar *dmar;
1792        dmar = (struct acpi_table_dmar *)dmar_tbl;
1793        if (!dmar)
1794                return 0;
1795        return dmar->flags & 0x1;
1796}
1797
1798/* Check whether DMAR units are in use */
1799static inline bool dmar_in_use(void)
1800{
1801        return irq_remapping_enabled || intel_iommu_enabled;
1802}
1803
1804static int __init dmar_free_unused_resources(void)
1805{
1806        struct dmar_drhd_unit *dmaru, *dmaru_n;
1807
1808        if (dmar_in_use())
1809                return 0;
1810
1811        if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
1812                bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
1813
1814        down_write(&dmar_global_lock);
1815        list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
1816                list_del(&dmaru->list);
1817                dmar_free_drhd(dmaru);
1818        }
1819        up_write(&dmar_global_lock);
1820
1821        return 0;
1822}
1823
1824late_initcall(dmar_free_unused_resources);
1825IOMMU_INIT_POST(detect_intel_iommu);
1826
1827/*
1828 * DMAR Hotplug Support
1829 * For more details, please refer to Intel(R) Virtualization Technology
1830 * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8
1831 * "Remapping Hardware Unit Hot Plug".
1832 */
1833static guid_t dmar_hp_guid =
1834        GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B,
1835                  0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF);
1836
1837/*
1838 * Currently there's only one revision and BIOS will not check the revision id,
1839 * so use 0 for safety.
1840 */
1841#define DMAR_DSM_REV_ID                 0
1842#define DMAR_DSM_FUNC_DRHD              1
1843#define DMAR_DSM_FUNC_ATSR              2
1844#define DMAR_DSM_FUNC_RHSA              3
1845
1846static inline bool dmar_detect_dsm(acpi_handle handle, int func)
1847{
1848        return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func);
1849}
1850
1851static int dmar_walk_dsm_resource(acpi_handle handle, int func,
1852                                  dmar_res_handler_t handler, void *arg)
1853{
1854        int ret = -ENODEV;
1855        union acpi_object *obj;
1856        struct acpi_dmar_header *start;
1857        struct dmar_res_callback callback;
1858        static int res_type[] = {
1859                [DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT,
1860                [DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS,
1861                [DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY,
1862        };
1863
1864        if (!dmar_detect_dsm(handle, func))
1865                return 0;
1866
1867        obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID,
1868                                      func, NULL, ACPI_TYPE_BUFFER);
1869        if (!obj)
1870                return -ENODEV;
1871
1872        memset(&callback, 0, sizeof(callback));
1873        callback.cb[res_type[func]] = handler;
1874        callback.arg[res_type[func]] = arg;
1875        start = (struct acpi_dmar_header *)obj->buffer.pointer;
1876        ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback);
1877
1878        ACPI_FREE(obj);
1879
1880        return ret;
1881}
1882
1883static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg)
1884{
1885        int ret;
1886        struct dmar_drhd_unit *dmaru;
1887
1888        dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
1889        if (!dmaru)
1890                return -ENODEV;
1891
1892        ret = dmar_ir_hotplug(dmaru, true);
1893        if (ret == 0)
1894                ret = dmar_iommu_hotplug(dmaru, true);
1895
1896        return ret;
1897}
1898
1899static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg)
1900{
1901        int i, ret;
1902        struct device *dev;
1903        struct dmar_drhd_unit *dmaru;
1904
1905        dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
1906        if (!dmaru)
1907                return 0;
1908
1909        /*
1910         * All PCI devices managed by this unit should have been destroyed.
1911         */
1912        if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) {
1913                for_each_active_dev_scope(dmaru->devices,
1914                                          dmaru->devices_cnt, i, dev)
1915                        return -EBUSY;
1916        }
1917
1918        ret = dmar_ir_hotplug(dmaru, false);
1919        if (ret == 0)
1920                ret = dmar_iommu_hotplug(dmaru, false);
1921
1922        return ret;
1923}
1924
1925static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg)
1926{
1927        struct dmar_drhd_unit *dmaru;
1928
1929        dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
1930        if (dmaru) {
1931                list_del_rcu(&dmaru->list);
1932                synchronize_rcu();
1933                dmar_free_drhd(dmaru);
1934        }
1935
1936        return 0;
1937}
1938
1939static int dmar_hotplug_insert(acpi_handle handle)
1940{
1941        int ret;
1942        int drhd_count = 0;
1943
1944        ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1945                                     &dmar_validate_one_drhd, (void *)1);
1946        if (ret)
1947                goto out;
1948
1949        ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1950                                     &dmar_parse_one_drhd, (void *)&drhd_count);
1951        if (ret == 0 && drhd_count == 0) {
1952                pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n");
1953                goto out;
1954        } else if (ret) {
1955                goto release_drhd;
1956        }
1957
1958        ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA,
1959                                     &dmar_parse_one_rhsa, NULL);
1960        if (ret)
1961                goto release_drhd;
1962
1963        ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
1964                                     &dmar_parse_one_atsr, NULL);
1965        if (ret)
1966                goto release_atsr;
1967
1968        ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1969                                     &dmar_hp_add_drhd, NULL);
1970        if (!ret)
1971                return 0;
1972
1973        dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1974                               &dmar_hp_remove_drhd, NULL);
1975release_atsr:
1976        dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
1977                               &dmar_release_one_atsr, NULL);
1978release_drhd:
1979        dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1980                               &dmar_hp_release_drhd, NULL);
1981out:
1982        return ret;
1983}
1984
1985static int dmar_hotplug_remove(acpi_handle handle)
1986{
1987        int ret;
1988
1989        ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
1990                                     &dmar_check_one_atsr, NULL);
1991        if (ret)
1992                return ret;
1993
1994        ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1995                                     &dmar_hp_remove_drhd, NULL);
1996        if (ret == 0) {
1997                WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
1998                                               &dmar_release_one_atsr, NULL));
1999                WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2000                                               &dmar_hp_release_drhd, NULL));
2001        } else {
2002                dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2003                                       &dmar_hp_add_drhd, NULL);
2004        }
2005
2006        return ret;
2007}
2008
2009static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl,
2010                                       void *context, void **retval)
2011{
2012        acpi_handle *phdl = retval;
2013
2014        if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2015                *phdl = handle;
2016                return AE_CTRL_TERMINATE;
2017        }
2018
2019        return AE_OK;
2020}
2021
2022static int dmar_device_hotplug(acpi_handle handle, bool insert)
2023{
2024        int ret;
2025        acpi_handle tmp = NULL;
2026        acpi_status status;
2027
2028        if (!dmar_in_use())
2029                return 0;
2030
2031        if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2032                tmp = handle;
2033        } else {
2034                status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2035                                             ACPI_UINT32_MAX,
2036                                             dmar_get_dsm_handle,
2037                                             NULL, NULL, &tmp);
2038                if (ACPI_FAILURE(status)) {
2039                        pr_warn("Failed to locate _DSM method.\n");
2040                        return -ENXIO;
2041                }
2042        }
2043        if (tmp == NULL)
2044                return 0;
2045
2046        down_write(&dmar_global_lock);
2047        if (insert)
2048                ret = dmar_hotplug_insert(tmp);
2049        else
2050                ret = dmar_hotplug_remove(tmp);
2051        up_write(&dmar_global_lock);
2052
2053        return ret;
2054}
2055
2056int dmar_device_add(acpi_handle handle)
2057{
2058        return dmar_device_hotplug(handle, true);
2059}
2060
2061int dmar_device_remove(acpi_handle handle)
2062{
2063        return dmar_device_hotplug(handle, false);
2064}
2065
2066/*
2067 * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table
2068 *
2069 * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in
2070 * the ACPI DMAR table. This means that the platform boot firmware has made
2071 * sure no device can issue DMA outside of RMRR regions.
2072 */
2073bool dmar_platform_optin(void)
2074{
2075        struct acpi_table_dmar *dmar;
2076        acpi_status status;
2077        bool ret;
2078
2079        status = acpi_get_table(ACPI_SIG_DMAR, 0,
2080                                (struct acpi_table_header **)&dmar);
2081        if (ACPI_FAILURE(status))
2082                return false;
2083
2084        ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN);
2085        acpi_put_table((struct acpi_table_header *)dmar);
2086
2087        return ret;
2088}
2089EXPORT_SYMBOL_GPL(dmar_platform_optin);
2090