linux/drivers/iommu/ipmmu-vmsa.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * IOMMU API for Renesas VMSA-compatible IPMMU
   4 * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
   5 *
   6 * Copyright (C) 2014 Renesas Electronics Corporation
   7 */
   8
   9#include <linux/bitmap.h>
  10#include <linux/delay.h>
  11#include <linux/dma-iommu.h>
  12#include <linux/dma-mapping.h>
  13#include <linux/err.h>
  14#include <linux/export.h>
  15#include <linux/init.h>
  16#include <linux/interrupt.h>
  17#include <linux/io.h>
  18#include <linux/io-pgtable.h>
  19#include <linux/iommu.h>
  20#include <linux/of.h>
  21#include <linux/of_device.h>
  22#include <linux/of_iommu.h>
  23#include <linux/of_platform.h>
  24#include <linux/platform_device.h>
  25#include <linux/sizes.h>
  26#include <linux/slab.h>
  27#include <linux/sys_soc.h>
  28
  29#if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
  30#include <asm/dma-iommu.h>
  31#include <asm/pgalloc.h>
  32#else
  33#define arm_iommu_create_mapping(...)   NULL
  34#define arm_iommu_attach_device(...)    -ENODEV
  35#define arm_iommu_release_mapping(...)  do {} while (0)
  36#define arm_iommu_detach_device(...)    do {} while (0)
  37#endif
  38
  39#define IPMMU_CTX_MAX           8U
  40#define IPMMU_CTX_INVALID       -1
  41
  42#define IPMMU_UTLB_MAX          48U
  43
  44struct ipmmu_features {
  45        bool use_ns_alias_offset;
  46        bool has_cache_leaf_nodes;
  47        unsigned int number_of_contexts;
  48        unsigned int num_utlbs;
  49        bool setup_imbuscr;
  50        bool twobit_imttbcr_sl0;
  51        bool reserved_context;
  52};
  53
  54struct ipmmu_vmsa_device {
  55        struct device *dev;
  56        void __iomem *base;
  57        struct iommu_device iommu;
  58        struct ipmmu_vmsa_device *root;
  59        const struct ipmmu_features *features;
  60        unsigned int num_ctx;
  61        spinlock_t lock;                        /* Protects ctx and domains[] */
  62        DECLARE_BITMAP(ctx, IPMMU_CTX_MAX);
  63        struct ipmmu_vmsa_domain *domains[IPMMU_CTX_MAX];
  64        s8 utlb_ctx[IPMMU_UTLB_MAX];
  65
  66        struct iommu_group *group;
  67        struct dma_iommu_mapping *mapping;
  68};
  69
  70struct ipmmu_vmsa_domain {
  71        struct ipmmu_vmsa_device *mmu;
  72        struct iommu_domain io_domain;
  73
  74        struct io_pgtable_cfg cfg;
  75        struct io_pgtable_ops *iop;
  76
  77        unsigned int context_id;
  78        struct mutex mutex;                     /* Protects mappings */
  79};
  80
  81static struct ipmmu_vmsa_domain *to_vmsa_domain(struct iommu_domain *dom)
  82{
  83        return container_of(dom, struct ipmmu_vmsa_domain, io_domain);
  84}
  85
  86static struct ipmmu_vmsa_device *to_ipmmu(struct device *dev)
  87{
  88        struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
  89
  90        return fwspec ? fwspec->iommu_priv : NULL;
  91}
  92
  93#define TLB_LOOP_TIMEOUT                100     /* 100us */
  94
  95/* -----------------------------------------------------------------------------
  96 * Registers Definition
  97 */
  98
  99#define IM_NS_ALIAS_OFFSET              0x800
 100
 101#define IM_CTX_SIZE                     0x40
 102
 103#define IMCTR                           0x0000
 104#define IMCTR_TRE                       (1 << 17)
 105#define IMCTR_AFE                       (1 << 16)
 106#define IMCTR_RTSEL_MASK                (3 << 4)
 107#define IMCTR_RTSEL_SHIFT               4
 108#define IMCTR_TREN                      (1 << 3)
 109#define IMCTR_INTEN                     (1 << 2)
 110#define IMCTR_FLUSH                     (1 << 1)
 111#define IMCTR_MMUEN                     (1 << 0)
 112
 113#define IMCAAR                          0x0004
 114
 115#define IMTTBCR                         0x0008
 116#define IMTTBCR_EAE                     (1 << 31)
 117#define IMTTBCR_PMB                     (1 << 30)
 118#define IMTTBCR_SH1_NON_SHAREABLE       (0 << 28)
 119#define IMTTBCR_SH1_OUTER_SHAREABLE     (2 << 28)
 120#define IMTTBCR_SH1_INNER_SHAREABLE     (3 << 28)
 121#define IMTTBCR_SH1_MASK                (3 << 28)
 122#define IMTTBCR_ORGN1_NC                (0 << 26)
 123#define IMTTBCR_ORGN1_WB_WA             (1 << 26)
 124#define IMTTBCR_ORGN1_WT                (2 << 26)
 125#define IMTTBCR_ORGN1_WB                (3 << 26)
 126#define IMTTBCR_ORGN1_MASK              (3 << 26)
 127#define IMTTBCR_IRGN1_NC                (0 << 24)
 128#define IMTTBCR_IRGN1_WB_WA             (1 << 24)
 129#define IMTTBCR_IRGN1_WT                (2 << 24)
 130#define IMTTBCR_IRGN1_WB                (3 << 24)
 131#define IMTTBCR_IRGN1_MASK              (3 << 24)
 132#define IMTTBCR_TSZ1_MASK               (7 << 16)
 133#define IMTTBCR_TSZ1_SHIFT              16
 134#define IMTTBCR_SH0_NON_SHAREABLE       (0 << 12)
 135#define IMTTBCR_SH0_OUTER_SHAREABLE     (2 << 12)
 136#define IMTTBCR_SH0_INNER_SHAREABLE     (3 << 12)
 137#define IMTTBCR_SH0_MASK                (3 << 12)
 138#define IMTTBCR_ORGN0_NC                (0 << 10)
 139#define IMTTBCR_ORGN0_WB_WA             (1 << 10)
 140#define IMTTBCR_ORGN0_WT                (2 << 10)
 141#define IMTTBCR_ORGN0_WB                (3 << 10)
 142#define IMTTBCR_ORGN0_MASK              (3 << 10)
 143#define IMTTBCR_IRGN0_NC                (0 << 8)
 144#define IMTTBCR_IRGN0_WB_WA             (1 << 8)
 145#define IMTTBCR_IRGN0_WT                (2 << 8)
 146#define IMTTBCR_IRGN0_WB                (3 << 8)
 147#define IMTTBCR_IRGN0_MASK              (3 << 8)
 148#define IMTTBCR_SL0_LVL_2               (0 << 4)
 149#define IMTTBCR_SL0_LVL_1               (1 << 4)
 150#define IMTTBCR_TSZ0_MASK               (7 << 0)
 151#define IMTTBCR_TSZ0_SHIFT              O
 152
 153#define IMTTBCR_SL0_TWOBIT_LVL_3        (0 << 6)
 154#define IMTTBCR_SL0_TWOBIT_LVL_2        (1 << 6)
 155#define IMTTBCR_SL0_TWOBIT_LVL_1        (2 << 6)
 156
 157#define IMBUSCR                         0x000c
 158#define IMBUSCR_DVM                     (1 << 2)
 159#define IMBUSCR_BUSSEL_SYS              (0 << 0)
 160#define IMBUSCR_BUSSEL_CCI              (1 << 0)
 161#define IMBUSCR_BUSSEL_IMCAAR           (2 << 0)
 162#define IMBUSCR_BUSSEL_CCI_IMCAAR       (3 << 0)
 163#define IMBUSCR_BUSSEL_MASK             (3 << 0)
 164
 165#define IMTTLBR0                        0x0010
 166#define IMTTUBR0                        0x0014
 167#define IMTTLBR1                        0x0018
 168#define IMTTUBR1                        0x001c
 169
 170#define IMSTR                           0x0020
 171#define IMSTR_ERRLVL_MASK               (3 << 12)
 172#define IMSTR_ERRLVL_SHIFT              12
 173#define IMSTR_ERRCODE_TLB_FORMAT        (1 << 8)
 174#define IMSTR_ERRCODE_ACCESS_PERM       (4 << 8)
 175#define IMSTR_ERRCODE_SECURE_ACCESS     (5 << 8)
 176#define IMSTR_ERRCODE_MASK              (7 << 8)
 177#define IMSTR_MHIT                      (1 << 4)
 178#define IMSTR_ABORT                     (1 << 2)
 179#define IMSTR_PF                        (1 << 1)
 180#define IMSTR_TF                        (1 << 0)
 181
 182#define IMMAIR0                         0x0028
 183#define IMMAIR1                         0x002c
 184#define IMMAIR_ATTR_MASK                0xff
 185#define IMMAIR_ATTR_DEVICE              0x04
 186#define IMMAIR_ATTR_NC                  0x44
 187#define IMMAIR_ATTR_WBRWA               0xff
 188#define IMMAIR_ATTR_SHIFT(n)            ((n) << 3)
 189#define IMMAIR_ATTR_IDX_NC              0
 190#define IMMAIR_ATTR_IDX_WBRWA           1
 191#define IMMAIR_ATTR_IDX_DEV             2
 192
 193#define IMELAR                          0x0030  /* IMEAR on R-Car Gen2 */
 194#define IMEUAR                          0x0034  /* R-Car Gen3 only */
 195
 196#define IMPCTR                          0x0200
 197#define IMPSTR                          0x0208
 198#define IMPEAR                          0x020c
 199#define IMPMBA(n)                       (0x0280 + ((n) * 4))
 200#define IMPMBD(n)                       (0x02c0 + ((n) * 4))
 201
 202#define IMUCTR(n)                       ((n) < 32 ? IMUCTR0(n) : IMUCTR32(n))
 203#define IMUCTR0(n)                      (0x0300 + ((n) * 16))
 204#define IMUCTR32(n)                     (0x0600 + (((n) - 32) * 16))
 205#define IMUCTR_FIXADDEN                 (1 << 31)
 206#define IMUCTR_FIXADD_MASK              (0xff << 16)
 207#define IMUCTR_FIXADD_SHIFT             16
 208#define IMUCTR_TTSEL_MMU(n)             ((n) << 4)
 209#define IMUCTR_TTSEL_PMB                (8 << 4)
 210#define IMUCTR_TTSEL_MASK               (15 << 4)
 211#define IMUCTR_FLUSH                    (1 << 1)
 212#define IMUCTR_MMUEN                    (1 << 0)
 213
 214#define IMUASID(n)                      ((n) < 32 ? IMUASID0(n) : IMUASID32(n))
 215#define IMUASID0(n)                     (0x0308 + ((n) * 16))
 216#define IMUASID32(n)                    (0x0608 + (((n) - 32) * 16))
 217#define IMUASID_ASID8_MASK              (0xff << 8)
 218#define IMUASID_ASID8_SHIFT             8
 219#define IMUASID_ASID0_MASK              (0xff << 0)
 220#define IMUASID_ASID0_SHIFT             0
 221
 222/* -----------------------------------------------------------------------------
 223 * Root device handling
 224 */
 225
 226static struct platform_driver ipmmu_driver;
 227
 228static bool ipmmu_is_root(struct ipmmu_vmsa_device *mmu)
 229{
 230        return mmu->root == mmu;
 231}
 232
 233static int __ipmmu_check_device(struct device *dev, void *data)
 234{
 235        struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
 236        struct ipmmu_vmsa_device **rootp = data;
 237
 238        if (ipmmu_is_root(mmu))
 239                *rootp = mmu;
 240
 241        return 0;
 242}
 243
 244static struct ipmmu_vmsa_device *ipmmu_find_root(void)
 245{
 246        struct ipmmu_vmsa_device *root = NULL;
 247
 248        return driver_for_each_device(&ipmmu_driver.driver, NULL, &root,
 249                                      __ipmmu_check_device) == 0 ? root : NULL;
 250}
 251
 252/* -----------------------------------------------------------------------------
 253 * Read/Write Access
 254 */
 255
 256static u32 ipmmu_read(struct ipmmu_vmsa_device *mmu, unsigned int offset)
 257{
 258        return ioread32(mmu->base + offset);
 259}
 260
 261static void ipmmu_write(struct ipmmu_vmsa_device *mmu, unsigned int offset,
 262                        u32 data)
 263{
 264        iowrite32(data, mmu->base + offset);
 265}
 266
 267static u32 ipmmu_ctx_read_root(struct ipmmu_vmsa_domain *domain,
 268                               unsigned int reg)
 269{
 270        return ipmmu_read(domain->mmu->root,
 271                          domain->context_id * IM_CTX_SIZE + reg);
 272}
 273
 274static void ipmmu_ctx_write_root(struct ipmmu_vmsa_domain *domain,
 275                                 unsigned int reg, u32 data)
 276{
 277        ipmmu_write(domain->mmu->root,
 278                    domain->context_id * IM_CTX_SIZE + reg, data);
 279}
 280
 281static void ipmmu_ctx_write_all(struct ipmmu_vmsa_domain *domain,
 282                                unsigned int reg, u32 data)
 283{
 284        if (domain->mmu != domain->mmu->root)
 285                ipmmu_write(domain->mmu,
 286                            domain->context_id * IM_CTX_SIZE + reg, data);
 287
 288        ipmmu_write(domain->mmu->root,
 289                    domain->context_id * IM_CTX_SIZE + reg, data);
 290}
 291
 292/* -----------------------------------------------------------------------------
 293 * TLB and microTLB Management
 294 */
 295
 296/* Wait for any pending TLB invalidations to complete */
 297static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain *domain)
 298{
 299        unsigned int count = 0;
 300
 301        while (ipmmu_ctx_read_root(domain, IMCTR) & IMCTR_FLUSH) {
 302                cpu_relax();
 303                if (++count == TLB_LOOP_TIMEOUT) {
 304                        dev_err_ratelimited(domain->mmu->dev,
 305                        "TLB sync timed out -- MMU may be deadlocked\n");
 306                        return;
 307                }
 308                udelay(1);
 309        }
 310}
 311
 312static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain *domain)
 313{
 314        u32 reg;
 315
 316        reg = ipmmu_ctx_read_root(domain, IMCTR);
 317        reg |= IMCTR_FLUSH;
 318        ipmmu_ctx_write_all(domain, IMCTR, reg);
 319
 320        ipmmu_tlb_sync(domain);
 321}
 322
 323/*
 324 * Enable MMU translation for the microTLB.
 325 */
 326static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain *domain,
 327                              unsigned int utlb)
 328{
 329        struct ipmmu_vmsa_device *mmu = domain->mmu;
 330
 331        /*
 332         * TODO: Reference-count the microTLB as several bus masters can be
 333         * connected to the same microTLB.
 334         */
 335
 336        /* TODO: What should we set the ASID to ? */
 337        ipmmu_write(mmu, IMUASID(utlb), 0);
 338        /* TODO: Do we need to flush the microTLB ? */
 339        ipmmu_write(mmu, IMUCTR(utlb),
 340                    IMUCTR_TTSEL_MMU(domain->context_id) | IMUCTR_FLUSH |
 341                    IMUCTR_MMUEN);
 342        mmu->utlb_ctx[utlb] = domain->context_id;
 343}
 344
 345/*
 346 * Disable MMU translation for the microTLB.
 347 */
 348static void ipmmu_utlb_disable(struct ipmmu_vmsa_domain *domain,
 349                               unsigned int utlb)
 350{
 351        struct ipmmu_vmsa_device *mmu = domain->mmu;
 352
 353        ipmmu_write(mmu, IMUCTR(utlb), 0);
 354        mmu->utlb_ctx[utlb] = IPMMU_CTX_INVALID;
 355}
 356
 357static void ipmmu_tlb_flush_all(void *cookie)
 358{
 359        struct ipmmu_vmsa_domain *domain = cookie;
 360
 361        ipmmu_tlb_invalidate(domain);
 362}
 363
 364static void ipmmu_tlb_add_flush(unsigned long iova, size_t size,
 365                                size_t granule, bool leaf, void *cookie)
 366{
 367        /* The hardware doesn't support selective TLB flush. */
 368}
 369
 370static const struct iommu_gather_ops ipmmu_gather_ops = {
 371        .tlb_flush_all = ipmmu_tlb_flush_all,
 372        .tlb_add_flush = ipmmu_tlb_add_flush,
 373        .tlb_sync = ipmmu_tlb_flush_all,
 374};
 375
 376/* -----------------------------------------------------------------------------
 377 * Domain/Context Management
 378 */
 379
 380static int ipmmu_domain_allocate_context(struct ipmmu_vmsa_device *mmu,
 381                                         struct ipmmu_vmsa_domain *domain)
 382{
 383        unsigned long flags;
 384        int ret;
 385
 386        spin_lock_irqsave(&mmu->lock, flags);
 387
 388        ret = find_first_zero_bit(mmu->ctx, mmu->num_ctx);
 389        if (ret != mmu->num_ctx) {
 390                mmu->domains[ret] = domain;
 391                set_bit(ret, mmu->ctx);
 392        } else
 393                ret = -EBUSY;
 394
 395        spin_unlock_irqrestore(&mmu->lock, flags);
 396
 397        return ret;
 398}
 399
 400static void ipmmu_domain_free_context(struct ipmmu_vmsa_device *mmu,
 401                                      unsigned int context_id)
 402{
 403        unsigned long flags;
 404
 405        spin_lock_irqsave(&mmu->lock, flags);
 406
 407        clear_bit(context_id, mmu->ctx);
 408        mmu->domains[context_id] = NULL;
 409
 410        spin_unlock_irqrestore(&mmu->lock, flags);
 411}
 412
 413static void ipmmu_domain_setup_context(struct ipmmu_vmsa_domain *domain)
 414{
 415        u64 ttbr;
 416        u32 tmp;
 417
 418        /* TTBR0 */
 419        ttbr = domain->cfg.arm_lpae_s1_cfg.ttbr[0];
 420        ipmmu_ctx_write_root(domain, IMTTLBR0, ttbr);
 421        ipmmu_ctx_write_root(domain, IMTTUBR0, ttbr >> 32);
 422
 423        /*
 424         * TTBCR
 425         * We use long descriptors with inner-shareable WBWA tables and allocate
 426         * the whole 32-bit VA space to TTBR0.
 427         */
 428        if (domain->mmu->features->twobit_imttbcr_sl0)
 429                tmp = IMTTBCR_SL0_TWOBIT_LVL_1;
 430        else
 431                tmp = IMTTBCR_SL0_LVL_1;
 432
 433        ipmmu_ctx_write_root(domain, IMTTBCR, IMTTBCR_EAE |
 434                             IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA |
 435                             IMTTBCR_IRGN0_WB_WA | tmp);
 436
 437        /* MAIR0 */
 438        ipmmu_ctx_write_root(domain, IMMAIR0,
 439                             domain->cfg.arm_lpae_s1_cfg.mair[0]);
 440
 441        /* IMBUSCR */
 442        if (domain->mmu->features->setup_imbuscr)
 443                ipmmu_ctx_write_root(domain, IMBUSCR,
 444                                     ipmmu_ctx_read_root(domain, IMBUSCR) &
 445                                     ~(IMBUSCR_DVM | IMBUSCR_BUSSEL_MASK));
 446
 447        /*
 448         * IMSTR
 449         * Clear all interrupt flags.
 450         */
 451        ipmmu_ctx_write_root(domain, IMSTR, ipmmu_ctx_read_root(domain, IMSTR));
 452
 453        /*
 454         * IMCTR
 455         * Enable the MMU and interrupt generation. The long-descriptor
 456         * translation table format doesn't use TEX remapping. Don't enable AF
 457         * software management as we have no use for it. Flush the TLB as
 458         * required when modifying the context registers.
 459         */
 460        ipmmu_ctx_write_all(domain, IMCTR,
 461                            IMCTR_INTEN | IMCTR_FLUSH | IMCTR_MMUEN);
 462}
 463
 464static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain)
 465{
 466        int ret;
 467
 468        /*
 469         * Allocate the page table operations.
 470         *
 471         * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory
 472         * access, Long-descriptor format" that the NStable bit being set in a
 473         * table descriptor will result in the NStable and NS bits of all child
 474         * entries being ignored and considered as being set. The IPMMU seems
 475         * not to comply with this, as it generates a secure access page fault
 476         * if any of the NStable and NS bits isn't set when running in
 477         * non-secure mode.
 478         */
 479        domain->cfg.quirks = IO_PGTABLE_QUIRK_ARM_NS;
 480        domain->cfg.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K;
 481        domain->cfg.ias = 32;
 482        domain->cfg.oas = 40;
 483        domain->cfg.tlb = &ipmmu_gather_ops;
 484        domain->io_domain.geometry.aperture_end = DMA_BIT_MASK(32);
 485        domain->io_domain.geometry.force_aperture = true;
 486        /*
 487         * TODO: Add support for coherent walk through CCI with DVM and remove
 488         * cache handling. For now, delegate it to the io-pgtable code.
 489         */
 490        domain->cfg.coherent_walk = false;
 491        domain->cfg.iommu_dev = domain->mmu->root->dev;
 492
 493        /*
 494         * Find an unused context.
 495         */
 496        ret = ipmmu_domain_allocate_context(domain->mmu->root, domain);
 497        if (ret < 0)
 498                return ret;
 499
 500        domain->context_id = ret;
 501
 502        domain->iop = alloc_io_pgtable_ops(ARM_32_LPAE_S1, &domain->cfg,
 503                                           domain);
 504        if (!domain->iop) {
 505                ipmmu_domain_free_context(domain->mmu->root,
 506                                          domain->context_id);
 507                return -EINVAL;
 508        }
 509
 510        ipmmu_domain_setup_context(domain);
 511        return 0;
 512}
 513
 514static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain *domain)
 515{
 516        if (!domain->mmu)
 517                return;
 518
 519        /*
 520         * Disable the context. Flush the TLB as required when modifying the
 521         * context registers.
 522         *
 523         * TODO: Is TLB flush really needed ?
 524         */
 525        ipmmu_ctx_write_all(domain, IMCTR, IMCTR_FLUSH);
 526        ipmmu_tlb_sync(domain);
 527        ipmmu_domain_free_context(domain->mmu->root, domain->context_id);
 528}
 529
 530/* -----------------------------------------------------------------------------
 531 * Fault Handling
 532 */
 533
 534static irqreturn_t ipmmu_domain_irq(struct ipmmu_vmsa_domain *domain)
 535{
 536        const u32 err_mask = IMSTR_MHIT | IMSTR_ABORT | IMSTR_PF | IMSTR_TF;
 537        struct ipmmu_vmsa_device *mmu = domain->mmu;
 538        unsigned long iova;
 539        u32 status;
 540
 541        status = ipmmu_ctx_read_root(domain, IMSTR);
 542        if (!(status & err_mask))
 543                return IRQ_NONE;
 544
 545        iova = ipmmu_ctx_read_root(domain, IMELAR);
 546        if (IS_ENABLED(CONFIG_64BIT))
 547                iova |= (u64)ipmmu_ctx_read_root(domain, IMEUAR) << 32;
 548
 549        /*
 550         * Clear the error status flags. Unlike traditional interrupt flag
 551         * registers that must be cleared by writing 1, this status register
 552         * seems to require 0. The error address register must be read before,
 553         * otherwise its value will be 0.
 554         */
 555        ipmmu_ctx_write_root(domain, IMSTR, 0);
 556
 557        /* Log fatal errors. */
 558        if (status & IMSTR_MHIT)
 559                dev_err_ratelimited(mmu->dev, "Multiple TLB hits @0x%lx\n",
 560                                    iova);
 561        if (status & IMSTR_ABORT)
 562                dev_err_ratelimited(mmu->dev, "Page Table Walk Abort @0x%lx\n",
 563                                    iova);
 564
 565        if (!(status & (IMSTR_PF | IMSTR_TF)))
 566                return IRQ_NONE;
 567
 568        /*
 569         * Try to handle page faults and translation faults.
 570         *
 571         * TODO: We need to look up the faulty device based on the I/O VA. Use
 572         * the IOMMU device for now.
 573         */
 574        if (!report_iommu_fault(&domain->io_domain, mmu->dev, iova, 0))
 575                return IRQ_HANDLED;
 576
 577        dev_err_ratelimited(mmu->dev,
 578                            "Unhandled fault: status 0x%08x iova 0x%lx\n",
 579                            status, iova);
 580
 581        return IRQ_HANDLED;
 582}
 583
 584static irqreturn_t ipmmu_irq(int irq, void *dev)
 585{
 586        struct ipmmu_vmsa_device *mmu = dev;
 587        irqreturn_t status = IRQ_NONE;
 588        unsigned int i;
 589        unsigned long flags;
 590
 591        spin_lock_irqsave(&mmu->lock, flags);
 592
 593        /*
 594         * Check interrupts for all active contexts.
 595         */
 596        for (i = 0; i < mmu->num_ctx; i++) {
 597                if (!mmu->domains[i])
 598                        continue;
 599                if (ipmmu_domain_irq(mmu->domains[i]) == IRQ_HANDLED)
 600                        status = IRQ_HANDLED;
 601        }
 602
 603        spin_unlock_irqrestore(&mmu->lock, flags);
 604
 605        return status;
 606}
 607
 608/* -----------------------------------------------------------------------------
 609 * IOMMU Operations
 610 */
 611
 612static struct iommu_domain *__ipmmu_domain_alloc(unsigned type)
 613{
 614        struct ipmmu_vmsa_domain *domain;
 615
 616        domain = kzalloc(sizeof(*domain), GFP_KERNEL);
 617        if (!domain)
 618                return NULL;
 619
 620        mutex_init(&domain->mutex);
 621
 622        return &domain->io_domain;
 623}
 624
 625static struct iommu_domain *ipmmu_domain_alloc(unsigned type)
 626{
 627        struct iommu_domain *io_domain = NULL;
 628
 629        switch (type) {
 630        case IOMMU_DOMAIN_UNMANAGED:
 631                io_domain = __ipmmu_domain_alloc(type);
 632                break;
 633
 634        case IOMMU_DOMAIN_DMA:
 635                io_domain = __ipmmu_domain_alloc(type);
 636                if (io_domain && iommu_get_dma_cookie(io_domain)) {
 637                        kfree(io_domain);
 638                        io_domain = NULL;
 639                }
 640                break;
 641        }
 642
 643        return io_domain;
 644}
 645
 646static void ipmmu_domain_free(struct iommu_domain *io_domain)
 647{
 648        struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
 649
 650        /*
 651         * Free the domain resources. We assume that all devices have already
 652         * been detached.
 653         */
 654        iommu_put_dma_cookie(io_domain);
 655        ipmmu_domain_destroy_context(domain);
 656        free_io_pgtable_ops(domain->iop);
 657        kfree(domain);
 658}
 659
 660static int ipmmu_attach_device(struct iommu_domain *io_domain,
 661                               struct device *dev)
 662{
 663        struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
 664        struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
 665        struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
 666        unsigned int i;
 667        int ret = 0;
 668
 669        if (!mmu) {
 670                dev_err(dev, "Cannot attach to IPMMU\n");
 671                return -ENXIO;
 672        }
 673
 674        mutex_lock(&domain->mutex);
 675
 676        if (!domain->mmu) {
 677                /* The domain hasn't been used yet, initialize it. */
 678                domain->mmu = mmu;
 679                ret = ipmmu_domain_init_context(domain);
 680                if (ret < 0) {
 681                        dev_err(dev, "Unable to initialize IPMMU context\n");
 682                        domain->mmu = NULL;
 683                } else {
 684                        dev_info(dev, "Using IPMMU context %u\n",
 685                                 domain->context_id);
 686                }
 687        } else if (domain->mmu != mmu) {
 688                /*
 689                 * Something is wrong, we can't attach two devices using
 690                 * different IOMMUs to the same domain.
 691                 */
 692                dev_err(dev, "Can't attach IPMMU %s to domain on IPMMU %s\n",
 693                        dev_name(mmu->dev), dev_name(domain->mmu->dev));
 694                ret = -EINVAL;
 695        } else
 696                dev_info(dev, "Reusing IPMMU context %u\n", domain->context_id);
 697
 698        mutex_unlock(&domain->mutex);
 699
 700        if (ret < 0)
 701                return ret;
 702
 703        for (i = 0; i < fwspec->num_ids; ++i)
 704                ipmmu_utlb_enable(domain, fwspec->ids[i]);
 705
 706        return 0;
 707}
 708
 709static void ipmmu_detach_device(struct iommu_domain *io_domain,
 710                                struct device *dev)
 711{
 712        struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
 713        struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
 714        unsigned int i;
 715
 716        for (i = 0; i < fwspec->num_ids; ++i)
 717                ipmmu_utlb_disable(domain, fwspec->ids[i]);
 718
 719        /*
 720         * TODO: Optimize by disabling the context when no device is attached.
 721         */
 722}
 723
 724static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova,
 725                     phys_addr_t paddr, size_t size, int prot)
 726{
 727        struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
 728
 729        if (!domain)
 730                return -ENODEV;
 731
 732        return domain->iop->map(domain->iop, iova, paddr, size, prot);
 733}
 734
 735static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova,
 736                          size_t size)
 737{
 738        struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
 739
 740        return domain->iop->unmap(domain->iop, iova, size);
 741}
 742
 743static void ipmmu_iotlb_sync(struct iommu_domain *io_domain)
 744{
 745        struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
 746
 747        if (domain->mmu)
 748                ipmmu_tlb_flush_all(domain);
 749}
 750
 751static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain,
 752                                      dma_addr_t iova)
 753{
 754        struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
 755
 756        /* TODO: Is locking needed ? */
 757
 758        return domain->iop->iova_to_phys(domain->iop, iova);
 759}
 760
 761static int ipmmu_init_platform_device(struct device *dev,
 762                                      struct of_phandle_args *args)
 763{
 764        struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
 765        struct platform_device *ipmmu_pdev;
 766
 767        ipmmu_pdev = of_find_device_by_node(args->np);
 768        if (!ipmmu_pdev)
 769                return -ENODEV;
 770
 771        fwspec->iommu_priv = platform_get_drvdata(ipmmu_pdev);
 772
 773        return 0;
 774}
 775
 776static const struct soc_device_attribute soc_rcar_gen3[] = {
 777        { .soc_id = "r8a774a1", },
 778        { .soc_id = "r8a774c0", },
 779        { .soc_id = "r8a7795", },
 780        { .soc_id = "r8a7796", },
 781        { .soc_id = "r8a77965", },
 782        { .soc_id = "r8a77970", },
 783        { .soc_id = "r8a77990", },
 784        { .soc_id = "r8a77995", },
 785        { /* sentinel */ }
 786};
 787
 788static const struct soc_device_attribute soc_rcar_gen3_whitelist[] = {
 789        { .soc_id = "r8a774c0", },
 790        { .soc_id = "r8a7795", .revision = "ES3.*" },
 791        { .soc_id = "r8a77965", },
 792        { .soc_id = "r8a77990", },
 793        { .soc_id = "r8a77995", },
 794        { /* sentinel */ }
 795};
 796
 797static const char * const rcar_gen3_slave_whitelist[] = {
 798};
 799
 800static bool ipmmu_slave_whitelist(struct device *dev)
 801{
 802        unsigned int i;
 803
 804        /*
 805         * For R-Car Gen3 use a white list to opt-in slave devices.
 806         * For Other SoCs, this returns true anyway.
 807         */
 808        if (!soc_device_match(soc_rcar_gen3))
 809                return true;
 810
 811        /* Check whether this R-Car Gen3 can use the IPMMU correctly or not */
 812        if (!soc_device_match(soc_rcar_gen3_whitelist))
 813                return false;
 814
 815        /* Check whether this slave device can work with the IPMMU */
 816        for (i = 0; i < ARRAY_SIZE(rcar_gen3_slave_whitelist); i++) {
 817                if (!strcmp(dev_name(dev), rcar_gen3_slave_whitelist[i]))
 818                        return true;
 819        }
 820
 821        /* Otherwise, do not allow use of IPMMU */
 822        return false;
 823}
 824
 825static int ipmmu_of_xlate(struct device *dev,
 826                          struct of_phandle_args *spec)
 827{
 828        if (!ipmmu_slave_whitelist(dev))
 829                return -ENODEV;
 830
 831        iommu_fwspec_add_ids(dev, spec->args, 1);
 832
 833        /* Initialize once - xlate() will call multiple times */
 834        if (to_ipmmu(dev))
 835                return 0;
 836
 837        return ipmmu_init_platform_device(dev, spec);
 838}
 839
 840static int ipmmu_init_arm_mapping(struct device *dev)
 841{
 842        struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
 843        struct iommu_group *group;
 844        int ret;
 845
 846        /* Create a device group and add the device to it. */
 847        group = iommu_group_alloc();
 848        if (IS_ERR(group)) {
 849                dev_err(dev, "Failed to allocate IOMMU group\n");
 850                return PTR_ERR(group);
 851        }
 852
 853        ret = iommu_group_add_device(group, dev);
 854        iommu_group_put(group);
 855
 856        if (ret < 0) {
 857                dev_err(dev, "Failed to add device to IPMMU group\n");
 858                return ret;
 859        }
 860
 861        /*
 862         * Create the ARM mapping, used by the ARM DMA mapping core to allocate
 863         * VAs. This will allocate a corresponding IOMMU domain.
 864         *
 865         * TODO:
 866         * - Create one mapping per context (TLB).
 867         * - Make the mapping size configurable ? We currently use a 2GB mapping
 868         *   at a 1GB offset to ensure that NULL VAs will fault.
 869         */
 870        if (!mmu->mapping) {
 871                struct dma_iommu_mapping *mapping;
 872
 873                mapping = arm_iommu_create_mapping(&platform_bus_type,
 874                                                   SZ_1G, SZ_2G);
 875                if (IS_ERR(mapping)) {
 876                        dev_err(mmu->dev, "failed to create ARM IOMMU mapping\n");
 877                        ret = PTR_ERR(mapping);
 878                        goto error;
 879                }
 880
 881                mmu->mapping = mapping;
 882        }
 883
 884        /* Attach the ARM VA mapping to the device. */
 885        ret = arm_iommu_attach_device(dev, mmu->mapping);
 886        if (ret < 0) {
 887                dev_err(dev, "Failed to attach device to VA mapping\n");
 888                goto error;
 889        }
 890
 891        return 0;
 892
 893error:
 894        iommu_group_remove_device(dev);
 895        if (mmu->mapping)
 896                arm_iommu_release_mapping(mmu->mapping);
 897
 898        return ret;
 899}
 900
 901static int ipmmu_add_device(struct device *dev)
 902{
 903        struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
 904        struct iommu_group *group;
 905        int ret;
 906
 907        /*
 908         * Only let through devices that have been verified in xlate()
 909         */
 910        if (!mmu)
 911                return -ENODEV;
 912
 913        if (IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA)) {
 914                ret = ipmmu_init_arm_mapping(dev);
 915                if (ret)
 916                        return ret;
 917        } else {
 918                group = iommu_group_get_for_dev(dev);
 919                if (IS_ERR(group))
 920                        return PTR_ERR(group);
 921
 922                iommu_group_put(group);
 923        }
 924
 925        iommu_device_link(&mmu->iommu, dev);
 926        return 0;
 927}
 928
 929static void ipmmu_remove_device(struct device *dev)
 930{
 931        struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
 932
 933        iommu_device_unlink(&mmu->iommu, dev);
 934        arm_iommu_detach_device(dev);
 935        iommu_group_remove_device(dev);
 936}
 937
 938static struct iommu_group *ipmmu_find_group(struct device *dev)
 939{
 940        struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
 941        struct iommu_group *group;
 942
 943        if (mmu->group)
 944                return iommu_group_ref_get(mmu->group);
 945
 946        group = iommu_group_alloc();
 947        if (!IS_ERR(group))
 948                mmu->group = group;
 949
 950        return group;
 951}
 952
 953static const struct iommu_ops ipmmu_ops = {
 954        .domain_alloc = ipmmu_domain_alloc,
 955        .domain_free = ipmmu_domain_free,
 956        .attach_dev = ipmmu_attach_device,
 957        .detach_dev = ipmmu_detach_device,
 958        .map = ipmmu_map,
 959        .unmap = ipmmu_unmap,
 960        .flush_iotlb_all = ipmmu_iotlb_sync,
 961        .iotlb_sync = ipmmu_iotlb_sync,
 962        .iova_to_phys = ipmmu_iova_to_phys,
 963        .add_device = ipmmu_add_device,
 964        .remove_device = ipmmu_remove_device,
 965        .device_group = ipmmu_find_group,
 966        .pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K,
 967        .of_xlate = ipmmu_of_xlate,
 968};
 969
 970/* -----------------------------------------------------------------------------
 971 * Probe/remove and init
 972 */
 973
 974static void ipmmu_device_reset(struct ipmmu_vmsa_device *mmu)
 975{
 976        unsigned int i;
 977
 978        /* Disable all contexts. */
 979        for (i = 0; i < mmu->num_ctx; ++i)
 980                ipmmu_write(mmu, i * IM_CTX_SIZE + IMCTR, 0);
 981}
 982
 983static const struct ipmmu_features ipmmu_features_default = {
 984        .use_ns_alias_offset = true,
 985        .has_cache_leaf_nodes = false,
 986        .number_of_contexts = 1, /* software only tested with one context */
 987        .num_utlbs = 32,
 988        .setup_imbuscr = true,
 989        .twobit_imttbcr_sl0 = false,
 990        .reserved_context = false,
 991};
 992
 993static const struct ipmmu_features ipmmu_features_rcar_gen3 = {
 994        .use_ns_alias_offset = false,
 995        .has_cache_leaf_nodes = true,
 996        .number_of_contexts = 8,
 997        .num_utlbs = 48,
 998        .setup_imbuscr = false,
 999        .twobit_imttbcr_sl0 = true,
1000        .reserved_context = true,
1001};
1002
1003static const struct of_device_id ipmmu_of_ids[] = {
1004        {
1005                .compatible = "renesas,ipmmu-vmsa",
1006                .data = &ipmmu_features_default,
1007        }, {
1008                .compatible = "renesas,ipmmu-r8a774a1",
1009                .data = &ipmmu_features_rcar_gen3,
1010        }, {
1011                .compatible = "renesas,ipmmu-r8a774c0",
1012                .data = &ipmmu_features_rcar_gen3,
1013        }, {
1014                .compatible = "renesas,ipmmu-r8a7795",
1015                .data = &ipmmu_features_rcar_gen3,
1016        }, {
1017                .compatible = "renesas,ipmmu-r8a7796",
1018                .data = &ipmmu_features_rcar_gen3,
1019        }, {
1020                .compatible = "renesas,ipmmu-r8a77965",
1021                .data = &ipmmu_features_rcar_gen3,
1022        }, {
1023                .compatible = "renesas,ipmmu-r8a77970",
1024                .data = &ipmmu_features_rcar_gen3,
1025        }, {
1026                .compatible = "renesas,ipmmu-r8a77990",
1027                .data = &ipmmu_features_rcar_gen3,
1028        }, {
1029                .compatible = "renesas,ipmmu-r8a77995",
1030                .data = &ipmmu_features_rcar_gen3,
1031        }, {
1032                /* Terminator */
1033        },
1034};
1035
1036static int ipmmu_probe(struct platform_device *pdev)
1037{
1038        struct ipmmu_vmsa_device *mmu;
1039        struct resource *res;
1040        int irq;
1041        int ret;
1042
1043        mmu = devm_kzalloc(&pdev->dev, sizeof(*mmu), GFP_KERNEL);
1044        if (!mmu) {
1045                dev_err(&pdev->dev, "cannot allocate device data\n");
1046                return -ENOMEM;
1047        }
1048
1049        mmu->dev = &pdev->dev;
1050        spin_lock_init(&mmu->lock);
1051        bitmap_zero(mmu->ctx, IPMMU_CTX_MAX);
1052        mmu->features = of_device_get_match_data(&pdev->dev);
1053        memset(mmu->utlb_ctx, IPMMU_CTX_INVALID, mmu->features->num_utlbs);
1054        dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
1055
1056        /* Map I/O memory and request IRQ. */
1057        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1058        mmu->base = devm_ioremap_resource(&pdev->dev, res);
1059        if (IS_ERR(mmu->base))
1060                return PTR_ERR(mmu->base);
1061
1062        /*
1063         * The IPMMU has two register banks, for secure and non-secure modes.
1064         * The bank mapped at the beginning of the IPMMU address space
1065         * corresponds to the running mode of the CPU. When running in secure
1066         * mode the non-secure register bank is also available at an offset.
1067         *
1068         * Secure mode operation isn't clearly documented and is thus currently
1069         * not implemented in the driver. Furthermore, preliminary tests of
1070         * non-secure operation with the main register bank were not successful.
1071         * Offset the registers base unconditionally to point to the non-secure
1072         * alias space for now.
1073         */
1074        if (mmu->features->use_ns_alias_offset)
1075                mmu->base += IM_NS_ALIAS_OFFSET;
1076
1077        mmu->num_ctx = min(IPMMU_CTX_MAX, mmu->features->number_of_contexts);
1078
1079        irq = platform_get_irq(pdev, 0);
1080
1081        /*
1082         * Determine if this IPMMU instance is a root device by checking for
1083         * the lack of has_cache_leaf_nodes flag or renesas,ipmmu-main property.
1084         */
1085        if (!mmu->features->has_cache_leaf_nodes ||
1086            !of_find_property(pdev->dev.of_node, "renesas,ipmmu-main", NULL))
1087                mmu->root = mmu;
1088        else
1089                mmu->root = ipmmu_find_root();
1090
1091        /*
1092         * Wait until the root device has been registered for sure.
1093         */
1094        if (!mmu->root)
1095                return -EPROBE_DEFER;
1096
1097        /* Root devices have mandatory IRQs */
1098        if (ipmmu_is_root(mmu)) {
1099                if (irq < 0) {
1100                        dev_err(&pdev->dev, "no IRQ found\n");
1101                        return irq;
1102                }
1103
1104                ret = devm_request_irq(&pdev->dev, irq, ipmmu_irq, 0,
1105                                       dev_name(&pdev->dev), mmu);
1106                if (ret < 0) {
1107                        dev_err(&pdev->dev, "failed to request IRQ %d\n", irq);
1108                        return ret;
1109                }
1110
1111                ipmmu_device_reset(mmu);
1112
1113                if (mmu->features->reserved_context) {
1114                        dev_info(&pdev->dev, "IPMMU context 0 is reserved\n");
1115                        set_bit(0, mmu->ctx);
1116                }
1117        }
1118
1119        /*
1120         * Register the IPMMU to the IOMMU subsystem in the following cases:
1121         * - R-Car Gen2 IPMMU (all devices registered)
1122         * - R-Car Gen3 IPMMU (leaf devices only - skip root IPMMU-MM device)
1123         */
1124        if (!mmu->features->has_cache_leaf_nodes || !ipmmu_is_root(mmu)) {
1125                ret = iommu_device_sysfs_add(&mmu->iommu, &pdev->dev, NULL,
1126                                             dev_name(&pdev->dev));
1127                if (ret)
1128                        return ret;
1129
1130                iommu_device_set_ops(&mmu->iommu, &ipmmu_ops);
1131                iommu_device_set_fwnode(&mmu->iommu,
1132                                        &pdev->dev.of_node->fwnode);
1133
1134                ret = iommu_device_register(&mmu->iommu);
1135                if (ret)
1136                        return ret;
1137
1138#if defined(CONFIG_IOMMU_DMA)
1139                if (!iommu_present(&platform_bus_type))
1140                        bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1141#endif
1142        }
1143
1144        /*
1145         * We can't create the ARM mapping here as it requires the bus to have
1146         * an IOMMU, which only happens when bus_set_iommu() is called in
1147         * ipmmu_init() after the probe function returns.
1148         */
1149
1150        platform_set_drvdata(pdev, mmu);
1151
1152        return 0;
1153}
1154
1155static int ipmmu_remove(struct platform_device *pdev)
1156{
1157        struct ipmmu_vmsa_device *mmu = platform_get_drvdata(pdev);
1158
1159        iommu_device_sysfs_remove(&mmu->iommu);
1160        iommu_device_unregister(&mmu->iommu);
1161
1162        arm_iommu_release_mapping(mmu->mapping);
1163
1164        ipmmu_device_reset(mmu);
1165
1166        return 0;
1167}
1168
1169#ifdef CONFIG_PM_SLEEP
1170static int ipmmu_resume_noirq(struct device *dev)
1171{
1172        struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
1173        unsigned int i;
1174
1175        /* Reset root MMU and restore contexts */
1176        if (ipmmu_is_root(mmu)) {
1177                ipmmu_device_reset(mmu);
1178
1179                for (i = 0; i < mmu->num_ctx; i++) {
1180                        if (!mmu->domains[i])
1181                                continue;
1182
1183                        ipmmu_domain_setup_context(mmu->domains[i]);
1184                }
1185        }
1186
1187        /* Re-enable active micro-TLBs */
1188        for (i = 0; i < mmu->features->num_utlbs; i++) {
1189                if (mmu->utlb_ctx[i] == IPMMU_CTX_INVALID)
1190                        continue;
1191
1192                ipmmu_utlb_enable(mmu->root->domains[mmu->utlb_ctx[i]], i);
1193        }
1194
1195        return 0;
1196}
1197
1198static const struct dev_pm_ops ipmmu_pm  = {
1199        SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(NULL, ipmmu_resume_noirq)
1200};
1201#define DEV_PM_OPS      &ipmmu_pm
1202#else
1203#define DEV_PM_OPS      NULL
1204#endif /* CONFIG_PM_SLEEP */
1205
1206static struct platform_driver ipmmu_driver = {
1207        .driver = {
1208                .name = "ipmmu-vmsa",
1209                .of_match_table = of_match_ptr(ipmmu_of_ids),
1210                .pm = DEV_PM_OPS,
1211        },
1212        .probe = ipmmu_probe,
1213        .remove = ipmmu_remove,
1214};
1215
1216static int __init ipmmu_init(void)
1217{
1218        struct device_node *np;
1219        static bool setup_done;
1220        int ret;
1221
1222        if (setup_done)
1223                return 0;
1224
1225        np = of_find_matching_node(NULL, ipmmu_of_ids);
1226        if (!np)
1227                return 0;
1228
1229        of_node_put(np);
1230
1231        ret = platform_driver_register(&ipmmu_driver);
1232        if (ret < 0)
1233                return ret;
1234
1235#if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
1236        if (!iommu_present(&platform_bus_type))
1237                bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1238#endif
1239
1240        setup_done = true;
1241        return 0;
1242}
1243subsys_initcall(ipmmu_init);
1244