linux/drivers/iommu/iommu.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
   4 * Author: Joerg Roedel <jroedel@suse.de>
   5 */
   6
   7#define pr_fmt(fmt)    "iommu: " fmt
   8
   9#include <linux/device.h>
  10#include <linux/kernel.h>
  11#include <linux/bug.h>
  12#include <linux/types.h>
  13#include <linux/init.h>
  14#include <linux/export.h>
  15#include <linux/slab.h>
  16#include <linux/errno.h>
  17#include <linux/iommu.h>
  18#include <linux/idr.h>
  19#include <linux/notifier.h>
  20#include <linux/err.h>
  21#include <linux/pci.h>
  22#include <linux/bitops.h>
  23#include <linux/property.h>
  24#include <linux/fsl/mc.h>
  25#include <trace/events/iommu.h>
  26
  27static struct kset *iommu_group_kset;
  28static DEFINE_IDA(iommu_group_ida);
  29#ifdef CONFIG_IOMMU_DEFAULT_PASSTHROUGH
  30static unsigned int iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY;
  31#else
  32static unsigned int iommu_def_domain_type = IOMMU_DOMAIN_DMA;
  33#endif
  34static bool iommu_dma_strict __read_mostly = true;
  35
  36struct iommu_group {
  37        struct kobject kobj;
  38        struct kobject *devices_kobj;
  39        struct list_head devices;
  40        struct mutex mutex;
  41        struct blocking_notifier_head notifier;
  42        void *iommu_data;
  43        void (*iommu_data_release)(void *iommu_data);
  44        char *name;
  45        int id;
  46        struct iommu_domain *default_domain;
  47        struct iommu_domain *domain;
  48};
  49
  50struct group_device {
  51        struct list_head list;
  52        struct device *dev;
  53        char *name;
  54};
  55
  56struct iommu_group_attribute {
  57        struct attribute attr;
  58        ssize_t (*show)(struct iommu_group *group, char *buf);
  59        ssize_t (*store)(struct iommu_group *group,
  60                         const char *buf, size_t count);
  61};
  62
  63static const char * const iommu_group_resv_type_string[] = {
  64        [IOMMU_RESV_DIRECT]                     = "direct",
  65        [IOMMU_RESV_DIRECT_RELAXABLE]           = "direct-relaxable",
  66        [IOMMU_RESV_RESERVED]                   = "reserved",
  67        [IOMMU_RESV_MSI]                        = "msi",
  68        [IOMMU_RESV_SW_MSI]                     = "msi",
  69};
  70
  71#define IOMMU_GROUP_ATTR(_name, _mode, _show, _store)           \
  72struct iommu_group_attribute iommu_group_attr_##_name =         \
  73        __ATTR(_name, _mode, _show, _store)
  74
  75#define to_iommu_group_attr(_attr)      \
  76        container_of(_attr, struct iommu_group_attribute, attr)
  77#define to_iommu_group(_kobj)           \
  78        container_of(_kobj, struct iommu_group, kobj)
  79
  80static LIST_HEAD(iommu_device_list);
  81static DEFINE_SPINLOCK(iommu_device_lock);
  82
  83int iommu_device_register(struct iommu_device *iommu)
  84{
  85        spin_lock(&iommu_device_lock);
  86        list_add_tail(&iommu->list, &iommu_device_list);
  87        spin_unlock(&iommu_device_lock);
  88
  89        return 0;
  90}
  91
  92void iommu_device_unregister(struct iommu_device *iommu)
  93{
  94        spin_lock(&iommu_device_lock);
  95        list_del(&iommu->list);
  96        spin_unlock(&iommu_device_lock);
  97}
  98
  99static struct iommu_param *iommu_get_dev_param(struct device *dev)
 100{
 101        struct iommu_param *param = dev->iommu_param;
 102
 103        if (param)
 104                return param;
 105
 106        param = kzalloc(sizeof(*param), GFP_KERNEL);
 107        if (!param)
 108                return NULL;
 109
 110        mutex_init(&param->lock);
 111        dev->iommu_param = param;
 112        return param;
 113}
 114
 115static void iommu_free_dev_param(struct device *dev)
 116{
 117        kfree(dev->iommu_param);
 118        dev->iommu_param = NULL;
 119}
 120
 121int iommu_probe_device(struct device *dev)
 122{
 123        const struct iommu_ops *ops = dev->bus->iommu_ops;
 124        int ret;
 125
 126        WARN_ON(dev->iommu_group);
 127        if (!ops)
 128                return -EINVAL;
 129
 130        if (!iommu_get_dev_param(dev))
 131                return -ENOMEM;
 132
 133        ret = ops->add_device(dev);
 134        if (ret)
 135                iommu_free_dev_param(dev);
 136
 137        return ret;
 138}
 139
 140void iommu_release_device(struct device *dev)
 141{
 142        const struct iommu_ops *ops = dev->bus->iommu_ops;
 143
 144        if (dev->iommu_group)
 145                ops->remove_device(dev);
 146
 147        iommu_free_dev_param(dev);
 148}
 149
 150static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
 151                                                 unsigned type);
 152static int __iommu_attach_device(struct iommu_domain *domain,
 153                                 struct device *dev);
 154static int __iommu_attach_group(struct iommu_domain *domain,
 155                                struct iommu_group *group);
 156static void __iommu_detach_group(struct iommu_domain *domain,
 157                                 struct iommu_group *group);
 158
 159static int __init iommu_set_def_domain_type(char *str)
 160{
 161        bool pt;
 162        int ret;
 163
 164        ret = kstrtobool(str, &pt);
 165        if (ret)
 166                return ret;
 167
 168        iommu_def_domain_type = pt ? IOMMU_DOMAIN_IDENTITY : IOMMU_DOMAIN_DMA;
 169        return 0;
 170}
 171early_param("iommu.passthrough", iommu_set_def_domain_type);
 172
 173static int __init iommu_dma_setup(char *str)
 174{
 175        return kstrtobool(str, &iommu_dma_strict);
 176}
 177early_param("iommu.strict", iommu_dma_setup);
 178
 179static ssize_t iommu_group_attr_show(struct kobject *kobj,
 180                                     struct attribute *__attr, char *buf)
 181{
 182        struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
 183        struct iommu_group *group = to_iommu_group(kobj);
 184        ssize_t ret = -EIO;
 185
 186        if (attr->show)
 187                ret = attr->show(group, buf);
 188        return ret;
 189}
 190
 191static ssize_t iommu_group_attr_store(struct kobject *kobj,
 192                                      struct attribute *__attr,
 193                                      const char *buf, size_t count)
 194{
 195        struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
 196        struct iommu_group *group = to_iommu_group(kobj);
 197        ssize_t ret = -EIO;
 198
 199        if (attr->store)
 200                ret = attr->store(group, buf, count);
 201        return ret;
 202}
 203
 204static const struct sysfs_ops iommu_group_sysfs_ops = {
 205        .show = iommu_group_attr_show,
 206        .store = iommu_group_attr_store,
 207};
 208
 209static int iommu_group_create_file(struct iommu_group *group,
 210                                   struct iommu_group_attribute *attr)
 211{
 212        return sysfs_create_file(&group->kobj, &attr->attr);
 213}
 214
 215static void iommu_group_remove_file(struct iommu_group *group,
 216                                    struct iommu_group_attribute *attr)
 217{
 218        sysfs_remove_file(&group->kobj, &attr->attr);
 219}
 220
 221static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf)
 222{
 223        return sprintf(buf, "%s\n", group->name);
 224}
 225
 226/**
 227 * iommu_insert_resv_region - Insert a new region in the
 228 * list of reserved regions.
 229 * @new: new region to insert
 230 * @regions: list of regions
 231 *
 232 * The new element is sorted by address with respect to the other
 233 * regions of the same type. In case it overlaps with another
 234 * region of the same type, regions are merged. In case it
 235 * overlaps with another region of different type, regions are
 236 * not merged.
 237 */
 238static int iommu_insert_resv_region(struct iommu_resv_region *new,
 239                                    struct list_head *regions)
 240{
 241        struct iommu_resv_region *region;
 242        phys_addr_t start = new->start;
 243        phys_addr_t end = new->start + new->length - 1;
 244        struct list_head *pos = regions->next;
 245
 246        while (pos != regions) {
 247                struct iommu_resv_region *entry =
 248                        list_entry(pos, struct iommu_resv_region, list);
 249                phys_addr_t a = entry->start;
 250                phys_addr_t b = entry->start + entry->length - 1;
 251                int type = entry->type;
 252
 253                if (end < a) {
 254                        goto insert;
 255                } else if (start > b) {
 256                        pos = pos->next;
 257                } else if ((start >= a) && (end <= b)) {
 258                        if (new->type == type)
 259                                return 0;
 260                        else
 261                                pos = pos->next;
 262                } else {
 263                        if (new->type == type) {
 264                                phys_addr_t new_start = min(a, start);
 265                                phys_addr_t new_end = max(b, end);
 266                                int ret;
 267
 268                                list_del(&entry->list);
 269                                entry->start = new_start;
 270                                entry->length = new_end - new_start + 1;
 271                                ret = iommu_insert_resv_region(entry, regions);
 272                                kfree(entry);
 273                                return ret;
 274                        } else {
 275                                pos = pos->next;
 276                        }
 277                }
 278        }
 279insert:
 280        region = iommu_alloc_resv_region(new->start, new->length,
 281                                         new->prot, new->type);
 282        if (!region)
 283                return -ENOMEM;
 284
 285        list_add_tail(&region->list, pos);
 286        return 0;
 287}
 288
 289static int
 290iommu_insert_device_resv_regions(struct list_head *dev_resv_regions,
 291                                 struct list_head *group_resv_regions)
 292{
 293        struct iommu_resv_region *entry;
 294        int ret = 0;
 295
 296        list_for_each_entry(entry, dev_resv_regions, list) {
 297                ret = iommu_insert_resv_region(entry, group_resv_regions);
 298                if (ret)
 299                        break;
 300        }
 301        return ret;
 302}
 303
 304int iommu_get_group_resv_regions(struct iommu_group *group,
 305                                 struct list_head *head)
 306{
 307        struct group_device *device;
 308        int ret = 0;
 309
 310        mutex_lock(&group->mutex);
 311        list_for_each_entry(device, &group->devices, list) {
 312                struct list_head dev_resv_regions;
 313
 314                INIT_LIST_HEAD(&dev_resv_regions);
 315                iommu_get_resv_regions(device->dev, &dev_resv_regions);
 316                ret = iommu_insert_device_resv_regions(&dev_resv_regions, head);
 317                iommu_put_resv_regions(device->dev, &dev_resv_regions);
 318                if (ret)
 319                        break;
 320        }
 321        mutex_unlock(&group->mutex);
 322        return ret;
 323}
 324EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions);
 325
 326static ssize_t iommu_group_show_resv_regions(struct iommu_group *group,
 327                                             char *buf)
 328{
 329        struct iommu_resv_region *region, *next;
 330        struct list_head group_resv_regions;
 331        char *str = buf;
 332
 333        INIT_LIST_HEAD(&group_resv_regions);
 334        iommu_get_group_resv_regions(group, &group_resv_regions);
 335
 336        list_for_each_entry_safe(region, next, &group_resv_regions, list) {
 337                str += sprintf(str, "0x%016llx 0x%016llx %s\n",
 338                               (long long int)region->start,
 339                               (long long int)(region->start +
 340                                                region->length - 1),
 341                               iommu_group_resv_type_string[region->type]);
 342                kfree(region);
 343        }
 344
 345        return (str - buf);
 346}
 347
 348static ssize_t iommu_group_show_type(struct iommu_group *group,
 349                                     char *buf)
 350{
 351        char *type = "unknown\n";
 352
 353        if (group->default_domain) {
 354                switch (group->default_domain->type) {
 355                case IOMMU_DOMAIN_BLOCKED:
 356                        type = "blocked\n";
 357                        break;
 358                case IOMMU_DOMAIN_IDENTITY:
 359                        type = "identity\n";
 360                        break;
 361                case IOMMU_DOMAIN_UNMANAGED:
 362                        type = "unmanaged\n";
 363                        break;
 364                case IOMMU_DOMAIN_DMA:
 365                        type = "DMA\n";
 366                        break;
 367                }
 368        }
 369        strcpy(buf, type);
 370
 371        return strlen(type);
 372}
 373
 374static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL);
 375
 376static IOMMU_GROUP_ATTR(reserved_regions, 0444,
 377                        iommu_group_show_resv_regions, NULL);
 378
 379static IOMMU_GROUP_ATTR(type, 0444, iommu_group_show_type, NULL);
 380
 381static void iommu_group_release(struct kobject *kobj)
 382{
 383        struct iommu_group *group = to_iommu_group(kobj);
 384
 385        pr_debug("Releasing group %d\n", group->id);
 386
 387        if (group->iommu_data_release)
 388                group->iommu_data_release(group->iommu_data);
 389
 390        ida_simple_remove(&iommu_group_ida, group->id);
 391
 392        if (group->default_domain)
 393                iommu_domain_free(group->default_domain);
 394
 395        kfree(group->name);
 396        kfree(group);
 397}
 398
 399static struct kobj_type iommu_group_ktype = {
 400        .sysfs_ops = &iommu_group_sysfs_ops,
 401        .release = iommu_group_release,
 402};
 403
 404/**
 405 * iommu_group_alloc - Allocate a new group
 406 *
 407 * This function is called by an iommu driver to allocate a new iommu
 408 * group.  The iommu group represents the minimum granularity of the iommu.
 409 * Upon successful return, the caller holds a reference to the supplied
 410 * group in order to hold the group until devices are added.  Use
 411 * iommu_group_put() to release this extra reference count, allowing the
 412 * group to be automatically reclaimed once it has no devices or external
 413 * references.
 414 */
 415struct iommu_group *iommu_group_alloc(void)
 416{
 417        struct iommu_group *group;
 418        int ret;
 419
 420        group = kzalloc(sizeof(*group), GFP_KERNEL);
 421        if (!group)
 422                return ERR_PTR(-ENOMEM);
 423
 424        group->kobj.kset = iommu_group_kset;
 425        mutex_init(&group->mutex);
 426        INIT_LIST_HEAD(&group->devices);
 427        BLOCKING_INIT_NOTIFIER_HEAD(&group->notifier);
 428
 429        ret = ida_simple_get(&iommu_group_ida, 0, 0, GFP_KERNEL);
 430        if (ret < 0) {
 431                kfree(group);
 432                return ERR_PTR(ret);
 433        }
 434        group->id = ret;
 435
 436        ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype,
 437                                   NULL, "%d", group->id);
 438        if (ret) {
 439                ida_simple_remove(&iommu_group_ida, group->id);
 440                kfree(group);
 441                return ERR_PTR(ret);
 442        }
 443
 444        group->devices_kobj = kobject_create_and_add("devices", &group->kobj);
 445        if (!group->devices_kobj) {
 446                kobject_put(&group->kobj); /* triggers .release & free */
 447                return ERR_PTR(-ENOMEM);
 448        }
 449
 450        /*
 451         * The devices_kobj holds a reference on the group kobject, so
 452         * as long as that exists so will the group.  We can therefore
 453         * use the devices_kobj for reference counting.
 454         */
 455        kobject_put(&group->kobj);
 456
 457        ret = iommu_group_create_file(group,
 458                                      &iommu_group_attr_reserved_regions);
 459        if (ret)
 460                return ERR_PTR(ret);
 461
 462        ret = iommu_group_create_file(group, &iommu_group_attr_type);
 463        if (ret)
 464                return ERR_PTR(ret);
 465
 466        pr_debug("Allocated group %d\n", group->id);
 467
 468        return group;
 469}
 470EXPORT_SYMBOL_GPL(iommu_group_alloc);
 471
 472struct iommu_group *iommu_group_get_by_id(int id)
 473{
 474        struct kobject *group_kobj;
 475        struct iommu_group *group;
 476        const char *name;
 477
 478        if (!iommu_group_kset)
 479                return NULL;
 480
 481        name = kasprintf(GFP_KERNEL, "%d", id);
 482        if (!name)
 483                return NULL;
 484
 485        group_kobj = kset_find_obj(iommu_group_kset, name);
 486        kfree(name);
 487
 488        if (!group_kobj)
 489                return NULL;
 490
 491        group = container_of(group_kobj, struct iommu_group, kobj);
 492        BUG_ON(group->id != id);
 493
 494        kobject_get(group->devices_kobj);
 495        kobject_put(&group->kobj);
 496
 497        return group;
 498}
 499EXPORT_SYMBOL_GPL(iommu_group_get_by_id);
 500
 501/**
 502 * iommu_group_get_iommudata - retrieve iommu_data registered for a group
 503 * @group: the group
 504 *
 505 * iommu drivers can store data in the group for use when doing iommu
 506 * operations.  This function provides a way to retrieve it.  Caller
 507 * should hold a group reference.
 508 */
 509void *iommu_group_get_iommudata(struct iommu_group *group)
 510{
 511        return group->iommu_data;
 512}
 513EXPORT_SYMBOL_GPL(iommu_group_get_iommudata);
 514
 515/**
 516 * iommu_group_set_iommudata - set iommu_data for a group
 517 * @group: the group
 518 * @iommu_data: new data
 519 * @release: release function for iommu_data
 520 *
 521 * iommu drivers can store data in the group for use when doing iommu
 522 * operations.  This function provides a way to set the data after
 523 * the group has been allocated.  Caller should hold a group reference.
 524 */
 525void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data,
 526                               void (*release)(void *iommu_data))
 527{
 528        group->iommu_data = iommu_data;
 529        group->iommu_data_release = release;
 530}
 531EXPORT_SYMBOL_GPL(iommu_group_set_iommudata);
 532
 533/**
 534 * iommu_group_set_name - set name for a group
 535 * @group: the group
 536 * @name: name
 537 *
 538 * Allow iommu driver to set a name for a group.  When set it will
 539 * appear in a name attribute file under the group in sysfs.
 540 */
 541int iommu_group_set_name(struct iommu_group *group, const char *name)
 542{
 543        int ret;
 544
 545        if (group->name) {
 546                iommu_group_remove_file(group, &iommu_group_attr_name);
 547                kfree(group->name);
 548                group->name = NULL;
 549                if (!name)
 550                        return 0;
 551        }
 552
 553        group->name = kstrdup(name, GFP_KERNEL);
 554        if (!group->name)
 555                return -ENOMEM;
 556
 557        ret = iommu_group_create_file(group, &iommu_group_attr_name);
 558        if (ret) {
 559                kfree(group->name);
 560                group->name = NULL;
 561                return ret;
 562        }
 563
 564        return 0;
 565}
 566EXPORT_SYMBOL_GPL(iommu_group_set_name);
 567
 568static int iommu_group_create_direct_mappings(struct iommu_group *group,
 569                                              struct device *dev)
 570{
 571        struct iommu_domain *domain = group->default_domain;
 572        struct iommu_resv_region *entry;
 573        struct list_head mappings;
 574        unsigned long pg_size;
 575        int ret = 0;
 576
 577        if (!domain || domain->type != IOMMU_DOMAIN_DMA)
 578                return 0;
 579
 580        BUG_ON(!domain->pgsize_bitmap);
 581
 582        pg_size = 1UL << __ffs(domain->pgsize_bitmap);
 583        INIT_LIST_HEAD(&mappings);
 584
 585        iommu_get_resv_regions(dev, &mappings);
 586
 587        /* We need to consider overlapping regions for different devices */
 588        list_for_each_entry(entry, &mappings, list) {
 589                dma_addr_t start, end, addr;
 590
 591                if (domain->ops->apply_resv_region)
 592                        domain->ops->apply_resv_region(dev, domain, entry);
 593
 594                start = ALIGN(entry->start, pg_size);
 595                end   = ALIGN(entry->start + entry->length, pg_size);
 596
 597                if (entry->type != IOMMU_RESV_DIRECT &&
 598                    entry->type != IOMMU_RESV_DIRECT_RELAXABLE)
 599                        continue;
 600
 601                for (addr = start; addr < end; addr += pg_size) {
 602                        phys_addr_t phys_addr;
 603
 604                        phys_addr = iommu_iova_to_phys(domain, addr);
 605                        if (phys_addr)
 606                                continue;
 607
 608                        ret = iommu_map(domain, addr, addr, pg_size, entry->prot);
 609                        if (ret)
 610                                goto out;
 611                }
 612
 613        }
 614
 615        iommu_flush_tlb_all(domain);
 616
 617out:
 618        iommu_put_resv_regions(dev, &mappings);
 619
 620        return ret;
 621}
 622
 623/**
 624 * iommu_group_add_device - add a device to an iommu group
 625 * @group: the group into which to add the device (reference should be held)
 626 * @dev: the device
 627 *
 628 * This function is called by an iommu driver to add a device into a
 629 * group.  Adding a device increments the group reference count.
 630 */
 631int iommu_group_add_device(struct iommu_group *group, struct device *dev)
 632{
 633        int ret, i = 0;
 634        struct group_device *device;
 635
 636        device = kzalloc(sizeof(*device), GFP_KERNEL);
 637        if (!device)
 638                return -ENOMEM;
 639
 640        device->dev = dev;
 641
 642        ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group");
 643        if (ret)
 644                goto err_free_device;
 645
 646        device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj));
 647rename:
 648        if (!device->name) {
 649                ret = -ENOMEM;
 650                goto err_remove_link;
 651        }
 652
 653        ret = sysfs_create_link_nowarn(group->devices_kobj,
 654                                       &dev->kobj, device->name);
 655        if (ret) {
 656                if (ret == -EEXIST && i >= 0) {
 657                        /*
 658                         * Account for the slim chance of collision
 659                         * and append an instance to the name.
 660                         */
 661                        kfree(device->name);
 662                        device->name = kasprintf(GFP_KERNEL, "%s.%d",
 663                                                 kobject_name(&dev->kobj), i++);
 664                        goto rename;
 665                }
 666                goto err_free_name;
 667        }
 668
 669        kobject_get(group->devices_kobj);
 670
 671        dev->iommu_group = group;
 672
 673        iommu_group_create_direct_mappings(group, dev);
 674
 675        mutex_lock(&group->mutex);
 676        list_add_tail(&device->list, &group->devices);
 677        if (group->domain)
 678                ret = __iommu_attach_device(group->domain, dev);
 679        mutex_unlock(&group->mutex);
 680        if (ret)
 681                goto err_put_group;
 682
 683        /* Notify any listeners about change to group. */
 684        blocking_notifier_call_chain(&group->notifier,
 685                                     IOMMU_GROUP_NOTIFY_ADD_DEVICE, dev);
 686
 687        trace_add_device_to_group(group->id, dev);
 688
 689        dev_info(dev, "Adding to iommu group %d\n", group->id);
 690
 691        return 0;
 692
 693err_put_group:
 694        mutex_lock(&group->mutex);
 695        list_del(&device->list);
 696        mutex_unlock(&group->mutex);
 697        dev->iommu_group = NULL;
 698        kobject_put(group->devices_kobj);
 699err_free_name:
 700        kfree(device->name);
 701err_remove_link:
 702        sysfs_remove_link(&dev->kobj, "iommu_group");
 703err_free_device:
 704        kfree(device);
 705        dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret);
 706        return ret;
 707}
 708EXPORT_SYMBOL_GPL(iommu_group_add_device);
 709
 710/**
 711 * iommu_group_remove_device - remove a device from it's current group
 712 * @dev: device to be removed
 713 *
 714 * This function is called by an iommu driver to remove the device from
 715 * it's current group.  This decrements the iommu group reference count.
 716 */
 717void iommu_group_remove_device(struct device *dev)
 718{
 719        struct iommu_group *group = dev->iommu_group;
 720        struct group_device *tmp_device, *device = NULL;
 721
 722        dev_info(dev, "Removing from iommu group %d\n", group->id);
 723
 724        /* Pre-notify listeners that a device is being removed. */
 725        blocking_notifier_call_chain(&group->notifier,
 726                                     IOMMU_GROUP_NOTIFY_DEL_DEVICE, dev);
 727
 728        mutex_lock(&group->mutex);
 729        list_for_each_entry(tmp_device, &group->devices, list) {
 730                if (tmp_device->dev == dev) {
 731                        device = tmp_device;
 732                        list_del(&device->list);
 733                        break;
 734                }
 735        }
 736        mutex_unlock(&group->mutex);
 737
 738        if (!device)
 739                return;
 740
 741        sysfs_remove_link(group->devices_kobj, device->name);
 742        sysfs_remove_link(&dev->kobj, "iommu_group");
 743
 744        trace_remove_device_from_group(group->id, dev);
 745
 746        kfree(device->name);
 747        kfree(device);
 748        dev->iommu_group = NULL;
 749        kobject_put(group->devices_kobj);
 750}
 751EXPORT_SYMBOL_GPL(iommu_group_remove_device);
 752
 753static int iommu_group_device_count(struct iommu_group *group)
 754{
 755        struct group_device *entry;
 756        int ret = 0;
 757
 758        list_for_each_entry(entry, &group->devices, list)
 759                ret++;
 760
 761        return ret;
 762}
 763
 764/**
 765 * iommu_group_for_each_dev - iterate over each device in the group
 766 * @group: the group
 767 * @data: caller opaque data to be passed to callback function
 768 * @fn: caller supplied callback function
 769 *
 770 * This function is called by group users to iterate over group devices.
 771 * Callers should hold a reference count to the group during callback.
 772 * The group->mutex is held across callbacks, which will block calls to
 773 * iommu_group_add/remove_device.
 774 */
 775static int __iommu_group_for_each_dev(struct iommu_group *group, void *data,
 776                                      int (*fn)(struct device *, void *))
 777{
 778        struct group_device *device;
 779        int ret = 0;
 780
 781        list_for_each_entry(device, &group->devices, list) {
 782                ret = fn(device->dev, data);
 783                if (ret)
 784                        break;
 785        }
 786        return ret;
 787}
 788
 789
 790int iommu_group_for_each_dev(struct iommu_group *group, void *data,
 791                             int (*fn)(struct device *, void *))
 792{
 793        int ret;
 794
 795        mutex_lock(&group->mutex);
 796        ret = __iommu_group_for_each_dev(group, data, fn);
 797        mutex_unlock(&group->mutex);
 798
 799        return ret;
 800}
 801EXPORT_SYMBOL_GPL(iommu_group_for_each_dev);
 802
 803/**
 804 * iommu_group_get - Return the group for a device and increment reference
 805 * @dev: get the group that this device belongs to
 806 *
 807 * This function is called by iommu drivers and users to get the group
 808 * for the specified device.  If found, the group is returned and the group
 809 * reference in incremented, else NULL.
 810 */
 811struct iommu_group *iommu_group_get(struct device *dev)
 812{
 813        struct iommu_group *group = dev->iommu_group;
 814
 815        if (group)
 816                kobject_get(group->devices_kobj);
 817
 818        return group;
 819}
 820EXPORT_SYMBOL_GPL(iommu_group_get);
 821
 822/**
 823 * iommu_group_ref_get - Increment reference on a group
 824 * @group: the group to use, must not be NULL
 825 *
 826 * This function is called by iommu drivers to take additional references on an
 827 * existing group.  Returns the given group for convenience.
 828 */
 829struct iommu_group *iommu_group_ref_get(struct iommu_group *group)
 830{
 831        kobject_get(group->devices_kobj);
 832        return group;
 833}
 834
 835/**
 836 * iommu_group_put - Decrement group reference
 837 * @group: the group to use
 838 *
 839 * This function is called by iommu drivers and users to release the
 840 * iommu group.  Once the reference count is zero, the group is released.
 841 */
 842void iommu_group_put(struct iommu_group *group)
 843{
 844        if (group)
 845                kobject_put(group->devices_kobj);
 846}
 847EXPORT_SYMBOL_GPL(iommu_group_put);
 848
 849/**
 850 * iommu_group_register_notifier - Register a notifier for group changes
 851 * @group: the group to watch
 852 * @nb: notifier block to signal
 853 *
 854 * This function allows iommu group users to track changes in a group.
 855 * See include/linux/iommu.h for actions sent via this notifier.  Caller
 856 * should hold a reference to the group throughout notifier registration.
 857 */
 858int iommu_group_register_notifier(struct iommu_group *group,
 859                                  struct notifier_block *nb)
 860{
 861        return blocking_notifier_chain_register(&group->notifier, nb);
 862}
 863EXPORT_SYMBOL_GPL(iommu_group_register_notifier);
 864
 865/**
 866 * iommu_group_unregister_notifier - Unregister a notifier
 867 * @group: the group to watch
 868 * @nb: notifier block to signal
 869 *
 870 * Unregister a previously registered group notifier block.
 871 */
 872int iommu_group_unregister_notifier(struct iommu_group *group,
 873                                    struct notifier_block *nb)
 874{
 875        return blocking_notifier_chain_unregister(&group->notifier, nb);
 876}
 877EXPORT_SYMBOL_GPL(iommu_group_unregister_notifier);
 878
 879/**
 880 * iommu_register_device_fault_handler() - Register a device fault handler
 881 * @dev: the device
 882 * @handler: the fault handler
 883 * @data: private data passed as argument to the handler
 884 *
 885 * When an IOMMU fault event is received, this handler gets called with the
 886 * fault event and data as argument. The handler should return 0 on success. If
 887 * the fault is recoverable (IOMMU_FAULT_PAGE_REQ), the consumer should also
 888 * complete the fault by calling iommu_page_response() with one of the following
 889 * response code:
 890 * - IOMMU_PAGE_RESP_SUCCESS: retry the translation
 891 * - IOMMU_PAGE_RESP_INVALID: terminate the fault
 892 * - IOMMU_PAGE_RESP_FAILURE: terminate the fault and stop reporting
 893 *   page faults if possible.
 894 *
 895 * Return 0 if the fault handler was installed successfully, or an error.
 896 */
 897int iommu_register_device_fault_handler(struct device *dev,
 898                                        iommu_dev_fault_handler_t handler,
 899                                        void *data)
 900{
 901        struct iommu_param *param = dev->iommu_param;
 902        int ret = 0;
 903
 904        if (!param)
 905                return -EINVAL;
 906
 907        mutex_lock(&param->lock);
 908        /* Only allow one fault handler registered for each device */
 909        if (param->fault_param) {
 910                ret = -EBUSY;
 911                goto done_unlock;
 912        }
 913
 914        get_device(dev);
 915        param->fault_param = kzalloc(sizeof(*param->fault_param), GFP_KERNEL);
 916        if (!param->fault_param) {
 917                put_device(dev);
 918                ret = -ENOMEM;
 919                goto done_unlock;
 920        }
 921        param->fault_param->handler = handler;
 922        param->fault_param->data = data;
 923        mutex_init(&param->fault_param->lock);
 924        INIT_LIST_HEAD(&param->fault_param->faults);
 925
 926done_unlock:
 927        mutex_unlock(&param->lock);
 928
 929        return ret;
 930}
 931EXPORT_SYMBOL_GPL(iommu_register_device_fault_handler);
 932
 933/**
 934 * iommu_unregister_device_fault_handler() - Unregister the device fault handler
 935 * @dev: the device
 936 *
 937 * Remove the device fault handler installed with
 938 * iommu_register_device_fault_handler().
 939 *
 940 * Return 0 on success, or an error.
 941 */
 942int iommu_unregister_device_fault_handler(struct device *dev)
 943{
 944        struct iommu_param *param = dev->iommu_param;
 945        int ret = 0;
 946
 947        if (!param)
 948                return -EINVAL;
 949
 950        mutex_lock(&param->lock);
 951
 952        if (!param->fault_param)
 953                goto unlock;
 954
 955        /* we cannot unregister handler if there are pending faults */
 956        if (!list_empty(&param->fault_param->faults)) {
 957                ret = -EBUSY;
 958                goto unlock;
 959        }
 960
 961        kfree(param->fault_param);
 962        param->fault_param = NULL;
 963        put_device(dev);
 964unlock:
 965        mutex_unlock(&param->lock);
 966
 967        return ret;
 968}
 969EXPORT_SYMBOL_GPL(iommu_unregister_device_fault_handler);
 970
 971/**
 972 * iommu_report_device_fault() - Report fault event to device driver
 973 * @dev: the device
 974 * @evt: fault event data
 975 *
 976 * Called by IOMMU drivers when a fault is detected, typically in a threaded IRQ
 977 * handler. When this function fails and the fault is recoverable, it is the
 978 * caller's responsibility to complete the fault.
 979 *
 980 * Return 0 on success, or an error.
 981 */
 982int iommu_report_device_fault(struct device *dev, struct iommu_fault_event *evt)
 983{
 984        struct iommu_param *param = dev->iommu_param;
 985        struct iommu_fault_event *evt_pending = NULL;
 986        struct iommu_fault_param *fparam;
 987        int ret = 0;
 988
 989        if (!param || !evt)
 990                return -EINVAL;
 991
 992        /* we only report device fault if there is a handler registered */
 993        mutex_lock(&param->lock);
 994        fparam = param->fault_param;
 995        if (!fparam || !fparam->handler) {
 996                ret = -EINVAL;
 997                goto done_unlock;
 998        }
 999
1000        if (evt->fault.type == IOMMU_FAULT_PAGE_REQ &&
1001            (evt->fault.prm.flags & IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE)) {
1002                evt_pending = kmemdup(evt, sizeof(struct iommu_fault_event),
1003                                      GFP_KERNEL);
1004                if (!evt_pending) {
1005                        ret = -ENOMEM;
1006                        goto done_unlock;
1007                }
1008                mutex_lock(&fparam->lock);
1009                list_add_tail(&evt_pending->list, &fparam->faults);
1010                mutex_unlock(&fparam->lock);
1011        }
1012
1013        ret = fparam->handler(&evt->fault, fparam->data);
1014        if (ret && evt_pending) {
1015                mutex_lock(&fparam->lock);
1016                list_del(&evt_pending->list);
1017                mutex_unlock(&fparam->lock);
1018                kfree(evt_pending);
1019        }
1020done_unlock:
1021        mutex_unlock(&param->lock);
1022        return ret;
1023}
1024EXPORT_SYMBOL_GPL(iommu_report_device_fault);
1025
1026int iommu_page_response(struct device *dev,
1027                        struct iommu_page_response *msg)
1028{
1029        bool pasid_valid;
1030        int ret = -EINVAL;
1031        struct iommu_fault_event *evt;
1032        struct iommu_fault_page_request *prm;
1033        struct iommu_param *param = dev->iommu_param;
1034        struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1035
1036        if (!domain || !domain->ops->page_response)
1037                return -ENODEV;
1038
1039        if (!param || !param->fault_param)
1040                return -EINVAL;
1041
1042        if (msg->version != IOMMU_PAGE_RESP_VERSION_1 ||
1043            msg->flags & ~IOMMU_PAGE_RESP_PASID_VALID)
1044                return -EINVAL;
1045
1046        /* Only send response if there is a fault report pending */
1047        mutex_lock(&param->fault_param->lock);
1048        if (list_empty(&param->fault_param->faults)) {
1049                dev_warn_ratelimited(dev, "no pending PRQ, drop response\n");
1050                goto done_unlock;
1051        }
1052        /*
1053         * Check if we have a matching page request pending to respond,
1054         * otherwise return -EINVAL
1055         */
1056        list_for_each_entry(evt, &param->fault_param->faults, list) {
1057                prm = &evt->fault.prm;
1058                pasid_valid = prm->flags & IOMMU_FAULT_PAGE_REQUEST_PASID_VALID;
1059
1060                if ((pasid_valid && prm->pasid != msg->pasid) ||
1061                    prm->grpid != msg->grpid)
1062                        continue;
1063
1064                /* Sanitize the reply */
1065                msg->flags = pasid_valid ? IOMMU_PAGE_RESP_PASID_VALID : 0;
1066
1067                ret = domain->ops->page_response(dev, evt, msg);
1068                list_del(&evt->list);
1069                kfree(evt);
1070                break;
1071        }
1072
1073done_unlock:
1074        mutex_unlock(&param->fault_param->lock);
1075        return ret;
1076}
1077EXPORT_SYMBOL_GPL(iommu_page_response);
1078
1079/**
1080 * iommu_group_id - Return ID for a group
1081 * @group: the group to ID
1082 *
1083 * Return the unique ID for the group matching the sysfs group number.
1084 */
1085int iommu_group_id(struct iommu_group *group)
1086{
1087        return group->id;
1088}
1089EXPORT_SYMBOL_GPL(iommu_group_id);
1090
1091static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1092                                               unsigned long *devfns);
1093
1094/*
1095 * To consider a PCI device isolated, we require ACS to support Source
1096 * Validation, Request Redirection, Completer Redirection, and Upstream
1097 * Forwarding.  This effectively means that devices cannot spoof their
1098 * requester ID, requests and completions cannot be redirected, and all
1099 * transactions are forwarded upstream, even as it passes through a
1100 * bridge where the target device is downstream.
1101 */
1102#define REQ_ACS_FLAGS   (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
1103
1104/*
1105 * For multifunction devices which are not isolated from each other, find
1106 * all the other non-isolated functions and look for existing groups.  For
1107 * each function, we also need to look for aliases to or from other devices
1108 * that may already have a group.
1109 */
1110static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev,
1111                                                        unsigned long *devfns)
1112{
1113        struct pci_dev *tmp = NULL;
1114        struct iommu_group *group;
1115
1116        if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS))
1117                return NULL;
1118
1119        for_each_pci_dev(tmp) {
1120                if (tmp == pdev || tmp->bus != pdev->bus ||
1121                    PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) ||
1122                    pci_acs_enabled(tmp, REQ_ACS_FLAGS))
1123                        continue;
1124
1125                group = get_pci_alias_group(tmp, devfns);
1126                if (group) {
1127                        pci_dev_put(tmp);
1128                        return group;
1129                }
1130        }
1131
1132        return NULL;
1133}
1134
1135/*
1136 * Look for aliases to or from the given device for existing groups. DMA
1137 * aliases are only supported on the same bus, therefore the search
1138 * space is quite small (especially since we're really only looking at pcie
1139 * device, and therefore only expect multiple slots on the root complex or
1140 * downstream switch ports).  It's conceivable though that a pair of
1141 * multifunction devices could have aliases between them that would cause a
1142 * loop.  To prevent this, we use a bitmap to track where we've been.
1143 */
1144static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1145                                               unsigned long *devfns)
1146{
1147        struct pci_dev *tmp = NULL;
1148        struct iommu_group *group;
1149
1150        if (test_and_set_bit(pdev->devfn & 0xff, devfns))
1151                return NULL;
1152
1153        group = iommu_group_get(&pdev->dev);
1154        if (group)
1155                return group;
1156
1157        for_each_pci_dev(tmp) {
1158                if (tmp == pdev || tmp->bus != pdev->bus)
1159                        continue;
1160
1161                /* We alias them or they alias us */
1162                if (pci_devs_are_dma_aliases(pdev, tmp)) {
1163                        group = get_pci_alias_group(tmp, devfns);
1164                        if (group) {
1165                                pci_dev_put(tmp);
1166                                return group;
1167                        }
1168
1169                        group = get_pci_function_alias_group(tmp, devfns);
1170                        if (group) {
1171                                pci_dev_put(tmp);
1172                                return group;
1173                        }
1174                }
1175        }
1176
1177        return NULL;
1178}
1179
1180struct group_for_pci_data {
1181        struct pci_dev *pdev;
1182        struct iommu_group *group;
1183};
1184
1185/*
1186 * DMA alias iterator callback, return the last seen device.  Stop and return
1187 * the IOMMU group if we find one along the way.
1188 */
1189static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque)
1190{
1191        struct group_for_pci_data *data = opaque;
1192
1193        data->pdev = pdev;
1194        data->group = iommu_group_get(&pdev->dev);
1195
1196        return data->group != NULL;
1197}
1198
1199/*
1200 * Generic device_group call-back function. It just allocates one
1201 * iommu-group per device.
1202 */
1203struct iommu_group *generic_device_group(struct device *dev)
1204{
1205        return iommu_group_alloc();
1206}
1207
1208/*
1209 * Use standard PCI bus topology, isolation features, and DMA alias quirks
1210 * to find or create an IOMMU group for a device.
1211 */
1212struct iommu_group *pci_device_group(struct device *dev)
1213{
1214        struct pci_dev *pdev = to_pci_dev(dev);
1215        struct group_for_pci_data data;
1216        struct pci_bus *bus;
1217        struct iommu_group *group = NULL;
1218        u64 devfns[4] = { 0 };
1219
1220        if (WARN_ON(!dev_is_pci(dev)))
1221                return ERR_PTR(-EINVAL);
1222
1223        /*
1224         * Find the upstream DMA alias for the device.  A device must not
1225         * be aliased due to topology in order to have its own IOMMU group.
1226         * If we find an alias along the way that already belongs to a
1227         * group, use it.
1228         */
1229        if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data))
1230                return data.group;
1231
1232        pdev = data.pdev;
1233
1234        /*
1235         * Continue upstream from the point of minimum IOMMU granularity
1236         * due to aliases to the point where devices are protected from
1237         * peer-to-peer DMA by PCI ACS.  Again, if we find an existing
1238         * group, use it.
1239         */
1240        for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) {
1241                if (!bus->self)
1242                        continue;
1243
1244                if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
1245                        break;
1246
1247                pdev = bus->self;
1248
1249                group = iommu_group_get(&pdev->dev);
1250                if (group)
1251                        return group;
1252        }
1253
1254        /*
1255         * Look for existing groups on device aliases.  If we alias another
1256         * device or another device aliases us, use the same group.
1257         */
1258        group = get_pci_alias_group(pdev, (unsigned long *)devfns);
1259        if (group)
1260                return group;
1261
1262        /*
1263         * Look for existing groups on non-isolated functions on the same
1264         * slot and aliases of those funcions, if any.  No need to clear
1265         * the search bitmap, the tested devfns are still valid.
1266         */
1267        group = get_pci_function_alias_group(pdev, (unsigned long *)devfns);
1268        if (group)
1269                return group;
1270
1271        /* No shared group found, allocate new */
1272        return iommu_group_alloc();
1273}
1274
1275/* Get the IOMMU group for device on fsl-mc bus */
1276struct iommu_group *fsl_mc_device_group(struct device *dev)
1277{
1278        struct device *cont_dev = fsl_mc_cont_dev(dev);
1279        struct iommu_group *group;
1280
1281        group = iommu_group_get(cont_dev);
1282        if (!group)
1283                group = iommu_group_alloc();
1284        return group;
1285}
1286
1287/**
1288 * iommu_group_get_for_dev - Find or create the IOMMU group for a device
1289 * @dev: target device
1290 *
1291 * This function is intended to be called by IOMMU drivers and extended to
1292 * support common, bus-defined algorithms when determining or creating the
1293 * IOMMU group for a device.  On success, the caller will hold a reference
1294 * to the returned IOMMU group, which will already include the provided
1295 * device.  The reference should be released with iommu_group_put().
1296 */
1297struct iommu_group *iommu_group_get_for_dev(struct device *dev)
1298{
1299        const struct iommu_ops *ops = dev->bus->iommu_ops;
1300        struct iommu_group *group;
1301        int ret;
1302
1303        group = iommu_group_get(dev);
1304        if (group)
1305                return group;
1306
1307        if (!ops)
1308                return ERR_PTR(-EINVAL);
1309
1310        group = ops->device_group(dev);
1311        if (WARN_ON_ONCE(group == NULL))
1312                return ERR_PTR(-EINVAL);
1313
1314        if (IS_ERR(group))
1315                return group;
1316
1317        /*
1318         * Try to allocate a default domain - needs support from the
1319         * IOMMU driver.
1320         */
1321        if (!group->default_domain) {
1322                struct iommu_domain *dom;
1323
1324                dom = __iommu_domain_alloc(dev->bus, iommu_def_domain_type);
1325                if (!dom && iommu_def_domain_type != IOMMU_DOMAIN_DMA) {
1326                        dom = __iommu_domain_alloc(dev->bus, IOMMU_DOMAIN_DMA);
1327                        if (dom) {
1328                                dev_warn(dev,
1329                                         "failed to allocate default IOMMU domain of type %u; falling back to IOMMU_DOMAIN_DMA",
1330                                         iommu_def_domain_type);
1331                        }
1332                }
1333
1334                group->default_domain = dom;
1335                if (!group->domain)
1336                        group->domain = dom;
1337
1338                if (dom && !iommu_dma_strict) {
1339                        int attr = 1;
1340                        iommu_domain_set_attr(dom,
1341                                              DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE,
1342                                              &attr);
1343                }
1344        }
1345
1346        ret = iommu_group_add_device(group, dev);
1347        if (ret) {
1348                iommu_group_put(group);
1349                return ERR_PTR(ret);
1350        }
1351
1352        return group;
1353}
1354
1355struct iommu_domain *iommu_group_default_domain(struct iommu_group *group)
1356{
1357        return group->default_domain;
1358}
1359
1360static int add_iommu_group(struct device *dev, void *data)
1361{
1362        int ret = iommu_probe_device(dev);
1363
1364        /*
1365         * We ignore -ENODEV errors for now, as they just mean that the
1366         * device is not translated by an IOMMU. We still care about
1367         * other errors and fail to initialize when they happen.
1368         */
1369        if (ret == -ENODEV)
1370                ret = 0;
1371
1372        return ret;
1373}
1374
1375static int remove_iommu_group(struct device *dev, void *data)
1376{
1377        iommu_release_device(dev);
1378
1379        return 0;
1380}
1381
1382static int iommu_bus_notifier(struct notifier_block *nb,
1383                              unsigned long action, void *data)
1384{
1385        unsigned long group_action = 0;
1386        struct device *dev = data;
1387        struct iommu_group *group;
1388
1389        /*
1390         * ADD/DEL call into iommu driver ops if provided, which may
1391         * result in ADD/DEL notifiers to group->notifier
1392         */
1393        if (action == BUS_NOTIFY_ADD_DEVICE) {
1394                int ret;
1395
1396                ret = iommu_probe_device(dev);
1397                return (ret) ? NOTIFY_DONE : NOTIFY_OK;
1398        } else if (action == BUS_NOTIFY_REMOVED_DEVICE) {
1399                iommu_release_device(dev);
1400                return NOTIFY_OK;
1401        }
1402
1403        /*
1404         * Remaining BUS_NOTIFYs get filtered and republished to the
1405         * group, if anyone is listening
1406         */
1407        group = iommu_group_get(dev);
1408        if (!group)
1409                return 0;
1410
1411        switch (action) {
1412        case BUS_NOTIFY_BIND_DRIVER:
1413                group_action = IOMMU_GROUP_NOTIFY_BIND_DRIVER;
1414                break;
1415        case BUS_NOTIFY_BOUND_DRIVER:
1416                group_action = IOMMU_GROUP_NOTIFY_BOUND_DRIVER;
1417                break;
1418        case BUS_NOTIFY_UNBIND_DRIVER:
1419                group_action = IOMMU_GROUP_NOTIFY_UNBIND_DRIVER;
1420                break;
1421        case BUS_NOTIFY_UNBOUND_DRIVER:
1422                group_action = IOMMU_GROUP_NOTIFY_UNBOUND_DRIVER;
1423                break;
1424        }
1425
1426        if (group_action)
1427                blocking_notifier_call_chain(&group->notifier,
1428                                             group_action, dev);
1429
1430        iommu_group_put(group);
1431        return 0;
1432}
1433
1434static int iommu_bus_init(struct bus_type *bus, const struct iommu_ops *ops)
1435{
1436        int err;
1437        struct notifier_block *nb;
1438
1439        nb = kzalloc(sizeof(struct notifier_block), GFP_KERNEL);
1440        if (!nb)
1441                return -ENOMEM;
1442
1443        nb->notifier_call = iommu_bus_notifier;
1444
1445        err = bus_register_notifier(bus, nb);
1446        if (err)
1447                goto out_free;
1448
1449        err = bus_for_each_dev(bus, NULL, NULL, add_iommu_group);
1450        if (err)
1451                goto out_err;
1452
1453
1454        return 0;
1455
1456out_err:
1457        /* Clean up */
1458        bus_for_each_dev(bus, NULL, NULL, remove_iommu_group);
1459        bus_unregister_notifier(bus, nb);
1460
1461out_free:
1462        kfree(nb);
1463
1464        return err;
1465}
1466
1467/**
1468 * bus_set_iommu - set iommu-callbacks for the bus
1469 * @bus: bus.
1470 * @ops: the callbacks provided by the iommu-driver
1471 *
1472 * This function is called by an iommu driver to set the iommu methods
1473 * used for a particular bus. Drivers for devices on that bus can use
1474 * the iommu-api after these ops are registered.
1475 * This special function is needed because IOMMUs are usually devices on
1476 * the bus itself, so the iommu drivers are not initialized when the bus
1477 * is set up. With this function the iommu-driver can set the iommu-ops
1478 * afterwards.
1479 */
1480int bus_set_iommu(struct bus_type *bus, const struct iommu_ops *ops)
1481{
1482        int err;
1483
1484        if (bus->iommu_ops != NULL)
1485                return -EBUSY;
1486
1487        bus->iommu_ops = ops;
1488
1489        /* Do IOMMU specific setup for this bus-type */
1490        err = iommu_bus_init(bus, ops);
1491        if (err)
1492                bus->iommu_ops = NULL;
1493
1494        return err;
1495}
1496EXPORT_SYMBOL_GPL(bus_set_iommu);
1497
1498bool iommu_present(struct bus_type *bus)
1499{
1500        return bus->iommu_ops != NULL;
1501}
1502EXPORT_SYMBOL_GPL(iommu_present);
1503
1504bool iommu_capable(struct bus_type *bus, enum iommu_cap cap)
1505{
1506        if (!bus->iommu_ops || !bus->iommu_ops->capable)
1507                return false;
1508
1509        return bus->iommu_ops->capable(cap);
1510}
1511EXPORT_SYMBOL_GPL(iommu_capable);
1512
1513/**
1514 * iommu_set_fault_handler() - set a fault handler for an iommu domain
1515 * @domain: iommu domain
1516 * @handler: fault handler
1517 * @token: user data, will be passed back to the fault handler
1518 *
1519 * This function should be used by IOMMU users which want to be notified
1520 * whenever an IOMMU fault happens.
1521 *
1522 * The fault handler itself should return 0 on success, and an appropriate
1523 * error code otherwise.
1524 */
1525void iommu_set_fault_handler(struct iommu_domain *domain,
1526                                        iommu_fault_handler_t handler,
1527                                        void *token)
1528{
1529        BUG_ON(!domain);
1530
1531        domain->handler = handler;
1532        domain->handler_token = token;
1533}
1534EXPORT_SYMBOL_GPL(iommu_set_fault_handler);
1535
1536static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
1537                                                 unsigned type)
1538{
1539        struct iommu_domain *domain;
1540
1541        if (bus == NULL || bus->iommu_ops == NULL)
1542                return NULL;
1543
1544        domain = bus->iommu_ops->domain_alloc(type);
1545        if (!domain)
1546                return NULL;
1547
1548        domain->ops  = bus->iommu_ops;
1549        domain->type = type;
1550        /* Assume all sizes by default; the driver may override this later */
1551        domain->pgsize_bitmap  = bus->iommu_ops->pgsize_bitmap;
1552
1553        return domain;
1554}
1555
1556struct iommu_domain *iommu_domain_alloc(struct bus_type *bus)
1557{
1558        return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED);
1559}
1560EXPORT_SYMBOL_GPL(iommu_domain_alloc);
1561
1562void iommu_domain_free(struct iommu_domain *domain)
1563{
1564        domain->ops->domain_free(domain);
1565}
1566EXPORT_SYMBOL_GPL(iommu_domain_free);
1567
1568static int __iommu_attach_device(struct iommu_domain *domain,
1569                                 struct device *dev)
1570{
1571        int ret;
1572        if ((domain->ops->is_attach_deferred != NULL) &&
1573            domain->ops->is_attach_deferred(domain, dev))
1574                return 0;
1575
1576        if (unlikely(domain->ops->attach_dev == NULL))
1577                return -ENODEV;
1578
1579        ret = domain->ops->attach_dev(domain, dev);
1580        if (!ret)
1581                trace_attach_device_to_domain(dev);
1582        return ret;
1583}
1584
1585int iommu_attach_device(struct iommu_domain *domain, struct device *dev)
1586{
1587        struct iommu_group *group;
1588        int ret;
1589
1590        group = iommu_group_get(dev);
1591        if (!group)
1592                return -ENODEV;
1593
1594        /*
1595         * Lock the group to make sure the device-count doesn't
1596         * change while we are attaching
1597         */
1598        mutex_lock(&group->mutex);
1599        ret = -EINVAL;
1600        if (iommu_group_device_count(group) != 1)
1601                goto out_unlock;
1602
1603        ret = __iommu_attach_group(domain, group);
1604
1605out_unlock:
1606        mutex_unlock(&group->mutex);
1607        iommu_group_put(group);
1608
1609        return ret;
1610}
1611EXPORT_SYMBOL_GPL(iommu_attach_device);
1612
1613static void __iommu_detach_device(struct iommu_domain *domain,
1614                                  struct device *dev)
1615{
1616        if ((domain->ops->is_attach_deferred != NULL) &&
1617            domain->ops->is_attach_deferred(domain, dev))
1618                return;
1619
1620        if (unlikely(domain->ops->detach_dev == NULL))
1621                return;
1622
1623        domain->ops->detach_dev(domain, dev);
1624        trace_detach_device_from_domain(dev);
1625}
1626
1627void iommu_detach_device(struct iommu_domain *domain, struct device *dev)
1628{
1629        struct iommu_group *group;
1630
1631        group = iommu_group_get(dev);
1632        if (!group)
1633                return;
1634
1635        mutex_lock(&group->mutex);
1636        if (iommu_group_device_count(group) != 1) {
1637                WARN_ON(1);
1638                goto out_unlock;
1639        }
1640
1641        __iommu_detach_group(domain, group);
1642
1643out_unlock:
1644        mutex_unlock(&group->mutex);
1645        iommu_group_put(group);
1646}
1647EXPORT_SYMBOL_GPL(iommu_detach_device);
1648
1649struct iommu_domain *iommu_get_domain_for_dev(struct device *dev)
1650{
1651        struct iommu_domain *domain;
1652        struct iommu_group *group;
1653
1654        group = iommu_group_get(dev);
1655        if (!group)
1656                return NULL;
1657
1658        domain = group->domain;
1659
1660        iommu_group_put(group);
1661
1662        return domain;
1663}
1664EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev);
1665
1666/*
1667 * For IOMMU_DOMAIN_DMA implementations which already provide their own
1668 * guarantees that the group and its default domain are valid and correct.
1669 */
1670struct iommu_domain *iommu_get_dma_domain(struct device *dev)
1671{
1672        return dev->iommu_group->default_domain;
1673}
1674
1675/*
1676 * IOMMU groups are really the natural working unit of the IOMMU, but
1677 * the IOMMU API works on domains and devices.  Bridge that gap by
1678 * iterating over the devices in a group.  Ideally we'd have a single
1679 * device which represents the requestor ID of the group, but we also
1680 * allow IOMMU drivers to create policy defined minimum sets, where
1681 * the physical hardware may be able to distiguish members, but we
1682 * wish to group them at a higher level (ex. untrusted multi-function
1683 * PCI devices).  Thus we attach each device.
1684 */
1685static int iommu_group_do_attach_device(struct device *dev, void *data)
1686{
1687        struct iommu_domain *domain = data;
1688
1689        return __iommu_attach_device(domain, dev);
1690}
1691
1692static int __iommu_attach_group(struct iommu_domain *domain,
1693                                struct iommu_group *group)
1694{
1695        int ret;
1696
1697        if (group->default_domain && group->domain != group->default_domain)
1698                return -EBUSY;
1699
1700        ret = __iommu_group_for_each_dev(group, domain,
1701                                         iommu_group_do_attach_device);
1702        if (ret == 0)
1703                group->domain = domain;
1704
1705        return ret;
1706}
1707
1708int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group)
1709{
1710        int ret;
1711
1712        mutex_lock(&group->mutex);
1713        ret = __iommu_attach_group(domain, group);
1714        mutex_unlock(&group->mutex);
1715
1716        return ret;
1717}
1718EXPORT_SYMBOL_GPL(iommu_attach_group);
1719
1720static int iommu_group_do_detach_device(struct device *dev, void *data)
1721{
1722        struct iommu_domain *domain = data;
1723
1724        __iommu_detach_device(domain, dev);
1725
1726        return 0;
1727}
1728
1729static void __iommu_detach_group(struct iommu_domain *domain,
1730                                 struct iommu_group *group)
1731{
1732        int ret;
1733
1734        if (!group->default_domain) {
1735                __iommu_group_for_each_dev(group, domain,
1736                                           iommu_group_do_detach_device);
1737                group->domain = NULL;
1738                return;
1739        }
1740
1741        if (group->domain == group->default_domain)
1742                return;
1743
1744        /* Detach by re-attaching to the default domain */
1745        ret = __iommu_group_for_each_dev(group, group->default_domain,
1746                                         iommu_group_do_attach_device);
1747        if (ret != 0)
1748                WARN_ON(1);
1749        else
1750                group->domain = group->default_domain;
1751}
1752
1753void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group)
1754{
1755        mutex_lock(&group->mutex);
1756        __iommu_detach_group(domain, group);
1757        mutex_unlock(&group->mutex);
1758}
1759EXPORT_SYMBOL_GPL(iommu_detach_group);
1760
1761phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1762{
1763        if (unlikely(domain->ops->iova_to_phys == NULL))
1764                return 0;
1765
1766        return domain->ops->iova_to_phys(domain, iova);
1767}
1768EXPORT_SYMBOL_GPL(iommu_iova_to_phys);
1769
1770static size_t iommu_pgsize(struct iommu_domain *domain,
1771                           unsigned long addr_merge, size_t size)
1772{
1773        unsigned int pgsize_idx;
1774        size_t pgsize;
1775
1776        /* Max page size that still fits into 'size' */
1777        pgsize_idx = __fls(size);
1778
1779        /* need to consider alignment requirements ? */
1780        if (likely(addr_merge)) {
1781                /* Max page size allowed by address */
1782                unsigned int align_pgsize_idx = __ffs(addr_merge);
1783                pgsize_idx = min(pgsize_idx, align_pgsize_idx);
1784        }
1785
1786        /* build a mask of acceptable page sizes */
1787        pgsize = (1UL << (pgsize_idx + 1)) - 1;
1788
1789        /* throw away page sizes not supported by the hardware */
1790        pgsize &= domain->pgsize_bitmap;
1791
1792        /* make sure we're still sane */
1793        BUG_ON(!pgsize);
1794
1795        /* pick the biggest page */
1796        pgsize_idx = __fls(pgsize);
1797        pgsize = 1UL << pgsize_idx;
1798
1799        return pgsize;
1800}
1801
1802int iommu_map(struct iommu_domain *domain, unsigned long iova,
1803              phys_addr_t paddr, size_t size, int prot)
1804{
1805        const struct iommu_ops *ops = domain->ops;
1806        unsigned long orig_iova = iova;
1807        unsigned int min_pagesz;
1808        size_t orig_size = size;
1809        phys_addr_t orig_paddr = paddr;
1810        int ret = 0;
1811
1812        if (unlikely(ops->map == NULL ||
1813                     domain->pgsize_bitmap == 0UL))
1814                return -ENODEV;
1815
1816        if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
1817                return -EINVAL;
1818
1819        /* find out the minimum page size supported */
1820        min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
1821
1822        /*
1823         * both the virtual address and the physical one, as well as
1824         * the size of the mapping, must be aligned (at least) to the
1825         * size of the smallest page supported by the hardware
1826         */
1827        if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) {
1828                pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n",
1829                       iova, &paddr, size, min_pagesz);
1830                return -EINVAL;
1831        }
1832
1833        pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size);
1834
1835        while (size) {
1836                size_t pgsize = iommu_pgsize(domain, iova | paddr, size);
1837
1838                pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx\n",
1839                         iova, &paddr, pgsize);
1840
1841                ret = ops->map(domain, iova, paddr, pgsize, prot);
1842                if (ret)
1843                        break;
1844
1845                iova += pgsize;
1846                paddr += pgsize;
1847                size -= pgsize;
1848        }
1849
1850        if (ops->iotlb_sync_map)
1851                ops->iotlb_sync_map(domain);
1852
1853        /* unroll mapping in case something went wrong */
1854        if (ret)
1855                iommu_unmap(domain, orig_iova, orig_size - size);
1856        else
1857                trace_map(orig_iova, orig_paddr, orig_size);
1858
1859        return ret;
1860}
1861EXPORT_SYMBOL_GPL(iommu_map);
1862
1863static size_t __iommu_unmap(struct iommu_domain *domain,
1864                            unsigned long iova, size_t size,
1865                            bool sync)
1866{
1867        const struct iommu_ops *ops = domain->ops;
1868        size_t unmapped_page, unmapped = 0;
1869        unsigned long orig_iova = iova;
1870        unsigned int min_pagesz;
1871
1872        if (unlikely(ops->unmap == NULL ||
1873                     domain->pgsize_bitmap == 0UL))
1874                return 0;
1875
1876        if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
1877                return 0;
1878
1879        /* find out the minimum page size supported */
1880        min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
1881
1882        /*
1883         * The virtual address, as well as the size of the mapping, must be
1884         * aligned (at least) to the size of the smallest page supported
1885         * by the hardware
1886         */
1887        if (!IS_ALIGNED(iova | size, min_pagesz)) {
1888                pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n",
1889                       iova, size, min_pagesz);
1890                return 0;
1891        }
1892
1893        pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size);
1894
1895        /*
1896         * Keep iterating until we either unmap 'size' bytes (or more)
1897         * or we hit an area that isn't mapped.
1898         */
1899        while (unmapped < size) {
1900                size_t pgsize = iommu_pgsize(domain, iova, size - unmapped);
1901
1902                unmapped_page = ops->unmap(domain, iova, pgsize);
1903                if (!unmapped_page)
1904                        break;
1905
1906                if (sync && ops->iotlb_range_add)
1907                        ops->iotlb_range_add(domain, iova, pgsize);
1908
1909                pr_debug("unmapped: iova 0x%lx size 0x%zx\n",
1910                         iova, unmapped_page);
1911
1912                iova += unmapped_page;
1913                unmapped += unmapped_page;
1914        }
1915
1916        if (sync && ops->iotlb_sync)
1917                ops->iotlb_sync(domain);
1918
1919        trace_unmap(orig_iova, size, unmapped);
1920        return unmapped;
1921}
1922
1923size_t iommu_unmap(struct iommu_domain *domain,
1924                   unsigned long iova, size_t size)
1925{
1926        return __iommu_unmap(domain, iova, size, true);
1927}
1928EXPORT_SYMBOL_GPL(iommu_unmap);
1929
1930size_t iommu_unmap_fast(struct iommu_domain *domain,
1931                        unsigned long iova, size_t size)
1932{
1933        return __iommu_unmap(domain, iova, size, false);
1934}
1935EXPORT_SYMBOL_GPL(iommu_unmap_fast);
1936
1937size_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
1938                    struct scatterlist *sg, unsigned int nents, int prot)
1939{
1940        size_t len = 0, mapped = 0;
1941        phys_addr_t start;
1942        unsigned int i = 0;
1943        int ret;
1944
1945        while (i <= nents) {
1946                phys_addr_t s_phys = sg_phys(sg);
1947
1948                if (len && s_phys != start + len) {
1949                        ret = iommu_map(domain, iova + mapped, start, len, prot);
1950                        if (ret)
1951                                goto out_err;
1952
1953                        mapped += len;
1954                        len = 0;
1955                }
1956
1957                if (len) {
1958                        len += sg->length;
1959                } else {
1960                        len = sg->length;
1961                        start = s_phys;
1962                }
1963
1964                if (++i < nents)
1965                        sg = sg_next(sg);
1966        }
1967
1968        return mapped;
1969
1970out_err:
1971        /* undo mappings already done */
1972        iommu_unmap(domain, iova, mapped);
1973
1974        return 0;
1975
1976}
1977EXPORT_SYMBOL_GPL(iommu_map_sg);
1978
1979int iommu_domain_window_enable(struct iommu_domain *domain, u32 wnd_nr,
1980                               phys_addr_t paddr, u64 size, int prot)
1981{
1982        if (unlikely(domain->ops->domain_window_enable == NULL))
1983                return -ENODEV;
1984
1985        return domain->ops->domain_window_enable(domain, wnd_nr, paddr, size,
1986                                                 prot);
1987}
1988EXPORT_SYMBOL_GPL(iommu_domain_window_enable);
1989
1990void iommu_domain_window_disable(struct iommu_domain *domain, u32 wnd_nr)
1991{
1992        if (unlikely(domain->ops->domain_window_disable == NULL))
1993                return;
1994
1995        return domain->ops->domain_window_disable(domain, wnd_nr);
1996}
1997EXPORT_SYMBOL_GPL(iommu_domain_window_disable);
1998
1999/**
2000 * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework
2001 * @domain: the iommu domain where the fault has happened
2002 * @dev: the device where the fault has happened
2003 * @iova: the faulting address
2004 * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...)
2005 *
2006 * This function should be called by the low-level IOMMU implementations
2007 * whenever IOMMU faults happen, to allow high-level users, that are
2008 * interested in such events, to know about them.
2009 *
2010 * This event may be useful for several possible use cases:
2011 * - mere logging of the event
2012 * - dynamic TLB/PTE loading
2013 * - if restarting of the faulting device is required
2014 *
2015 * Returns 0 on success and an appropriate error code otherwise (if dynamic
2016 * PTE/TLB loading will one day be supported, implementations will be able
2017 * to tell whether it succeeded or not according to this return value).
2018 *
2019 * Specifically, -ENOSYS is returned if a fault handler isn't installed
2020 * (though fault handlers can also return -ENOSYS, in case they want to
2021 * elicit the default behavior of the IOMMU drivers).
2022 */
2023int report_iommu_fault(struct iommu_domain *domain, struct device *dev,
2024                       unsigned long iova, int flags)
2025{
2026        int ret = -ENOSYS;
2027
2028        /*
2029         * if upper layers showed interest and installed a fault handler,
2030         * invoke it.
2031         */
2032        if (domain->handler)
2033                ret = domain->handler(domain, dev, iova, flags,
2034                                                domain->handler_token);
2035
2036        trace_io_page_fault(dev, iova, flags);
2037        return ret;
2038}
2039EXPORT_SYMBOL_GPL(report_iommu_fault);
2040
2041static int __init iommu_init(void)
2042{
2043        iommu_group_kset = kset_create_and_add("iommu_groups",
2044                                               NULL, kernel_kobj);
2045        BUG_ON(!iommu_group_kset);
2046
2047        iommu_debugfs_setup();
2048
2049        return 0;
2050}
2051core_initcall(iommu_init);
2052
2053int iommu_domain_get_attr(struct iommu_domain *domain,
2054                          enum iommu_attr attr, void *data)
2055{
2056        struct iommu_domain_geometry *geometry;
2057        bool *paging;
2058        int ret = 0;
2059
2060        switch (attr) {
2061        case DOMAIN_ATTR_GEOMETRY:
2062                geometry  = data;
2063                *geometry = domain->geometry;
2064
2065                break;
2066        case DOMAIN_ATTR_PAGING:
2067                paging  = data;
2068                *paging = (domain->pgsize_bitmap != 0UL);
2069                break;
2070        default:
2071                if (!domain->ops->domain_get_attr)
2072                        return -EINVAL;
2073
2074                ret = domain->ops->domain_get_attr(domain, attr, data);
2075        }
2076
2077        return ret;
2078}
2079EXPORT_SYMBOL_GPL(iommu_domain_get_attr);
2080
2081int iommu_domain_set_attr(struct iommu_domain *domain,
2082                          enum iommu_attr attr, void *data)
2083{
2084        int ret = 0;
2085
2086        switch (attr) {
2087        default:
2088                if (domain->ops->domain_set_attr == NULL)
2089                        return -EINVAL;
2090
2091                ret = domain->ops->domain_set_attr(domain, attr, data);
2092        }
2093
2094        return ret;
2095}
2096EXPORT_SYMBOL_GPL(iommu_domain_set_attr);
2097
2098void iommu_get_resv_regions(struct device *dev, struct list_head *list)
2099{
2100        const struct iommu_ops *ops = dev->bus->iommu_ops;
2101
2102        if (ops && ops->get_resv_regions)
2103                ops->get_resv_regions(dev, list);
2104}
2105
2106void iommu_put_resv_regions(struct device *dev, struct list_head *list)
2107{
2108        const struct iommu_ops *ops = dev->bus->iommu_ops;
2109
2110        if (ops && ops->put_resv_regions)
2111                ops->put_resv_regions(dev, list);
2112}
2113
2114struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start,
2115                                                  size_t length, int prot,
2116                                                  enum iommu_resv_type type)
2117{
2118        struct iommu_resv_region *region;
2119
2120        region = kzalloc(sizeof(*region), GFP_KERNEL);
2121        if (!region)
2122                return NULL;
2123
2124        INIT_LIST_HEAD(&region->list);
2125        region->start = start;
2126        region->length = length;
2127        region->prot = prot;
2128        region->type = type;
2129        return region;
2130}
2131
2132static int
2133request_default_domain_for_dev(struct device *dev, unsigned long type)
2134{
2135        struct iommu_domain *domain;
2136        struct iommu_group *group;
2137        int ret;
2138
2139        /* Device must already be in a group before calling this function */
2140        group = iommu_group_get(dev);
2141        if (!group)
2142                return -EINVAL;
2143
2144        mutex_lock(&group->mutex);
2145
2146        /* Check if the default domain is already direct mapped */
2147        ret = 0;
2148        if (group->default_domain && group->default_domain->type == type)
2149                goto out;
2150
2151        /* Don't change mappings of existing devices */
2152        ret = -EBUSY;
2153        if (iommu_group_device_count(group) != 1)
2154                goto out;
2155
2156        /* Allocate a direct mapped domain */
2157        ret = -ENOMEM;
2158        domain = __iommu_domain_alloc(dev->bus, type);
2159        if (!domain)
2160                goto out;
2161
2162        /* Attach the device to the domain */
2163        ret = __iommu_attach_group(domain, group);
2164        if (ret) {
2165                iommu_domain_free(domain);
2166                goto out;
2167        }
2168
2169        iommu_group_create_direct_mappings(group, dev);
2170
2171        /* Make the direct mapped domain the default for this group */
2172        if (group->default_domain)
2173                iommu_domain_free(group->default_domain);
2174        group->default_domain = domain;
2175
2176        dev_info(dev, "Using iommu %s mapping\n",
2177                 type == IOMMU_DOMAIN_DMA ? "dma" : "direct");
2178
2179        ret = 0;
2180out:
2181        mutex_unlock(&group->mutex);
2182        iommu_group_put(group);
2183
2184        return ret;
2185}
2186
2187/* Request that a device is direct mapped by the IOMMU */
2188int iommu_request_dm_for_dev(struct device *dev)
2189{
2190        return request_default_domain_for_dev(dev, IOMMU_DOMAIN_IDENTITY);
2191}
2192
2193/* Request that a device can't be direct mapped by the IOMMU */
2194int iommu_request_dma_domain_for_dev(struct device *dev)
2195{
2196        return request_default_domain_for_dev(dev, IOMMU_DOMAIN_DMA);
2197}
2198
2199const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode)
2200{
2201        const struct iommu_ops *ops = NULL;
2202        struct iommu_device *iommu;
2203
2204        spin_lock(&iommu_device_lock);
2205        list_for_each_entry(iommu, &iommu_device_list, list)
2206                if (iommu->fwnode == fwnode) {
2207                        ops = iommu->ops;
2208                        break;
2209                }
2210        spin_unlock(&iommu_device_lock);
2211        return ops;
2212}
2213
2214int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode,
2215                      const struct iommu_ops *ops)
2216{
2217        struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2218
2219        if (fwspec)
2220                return ops == fwspec->ops ? 0 : -EINVAL;
2221
2222        fwspec = kzalloc(sizeof(*fwspec), GFP_KERNEL);
2223        if (!fwspec)
2224                return -ENOMEM;
2225
2226        of_node_get(to_of_node(iommu_fwnode));
2227        fwspec->iommu_fwnode = iommu_fwnode;
2228        fwspec->ops = ops;
2229        dev_iommu_fwspec_set(dev, fwspec);
2230        return 0;
2231}
2232EXPORT_SYMBOL_GPL(iommu_fwspec_init);
2233
2234void iommu_fwspec_free(struct device *dev)
2235{
2236        struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2237
2238        if (fwspec) {
2239                fwnode_handle_put(fwspec->iommu_fwnode);
2240                kfree(fwspec);
2241                dev_iommu_fwspec_set(dev, NULL);
2242        }
2243}
2244EXPORT_SYMBOL_GPL(iommu_fwspec_free);
2245
2246int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids)
2247{
2248        struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2249        size_t size;
2250        int i;
2251
2252        if (!fwspec)
2253                return -EINVAL;
2254
2255        size = offsetof(struct iommu_fwspec, ids[fwspec->num_ids + num_ids]);
2256        if (size > sizeof(*fwspec)) {
2257                fwspec = krealloc(fwspec, size, GFP_KERNEL);
2258                if (!fwspec)
2259                        return -ENOMEM;
2260
2261                dev_iommu_fwspec_set(dev, fwspec);
2262        }
2263
2264        for (i = 0; i < num_ids; i++)
2265                fwspec->ids[fwspec->num_ids + i] = ids[i];
2266
2267        fwspec->num_ids += num_ids;
2268        return 0;
2269}
2270EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids);
2271
2272/*
2273 * Per device IOMMU features.
2274 */
2275bool iommu_dev_has_feature(struct device *dev, enum iommu_dev_features feat)
2276{
2277        const struct iommu_ops *ops = dev->bus->iommu_ops;
2278
2279        if (ops && ops->dev_has_feat)
2280                return ops->dev_has_feat(dev, feat);
2281
2282        return false;
2283}
2284EXPORT_SYMBOL_GPL(iommu_dev_has_feature);
2285
2286int iommu_dev_enable_feature(struct device *dev, enum iommu_dev_features feat)
2287{
2288        const struct iommu_ops *ops = dev->bus->iommu_ops;
2289
2290        if (ops && ops->dev_enable_feat)
2291                return ops->dev_enable_feat(dev, feat);
2292
2293        return -ENODEV;
2294}
2295EXPORT_SYMBOL_GPL(iommu_dev_enable_feature);
2296
2297/*
2298 * The device drivers should do the necessary cleanups before calling this.
2299 * For example, before disabling the aux-domain feature, the device driver
2300 * should detach all aux-domains. Otherwise, this will return -EBUSY.
2301 */
2302int iommu_dev_disable_feature(struct device *dev, enum iommu_dev_features feat)
2303{
2304        const struct iommu_ops *ops = dev->bus->iommu_ops;
2305
2306        if (ops && ops->dev_disable_feat)
2307                return ops->dev_disable_feat(dev, feat);
2308
2309        return -EBUSY;
2310}
2311EXPORT_SYMBOL_GPL(iommu_dev_disable_feature);
2312
2313bool iommu_dev_feature_enabled(struct device *dev, enum iommu_dev_features feat)
2314{
2315        const struct iommu_ops *ops = dev->bus->iommu_ops;
2316
2317        if (ops && ops->dev_feat_enabled)
2318                return ops->dev_feat_enabled(dev, feat);
2319
2320        return false;
2321}
2322EXPORT_SYMBOL_GPL(iommu_dev_feature_enabled);
2323
2324/*
2325 * Aux-domain specific attach/detach.
2326 *
2327 * Only works if iommu_dev_feature_enabled(dev, IOMMU_DEV_FEAT_AUX) returns
2328 * true. Also, as long as domains are attached to a device through this
2329 * interface, any tries to call iommu_attach_device() should fail
2330 * (iommu_detach_device() can't fail, so we fail when trying to re-attach).
2331 * This should make us safe against a device being attached to a guest as a
2332 * whole while there are still pasid users on it (aux and sva).
2333 */
2334int iommu_aux_attach_device(struct iommu_domain *domain, struct device *dev)
2335{
2336        int ret = -ENODEV;
2337
2338        if (domain->ops->aux_attach_dev)
2339                ret = domain->ops->aux_attach_dev(domain, dev);
2340
2341        if (!ret)
2342                trace_attach_device_to_domain(dev);
2343
2344        return ret;
2345}
2346EXPORT_SYMBOL_GPL(iommu_aux_attach_device);
2347
2348void iommu_aux_detach_device(struct iommu_domain *domain, struct device *dev)
2349{
2350        if (domain->ops->aux_detach_dev) {
2351                domain->ops->aux_detach_dev(domain, dev);
2352                trace_detach_device_from_domain(dev);
2353        }
2354}
2355EXPORT_SYMBOL_GPL(iommu_aux_detach_device);
2356
2357int iommu_aux_get_pasid(struct iommu_domain *domain, struct device *dev)
2358{
2359        int ret = -ENODEV;
2360
2361        if (domain->ops->aux_get_pasid)
2362                ret = domain->ops->aux_get_pasid(domain, dev);
2363
2364        return ret;
2365}
2366EXPORT_SYMBOL_GPL(iommu_aux_get_pasid);
2367
2368/**
2369 * iommu_sva_bind_device() - Bind a process address space to a device
2370 * @dev: the device
2371 * @mm: the mm to bind, caller must hold a reference to it
2372 *
2373 * Create a bond between device and address space, allowing the device to access
2374 * the mm using the returned PASID. If a bond already exists between @device and
2375 * @mm, it is returned and an additional reference is taken. Caller must call
2376 * iommu_sva_unbind_device() to release each reference.
2377 *
2378 * iommu_dev_enable_feature(dev, IOMMU_DEV_FEAT_SVA) must be called first, to
2379 * initialize the required SVA features.
2380 *
2381 * On error, returns an ERR_PTR value.
2382 */
2383struct iommu_sva *
2384iommu_sva_bind_device(struct device *dev, struct mm_struct *mm, void *drvdata)
2385{
2386        struct iommu_group *group;
2387        struct iommu_sva *handle = ERR_PTR(-EINVAL);
2388        const struct iommu_ops *ops = dev->bus->iommu_ops;
2389
2390        if (!ops || !ops->sva_bind)
2391                return ERR_PTR(-ENODEV);
2392
2393        group = iommu_group_get(dev);
2394        if (!group)
2395                return ERR_PTR(-ENODEV);
2396
2397        /* Ensure device count and domain don't change while we're binding */
2398        mutex_lock(&group->mutex);
2399
2400        /*
2401         * To keep things simple, SVA currently doesn't support IOMMU groups
2402         * with more than one device. Existing SVA-capable systems are not
2403         * affected by the problems that required IOMMU groups (lack of ACS
2404         * isolation, device ID aliasing and other hardware issues).
2405         */
2406        if (iommu_group_device_count(group) != 1)
2407                goto out_unlock;
2408
2409        handle = ops->sva_bind(dev, mm, drvdata);
2410
2411out_unlock:
2412        mutex_unlock(&group->mutex);
2413        iommu_group_put(group);
2414
2415        return handle;
2416}
2417EXPORT_SYMBOL_GPL(iommu_sva_bind_device);
2418
2419/**
2420 * iommu_sva_unbind_device() - Remove a bond created with iommu_sva_bind_device
2421 * @handle: the handle returned by iommu_sva_bind_device()
2422 *
2423 * Put reference to a bond between device and address space. The device should
2424 * not be issuing any more transaction for this PASID. All outstanding page
2425 * requests for this PASID must have been flushed to the IOMMU.
2426 *
2427 * Returns 0 on success, or an error value
2428 */
2429void iommu_sva_unbind_device(struct iommu_sva *handle)
2430{
2431        struct iommu_group *group;
2432        struct device *dev = handle->dev;
2433        const struct iommu_ops *ops = dev->bus->iommu_ops;
2434
2435        if (!ops || !ops->sva_unbind)
2436                return;
2437
2438        group = iommu_group_get(dev);
2439        if (!group)
2440                return;
2441
2442        mutex_lock(&group->mutex);
2443        ops->sva_unbind(handle);
2444        mutex_unlock(&group->mutex);
2445
2446        iommu_group_put(group);
2447}
2448EXPORT_SYMBOL_GPL(iommu_sva_unbind_device);
2449
2450int iommu_sva_set_ops(struct iommu_sva *handle,
2451                      const struct iommu_sva_ops *sva_ops)
2452{
2453        if (handle->ops && handle->ops != sva_ops)
2454                return -EEXIST;
2455
2456        handle->ops = sva_ops;
2457        return 0;
2458}
2459EXPORT_SYMBOL_GPL(iommu_sva_set_ops);
2460
2461int iommu_sva_get_pasid(struct iommu_sva *handle)
2462{
2463        const struct iommu_ops *ops = handle->dev->bus->iommu_ops;
2464
2465        if (!ops || !ops->sva_get_pasid)
2466                return IOMMU_PASID_INVALID;
2467
2468        return ops->sva_get_pasid(handle);
2469}
2470EXPORT_SYMBOL_GPL(iommu_sva_get_pasid);
2471