linux/drivers/irqchip/irq-gic-v3-its.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
   4 * Author: Marc Zyngier <marc.zyngier@arm.com>
   5 */
   6
   7#include <linux/acpi.h>
   8#include <linux/acpi_iort.h>
   9#include <linux/bitmap.h>
  10#include <linux/cpu.h>
  11#include <linux/crash_dump.h>
  12#include <linux/delay.h>
  13#include <linux/dma-iommu.h>
  14#include <linux/efi.h>
  15#include <linux/interrupt.h>
  16#include <linux/irqdomain.h>
  17#include <linux/list.h>
  18#include <linux/log2.h>
  19#include <linux/memblock.h>
  20#include <linux/mm.h>
  21#include <linux/msi.h>
  22#include <linux/of.h>
  23#include <linux/of_address.h>
  24#include <linux/of_irq.h>
  25#include <linux/of_pci.h>
  26#include <linux/of_platform.h>
  27#include <linux/percpu.h>
  28#include <linux/slab.h>
  29#include <linux/syscore_ops.h>
  30
  31#include <linux/irqchip.h>
  32#include <linux/irqchip/arm-gic-v3.h>
  33#include <linux/irqchip/arm-gic-v4.h>
  34
  35#include <asm/cputype.h>
  36#include <asm/exception.h>
  37
  38#include "irq-gic-common.h"
  39
  40#define ITS_FLAGS_CMDQ_NEEDS_FLUSHING           (1ULL << 0)
  41#define ITS_FLAGS_WORKAROUND_CAVIUM_22375       (1ULL << 1)
  42#define ITS_FLAGS_WORKAROUND_CAVIUM_23144       (1ULL << 2)
  43#define ITS_FLAGS_SAVE_SUSPEND_STATE            (1ULL << 3)
  44
  45#define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING     (1 << 0)
  46#define RDIST_FLAGS_RD_TABLES_PREALLOCATED      (1 << 1)
  47
  48static u32 lpi_id_bits;
  49
  50/*
  51 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
  52 * deal with (one configuration byte per interrupt). PENDBASE has to
  53 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
  54 */
  55#define LPI_NRBITS              lpi_id_bits
  56#define LPI_PROPBASE_SZ         ALIGN(BIT(LPI_NRBITS), SZ_64K)
  57#define LPI_PENDBASE_SZ         ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
  58
  59#define LPI_PROP_DEFAULT_PRIO   GICD_INT_DEF_PRI
  60
  61/*
  62 * Collection structure - just an ID, and a redistributor address to
  63 * ping. We use one per CPU as a bag of interrupts assigned to this
  64 * CPU.
  65 */
  66struct its_collection {
  67        u64                     target_address;
  68        u16                     col_id;
  69};
  70
  71/*
  72 * The ITS_BASER structure - contains memory information, cached
  73 * value of BASER register configuration and ITS page size.
  74 */
  75struct its_baser {
  76        void            *base;
  77        u64             val;
  78        u32             order;
  79        u32             psz;
  80};
  81
  82struct its_device;
  83
  84/*
  85 * The ITS structure - contains most of the infrastructure, with the
  86 * top-level MSI domain, the command queue, the collections, and the
  87 * list of devices writing to it.
  88 *
  89 * dev_alloc_lock has to be taken for device allocations, while the
  90 * spinlock must be taken to parse data structures such as the device
  91 * list.
  92 */
  93struct its_node {
  94        raw_spinlock_t          lock;
  95        struct mutex            dev_alloc_lock;
  96        struct list_head        entry;
  97        void __iomem            *base;
  98        phys_addr_t             phys_base;
  99        struct its_cmd_block    *cmd_base;
 100        struct its_cmd_block    *cmd_write;
 101        struct its_baser        tables[GITS_BASER_NR_REGS];
 102        struct its_collection   *collections;
 103        struct fwnode_handle    *fwnode_handle;
 104        u64                     (*get_msi_base)(struct its_device *its_dev);
 105        u64                     cbaser_save;
 106        u32                     ctlr_save;
 107        struct list_head        its_device_list;
 108        u64                     flags;
 109        unsigned long           list_nr;
 110        u32                     ite_size;
 111        u32                     device_ids;
 112        int                     numa_node;
 113        unsigned int            msi_domain_flags;
 114        u32                     pre_its_base; /* for Socionext Synquacer */
 115        bool                    is_v4;
 116        int                     vlpi_redist_offset;
 117};
 118
 119#define ITS_ITT_ALIGN           SZ_256
 120
 121/* The maximum number of VPEID bits supported by VLPI commands */
 122#define ITS_MAX_VPEID_BITS      (16)
 123#define ITS_MAX_VPEID           (1 << (ITS_MAX_VPEID_BITS))
 124
 125/* Convert page order to size in bytes */
 126#define PAGE_ORDER_TO_SIZE(o)   (PAGE_SIZE << (o))
 127
 128struct event_lpi_map {
 129        unsigned long           *lpi_map;
 130        u16                     *col_map;
 131        irq_hw_number_t         lpi_base;
 132        int                     nr_lpis;
 133        struct mutex            vlpi_lock;
 134        struct its_vm           *vm;
 135        struct its_vlpi_map     *vlpi_maps;
 136        int                     nr_vlpis;
 137};
 138
 139/*
 140 * The ITS view of a device - belongs to an ITS, owns an interrupt
 141 * translation table, and a list of interrupts.  If it some of its
 142 * LPIs are injected into a guest (GICv4), the event_map.vm field
 143 * indicates which one.
 144 */
 145struct its_device {
 146        struct list_head        entry;
 147        struct its_node         *its;
 148        struct event_lpi_map    event_map;
 149        void                    *itt;
 150        u32                     nr_ites;
 151        u32                     device_id;
 152        bool                    shared;
 153};
 154
 155static struct {
 156        raw_spinlock_t          lock;
 157        struct its_device       *dev;
 158        struct its_vpe          **vpes;
 159        int                     next_victim;
 160} vpe_proxy;
 161
 162static LIST_HEAD(its_nodes);
 163static DEFINE_RAW_SPINLOCK(its_lock);
 164static struct rdists *gic_rdists;
 165static struct irq_domain *its_parent;
 166
 167static unsigned long its_list_map;
 168static u16 vmovp_seq_num;
 169static DEFINE_RAW_SPINLOCK(vmovp_lock);
 170
 171static DEFINE_IDA(its_vpeid_ida);
 172
 173#define gic_data_rdist()                (raw_cpu_ptr(gic_rdists->rdist))
 174#define gic_data_rdist_cpu(cpu)         (per_cpu_ptr(gic_rdists->rdist, cpu))
 175#define gic_data_rdist_rd_base()        (gic_data_rdist()->rd_base)
 176#define gic_data_rdist_vlpi_base()      (gic_data_rdist_rd_base() + SZ_128K)
 177
 178static struct its_collection *dev_event_to_col(struct its_device *its_dev,
 179                                               u32 event)
 180{
 181        struct its_node *its = its_dev->its;
 182
 183        return its->collections + its_dev->event_map.col_map[event];
 184}
 185
 186static struct its_collection *valid_col(struct its_collection *col)
 187{
 188        if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
 189                return NULL;
 190
 191        return col;
 192}
 193
 194static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
 195{
 196        if (valid_col(its->collections + vpe->col_idx))
 197                return vpe;
 198
 199        return NULL;
 200}
 201
 202/*
 203 * ITS command descriptors - parameters to be encoded in a command
 204 * block.
 205 */
 206struct its_cmd_desc {
 207        union {
 208                struct {
 209                        struct its_device *dev;
 210                        u32 event_id;
 211                } its_inv_cmd;
 212
 213                struct {
 214                        struct its_device *dev;
 215                        u32 event_id;
 216                } its_clear_cmd;
 217
 218                struct {
 219                        struct its_device *dev;
 220                        u32 event_id;
 221                } its_int_cmd;
 222
 223                struct {
 224                        struct its_device *dev;
 225                        int valid;
 226                } its_mapd_cmd;
 227
 228                struct {
 229                        struct its_collection *col;
 230                        int valid;
 231                } its_mapc_cmd;
 232
 233                struct {
 234                        struct its_device *dev;
 235                        u32 phys_id;
 236                        u32 event_id;
 237                } its_mapti_cmd;
 238
 239                struct {
 240                        struct its_device *dev;
 241                        struct its_collection *col;
 242                        u32 event_id;
 243                } its_movi_cmd;
 244
 245                struct {
 246                        struct its_device *dev;
 247                        u32 event_id;
 248                } its_discard_cmd;
 249
 250                struct {
 251                        struct its_collection *col;
 252                } its_invall_cmd;
 253
 254                struct {
 255                        struct its_vpe *vpe;
 256                } its_vinvall_cmd;
 257
 258                struct {
 259                        struct its_vpe *vpe;
 260                        struct its_collection *col;
 261                        bool valid;
 262                } its_vmapp_cmd;
 263
 264                struct {
 265                        struct its_vpe *vpe;
 266                        struct its_device *dev;
 267                        u32 virt_id;
 268                        u32 event_id;
 269                        bool db_enabled;
 270                } its_vmapti_cmd;
 271
 272                struct {
 273                        struct its_vpe *vpe;
 274                        struct its_device *dev;
 275                        u32 event_id;
 276                        bool db_enabled;
 277                } its_vmovi_cmd;
 278
 279                struct {
 280                        struct its_vpe *vpe;
 281                        struct its_collection *col;
 282                        u16 seq_num;
 283                        u16 its_list;
 284                } its_vmovp_cmd;
 285        };
 286};
 287
 288/*
 289 * The ITS command block, which is what the ITS actually parses.
 290 */
 291struct its_cmd_block {
 292        u64     raw_cmd[4];
 293};
 294
 295#define ITS_CMD_QUEUE_SZ                SZ_64K
 296#define ITS_CMD_QUEUE_NR_ENTRIES        (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
 297
 298typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
 299                                                    struct its_cmd_block *,
 300                                                    struct its_cmd_desc *);
 301
 302typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
 303                                              struct its_cmd_block *,
 304                                              struct its_cmd_desc *);
 305
 306static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
 307{
 308        u64 mask = GENMASK_ULL(h, l);
 309        *raw_cmd &= ~mask;
 310        *raw_cmd |= (val << l) & mask;
 311}
 312
 313static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
 314{
 315        its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
 316}
 317
 318static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
 319{
 320        its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
 321}
 322
 323static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
 324{
 325        its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
 326}
 327
 328static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
 329{
 330        its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
 331}
 332
 333static void its_encode_size(struct its_cmd_block *cmd, u8 size)
 334{
 335        its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
 336}
 337
 338static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
 339{
 340        its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
 341}
 342
 343static void its_encode_valid(struct its_cmd_block *cmd, int valid)
 344{
 345        its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
 346}
 347
 348static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
 349{
 350        its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
 351}
 352
 353static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
 354{
 355        its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
 356}
 357
 358static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
 359{
 360        its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
 361}
 362
 363static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
 364{
 365        its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
 366}
 367
 368static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
 369{
 370        its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
 371}
 372
 373static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
 374{
 375        its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
 376}
 377
 378static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
 379{
 380        its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
 381}
 382
 383static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
 384{
 385        its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
 386}
 387
 388static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
 389{
 390        its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
 391}
 392
 393static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
 394{
 395        its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
 396}
 397
 398static inline void its_fixup_cmd(struct its_cmd_block *cmd)
 399{
 400        /* Let's fixup BE commands */
 401        cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]);
 402        cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]);
 403        cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]);
 404        cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]);
 405}
 406
 407static struct its_collection *its_build_mapd_cmd(struct its_node *its,
 408                                                 struct its_cmd_block *cmd,
 409                                                 struct its_cmd_desc *desc)
 410{
 411        unsigned long itt_addr;
 412        u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
 413
 414        itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
 415        itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
 416
 417        its_encode_cmd(cmd, GITS_CMD_MAPD);
 418        its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
 419        its_encode_size(cmd, size - 1);
 420        its_encode_itt(cmd, itt_addr);
 421        its_encode_valid(cmd, desc->its_mapd_cmd.valid);
 422
 423        its_fixup_cmd(cmd);
 424
 425        return NULL;
 426}
 427
 428static struct its_collection *its_build_mapc_cmd(struct its_node *its,
 429                                                 struct its_cmd_block *cmd,
 430                                                 struct its_cmd_desc *desc)
 431{
 432        its_encode_cmd(cmd, GITS_CMD_MAPC);
 433        its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
 434        its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
 435        its_encode_valid(cmd, desc->its_mapc_cmd.valid);
 436
 437        its_fixup_cmd(cmd);
 438
 439        return desc->its_mapc_cmd.col;
 440}
 441
 442static struct its_collection *its_build_mapti_cmd(struct its_node *its,
 443                                                  struct its_cmd_block *cmd,
 444                                                  struct its_cmd_desc *desc)
 445{
 446        struct its_collection *col;
 447
 448        col = dev_event_to_col(desc->its_mapti_cmd.dev,
 449                               desc->its_mapti_cmd.event_id);
 450
 451        its_encode_cmd(cmd, GITS_CMD_MAPTI);
 452        its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
 453        its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
 454        its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
 455        its_encode_collection(cmd, col->col_id);
 456
 457        its_fixup_cmd(cmd);
 458
 459        return valid_col(col);
 460}
 461
 462static struct its_collection *its_build_movi_cmd(struct its_node *its,
 463                                                 struct its_cmd_block *cmd,
 464                                                 struct its_cmd_desc *desc)
 465{
 466        struct its_collection *col;
 467
 468        col = dev_event_to_col(desc->its_movi_cmd.dev,
 469                               desc->its_movi_cmd.event_id);
 470
 471        its_encode_cmd(cmd, GITS_CMD_MOVI);
 472        its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
 473        its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
 474        its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
 475
 476        its_fixup_cmd(cmd);
 477
 478        return valid_col(col);
 479}
 480
 481static struct its_collection *its_build_discard_cmd(struct its_node *its,
 482                                                    struct its_cmd_block *cmd,
 483                                                    struct its_cmd_desc *desc)
 484{
 485        struct its_collection *col;
 486
 487        col = dev_event_to_col(desc->its_discard_cmd.dev,
 488                               desc->its_discard_cmd.event_id);
 489
 490        its_encode_cmd(cmd, GITS_CMD_DISCARD);
 491        its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
 492        its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
 493
 494        its_fixup_cmd(cmd);
 495
 496        return valid_col(col);
 497}
 498
 499static struct its_collection *its_build_inv_cmd(struct its_node *its,
 500                                                struct its_cmd_block *cmd,
 501                                                struct its_cmd_desc *desc)
 502{
 503        struct its_collection *col;
 504
 505        col = dev_event_to_col(desc->its_inv_cmd.dev,
 506                               desc->its_inv_cmd.event_id);
 507
 508        its_encode_cmd(cmd, GITS_CMD_INV);
 509        its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
 510        its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
 511
 512        its_fixup_cmd(cmd);
 513
 514        return valid_col(col);
 515}
 516
 517static struct its_collection *its_build_int_cmd(struct its_node *its,
 518                                                struct its_cmd_block *cmd,
 519                                                struct its_cmd_desc *desc)
 520{
 521        struct its_collection *col;
 522
 523        col = dev_event_to_col(desc->its_int_cmd.dev,
 524                               desc->its_int_cmd.event_id);
 525
 526        its_encode_cmd(cmd, GITS_CMD_INT);
 527        its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
 528        its_encode_event_id(cmd, desc->its_int_cmd.event_id);
 529
 530        its_fixup_cmd(cmd);
 531
 532        return valid_col(col);
 533}
 534
 535static struct its_collection *its_build_clear_cmd(struct its_node *its,
 536                                                  struct its_cmd_block *cmd,
 537                                                  struct its_cmd_desc *desc)
 538{
 539        struct its_collection *col;
 540
 541        col = dev_event_to_col(desc->its_clear_cmd.dev,
 542                               desc->its_clear_cmd.event_id);
 543
 544        its_encode_cmd(cmd, GITS_CMD_CLEAR);
 545        its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
 546        its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
 547
 548        its_fixup_cmd(cmd);
 549
 550        return valid_col(col);
 551}
 552
 553static struct its_collection *its_build_invall_cmd(struct its_node *its,
 554                                                   struct its_cmd_block *cmd,
 555                                                   struct its_cmd_desc *desc)
 556{
 557        its_encode_cmd(cmd, GITS_CMD_INVALL);
 558        its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
 559
 560        its_fixup_cmd(cmd);
 561
 562        return NULL;
 563}
 564
 565static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
 566                                             struct its_cmd_block *cmd,
 567                                             struct its_cmd_desc *desc)
 568{
 569        its_encode_cmd(cmd, GITS_CMD_VINVALL);
 570        its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
 571
 572        its_fixup_cmd(cmd);
 573
 574        return valid_vpe(its, desc->its_vinvall_cmd.vpe);
 575}
 576
 577static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
 578                                           struct its_cmd_block *cmd,
 579                                           struct its_cmd_desc *desc)
 580{
 581        unsigned long vpt_addr;
 582        u64 target;
 583
 584        vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
 585        target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
 586
 587        its_encode_cmd(cmd, GITS_CMD_VMAPP);
 588        its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
 589        its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
 590        its_encode_target(cmd, target);
 591        its_encode_vpt_addr(cmd, vpt_addr);
 592        its_encode_vpt_size(cmd, LPI_NRBITS - 1);
 593
 594        its_fixup_cmd(cmd);
 595
 596        return valid_vpe(its, desc->its_vmapp_cmd.vpe);
 597}
 598
 599static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
 600                                            struct its_cmd_block *cmd,
 601                                            struct its_cmd_desc *desc)
 602{
 603        u32 db;
 604
 605        if (desc->its_vmapti_cmd.db_enabled)
 606                db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
 607        else
 608                db = 1023;
 609
 610        its_encode_cmd(cmd, GITS_CMD_VMAPTI);
 611        its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
 612        its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
 613        its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
 614        its_encode_db_phys_id(cmd, db);
 615        its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
 616
 617        its_fixup_cmd(cmd);
 618
 619        return valid_vpe(its, desc->its_vmapti_cmd.vpe);
 620}
 621
 622static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
 623                                           struct its_cmd_block *cmd,
 624                                           struct its_cmd_desc *desc)
 625{
 626        u32 db;
 627
 628        if (desc->its_vmovi_cmd.db_enabled)
 629                db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
 630        else
 631                db = 1023;
 632
 633        its_encode_cmd(cmd, GITS_CMD_VMOVI);
 634        its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
 635        its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
 636        its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
 637        its_encode_db_phys_id(cmd, db);
 638        its_encode_db_valid(cmd, true);
 639
 640        its_fixup_cmd(cmd);
 641
 642        return valid_vpe(its, desc->its_vmovi_cmd.vpe);
 643}
 644
 645static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
 646                                           struct its_cmd_block *cmd,
 647                                           struct its_cmd_desc *desc)
 648{
 649        u64 target;
 650
 651        target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
 652        its_encode_cmd(cmd, GITS_CMD_VMOVP);
 653        its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
 654        its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
 655        its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
 656        its_encode_target(cmd, target);
 657
 658        its_fixup_cmd(cmd);
 659
 660        return valid_vpe(its, desc->its_vmovp_cmd.vpe);
 661}
 662
 663static u64 its_cmd_ptr_to_offset(struct its_node *its,
 664                                 struct its_cmd_block *ptr)
 665{
 666        return (ptr - its->cmd_base) * sizeof(*ptr);
 667}
 668
 669static int its_queue_full(struct its_node *its)
 670{
 671        int widx;
 672        int ridx;
 673
 674        widx = its->cmd_write - its->cmd_base;
 675        ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
 676
 677        /* This is incredibly unlikely to happen, unless the ITS locks up. */
 678        if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
 679                return 1;
 680
 681        return 0;
 682}
 683
 684static struct its_cmd_block *its_allocate_entry(struct its_node *its)
 685{
 686        struct its_cmd_block *cmd;
 687        u32 count = 1000000;    /* 1s! */
 688
 689        while (its_queue_full(its)) {
 690                count--;
 691                if (!count) {
 692                        pr_err_ratelimited("ITS queue not draining\n");
 693                        return NULL;
 694                }
 695                cpu_relax();
 696                udelay(1);
 697        }
 698
 699        cmd = its->cmd_write++;
 700
 701        /* Handle queue wrapping */
 702        if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
 703                its->cmd_write = its->cmd_base;
 704
 705        /* Clear command  */
 706        cmd->raw_cmd[0] = 0;
 707        cmd->raw_cmd[1] = 0;
 708        cmd->raw_cmd[2] = 0;
 709        cmd->raw_cmd[3] = 0;
 710
 711        return cmd;
 712}
 713
 714static struct its_cmd_block *its_post_commands(struct its_node *its)
 715{
 716        u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
 717
 718        writel_relaxed(wr, its->base + GITS_CWRITER);
 719
 720        return its->cmd_write;
 721}
 722
 723static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
 724{
 725        /*
 726         * Make sure the commands written to memory are observable by
 727         * the ITS.
 728         */
 729        if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
 730                gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
 731        else
 732                dsb(ishst);
 733}
 734
 735static int its_wait_for_range_completion(struct its_node *its,
 736                                         u64    prev_idx,
 737                                         struct its_cmd_block *to)
 738{
 739        u64 rd_idx, to_idx, linear_idx;
 740        u32 count = 1000000;    /* 1s! */
 741
 742        /* Linearize to_idx if the command set has wrapped around */
 743        to_idx = its_cmd_ptr_to_offset(its, to);
 744        if (to_idx < prev_idx)
 745                to_idx += ITS_CMD_QUEUE_SZ;
 746
 747        linear_idx = prev_idx;
 748
 749        while (1) {
 750                s64 delta;
 751
 752                rd_idx = readl_relaxed(its->base + GITS_CREADR);
 753
 754                /*
 755                 * Compute the read pointer progress, taking the
 756                 * potential wrap-around into account.
 757                 */
 758                delta = rd_idx - prev_idx;
 759                if (rd_idx < prev_idx)
 760                        delta += ITS_CMD_QUEUE_SZ;
 761
 762                linear_idx += delta;
 763                if (linear_idx >= to_idx)
 764                        break;
 765
 766                count--;
 767                if (!count) {
 768                        pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
 769                                           to_idx, linear_idx);
 770                        return -1;
 771                }
 772                prev_idx = rd_idx;
 773                cpu_relax();
 774                udelay(1);
 775        }
 776
 777        return 0;
 778}
 779
 780/* Warning, macro hell follows */
 781#define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)       \
 782void name(struct its_node *its,                                         \
 783          buildtype builder,                                            \
 784          struct its_cmd_desc *desc)                                    \
 785{                                                                       \
 786        struct its_cmd_block *cmd, *sync_cmd, *next_cmd;                \
 787        synctype *sync_obj;                                             \
 788        unsigned long flags;                                            \
 789        u64 rd_idx;                                                     \
 790                                                                        \
 791        raw_spin_lock_irqsave(&its->lock, flags);                       \
 792                                                                        \
 793        cmd = its_allocate_entry(its);                                  \
 794        if (!cmd) {             /* We're soooooo screewed... */         \
 795                raw_spin_unlock_irqrestore(&its->lock, flags);          \
 796                return;                                                 \
 797        }                                                               \
 798        sync_obj = builder(its, cmd, desc);                             \
 799        its_flush_cmd(its, cmd);                                        \
 800                                                                        \
 801        if (sync_obj) {                                                 \
 802                sync_cmd = its_allocate_entry(its);                     \
 803                if (!sync_cmd)                                          \
 804                        goto post;                                      \
 805                                                                        \
 806                buildfn(its, sync_cmd, sync_obj);                       \
 807                its_flush_cmd(its, sync_cmd);                           \
 808        }                                                               \
 809                                                                        \
 810post:                                                                   \
 811        rd_idx = readl_relaxed(its->base + GITS_CREADR);                \
 812        next_cmd = its_post_commands(its);                              \
 813        raw_spin_unlock_irqrestore(&its->lock, flags);                  \
 814                                                                        \
 815        if (its_wait_for_range_completion(its, rd_idx, next_cmd))       \
 816                pr_err_ratelimited("ITS cmd %ps failed\n", builder);    \
 817}
 818
 819static void its_build_sync_cmd(struct its_node *its,
 820                               struct its_cmd_block *sync_cmd,
 821                               struct its_collection *sync_col)
 822{
 823        its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
 824        its_encode_target(sync_cmd, sync_col->target_address);
 825
 826        its_fixup_cmd(sync_cmd);
 827}
 828
 829static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
 830                             struct its_collection, its_build_sync_cmd)
 831
 832static void its_build_vsync_cmd(struct its_node *its,
 833                                struct its_cmd_block *sync_cmd,
 834                                struct its_vpe *sync_vpe)
 835{
 836        its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
 837        its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
 838
 839        its_fixup_cmd(sync_cmd);
 840}
 841
 842static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
 843                             struct its_vpe, its_build_vsync_cmd)
 844
 845static void its_send_int(struct its_device *dev, u32 event_id)
 846{
 847        struct its_cmd_desc desc;
 848
 849        desc.its_int_cmd.dev = dev;
 850        desc.its_int_cmd.event_id = event_id;
 851
 852        its_send_single_command(dev->its, its_build_int_cmd, &desc);
 853}
 854
 855static void its_send_clear(struct its_device *dev, u32 event_id)
 856{
 857        struct its_cmd_desc desc;
 858
 859        desc.its_clear_cmd.dev = dev;
 860        desc.its_clear_cmd.event_id = event_id;
 861
 862        its_send_single_command(dev->its, its_build_clear_cmd, &desc);
 863}
 864
 865static void its_send_inv(struct its_device *dev, u32 event_id)
 866{
 867        struct its_cmd_desc desc;
 868
 869        desc.its_inv_cmd.dev = dev;
 870        desc.its_inv_cmd.event_id = event_id;
 871
 872        its_send_single_command(dev->its, its_build_inv_cmd, &desc);
 873}
 874
 875static void its_send_mapd(struct its_device *dev, int valid)
 876{
 877        struct its_cmd_desc desc;
 878
 879        desc.its_mapd_cmd.dev = dev;
 880        desc.its_mapd_cmd.valid = !!valid;
 881
 882        its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
 883}
 884
 885static void its_send_mapc(struct its_node *its, struct its_collection *col,
 886                          int valid)
 887{
 888        struct its_cmd_desc desc;
 889
 890        desc.its_mapc_cmd.col = col;
 891        desc.its_mapc_cmd.valid = !!valid;
 892
 893        its_send_single_command(its, its_build_mapc_cmd, &desc);
 894}
 895
 896static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
 897{
 898        struct its_cmd_desc desc;
 899
 900        desc.its_mapti_cmd.dev = dev;
 901        desc.its_mapti_cmd.phys_id = irq_id;
 902        desc.its_mapti_cmd.event_id = id;
 903
 904        its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
 905}
 906
 907static void its_send_movi(struct its_device *dev,
 908                          struct its_collection *col, u32 id)
 909{
 910        struct its_cmd_desc desc;
 911
 912        desc.its_movi_cmd.dev = dev;
 913        desc.its_movi_cmd.col = col;
 914        desc.its_movi_cmd.event_id = id;
 915
 916        its_send_single_command(dev->its, its_build_movi_cmd, &desc);
 917}
 918
 919static void its_send_discard(struct its_device *dev, u32 id)
 920{
 921        struct its_cmd_desc desc;
 922
 923        desc.its_discard_cmd.dev = dev;
 924        desc.its_discard_cmd.event_id = id;
 925
 926        its_send_single_command(dev->its, its_build_discard_cmd, &desc);
 927}
 928
 929static void its_send_invall(struct its_node *its, struct its_collection *col)
 930{
 931        struct its_cmd_desc desc;
 932
 933        desc.its_invall_cmd.col = col;
 934
 935        its_send_single_command(its, its_build_invall_cmd, &desc);
 936}
 937
 938static void its_send_vmapti(struct its_device *dev, u32 id)
 939{
 940        struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
 941        struct its_cmd_desc desc;
 942
 943        desc.its_vmapti_cmd.vpe = map->vpe;
 944        desc.its_vmapti_cmd.dev = dev;
 945        desc.its_vmapti_cmd.virt_id = map->vintid;
 946        desc.its_vmapti_cmd.event_id = id;
 947        desc.its_vmapti_cmd.db_enabled = map->db_enabled;
 948
 949        its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
 950}
 951
 952static void its_send_vmovi(struct its_device *dev, u32 id)
 953{
 954        struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
 955        struct its_cmd_desc desc;
 956
 957        desc.its_vmovi_cmd.vpe = map->vpe;
 958        desc.its_vmovi_cmd.dev = dev;
 959        desc.its_vmovi_cmd.event_id = id;
 960        desc.its_vmovi_cmd.db_enabled = map->db_enabled;
 961
 962        its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
 963}
 964
 965static void its_send_vmapp(struct its_node *its,
 966                           struct its_vpe *vpe, bool valid)
 967{
 968        struct its_cmd_desc desc;
 969
 970        desc.its_vmapp_cmd.vpe = vpe;
 971        desc.its_vmapp_cmd.valid = valid;
 972        desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
 973
 974        its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
 975}
 976
 977static void its_send_vmovp(struct its_vpe *vpe)
 978{
 979        struct its_cmd_desc desc;
 980        struct its_node *its;
 981        unsigned long flags;
 982        int col_id = vpe->col_idx;
 983
 984        desc.its_vmovp_cmd.vpe = vpe;
 985        desc.its_vmovp_cmd.its_list = (u16)its_list_map;
 986
 987        if (!its_list_map) {
 988                its = list_first_entry(&its_nodes, struct its_node, entry);
 989                desc.its_vmovp_cmd.seq_num = 0;
 990                desc.its_vmovp_cmd.col = &its->collections[col_id];
 991                its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
 992                return;
 993        }
 994
 995        /*
 996         * Yet another marvel of the architecture. If using the
 997         * its_list "feature", we need to make sure that all ITSs
 998         * receive all VMOVP commands in the same order. The only way
 999         * to guarantee this is to make vmovp a serialization point.
1000         *
1001         * Wall <-- Head.
1002         */
1003        raw_spin_lock_irqsave(&vmovp_lock, flags);
1004
1005        desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1006
1007        /* Emit VMOVPs */
1008        list_for_each_entry(its, &its_nodes, entry) {
1009                if (!its->is_v4)
1010                        continue;
1011
1012                if (!vpe->its_vm->vlpi_count[its->list_nr])
1013                        continue;
1014
1015                desc.its_vmovp_cmd.col = &its->collections[col_id];
1016                its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1017        }
1018
1019        raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1020}
1021
1022static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1023{
1024        struct its_cmd_desc desc;
1025
1026        desc.its_vinvall_cmd.vpe = vpe;
1027        its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1028}
1029
1030/*
1031 * irqchip functions - assumes MSI, mostly.
1032 */
1033
1034static inline u32 its_get_event_id(struct irq_data *d)
1035{
1036        struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1037        return d->hwirq - its_dev->event_map.lpi_base;
1038}
1039
1040static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1041{
1042        irq_hw_number_t hwirq;
1043        void *va;
1044        u8 *cfg;
1045
1046        if (irqd_is_forwarded_to_vcpu(d)) {
1047                struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1048                u32 event = its_get_event_id(d);
1049                struct its_vlpi_map *map;
1050
1051                va = page_address(its_dev->event_map.vm->vprop_page);
1052                map = &its_dev->event_map.vlpi_maps[event];
1053                hwirq = map->vintid;
1054
1055                /* Remember the updated property */
1056                map->properties &= ~clr;
1057                map->properties |= set | LPI_PROP_GROUP1;
1058        } else {
1059                va = gic_rdists->prop_table_va;
1060                hwirq = d->hwirq;
1061        }
1062
1063        cfg = va + hwirq - 8192;
1064        *cfg &= ~clr;
1065        *cfg |= set | LPI_PROP_GROUP1;
1066
1067        /*
1068         * Make the above write visible to the redistributors.
1069         * And yes, we're flushing exactly: One. Single. Byte.
1070         * Humpf...
1071         */
1072        if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1073                gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1074        else
1075                dsb(ishst);
1076}
1077
1078static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1079{
1080        struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1081
1082        lpi_write_config(d, clr, set);
1083        its_send_inv(its_dev, its_get_event_id(d));
1084}
1085
1086static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1087{
1088        struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1089        u32 event = its_get_event_id(d);
1090
1091        if (its_dev->event_map.vlpi_maps[event].db_enabled == enable)
1092                return;
1093
1094        its_dev->event_map.vlpi_maps[event].db_enabled = enable;
1095
1096        /*
1097         * More fun with the architecture:
1098         *
1099         * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1100         * value or to 1023, depending on the enable bit. But that
1101         * would be issueing a mapping for an /existing/ DevID+EventID
1102         * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1103         * to the /same/ vPE, using this opportunity to adjust the
1104         * doorbell. Mouahahahaha. We loves it, Precious.
1105         */
1106        its_send_vmovi(its_dev, event);
1107}
1108
1109static void its_mask_irq(struct irq_data *d)
1110{
1111        if (irqd_is_forwarded_to_vcpu(d))
1112                its_vlpi_set_doorbell(d, false);
1113
1114        lpi_update_config(d, LPI_PROP_ENABLED, 0);
1115}
1116
1117static void its_unmask_irq(struct irq_data *d)
1118{
1119        if (irqd_is_forwarded_to_vcpu(d))
1120                its_vlpi_set_doorbell(d, true);
1121
1122        lpi_update_config(d, 0, LPI_PROP_ENABLED);
1123}
1124
1125static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1126                            bool force)
1127{
1128        unsigned int cpu;
1129        const struct cpumask *cpu_mask = cpu_online_mask;
1130        struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1131        struct its_collection *target_col;
1132        u32 id = its_get_event_id(d);
1133
1134        /* A forwarded interrupt should use irq_set_vcpu_affinity */
1135        if (irqd_is_forwarded_to_vcpu(d))
1136                return -EINVAL;
1137
1138       /* lpi cannot be routed to a redistributor that is on a foreign node */
1139        if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1140                if (its_dev->its->numa_node >= 0) {
1141                        cpu_mask = cpumask_of_node(its_dev->its->numa_node);
1142                        if (!cpumask_intersects(mask_val, cpu_mask))
1143                                return -EINVAL;
1144                }
1145        }
1146
1147        cpu = cpumask_any_and(mask_val, cpu_mask);
1148
1149        if (cpu >= nr_cpu_ids)
1150                return -EINVAL;
1151
1152        /* don't set the affinity when the target cpu is same as current one */
1153        if (cpu != its_dev->event_map.col_map[id]) {
1154                target_col = &its_dev->its->collections[cpu];
1155                its_send_movi(its_dev, target_col, id);
1156                its_dev->event_map.col_map[id] = cpu;
1157                irq_data_update_effective_affinity(d, cpumask_of(cpu));
1158        }
1159
1160        return IRQ_SET_MASK_OK_DONE;
1161}
1162
1163static u64 its_irq_get_msi_base(struct its_device *its_dev)
1164{
1165        struct its_node *its = its_dev->its;
1166
1167        return its->phys_base + GITS_TRANSLATER;
1168}
1169
1170static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1171{
1172        struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1173        struct its_node *its;
1174        u64 addr;
1175
1176        its = its_dev->its;
1177        addr = its->get_msi_base(its_dev);
1178
1179        msg->address_lo         = lower_32_bits(addr);
1180        msg->address_hi         = upper_32_bits(addr);
1181        msg->data               = its_get_event_id(d);
1182
1183        iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1184}
1185
1186static int its_irq_set_irqchip_state(struct irq_data *d,
1187                                     enum irqchip_irq_state which,
1188                                     bool state)
1189{
1190        struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1191        u32 event = its_get_event_id(d);
1192
1193        if (which != IRQCHIP_STATE_PENDING)
1194                return -EINVAL;
1195
1196        if (state)
1197                its_send_int(its_dev, event);
1198        else
1199                its_send_clear(its_dev, event);
1200
1201        return 0;
1202}
1203
1204static void its_map_vm(struct its_node *its, struct its_vm *vm)
1205{
1206        unsigned long flags;
1207
1208        /* Not using the ITS list? Everything is always mapped. */
1209        if (!its_list_map)
1210                return;
1211
1212        raw_spin_lock_irqsave(&vmovp_lock, flags);
1213
1214        /*
1215         * If the VM wasn't mapped yet, iterate over the vpes and get
1216         * them mapped now.
1217         */
1218        vm->vlpi_count[its->list_nr]++;
1219
1220        if (vm->vlpi_count[its->list_nr] == 1) {
1221                int i;
1222
1223                for (i = 0; i < vm->nr_vpes; i++) {
1224                        struct its_vpe *vpe = vm->vpes[i];
1225                        struct irq_data *d = irq_get_irq_data(vpe->irq);
1226
1227                        /* Map the VPE to the first possible CPU */
1228                        vpe->col_idx = cpumask_first(cpu_online_mask);
1229                        its_send_vmapp(its, vpe, true);
1230                        its_send_vinvall(its, vpe);
1231                        irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1232                }
1233        }
1234
1235        raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1236}
1237
1238static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1239{
1240        unsigned long flags;
1241
1242        /* Not using the ITS list? Everything is always mapped. */
1243        if (!its_list_map)
1244                return;
1245
1246        raw_spin_lock_irqsave(&vmovp_lock, flags);
1247
1248        if (!--vm->vlpi_count[its->list_nr]) {
1249                int i;
1250
1251                for (i = 0; i < vm->nr_vpes; i++)
1252                        its_send_vmapp(its, vm->vpes[i], false);
1253        }
1254
1255        raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1256}
1257
1258static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1259{
1260        struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1261        u32 event = its_get_event_id(d);
1262        int ret = 0;
1263
1264        if (!info->map)
1265                return -EINVAL;
1266
1267        mutex_lock(&its_dev->event_map.vlpi_lock);
1268
1269        if (!its_dev->event_map.vm) {
1270                struct its_vlpi_map *maps;
1271
1272                maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1273                               GFP_KERNEL);
1274                if (!maps) {
1275                        ret = -ENOMEM;
1276                        goto out;
1277                }
1278
1279                its_dev->event_map.vm = info->map->vm;
1280                its_dev->event_map.vlpi_maps = maps;
1281        } else if (its_dev->event_map.vm != info->map->vm) {
1282                ret = -EINVAL;
1283                goto out;
1284        }
1285
1286        /* Get our private copy of the mapping information */
1287        its_dev->event_map.vlpi_maps[event] = *info->map;
1288
1289        if (irqd_is_forwarded_to_vcpu(d)) {
1290                /* Already mapped, move it around */
1291                its_send_vmovi(its_dev, event);
1292        } else {
1293                /* Ensure all the VPEs are mapped on this ITS */
1294                its_map_vm(its_dev->its, info->map->vm);
1295
1296                /*
1297                 * Flag the interrupt as forwarded so that we can
1298                 * start poking the virtual property table.
1299                 */
1300                irqd_set_forwarded_to_vcpu(d);
1301
1302                /* Write out the property to the prop table */
1303                lpi_write_config(d, 0xff, info->map->properties);
1304
1305                /* Drop the physical mapping */
1306                its_send_discard(its_dev, event);
1307
1308                /* and install the virtual one */
1309                its_send_vmapti(its_dev, event);
1310
1311                /* Increment the number of VLPIs */
1312                its_dev->event_map.nr_vlpis++;
1313        }
1314
1315out:
1316        mutex_unlock(&its_dev->event_map.vlpi_lock);
1317        return ret;
1318}
1319
1320static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1321{
1322        struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1323        u32 event = its_get_event_id(d);
1324        int ret = 0;
1325
1326        mutex_lock(&its_dev->event_map.vlpi_lock);
1327
1328        if (!its_dev->event_map.vm ||
1329            !its_dev->event_map.vlpi_maps[event].vm) {
1330                ret = -EINVAL;
1331                goto out;
1332        }
1333
1334        /* Copy our mapping information to the incoming request */
1335        *info->map = its_dev->event_map.vlpi_maps[event];
1336
1337out:
1338        mutex_unlock(&its_dev->event_map.vlpi_lock);
1339        return ret;
1340}
1341
1342static int its_vlpi_unmap(struct irq_data *d)
1343{
1344        struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1345        u32 event = its_get_event_id(d);
1346        int ret = 0;
1347
1348        mutex_lock(&its_dev->event_map.vlpi_lock);
1349
1350        if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1351                ret = -EINVAL;
1352                goto out;
1353        }
1354
1355        /* Drop the virtual mapping */
1356        its_send_discard(its_dev, event);
1357
1358        /* and restore the physical one */
1359        irqd_clr_forwarded_to_vcpu(d);
1360        its_send_mapti(its_dev, d->hwirq, event);
1361        lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1362                                    LPI_PROP_ENABLED |
1363                                    LPI_PROP_GROUP1));
1364
1365        /* Potentially unmap the VM from this ITS */
1366        its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1367
1368        /*
1369         * Drop the refcount and make the device available again if
1370         * this was the last VLPI.
1371         */
1372        if (!--its_dev->event_map.nr_vlpis) {
1373                its_dev->event_map.vm = NULL;
1374                kfree(its_dev->event_map.vlpi_maps);
1375        }
1376
1377out:
1378        mutex_unlock(&its_dev->event_map.vlpi_lock);
1379        return ret;
1380}
1381
1382static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1383{
1384        struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1385
1386        if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1387                return -EINVAL;
1388
1389        if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1390                lpi_update_config(d, 0xff, info->config);
1391        else
1392                lpi_write_config(d, 0xff, info->config);
1393        its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1394
1395        return 0;
1396}
1397
1398static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1399{
1400        struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1401        struct its_cmd_info *info = vcpu_info;
1402
1403        /* Need a v4 ITS */
1404        if (!its_dev->its->is_v4)
1405                return -EINVAL;
1406
1407        /* Unmap request? */
1408        if (!info)
1409                return its_vlpi_unmap(d);
1410
1411        switch (info->cmd_type) {
1412        case MAP_VLPI:
1413                return its_vlpi_map(d, info);
1414
1415        case GET_VLPI:
1416                return its_vlpi_get(d, info);
1417
1418        case PROP_UPDATE_VLPI:
1419        case PROP_UPDATE_AND_INV_VLPI:
1420                return its_vlpi_prop_update(d, info);
1421
1422        default:
1423                return -EINVAL;
1424        }
1425}
1426
1427static struct irq_chip its_irq_chip = {
1428        .name                   = "ITS",
1429        .irq_mask               = its_mask_irq,
1430        .irq_unmask             = its_unmask_irq,
1431        .irq_eoi                = irq_chip_eoi_parent,
1432        .irq_set_affinity       = its_set_affinity,
1433        .irq_compose_msi_msg    = its_irq_compose_msi_msg,
1434        .irq_set_irqchip_state  = its_irq_set_irqchip_state,
1435        .irq_set_vcpu_affinity  = its_irq_set_vcpu_affinity,
1436};
1437
1438
1439/*
1440 * How we allocate LPIs:
1441 *
1442 * lpi_range_list contains ranges of LPIs that are to available to
1443 * allocate from. To allocate LPIs, just pick the first range that
1444 * fits the required allocation, and reduce it by the required
1445 * amount. Once empty, remove the range from the list.
1446 *
1447 * To free a range of LPIs, add a free range to the list, sort it and
1448 * merge the result if the new range happens to be adjacent to an
1449 * already free block.
1450 *
1451 * The consequence of the above is that allocation is cost is low, but
1452 * freeing is expensive. We assumes that freeing rarely occurs.
1453 */
1454#define ITS_MAX_LPI_NRBITS      16 /* 64K LPIs */
1455
1456static DEFINE_MUTEX(lpi_range_lock);
1457static LIST_HEAD(lpi_range_list);
1458
1459struct lpi_range {
1460        struct list_head        entry;
1461        u32                     base_id;
1462        u32                     span;
1463};
1464
1465static struct lpi_range *mk_lpi_range(u32 base, u32 span)
1466{
1467        struct lpi_range *range;
1468
1469        range = kmalloc(sizeof(*range), GFP_KERNEL);
1470        if (range) {
1471                range->base_id = base;
1472                range->span = span;
1473        }
1474
1475        return range;
1476}
1477
1478static int alloc_lpi_range(u32 nr_lpis, u32 *base)
1479{
1480        struct lpi_range *range, *tmp;
1481        int err = -ENOSPC;
1482
1483        mutex_lock(&lpi_range_lock);
1484
1485        list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
1486                if (range->span >= nr_lpis) {
1487                        *base = range->base_id;
1488                        range->base_id += nr_lpis;
1489                        range->span -= nr_lpis;
1490
1491                        if (range->span == 0) {
1492                                list_del(&range->entry);
1493                                kfree(range);
1494                        }
1495
1496                        err = 0;
1497                        break;
1498                }
1499        }
1500
1501        mutex_unlock(&lpi_range_lock);
1502
1503        pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
1504        return err;
1505}
1506
1507static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
1508{
1509        if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
1510                return;
1511        if (a->base_id + a->span != b->base_id)
1512                return;
1513        b->base_id = a->base_id;
1514        b->span += a->span;
1515        list_del(&a->entry);
1516        kfree(a);
1517}
1518
1519static int free_lpi_range(u32 base, u32 nr_lpis)
1520{
1521        struct lpi_range *new, *old;
1522
1523        new = mk_lpi_range(base, nr_lpis);
1524        if (!new)
1525                return -ENOMEM;
1526
1527        mutex_lock(&lpi_range_lock);
1528
1529        list_for_each_entry_reverse(old, &lpi_range_list, entry) {
1530                if (old->base_id < base)
1531                        break;
1532        }
1533        /*
1534         * old is the last element with ->base_id smaller than base,
1535         * so new goes right after it. If there are no elements with
1536         * ->base_id smaller than base, &old->entry ends up pointing
1537         * at the head of the list, and inserting new it the start of
1538         * the list is the right thing to do in that case as well.
1539         */
1540        list_add(&new->entry, &old->entry);
1541        /*
1542         * Now check if we can merge with the preceding and/or
1543         * following ranges.
1544         */
1545        merge_lpi_ranges(old, new);
1546        merge_lpi_ranges(new, list_next_entry(new, entry));
1547
1548        mutex_unlock(&lpi_range_lock);
1549        return 0;
1550}
1551
1552static int __init its_lpi_init(u32 id_bits)
1553{
1554        u32 lpis = (1UL << id_bits) - 8192;
1555        u32 numlpis;
1556        int err;
1557
1558        numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
1559
1560        if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
1561                lpis = numlpis;
1562                pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
1563                        lpis);
1564        }
1565
1566        /*
1567         * Initializing the allocator is just the same as freeing the
1568         * full range of LPIs.
1569         */
1570        err = free_lpi_range(8192, lpis);
1571        pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
1572        return err;
1573}
1574
1575static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
1576{
1577        unsigned long *bitmap = NULL;
1578        int err = 0;
1579
1580        do {
1581                err = alloc_lpi_range(nr_irqs, base);
1582                if (!err)
1583                        break;
1584
1585                nr_irqs /= 2;
1586        } while (nr_irqs > 0);
1587
1588        if (!nr_irqs)
1589                err = -ENOSPC;
1590
1591        if (err)
1592                goto out;
1593
1594        bitmap = kcalloc(BITS_TO_LONGS(nr_irqs), sizeof (long), GFP_ATOMIC);
1595        if (!bitmap)
1596                goto out;
1597
1598        *nr_ids = nr_irqs;
1599
1600out:
1601        if (!bitmap)
1602                *base = *nr_ids = 0;
1603
1604        return bitmap;
1605}
1606
1607static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
1608{
1609        WARN_ON(free_lpi_range(base, nr_ids));
1610        kfree(bitmap);
1611}
1612
1613static void gic_reset_prop_table(void *va)
1614{
1615        /* Priority 0xa0, Group-1, disabled */
1616        memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
1617
1618        /* Make sure the GIC will observe the written configuration */
1619        gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
1620}
1621
1622static struct page *its_allocate_prop_table(gfp_t gfp_flags)
1623{
1624        struct page *prop_page;
1625
1626        prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
1627        if (!prop_page)
1628                return NULL;
1629
1630        gic_reset_prop_table(page_address(prop_page));
1631
1632        return prop_page;
1633}
1634
1635static void its_free_prop_table(struct page *prop_page)
1636{
1637        free_pages((unsigned long)page_address(prop_page),
1638                   get_order(LPI_PROPBASE_SZ));
1639}
1640
1641static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
1642{
1643        phys_addr_t start, end, addr_end;
1644        u64 i;
1645
1646        /*
1647         * We don't bother checking for a kdump kernel as by
1648         * construction, the LPI tables are out of this kernel's
1649         * memory map.
1650         */
1651        if (is_kdump_kernel())
1652                return true;
1653
1654        addr_end = addr + size - 1;
1655
1656        for_each_reserved_mem_region(i, &start, &end) {
1657                if (addr >= start && addr_end <= end)
1658                        return true;
1659        }
1660
1661        /* Not found, not a good sign... */
1662        pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
1663                &addr, &addr_end);
1664        add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
1665        return false;
1666}
1667
1668static int gic_reserve_range(phys_addr_t addr, unsigned long size)
1669{
1670        if (efi_enabled(EFI_CONFIG_TABLES))
1671                return efi_mem_reserve_persistent(addr, size);
1672
1673        return 0;
1674}
1675
1676static int __init its_setup_lpi_prop_table(void)
1677{
1678        if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
1679                u64 val;
1680
1681                val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
1682                lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
1683
1684                gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
1685                gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
1686                                                     LPI_PROPBASE_SZ,
1687                                                     MEMREMAP_WB);
1688                gic_reset_prop_table(gic_rdists->prop_table_va);
1689        } else {
1690                struct page *page;
1691
1692                lpi_id_bits = min_t(u32,
1693                                    GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
1694                                    ITS_MAX_LPI_NRBITS);
1695                page = its_allocate_prop_table(GFP_NOWAIT);
1696                if (!page) {
1697                        pr_err("Failed to allocate PROPBASE\n");
1698                        return -ENOMEM;
1699                }
1700
1701                gic_rdists->prop_table_pa = page_to_phys(page);
1702                gic_rdists->prop_table_va = page_address(page);
1703                WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
1704                                          LPI_PROPBASE_SZ));
1705        }
1706
1707        pr_info("GICv3: using LPI property table @%pa\n",
1708                &gic_rdists->prop_table_pa);
1709
1710        return its_lpi_init(lpi_id_bits);
1711}
1712
1713static const char *its_base_type_string[] = {
1714        [GITS_BASER_TYPE_DEVICE]        = "Devices",
1715        [GITS_BASER_TYPE_VCPU]          = "Virtual CPUs",
1716        [GITS_BASER_TYPE_RESERVED3]     = "Reserved (3)",
1717        [GITS_BASER_TYPE_COLLECTION]    = "Interrupt Collections",
1718        [GITS_BASER_TYPE_RESERVED5]     = "Reserved (5)",
1719        [GITS_BASER_TYPE_RESERVED6]     = "Reserved (6)",
1720        [GITS_BASER_TYPE_RESERVED7]     = "Reserved (7)",
1721};
1722
1723static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
1724{
1725        u32 idx = baser - its->tables;
1726
1727        return gits_read_baser(its->base + GITS_BASER + (idx << 3));
1728}
1729
1730static void its_write_baser(struct its_node *its, struct its_baser *baser,
1731                            u64 val)
1732{
1733        u32 idx = baser - its->tables;
1734
1735        gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
1736        baser->val = its_read_baser(its, baser);
1737}
1738
1739static int its_setup_baser(struct its_node *its, struct its_baser *baser,
1740                           u64 cache, u64 shr, u32 psz, u32 order,
1741                           bool indirect)
1742{
1743        u64 val = its_read_baser(its, baser);
1744        u64 esz = GITS_BASER_ENTRY_SIZE(val);
1745        u64 type = GITS_BASER_TYPE(val);
1746        u64 baser_phys, tmp;
1747        u32 alloc_pages;
1748        struct page *page;
1749        void *base;
1750
1751retry_alloc_baser:
1752        alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
1753        if (alloc_pages > GITS_BASER_PAGES_MAX) {
1754                pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
1755                        &its->phys_base, its_base_type_string[type],
1756                        alloc_pages, GITS_BASER_PAGES_MAX);
1757                alloc_pages = GITS_BASER_PAGES_MAX;
1758                order = get_order(GITS_BASER_PAGES_MAX * psz);
1759        }
1760
1761        page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
1762        if (!page)
1763                return -ENOMEM;
1764
1765        base = (void *)page_address(page);
1766        baser_phys = virt_to_phys(base);
1767
1768        /* Check if the physical address of the memory is above 48bits */
1769        if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
1770
1771                /* 52bit PA is supported only when PageSize=64K */
1772                if (psz != SZ_64K) {
1773                        pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
1774                        free_pages((unsigned long)base, order);
1775                        return -ENXIO;
1776                }
1777
1778                /* Convert 52bit PA to 48bit field */
1779                baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
1780        }
1781
1782retry_baser:
1783        val = (baser_phys                                        |
1784                (type << GITS_BASER_TYPE_SHIFT)                  |
1785                ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)       |
1786                ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)    |
1787                cache                                            |
1788                shr                                              |
1789                GITS_BASER_VALID);
1790
1791        val |=  indirect ? GITS_BASER_INDIRECT : 0x0;
1792
1793        switch (psz) {
1794        case SZ_4K:
1795                val |= GITS_BASER_PAGE_SIZE_4K;
1796                break;
1797        case SZ_16K:
1798                val |= GITS_BASER_PAGE_SIZE_16K;
1799                break;
1800        case SZ_64K:
1801                val |= GITS_BASER_PAGE_SIZE_64K;
1802                break;
1803        }
1804
1805        its_write_baser(its, baser, val);
1806        tmp = baser->val;
1807
1808        if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
1809                /*
1810                 * Shareability didn't stick. Just use
1811                 * whatever the read reported, which is likely
1812                 * to be the only thing this redistributor
1813                 * supports. If that's zero, make it
1814                 * non-cacheable as well.
1815                 */
1816                shr = tmp & GITS_BASER_SHAREABILITY_MASK;
1817                if (!shr) {
1818                        cache = GITS_BASER_nC;
1819                        gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
1820                }
1821                goto retry_baser;
1822        }
1823
1824        if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
1825                /*
1826                 * Page size didn't stick. Let's try a smaller
1827                 * size and retry. If we reach 4K, then
1828                 * something is horribly wrong...
1829                 */
1830                free_pages((unsigned long)base, order);
1831                baser->base = NULL;
1832
1833                switch (psz) {
1834                case SZ_16K:
1835                        psz = SZ_4K;
1836                        goto retry_alloc_baser;
1837                case SZ_64K:
1838                        psz = SZ_16K;
1839                        goto retry_alloc_baser;
1840                }
1841        }
1842
1843        if (val != tmp) {
1844                pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
1845                       &its->phys_base, its_base_type_string[type],
1846                       val, tmp);
1847                free_pages((unsigned long)base, order);
1848                return -ENXIO;
1849        }
1850
1851        baser->order = order;
1852        baser->base = base;
1853        baser->psz = psz;
1854        tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
1855
1856        pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
1857                &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
1858                its_base_type_string[type],
1859                (unsigned long)virt_to_phys(base),
1860                indirect ? "indirect" : "flat", (int)esz,
1861                psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
1862
1863        return 0;
1864}
1865
1866static bool its_parse_indirect_baser(struct its_node *its,
1867                                     struct its_baser *baser,
1868                                     u32 psz, u32 *order, u32 ids)
1869{
1870        u64 tmp = its_read_baser(its, baser);
1871        u64 type = GITS_BASER_TYPE(tmp);
1872        u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
1873        u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
1874        u32 new_order = *order;
1875        bool indirect = false;
1876
1877        /* No need to enable Indirection if memory requirement < (psz*2)bytes */
1878        if ((esz << ids) > (psz * 2)) {
1879                /*
1880                 * Find out whether hw supports a single or two-level table by
1881                 * table by reading bit at offset '62' after writing '1' to it.
1882                 */
1883                its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
1884                indirect = !!(baser->val & GITS_BASER_INDIRECT);
1885
1886                if (indirect) {
1887                        /*
1888                         * The size of the lvl2 table is equal to ITS page size
1889                         * which is 'psz'. For computing lvl1 table size,
1890                         * subtract ID bits that sparse lvl2 table from 'ids'
1891                         * which is reported by ITS hardware times lvl1 table
1892                         * entry size.
1893                         */
1894                        ids -= ilog2(psz / (int)esz);
1895                        esz = GITS_LVL1_ENTRY_SIZE;
1896                }
1897        }
1898
1899        /*
1900         * Allocate as many entries as required to fit the
1901         * range of device IDs that the ITS can grok... The ID
1902         * space being incredibly sparse, this results in a
1903         * massive waste of memory if two-level device table
1904         * feature is not supported by hardware.
1905         */
1906        new_order = max_t(u32, get_order(esz << ids), new_order);
1907        if (new_order >= MAX_ORDER) {
1908                new_order = MAX_ORDER - 1;
1909                ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
1910                pr_warn("ITS@%pa: %s Table too large, reduce ids %u->%u\n",
1911                        &its->phys_base, its_base_type_string[type],
1912                        its->device_ids, ids);
1913        }
1914
1915        *order = new_order;
1916
1917        return indirect;
1918}
1919
1920static void its_free_tables(struct its_node *its)
1921{
1922        int i;
1923
1924        for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1925                if (its->tables[i].base) {
1926                        free_pages((unsigned long)its->tables[i].base,
1927                                   its->tables[i].order);
1928                        its->tables[i].base = NULL;
1929                }
1930        }
1931}
1932
1933static int its_alloc_tables(struct its_node *its)
1934{
1935        u64 shr = GITS_BASER_InnerShareable;
1936        u64 cache = GITS_BASER_RaWaWb;
1937        u32 psz = SZ_64K;
1938        int err, i;
1939
1940        if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
1941                /* erratum 24313: ignore memory access type */
1942                cache = GITS_BASER_nCnB;
1943
1944        for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1945                struct its_baser *baser = its->tables + i;
1946                u64 val = its_read_baser(its, baser);
1947                u64 type = GITS_BASER_TYPE(val);
1948                u32 order = get_order(psz);
1949                bool indirect = false;
1950
1951                switch (type) {
1952                case GITS_BASER_TYPE_NONE:
1953                        continue;
1954
1955                case GITS_BASER_TYPE_DEVICE:
1956                        indirect = its_parse_indirect_baser(its, baser,
1957                                                            psz, &order,
1958                                                            its->device_ids);
1959                        break;
1960
1961                case GITS_BASER_TYPE_VCPU:
1962                        indirect = its_parse_indirect_baser(its, baser,
1963                                                            psz, &order,
1964                                                            ITS_MAX_VPEID_BITS);
1965                        break;
1966                }
1967
1968                err = its_setup_baser(its, baser, cache, shr, psz, order, indirect);
1969                if (err < 0) {
1970                        its_free_tables(its);
1971                        return err;
1972                }
1973
1974                /* Update settings which will be used for next BASERn */
1975                psz = baser->psz;
1976                cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
1977                shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
1978        }
1979
1980        return 0;
1981}
1982
1983static int its_alloc_collections(struct its_node *its)
1984{
1985        int i;
1986
1987        its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
1988                                   GFP_KERNEL);
1989        if (!its->collections)
1990                return -ENOMEM;
1991
1992        for (i = 0; i < nr_cpu_ids; i++)
1993                its->collections[i].target_address = ~0ULL;
1994
1995        return 0;
1996}
1997
1998static struct page *its_allocate_pending_table(gfp_t gfp_flags)
1999{
2000        struct page *pend_page;
2001
2002        pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2003                                get_order(LPI_PENDBASE_SZ));
2004        if (!pend_page)
2005                return NULL;
2006
2007        /* Make sure the GIC will observe the zero-ed page */
2008        gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2009
2010        return pend_page;
2011}
2012
2013static void its_free_pending_table(struct page *pt)
2014{
2015        free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2016}
2017
2018/*
2019 * Booting with kdump and LPIs enabled is generally fine. Any other
2020 * case is wrong in the absence of firmware/EFI support.
2021 */
2022static bool enabled_lpis_allowed(void)
2023{
2024        phys_addr_t addr;
2025        u64 val;
2026
2027        /* Check whether the property table is in a reserved region */
2028        val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2029        addr = val & GENMASK_ULL(51, 12);
2030
2031        return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
2032}
2033
2034static int __init allocate_lpi_tables(void)
2035{
2036        u64 val;
2037        int err, cpu;
2038
2039        /*
2040         * If LPIs are enabled while we run this from the boot CPU,
2041         * flag the RD tables as pre-allocated if the stars do align.
2042         */
2043        val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
2044        if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
2045                gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
2046                                      RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
2047                pr_info("GICv3: Using preallocated redistributor tables\n");
2048        }
2049
2050        err = its_setup_lpi_prop_table();
2051        if (err)
2052                return err;
2053
2054        /*
2055         * We allocate all the pending tables anyway, as we may have a
2056         * mix of RDs that have had LPIs enabled, and some that
2057         * don't. We'll free the unused ones as each CPU comes online.
2058         */
2059        for_each_possible_cpu(cpu) {
2060                struct page *pend_page;
2061
2062                pend_page = its_allocate_pending_table(GFP_NOWAIT);
2063                if (!pend_page) {
2064                        pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
2065                        return -ENOMEM;
2066                }
2067
2068                gic_data_rdist_cpu(cpu)->pend_page = pend_page;
2069        }
2070
2071        return 0;
2072}
2073
2074static u64 its_clear_vpend_valid(void __iomem *vlpi_base)
2075{
2076        u32 count = 1000000;    /* 1s! */
2077        bool clean;
2078        u64 val;
2079
2080        val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2081        val &= ~GICR_VPENDBASER_Valid;
2082        gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2083
2084        do {
2085                val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2086                clean = !(val & GICR_VPENDBASER_Dirty);
2087                if (!clean) {
2088                        count--;
2089                        cpu_relax();
2090                        udelay(1);
2091                }
2092        } while (!clean && count);
2093
2094        return val;
2095}
2096
2097static void its_cpu_init_lpis(void)
2098{
2099        void __iomem *rbase = gic_data_rdist_rd_base();
2100        struct page *pend_page;
2101        phys_addr_t paddr;
2102        u64 val, tmp;
2103
2104        if (gic_data_rdist()->lpi_enabled)
2105                return;
2106
2107        val = readl_relaxed(rbase + GICR_CTLR);
2108        if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
2109            (val & GICR_CTLR_ENABLE_LPIS)) {
2110                /*
2111                 * Check that we get the same property table on all
2112                 * RDs. If we don't, this is hopeless.
2113                 */
2114                paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
2115                paddr &= GENMASK_ULL(51, 12);
2116                if (WARN_ON(gic_rdists->prop_table_pa != paddr))
2117                        add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2118
2119                paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
2120                paddr &= GENMASK_ULL(51, 16);
2121
2122                WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
2123                its_free_pending_table(gic_data_rdist()->pend_page);
2124                gic_data_rdist()->pend_page = NULL;
2125
2126                goto out;
2127        }
2128
2129        pend_page = gic_data_rdist()->pend_page;
2130        paddr = page_to_phys(pend_page);
2131        WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
2132
2133        /* set PROPBASE */
2134        val = (gic_rdists->prop_table_pa |
2135               GICR_PROPBASER_InnerShareable |
2136               GICR_PROPBASER_RaWaWb |
2137               ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
2138
2139        gicr_write_propbaser(val, rbase + GICR_PROPBASER);
2140        tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
2141
2142        if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
2143                if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
2144                        /*
2145                         * The HW reports non-shareable, we must
2146                         * remove the cacheability attributes as
2147                         * well.
2148                         */
2149                        val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
2150                                 GICR_PROPBASER_CACHEABILITY_MASK);
2151                        val |= GICR_PROPBASER_nC;
2152                        gicr_write_propbaser(val, rbase + GICR_PROPBASER);
2153                }
2154                pr_info_once("GIC: using cache flushing for LPI property table\n");
2155                gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
2156        }
2157
2158        /* set PENDBASE */
2159        val = (page_to_phys(pend_page) |
2160               GICR_PENDBASER_InnerShareable |
2161               GICR_PENDBASER_RaWaWb);
2162
2163        gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
2164        tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
2165
2166        if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
2167                /*
2168                 * The HW reports non-shareable, we must remove the
2169                 * cacheability attributes as well.
2170                 */
2171                val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
2172                         GICR_PENDBASER_CACHEABILITY_MASK);
2173                val |= GICR_PENDBASER_nC;
2174                gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
2175        }
2176
2177        /* Enable LPIs */
2178        val = readl_relaxed(rbase + GICR_CTLR);
2179        val |= GICR_CTLR_ENABLE_LPIS;
2180        writel_relaxed(val, rbase + GICR_CTLR);
2181
2182        if (gic_rdists->has_vlpis) {
2183                void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2184
2185                /*
2186                 * It's possible for CPU to receive VLPIs before it is
2187                 * sheduled as a vPE, especially for the first CPU, and the
2188                 * VLPI with INTID larger than 2^(IDbits+1) will be considered
2189                 * as out of range and dropped by GIC.
2190                 * So we initialize IDbits to known value to avoid VLPI drop.
2191                 */
2192                val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
2193                pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
2194                        smp_processor_id(), val);
2195                gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2196
2197                /*
2198                 * Also clear Valid bit of GICR_VPENDBASER, in case some
2199                 * ancient programming gets left in and has possibility of
2200                 * corrupting memory.
2201                 */
2202                val = its_clear_vpend_valid(vlpi_base);
2203                WARN_ON(val & GICR_VPENDBASER_Dirty);
2204        }
2205
2206        /* Make sure the GIC has seen the above */
2207        dsb(sy);
2208out:
2209        gic_data_rdist()->lpi_enabled = true;
2210        pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
2211                smp_processor_id(),
2212                gic_data_rdist()->pend_page ? "allocated" : "reserved",
2213                &paddr);
2214}
2215
2216static void its_cpu_init_collection(struct its_node *its)
2217{
2218        int cpu = smp_processor_id();
2219        u64 target;
2220
2221        /* avoid cross node collections and its mapping */
2222        if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
2223                struct device_node *cpu_node;
2224
2225                cpu_node = of_get_cpu_node(cpu, NULL);
2226                if (its->numa_node != NUMA_NO_NODE &&
2227                        its->numa_node != of_node_to_nid(cpu_node))
2228                        return;
2229        }
2230
2231        /*
2232         * We now have to bind each collection to its target
2233         * redistributor.
2234         */
2235        if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
2236                /*
2237                 * This ITS wants the physical address of the
2238                 * redistributor.
2239                 */
2240                target = gic_data_rdist()->phys_base;
2241        } else {
2242                /* This ITS wants a linear CPU number. */
2243                target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2244                target = GICR_TYPER_CPU_NUMBER(target) << 16;
2245        }
2246
2247        /* Perform collection mapping */
2248        its->collections[cpu].target_address = target;
2249        its->collections[cpu].col_id = cpu;
2250
2251        its_send_mapc(its, &its->collections[cpu], 1);
2252        its_send_invall(its, &its->collections[cpu]);
2253}
2254
2255static void its_cpu_init_collections(void)
2256{
2257        struct its_node *its;
2258
2259        raw_spin_lock(&its_lock);
2260
2261        list_for_each_entry(its, &its_nodes, entry)
2262                its_cpu_init_collection(its);
2263
2264        raw_spin_unlock(&its_lock);
2265}
2266
2267static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
2268{
2269        struct its_device *its_dev = NULL, *tmp;
2270        unsigned long flags;
2271
2272        raw_spin_lock_irqsave(&its->lock, flags);
2273
2274        list_for_each_entry(tmp, &its->its_device_list, entry) {
2275                if (tmp->device_id == dev_id) {
2276                        its_dev = tmp;
2277                        break;
2278                }
2279        }
2280
2281        raw_spin_unlock_irqrestore(&its->lock, flags);
2282
2283        return its_dev;
2284}
2285
2286static struct its_baser *its_get_baser(struct its_node *its, u32 type)
2287{
2288        int i;
2289
2290        for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2291                if (GITS_BASER_TYPE(its->tables[i].val) == type)
2292                        return &its->tables[i];
2293        }
2294
2295        return NULL;
2296}
2297
2298static bool its_alloc_table_entry(struct its_node *its,
2299                                  struct its_baser *baser, u32 id)
2300{
2301        struct page *page;
2302        u32 esz, idx;
2303        __le64 *table;
2304
2305        /* Don't allow device id that exceeds single, flat table limit */
2306        esz = GITS_BASER_ENTRY_SIZE(baser->val);
2307        if (!(baser->val & GITS_BASER_INDIRECT))
2308                return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
2309
2310        /* Compute 1st level table index & check if that exceeds table limit */
2311        idx = id >> ilog2(baser->psz / esz);
2312        if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
2313                return false;
2314
2315        table = baser->base;
2316
2317        /* Allocate memory for 2nd level table */
2318        if (!table[idx]) {
2319                page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
2320                                        get_order(baser->psz));
2321                if (!page)
2322                        return false;
2323
2324                /* Flush Lvl2 table to PoC if hw doesn't support coherency */
2325                if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2326                        gic_flush_dcache_to_poc(page_address(page), baser->psz);
2327
2328                table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2329
2330                /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2331                if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2332                        gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2333
2334                /* Ensure updated table contents are visible to ITS hardware */
2335                dsb(sy);
2336        }
2337
2338        return true;
2339}
2340
2341static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
2342{
2343        struct its_baser *baser;
2344
2345        baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
2346
2347        /* Don't allow device id that exceeds ITS hardware limit */
2348        if (!baser)
2349                return (ilog2(dev_id) < its->device_ids);
2350
2351        return its_alloc_table_entry(its, baser, dev_id);
2352}
2353
2354static bool its_alloc_vpe_table(u32 vpe_id)
2355{
2356        struct its_node *its;
2357
2358        /*
2359         * Make sure the L2 tables are allocated on *all* v4 ITSs. We
2360         * could try and only do it on ITSs corresponding to devices
2361         * that have interrupts targeted at this VPE, but the
2362         * complexity becomes crazy (and you have tons of memory
2363         * anyway, right?).
2364         */
2365        list_for_each_entry(its, &its_nodes, entry) {
2366                struct its_baser *baser;
2367
2368                if (!its->is_v4)
2369                        continue;
2370
2371                baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
2372                if (!baser)
2373                        return false;
2374
2375                if (!its_alloc_table_entry(its, baser, vpe_id))
2376                        return false;
2377        }
2378
2379        return true;
2380}
2381
2382static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
2383                                            int nvecs, bool alloc_lpis)
2384{
2385        struct its_device *dev;
2386        unsigned long *lpi_map = NULL;
2387        unsigned long flags;
2388        u16 *col_map = NULL;
2389        void *itt;
2390        int lpi_base;
2391        int nr_lpis;
2392        int nr_ites;
2393        int sz;
2394
2395        if (!its_alloc_device_table(its, dev_id))
2396                return NULL;
2397
2398        if (WARN_ON(!is_power_of_2(nvecs)))
2399                nvecs = roundup_pow_of_two(nvecs);
2400
2401        dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2402        /*
2403         * Even if the device wants a single LPI, the ITT must be
2404         * sized as a power of two (and you need at least one bit...).
2405         */
2406        nr_ites = max(2, nvecs);
2407        sz = nr_ites * its->ite_size;
2408        sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
2409        itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
2410        if (alloc_lpis) {
2411                lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
2412                if (lpi_map)
2413                        col_map = kcalloc(nr_lpis, sizeof(*col_map),
2414                                          GFP_KERNEL);
2415        } else {
2416                col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
2417                nr_lpis = 0;
2418                lpi_base = 0;
2419        }
2420
2421        if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
2422                kfree(dev);
2423                kfree(itt);
2424                kfree(lpi_map);
2425                kfree(col_map);
2426                return NULL;
2427        }
2428
2429        gic_flush_dcache_to_poc(itt, sz);
2430
2431        dev->its = its;
2432        dev->itt = itt;
2433        dev->nr_ites = nr_ites;
2434        dev->event_map.lpi_map = lpi_map;
2435        dev->event_map.col_map = col_map;
2436        dev->event_map.lpi_base = lpi_base;
2437        dev->event_map.nr_lpis = nr_lpis;
2438        mutex_init(&dev->event_map.vlpi_lock);
2439        dev->device_id = dev_id;
2440        INIT_LIST_HEAD(&dev->entry);
2441
2442        raw_spin_lock_irqsave(&its->lock, flags);
2443        list_add(&dev->entry, &its->its_device_list);
2444        raw_spin_unlock_irqrestore(&its->lock, flags);
2445
2446        /* Map device to its ITT */
2447        its_send_mapd(dev, 1);
2448
2449        return dev;
2450}
2451
2452static void its_free_device(struct its_device *its_dev)
2453{
2454        unsigned long flags;
2455
2456        raw_spin_lock_irqsave(&its_dev->its->lock, flags);
2457        list_del(&its_dev->entry);
2458        raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
2459        kfree(its_dev->itt);
2460        kfree(its_dev);
2461}
2462
2463static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
2464{
2465        int idx;
2466
2467        idx = bitmap_find_free_region(dev->event_map.lpi_map,
2468                                      dev->event_map.nr_lpis,
2469                                      get_count_order(nvecs));
2470        if (idx < 0)
2471                return -ENOSPC;
2472
2473        *hwirq = dev->event_map.lpi_base + idx;
2474        set_bit(idx, dev->event_map.lpi_map);
2475
2476        return 0;
2477}
2478
2479static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
2480                           int nvec, msi_alloc_info_t *info)
2481{
2482        struct its_node *its;
2483        struct its_device *its_dev;
2484        struct msi_domain_info *msi_info;
2485        u32 dev_id;
2486        int err = 0;
2487
2488        /*
2489         * We ignore "dev" entirely, and rely on the dev_id that has
2490         * been passed via the scratchpad. This limits this domain's
2491         * usefulness to upper layers that definitely know that they
2492         * are built on top of the ITS.
2493         */
2494        dev_id = info->scratchpad[0].ul;
2495
2496        msi_info = msi_get_domain_info(domain);
2497        its = msi_info->data;
2498
2499        if (!gic_rdists->has_direct_lpi &&
2500            vpe_proxy.dev &&
2501            vpe_proxy.dev->its == its &&
2502            dev_id == vpe_proxy.dev->device_id) {
2503                /* Bad luck. Get yourself a better implementation */
2504                WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
2505                          dev_id);
2506                return -EINVAL;
2507        }
2508
2509        mutex_lock(&its->dev_alloc_lock);
2510        its_dev = its_find_device(its, dev_id);
2511        if (its_dev) {
2512                /*
2513                 * We already have seen this ID, probably through
2514                 * another alias (PCI bridge of some sort). No need to
2515                 * create the device.
2516                 */
2517                its_dev->shared = true;
2518                pr_debug("Reusing ITT for devID %x\n", dev_id);
2519                goto out;
2520        }
2521
2522        its_dev = its_create_device(its, dev_id, nvec, true);
2523        if (!its_dev) {
2524                err = -ENOMEM;
2525                goto out;
2526        }
2527
2528        pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
2529out:
2530        mutex_unlock(&its->dev_alloc_lock);
2531        info->scratchpad[0].ptr = its_dev;
2532        return err;
2533}
2534
2535static struct msi_domain_ops its_msi_domain_ops = {
2536        .msi_prepare    = its_msi_prepare,
2537};
2538
2539static int its_irq_gic_domain_alloc(struct irq_domain *domain,
2540                                    unsigned int virq,
2541                                    irq_hw_number_t hwirq)
2542{
2543        struct irq_fwspec fwspec;
2544
2545        if (irq_domain_get_of_node(domain->parent)) {
2546                fwspec.fwnode = domain->parent->fwnode;
2547                fwspec.param_count = 3;
2548                fwspec.param[0] = GIC_IRQ_TYPE_LPI;
2549                fwspec.param[1] = hwirq;
2550                fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
2551        } else if (is_fwnode_irqchip(domain->parent->fwnode)) {
2552                fwspec.fwnode = domain->parent->fwnode;
2553                fwspec.param_count = 2;
2554                fwspec.param[0] = hwirq;
2555                fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
2556        } else {
2557                return -EINVAL;
2558        }
2559
2560        return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
2561}
2562
2563static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
2564                                unsigned int nr_irqs, void *args)
2565{
2566        msi_alloc_info_t *info = args;
2567        struct its_device *its_dev = info->scratchpad[0].ptr;
2568        struct its_node *its = its_dev->its;
2569        irq_hw_number_t hwirq;
2570        int err;
2571        int i;
2572
2573        err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
2574        if (err)
2575                return err;
2576
2577        err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
2578        if (err)
2579                return err;
2580
2581        for (i = 0; i < nr_irqs; i++) {
2582                err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
2583                if (err)
2584                        return err;
2585
2586                irq_domain_set_hwirq_and_chip(domain, virq + i,
2587                                              hwirq + i, &its_irq_chip, its_dev);
2588                irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(virq + i)));
2589                pr_debug("ID:%d pID:%d vID:%d\n",
2590                         (int)(hwirq + i - its_dev->event_map.lpi_base),
2591                         (int)(hwirq + i), virq + i);
2592        }
2593
2594        return 0;
2595}
2596
2597static int its_irq_domain_activate(struct irq_domain *domain,
2598                                   struct irq_data *d, bool reserve)
2599{
2600        struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2601        u32 event = its_get_event_id(d);
2602        const struct cpumask *cpu_mask = cpu_online_mask;
2603        int cpu;
2604
2605        /* get the cpu_mask of local node */
2606        if (its_dev->its->numa_node >= 0)
2607                cpu_mask = cpumask_of_node(its_dev->its->numa_node);
2608
2609        /* Bind the LPI to the first possible CPU */
2610        cpu = cpumask_first_and(cpu_mask, cpu_online_mask);
2611        if (cpu >= nr_cpu_ids) {
2612                if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144)
2613                        return -EINVAL;
2614
2615                cpu = cpumask_first(cpu_online_mask);
2616        }
2617
2618        its_dev->event_map.col_map[event] = cpu;
2619        irq_data_update_effective_affinity(d, cpumask_of(cpu));
2620
2621        /* Map the GIC IRQ and event to the device */
2622        its_send_mapti(its_dev, d->hwirq, event);
2623        return 0;
2624}
2625
2626static void its_irq_domain_deactivate(struct irq_domain *domain,
2627                                      struct irq_data *d)
2628{
2629        struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2630        u32 event = its_get_event_id(d);
2631
2632        /* Stop the delivery of interrupts */
2633        its_send_discard(its_dev, event);
2634}
2635
2636static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
2637                                unsigned int nr_irqs)
2638{
2639        struct irq_data *d = irq_domain_get_irq_data(domain, virq);
2640        struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2641        struct its_node *its = its_dev->its;
2642        int i;
2643
2644        for (i = 0; i < nr_irqs; i++) {
2645                struct irq_data *data = irq_domain_get_irq_data(domain,
2646                                                                virq + i);
2647                u32 event = its_get_event_id(data);
2648
2649                /* Mark interrupt index as unused */
2650                clear_bit(event, its_dev->event_map.lpi_map);
2651
2652                /* Nuke the entry in the domain */
2653                irq_domain_reset_irq_data(data);
2654        }
2655
2656        mutex_lock(&its->dev_alloc_lock);
2657
2658        /*
2659         * If all interrupts have been freed, start mopping the
2660         * floor. This is conditionned on the device not being shared.
2661         */
2662        if (!its_dev->shared &&
2663            bitmap_empty(its_dev->event_map.lpi_map,
2664                         its_dev->event_map.nr_lpis)) {
2665                its_lpi_free(its_dev->event_map.lpi_map,
2666                             its_dev->event_map.lpi_base,
2667                             its_dev->event_map.nr_lpis);
2668                kfree(its_dev->event_map.col_map);
2669
2670                /* Unmap device/itt */
2671                its_send_mapd(its_dev, 0);
2672                its_free_device(its_dev);
2673        }
2674
2675        mutex_unlock(&its->dev_alloc_lock);
2676
2677        irq_domain_free_irqs_parent(domain, virq, nr_irqs);
2678}
2679
2680static const struct irq_domain_ops its_domain_ops = {
2681        .alloc                  = its_irq_domain_alloc,
2682        .free                   = its_irq_domain_free,
2683        .activate               = its_irq_domain_activate,
2684        .deactivate             = its_irq_domain_deactivate,
2685};
2686
2687/*
2688 * This is insane.
2689 *
2690 * If a GICv4 doesn't implement Direct LPIs (which is extremely
2691 * likely), the only way to perform an invalidate is to use a fake
2692 * device to issue an INV command, implying that the LPI has first
2693 * been mapped to some event on that device. Since this is not exactly
2694 * cheap, we try to keep that mapping around as long as possible, and
2695 * only issue an UNMAP if we're short on available slots.
2696 *
2697 * Broken by design(tm).
2698 */
2699static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
2700{
2701        /* Already unmapped? */
2702        if (vpe->vpe_proxy_event == -1)
2703                return;
2704
2705        its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
2706        vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
2707
2708        /*
2709         * We don't track empty slots at all, so let's move the
2710         * next_victim pointer if we can quickly reuse that slot
2711         * instead of nuking an existing entry. Not clear that this is
2712         * always a win though, and this might just generate a ripple
2713         * effect... Let's just hope VPEs don't migrate too often.
2714         */
2715        if (vpe_proxy.vpes[vpe_proxy.next_victim])
2716                vpe_proxy.next_victim = vpe->vpe_proxy_event;
2717
2718        vpe->vpe_proxy_event = -1;
2719}
2720
2721static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
2722{
2723        if (!gic_rdists->has_direct_lpi) {
2724                unsigned long flags;
2725
2726                raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2727                its_vpe_db_proxy_unmap_locked(vpe);
2728                raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2729        }
2730}
2731
2732static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
2733{
2734        /* Already mapped? */
2735        if (vpe->vpe_proxy_event != -1)
2736                return;
2737
2738        /* This slot was already allocated. Kick the other VPE out. */
2739        if (vpe_proxy.vpes[vpe_proxy.next_victim])
2740                its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
2741
2742        /* Map the new VPE instead */
2743        vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
2744        vpe->vpe_proxy_event = vpe_proxy.next_victim;
2745        vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
2746
2747        vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
2748        its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
2749}
2750
2751static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
2752{
2753        unsigned long flags;
2754        struct its_collection *target_col;
2755
2756        if (gic_rdists->has_direct_lpi) {
2757                void __iomem *rdbase;
2758
2759                rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
2760                gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2761                while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2762                        cpu_relax();
2763
2764                return;
2765        }
2766
2767        raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2768
2769        its_vpe_db_proxy_map_locked(vpe);
2770
2771        target_col = &vpe_proxy.dev->its->collections[to];
2772        its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
2773        vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
2774
2775        raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2776}
2777
2778static int its_vpe_set_affinity(struct irq_data *d,
2779                                const struct cpumask *mask_val,
2780                                bool force)
2781{
2782        struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2783        int cpu = cpumask_first(mask_val);
2784
2785        /*
2786         * Changing affinity is mega expensive, so let's be as lazy as
2787         * we can and only do it if we really have to. Also, if mapped
2788         * into the proxy device, we need to move the doorbell
2789         * interrupt to its new location.
2790         */
2791        if (vpe->col_idx != cpu) {
2792                int from = vpe->col_idx;
2793
2794                vpe->col_idx = cpu;
2795                its_send_vmovp(vpe);
2796                its_vpe_db_proxy_move(vpe, from, cpu);
2797        }
2798
2799        irq_data_update_effective_affinity(d, cpumask_of(cpu));
2800
2801        return IRQ_SET_MASK_OK_DONE;
2802}
2803
2804static void its_vpe_schedule(struct its_vpe *vpe)
2805{
2806        void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2807        u64 val;
2808
2809        /* Schedule the VPE */
2810        val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
2811                GENMASK_ULL(51, 12);
2812        val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
2813        val |= GICR_VPROPBASER_RaWb;
2814        val |= GICR_VPROPBASER_InnerShareable;
2815        gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2816
2817        val  = virt_to_phys(page_address(vpe->vpt_page)) &
2818                GENMASK_ULL(51, 16);
2819        val |= GICR_VPENDBASER_RaWaWb;
2820        val |= GICR_VPENDBASER_NonShareable;
2821        /*
2822         * There is no good way of finding out if the pending table is
2823         * empty as we can race against the doorbell interrupt very
2824         * easily. So in the end, vpe->pending_last is only an
2825         * indication that the vcpu has something pending, not one
2826         * that the pending table is empty. A good implementation
2827         * would be able to read its coarse map pretty quickly anyway,
2828         * making this a tolerable issue.
2829         */
2830        val |= GICR_VPENDBASER_PendingLast;
2831        val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
2832        val |= GICR_VPENDBASER_Valid;
2833        gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2834}
2835
2836static void its_vpe_deschedule(struct its_vpe *vpe)
2837{
2838        void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2839        u64 val;
2840
2841        val = its_clear_vpend_valid(vlpi_base);
2842
2843        if (unlikely(val & GICR_VPENDBASER_Dirty)) {
2844                pr_err_ratelimited("ITS virtual pending table not cleaning\n");
2845                vpe->idai = false;
2846                vpe->pending_last = true;
2847        } else {
2848                vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
2849                vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
2850        }
2851}
2852
2853static void its_vpe_invall(struct its_vpe *vpe)
2854{
2855        struct its_node *its;
2856
2857        list_for_each_entry(its, &its_nodes, entry) {
2858                if (!its->is_v4)
2859                        continue;
2860
2861                if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
2862                        continue;
2863
2864                /*
2865                 * Sending a VINVALL to a single ITS is enough, as all
2866                 * we need is to reach the redistributors.
2867                 */
2868                its_send_vinvall(its, vpe);
2869                return;
2870        }
2871}
2872
2873static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
2874{
2875        struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2876        struct its_cmd_info *info = vcpu_info;
2877
2878        switch (info->cmd_type) {
2879        case SCHEDULE_VPE:
2880                its_vpe_schedule(vpe);
2881                return 0;
2882
2883        case DESCHEDULE_VPE:
2884                its_vpe_deschedule(vpe);
2885                return 0;
2886
2887        case INVALL_VPE:
2888                its_vpe_invall(vpe);
2889                return 0;
2890
2891        default:
2892                return -EINVAL;
2893        }
2894}
2895
2896static void its_vpe_send_cmd(struct its_vpe *vpe,
2897                             void (*cmd)(struct its_device *, u32))
2898{
2899        unsigned long flags;
2900
2901        raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2902
2903        its_vpe_db_proxy_map_locked(vpe);
2904        cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
2905
2906        raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2907}
2908
2909static void its_vpe_send_inv(struct irq_data *d)
2910{
2911        struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2912
2913        if (gic_rdists->has_direct_lpi) {
2914                void __iomem *rdbase;
2915
2916                rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2917                gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_INVLPIR);
2918                while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2919                        cpu_relax();
2920        } else {
2921                its_vpe_send_cmd(vpe, its_send_inv);
2922        }
2923}
2924
2925static void its_vpe_mask_irq(struct irq_data *d)
2926{
2927        /*
2928         * We need to unmask the LPI, which is described by the parent
2929         * irq_data. Instead of calling into the parent (which won't
2930         * exactly do the right thing, let's simply use the
2931         * parent_data pointer. Yes, I'm naughty.
2932         */
2933        lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
2934        its_vpe_send_inv(d);
2935}
2936
2937static void its_vpe_unmask_irq(struct irq_data *d)
2938{
2939        /* Same hack as above... */
2940        lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
2941        its_vpe_send_inv(d);
2942}
2943
2944static int its_vpe_set_irqchip_state(struct irq_data *d,
2945                                     enum irqchip_irq_state which,
2946                                     bool state)
2947{
2948        struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2949
2950        if (which != IRQCHIP_STATE_PENDING)
2951                return -EINVAL;
2952
2953        if (gic_rdists->has_direct_lpi) {
2954                void __iomem *rdbase;
2955
2956                rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2957                if (state) {
2958                        gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
2959                } else {
2960                        gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2961                        while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2962                                cpu_relax();
2963                }
2964        } else {
2965                if (state)
2966                        its_vpe_send_cmd(vpe, its_send_int);
2967                else
2968                        its_vpe_send_cmd(vpe, its_send_clear);
2969        }
2970
2971        return 0;
2972}
2973
2974static struct irq_chip its_vpe_irq_chip = {
2975        .name                   = "GICv4-vpe",
2976        .irq_mask               = its_vpe_mask_irq,
2977        .irq_unmask             = its_vpe_unmask_irq,
2978        .irq_eoi                = irq_chip_eoi_parent,
2979        .irq_set_affinity       = its_vpe_set_affinity,
2980        .irq_set_irqchip_state  = its_vpe_set_irqchip_state,
2981        .irq_set_vcpu_affinity  = its_vpe_set_vcpu_affinity,
2982};
2983
2984static int its_vpe_id_alloc(void)
2985{
2986        return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
2987}
2988
2989static void its_vpe_id_free(u16 id)
2990{
2991        ida_simple_remove(&its_vpeid_ida, id);
2992}
2993
2994static int its_vpe_init(struct its_vpe *vpe)
2995{
2996        struct page *vpt_page;
2997        int vpe_id;
2998
2999        /* Allocate vpe_id */
3000        vpe_id = its_vpe_id_alloc();
3001        if (vpe_id < 0)
3002                return vpe_id;
3003
3004        /* Allocate VPT */
3005        vpt_page = its_allocate_pending_table(GFP_KERNEL);
3006        if (!vpt_page) {
3007                its_vpe_id_free(vpe_id);
3008                return -ENOMEM;
3009        }
3010
3011        if (!its_alloc_vpe_table(vpe_id)) {
3012                its_vpe_id_free(vpe_id);
3013                its_free_pending_table(vpt_page);
3014                return -ENOMEM;
3015        }
3016
3017        vpe->vpe_id = vpe_id;
3018        vpe->vpt_page = vpt_page;
3019        vpe->vpe_proxy_event = -1;
3020
3021        return 0;
3022}
3023
3024static void its_vpe_teardown(struct its_vpe *vpe)
3025{
3026        its_vpe_db_proxy_unmap(vpe);
3027        its_vpe_id_free(vpe->vpe_id);
3028        its_free_pending_table(vpe->vpt_page);
3029}
3030
3031static void its_vpe_irq_domain_free(struct irq_domain *domain,
3032                                    unsigned int virq,
3033                                    unsigned int nr_irqs)
3034{
3035        struct its_vm *vm = domain->host_data;
3036        int i;
3037
3038        irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3039
3040        for (i = 0; i < nr_irqs; i++) {
3041                struct irq_data *data = irq_domain_get_irq_data(domain,
3042                                                                virq + i);
3043                struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
3044
3045                BUG_ON(vm != vpe->its_vm);
3046
3047                clear_bit(data->hwirq, vm->db_bitmap);
3048                its_vpe_teardown(vpe);
3049                irq_domain_reset_irq_data(data);
3050        }
3051
3052        if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
3053                its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
3054                its_free_prop_table(vm->vprop_page);
3055        }
3056}
3057
3058static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3059                                    unsigned int nr_irqs, void *args)
3060{
3061        struct its_vm *vm = args;
3062        unsigned long *bitmap;
3063        struct page *vprop_page;
3064        int base, nr_ids, i, err = 0;
3065
3066        BUG_ON(!vm);
3067
3068        bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
3069        if (!bitmap)
3070                return -ENOMEM;
3071
3072        if (nr_ids < nr_irqs) {
3073                its_lpi_free(bitmap, base, nr_ids);
3074                return -ENOMEM;
3075        }
3076
3077        vprop_page = its_allocate_prop_table(GFP_KERNEL);
3078        if (!vprop_page) {
3079                its_lpi_free(bitmap, base, nr_ids);
3080                return -ENOMEM;
3081        }
3082
3083        vm->db_bitmap = bitmap;
3084        vm->db_lpi_base = base;
3085        vm->nr_db_lpis = nr_ids;
3086        vm->vprop_page = vprop_page;
3087
3088        for (i = 0; i < nr_irqs; i++) {
3089                vm->vpes[i]->vpe_db_lpi = base + i;
3090                err = its_vpe_init(vm->vpes[i]);
3091                if (err)
3092                        break;
3093                err = its_irq_gic_domain_alloc(domain, virq + i,
3094                                               vm->vpes[i]->vpe_db_lpi);
3095                if (err)
3096                        break;
3097                irq_domain_set_hwirq_and_chip(domain, virq + i, i,
3098                                              &its_vpe_irq_chip, vm->vpes[i]);
3099                set_bit(i, bitmap);
3100        }
3101
3102        if (err) {
3103                if (i > 0)
3104                        its_vpe_irq_domain_free(domain, virq, i - 1);
3105
3106                its_lpi_free(bitmap, base, nr_ids);
3107                its_free_prop_table(vprop_page);
3108        }
3109
3110        return err;
3111}
3112
3113static int its_vpe_irq_domain_activate(struct irq_domain *domain,
3114                                       struct irq_data *d, bool reserve)
3115{
3116        struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3117        struct its_node *its;
3118
3119        /* If we use the list map, we issue VMAPP on demand... */
3120        if (its_list_map)
3121                return 0;
3122
3123        /* Map the VPE to the first possible CPU */
3124        vpe->col_idx = cpumask_first(cpu_online_mask);
3125
3126        list_for_each_entry(its, &its_nodes, entry) {
3127                if (!its->is_v4)
3128                        continue;
3129
3130                its_send_vmapp(its, vpe, true);
3131                its_send_vinvall(its, vpe);
3132        }
3133
3134        irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
3135
3136        return 0;
3137}
3138
3139static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
3140                                          struct irq_data *d)
3141{
3142        struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3143        struct its_node *its;
3144
3145        /*
3146         * If we use the list map, we unmap the VPE once no VLPIs are
3147         * associated with the VM.
3148         */
3149        if (its_list_map)
3150                return;
3151
3152        list_for_each_entry(its, &its_nodes, entry) {
3153                if (!its->is_v4)
3154                        continue;
3155
3156                its_send_vmapp(its, vpe, false);
3157        }
3158}
3159
3160static const struct irq_domain_ops its_vpe_domain_ops = {
3161        .alloc                  = its_vpe_irq_domain_alloc,
3162        .free                   = its_vpe_irq_domain_free,
3163        .activate               = its_vpe_irq_domain_activate,
3164        .deactivate             = its_vpe_irq_domain_deactivate,
3165};
3166
3167static int its_force_quiescent(void __iomem *base)
3168{
3169        u32 count = 1000000;    /* 1s */
3170        u32 val;
3171
3172        val = readl_relaxed(base + GITS_CTLR);
3173        /*
3174         * GIC architecture specification requires the ITS to be both
3175         * disabled and quiescent for writes to GITS_BASER<n> or
3176         * GITS_CBASER to not have UNPREDICTABLE results.
3177         */
3178        if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
3179                return 0;
3180
3181        /* Disable the generation of all interrupts to this ITS */
3182        val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
3183        writel_relaxed(val, base + GITS_CTLR);
3184
3185        /* Poll GITS_CTLR and wait until ITS becomes quiescent */
3186        while (1) {
3187                val = readl_relaxed(base + GITS_CTLR);
3188                if (val & GITS_CTLR_QUIESCENT)
3189                        return 0;
3190
3191                count--;
3192                if (!count)
3193                        return -EBUSY;
3194
3195                cpu_relax();
3196                udelay(1);
3197        }
3198}
3199
3200static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
3201{
3202        struct its_node *its = data;
3203
3204        /* erratum 22375: only alloc 8MB table size */
3205        its->device_ids = 0x14;         /* 20 bits, 8MB */
3206        its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
3207
3208        return true;
3209}
3210
3211static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
3212{
3213        struct its_node *its = data;
3214
3215        its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
3216
3217        return true;
3218}
3219
3220static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
3221{
3222        struct its_node *its = data;
3223
3224        /* On QDF2400, the size of the ITE is 16Bytes */
3225        its->ite_size = 16;
3226
3227        return true;
3228}
3229
3230static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
3231{
3232        struct its_node *its = its_dev->its;
3233
3234        /*
3235         * The Socionext Synquacer SoC has a so-called 'pre-ITS',
3236         * which maps 32-bit writes targeted at a separate window of
3237         * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
3238         * with device ID taken from bits [device_id_bits + 1:2] of
3239         * the window offset.
3240         */
3241        return its->pre_its_base + (its_dev->device_id << 2);
3242}
3243
3244static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
3245{
3246        struct its_node *its = data;
3247        u32 pre_its_window[2];
3248        u32 ids;
3249
3250        if (!fwnode_property_read_u32_array(its->fwnode_handle,
3251                                           "socionext,synquacer-pre-its",
3252                                           pre_its_window,
3253                                           ARRAY_SIZE(pre_its_window))) {
3254
3255                its->pre_its_base = pre_its_window[0];
3256                its->get_msi_base = its_irq_get_msi_base_pre_its;
3257
3258                ids = ilog2(pre_its_window[1]) - 2;
3259                if (its->device_ids > ids)
3260                        its->device_ids = ids;
3261
3262                /* the pre-ITS breaks isolation, so disable MSI remapping */
3263                its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP;
3264                return true;
3265        }
3266        return false;
3267}
3268
3269static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
3270{
3271        struct its_node *its = data;
3272
3273        /*
3274         * Hip07 insists on using the wrong address for the VLPI
3275         * page. Trick it into doing the right thing...
3276         */
3277        its->vlpi_redist_offset = SZ_128K;
3278        return true;
3279}
3280
3281static const struct gic_quirk its_quirks[] = {
3282#ifdef CONFIG_CAVIUM_ERRATUM_22375
3283        {
3284                .desc   = "ITS: Cavium errata 22375, 24313",
3285                .iidr   = 0xa100034c,   /* ThunderX pass 1.x */
3286                .mask   = 0xffff0fff,
3287                .init   = its_enable_quirk_cavium_22375,
3288        },
3289#endif
3290#ifdef CONFIG_CAVIUM_ERRATUM_23144
3291        {
3292                .desc   = "ITS: Cavium erratum 23144",
3293                .iidr   = 0xa100034c,   /* ThunderX pass 1.x */
3294                .mask   = 0xffff0fff,
3295                .init   = its_enable_quirk_cavium_23144,
3296        },
3297#endif
3298#ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
3299        {
3300                .desc   = "ITS: QDF2400 erratum 0065",
3301                .iidr   = 0x00001070, /* QDF2400 ITS rev 1.x */
3302                .mask   = 0xffffffff,
3303                .init   = its_enable_quirk_qdf2400_e0065,
3304        },
3305#endif
3306#ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
3307        {
3308                /*
3309                 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
3310                 * implementation, but with a 'pre-ITS' added that requires
3311                 * special handling in software.
3312                 */
3313                .desc   = "ITS: Socionext Synquacer pre-ITS",
3314                .iidr   = 0x0001143b,
3315                .mask   = 0xffffffff,
3316                .init   = its_enable_quirk_socionext_synquacer,
3317        },
3318#endif
3319#ifdef CONFIG_HISILICON_ERRATUM_161600802
3320        {
3321                .desc   = "ITS: Hip07 erratum 161600802",
3322                .iidr   = 0x00000004,
3323                .mask   = 0xffffffff,
3324                .init   = its_enable_quirk_hip07_161600802,
3325        },
3326#endif
3327        {
3328        }
3329};
3330
3331static void its_enable_quirks(struct its_node *its)
3332{
3333        u32 iidr = readl_relaxed(its->base + GITS_IIDR);
3334
3335        gic_enable_quirks(iidr, its_quirks, its);
3336}
3337
3338static int its_save_disable(void)
3339{
3340        struct its_node *its;
3341        int err = 0;
3342
3343        raw_spin_lock(&its_lock);
3344        list_for_each_entry(its, &its_nodes, entry) {
3345                void __iomem *base;
3346
3347                if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3348                        continue;
3349
3350                base = its->base;
3351                its->ctlr_save = readl_relaxed(base + GITS_CTLR);
3352                err = its_force_quiescent(base);
3353                if (err) {
3354                        pr_err("ITS@%pa: failed to quiesce: %d\n",
3355                               &its->phys_base, err);
3356                        writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3357                        goto err;
3358                }
3359
3360                its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
3361        }
3362
3363err:
3364        if (err) {
3365                list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
3366                        void __iomem *base;
3367
3368                        if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3369                                continue;
3370
3371                        base = its->base;
3372                        writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3373                }
3374        }
3375        raw_spin_unlock(&its_lock);
3376
3377        return err;
3378}
3379
3380static void its_restore_enable(void)
3381{
3382        struct its_node *its;
3383        int ret;
3384
3385        raw_spin_lock(&its_lock);
3386        list_for_each_entry(its, &its_nodes, entry) {
3387                void __iomem *base;
3388                int i;
3389
3390                if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3391                        continue;
3392
3393                base = its->base;
3394
3395                /*
3396                 * Make sure that the ITS is disabled. If it fails to quiesce,
3397                 * don't restore it since writing to CBASER or BASER<n>
3398                 * registers is undefined according to the GIC v3 ITS
3399                 * Specification.
3400                 */
3401                ret = its_force_quiescent(base);
3402                if (ret) {
3403                        pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
3404                               &its->phys_base, ret);
3405                        continue;
3406                }
3407
3408                gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
3409
3410                /*
3411                 * Writing CBASER resets CREADR to 0, so make CWRITER and
3412                 * cmd_write line up with it.
3413                 */
3414                its->cmd_write = its->cmd_base;
3415                gits_write_cwriter(0, base + GITS_CWRITER);
3416
3417                /* Restore GITS_BASER from the value cache. */
3418                for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3419                        struct its_baser *baser = &its->tables[i];
3420
3421                        if (!(baser->val & GITS_BASER_VALID))
3422                                continue;
3423
3424                        its_write_baser(its, baser, baser->val);
3425                }
3426                writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3427
3428                /*
3429                 * Reinit the collection if it's stored in the ITS. This is
3430                 * indicated by the col_id being less than the HCC field.
3431                 * CID < HCC as specified in the GIC v3 Documentation.
3432                 */
3433                if (its->collections[smp_processor_id()].col_id <
3434                    GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
3435                        its_cpu_init_collection(its);
3436        }
3437        raw_spin_unlock(&its_lock);
3438}
3439
3440static struct syscore_ops its_syscore_ops = {
3441        .suspend = its_save_disable,
3442        .resume = its_restore_enable,
3443};
3444
3445static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
3446{
3447        struct irq_domain *inner_domain;
3448        struct msi_domain_info *info;
3449
3450        info = kzalloc(sizeof(*info), GFP_KERNEL);
3451        if (!info)
3452                return -ENOMEM;
3453
3454        inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
3455        if (!inner_domain) {
3456                kfree(info);
3457                return -ENOMEM;
3458        }
3459
3460        inner_domain->parent = its_parent;
3461        irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
3462        inner_domain->flags |= its->msi_domain_flags;
3463        info->ops = &its_msi_domain_ops;
3464        info->data = its;
3465        inner_domain->host_data = info;
3466
3467        return 0;
3468}
3469
3470static int its_init_vpe_domain(void)
3471{
3472        struct its_node *its;
3473        u32 devid;
3474        int entries;
3475
3476        if (gic_rdists->has_direct_lpi) {
3477                pr_info("ITS: Using DirectLPI for VPE invalidation\n");
3478                return 0;
3479        }
3480
3481        /* Any ITS will do, even if not v4 */
3482        its = list_first_entry(&its_nodes, struct its_node, entry);
3483
3484        entries = roundup_pow_of_two(nr_cpu_ids);
3485        vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
3486                                 GFP_KERNEL);
3487        if (!vpe_proxy.vpes) {
3488                pr_err("ITS: Can't allocate GICv4 proxy device array\n");
3489                return -ENOMEM;
3490        }
3491
3492        /* Use the last possible DevID */
3493        devid = GENMASK(its->device_ids - 1, 0);
3494        vpe_proxy.dev = its_create_device(its, devid, entries, false);
3495        if (!vpe_proxy.dev) {
3496                kfree(vpe_proxy.vpes);
3497                pr_err("ITS: Can't allocate GICv4 proxy device\n");
3498                return -ENOMEM;
3499        }
3500
3501        BUG_ON(entries > vpe_proxy.dev->nr_ites);
3502
3503        raw_spin_lock_init(&vpe_proxy.lock);
3504        vpe_proxy.next_victim = 0;
3505        pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
3506                devid, vpe_proxy.dev->nr_ites);
3507
3508        return 0;
3509}
3510
3511static int __init its_compute_its_list_map(struct resource *res,
3512                                           void __iomem *its_base)
3513{
3514        int its_number;
3515        u32 ctlr;
3516
3517        /*
3518         * This is assumed to be done early enough that we're
3519         * guaranteed to be single-threaded, hence no
3520         * locking. Should this change, we should address
3521         * this.
3522         */
3523        its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
3524        if (its_number >= GICv4_ITS_LIST_MAX) {
3525                pr_err("ITS@%pa: No ITSList entry available!\n",
3526                       &res->start);
3527                return -EINVAL;
3528        }
3529
3530        ctlr = readl_relaxed(its_base + GITS_CTLR);
3531        ctlr &= ~GITS_CTLR_ITS_NUMBER;
3532        ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
3533        writel_relaxed(ctlr, its_base + GITS_CTLR);
3534        ctlr = readl_relaxed(its_base + GITS_CTLR);
3535        if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
3536                its_number = ctlr & GITS_CTLR_ITS_NUMBER;
3537                its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
3538        }
3539
3540        if (test_and_set_bit(its_number, &its_list_map)) {
3541                pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
3542                       &res->start, its_number);
3543                return -EINVAL;
3544        }
3545
3546        return its_number;
3547}
3548
3549static int __init its_probe_one(struct resource *res,
3550                                struct fwnode_handle *handle, int numa_node)
3551{
3552        struct its_node *its;
3553        void __iomem *its_base;
3554        u32 val, ctlr;
3555        u64 baser, tmp, typer;
3556        struct page *page;
3557        int err;
3558
3559        its_base = ioremap(res->start, resource_size(res));
3560        if (!its_base) {
3561                pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
3562                return -ENOMEM;
3563        }
3564
3565        val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
3566        if (val != 0x30 && val != 0x40) {
3567                pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
3568                err = -ENODEV;
3569                goto out_unmap;
3570        }
3571
3572        err = its_force_quiescent(its_base);
3573        if (err) {
3574                pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
3575                goto out_unmap;
3576        }
3577
3578        pr_info("ITS %pR\n", res);
3579
3580        its = kzalloc(sizeof(*its), GFP_KERNEL);
3581        if (!its) {
3582                err = -ENOMEM;
3583                goto out_unmap;
3584        }
3585
3586        raw_spin_lock_init(&its->lock);
3587        mutex_init(&its->dev_alloc_lock);
3588        INIT_LIST_HEAD(&its->entry);
3589        INIT_LIST_HEAD(&its->its_device_list);
3590        typer = gic_read_typer(its_base + GITS_TYPER);
3591        its->base = its_base;
3592        its->phys_base = res->start;
3593        its->ite_size = GITS_TYPER_ITT_ENTRY_SIZE(typer);
3594        its->device_ids = GITS_TYPER_DEVBITS(typer);
3595        its->is_v4 = !!(typer & GITS_TYPER_VLPIS);
3596        if (its->is_v4) {
3597                if (!(typer & GITS_TYPER_VMOVP)) {
3598                        err = its_compute_its_list_map(res, its_base);
3599                        if (err < 0)
3600                                goto out_free_its;
3601
3602                        its->list_nr = err;
3603
3604                        pr_info("ITS@%pa: Using ITS number %d\n",
3605                                &res->start, err);
3606                } else {
3607                        pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
3608                }
3609        }
3610
3611        its->numa_node = numa_node;
3612
3613        page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3614                                get_order(ITS_CMD_QUEUE_SZ));
3615        if (!page) {
3616                err = -ENOMEM;
3617                goto out_free_its;
3618        }
3619        its->cmd_base = (void *)page_address(page);
3620        its->cmd_write = its->cmd_base;
3621        its->fwnode_handle = handle;
3622        its->get_msi_base = its_irq_get_msi_base;
3623        its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP;
3624
3625        its_enable_quirks(its);
3626
3627        err = its_alloc_tables(its);
3628        if (err)
3629                goto out_free_cmd;
3630
3631        err = its_alloc_collections(its);
3632        if (err)
3633                goto out_free_tables;
3634
3635        baser = (virt_to_phys(its->cmd_base)    |
3636                 GITS_CBASER_RaWaWb             |
3637                 GITS_CBASER_InnerShareable     |
3638                 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) |
3639                 GITS_CBASER_VALID);
3640
3641        gits_write_cbaser(baser, its->base + GITS_CBASER);
3642        tmp = gits_read_cbaser(its->base + GITS_CBASER);
3643
3644        if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
3645                if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
3646                        /*
3647                         * The HW reports non-shareable, we must
3648                         * remove the cacheability attributes as
3649                         * well.
3650                         */
3651                        baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
3652                                   GITS_CBASER_CACHEABILITY_MASK);
3653                        baser |= GITS_CBASER_nC;
3654                        gits_write_cbaser(baser, its->base + GITS_CBASER);
3655                }
3656                pr_info("ITS: using cache flushing for cmd queue\n");
3657                its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
3658        }
3659
3660        gits_write_cwriter(0, its->base + GITS_CWRITER);
3661        ctlr = readl_relaxed(its->base + GITS_CTLR);
3662        ctlr |= GITS_CTLR_ENABLE;
3663        if (its->is_v4)
3664                ctlr |= GITS_CTLR_ImDe;
3665        writel_relaxed(ctlr, its->base + GITS_CTLR);
3666
3667        if (GITS_TYPER_HCC(typer))
3668                its->flags |= ITS_FLAGS_SAVE_SUSPEND_STATE;
3669
3670        err = its_init_domain(handle, its);
3671        if (err)
3672                goto out_free_tables;
3673
3674        raw_spin_lock(&its_lock);
3675        list_add(&its->entry, &its_nodes);
3676        raw_spin_unlock(&its_lock);
3677
3678        return 0;
3679
3680out_free_tables:
3681        its_free_tables(its);
3682out_free_cmd:
3683        free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
3684out_free_its:
3685        kfree(its);
3686out_unmap:
3687        iounmap(its_base);
3688        pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
3689        return err;
3690}
3691
3692static bool gic_rdists_supports_plpis(void)
3693{
3694        return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
3695}
3696
3697static int redist_disable_lpis(void)
3698{
3699        void __iomem *rbase = gic_data_rdist_rd_base();
3700        u64 timeout = USEC_PER_SEC;
3701        u64 val;
3702
3703        if (!gic_rdists_supports_plpis()) {
3704                pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
3705                return -ENXIO;
3706        }
3707
3708        val = readl_relaxed(rbase + GICR_CTLR);
3709        if (!(val & GICR_CTLR_ENABLE_LPIS))
3710                return 0;
3711
3712        /*
3713         * If coming via a CPU hotplug event, we don't need to disable
3714         * LPIs before trying to re-enable them. They are already
3715         * configured and all is well in the world.
3716         *
3717         * If running with preallocated tables, there is nothing to do.
3718         */
3719        if (gic_data_rdist()->lpi_enabled ||
3720            (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
3721                return 0;
3722
3723        /*
3724         * From that point on, we only try to do some damage control.
3725         */
3726        pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
3727                smp_processor_id());
3728        add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3729
3730        /* Disable LPIs */
3731        val &= ~GICR_CTLR_ENABLE_LPIS;
3732        writel_relaxed(val, rbase + GICR_CTLR);
3733
3734        /* Make sure any change to GICR_CTLR is observable by the GIC */
3735        dsb(sy);
3736
3737        /*
3738         * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
3739         * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
3740         * Error out if we time out waiting for RWP to clear.
3741         */
3742        while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
3743                if (!timeout) {
3744                        pr_err("CPU%d: Timeout while disabling LPIs\n",
3745                               smp_processor_id());
3746                        return -ETIMEDOUT;
3747                }
3748                udelay(1);
3749                timeout--;
3750        }
3751
3752        /*
3753         * After it has been written to 1, it is IMPLEMENTATION
3754         * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
3755         * cleared to 0. Error out if clearing the bit failed.
3756         */
3757        if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
3758                pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
3759                return -EBUSY;
3760        }
3761
3762        return 0;
3763}
3764
3765int its_cpu_init(void)
3766{
3767        if (!list_empty(&its_nodes)) {
3768                int ret;
3769
3770                ret = redist_disable_lpis();
3771                if (ret)
3772                        return ret;
3773
3774                its_cpu_init_lpis();
3775                its_cpu_init_collections();
3776        }
3777
3778        return 0;
3779}
3780
3781static const struct of_device_id its_device_id[] = {
3782        {       .compatible     = "arm,gic-v3-its",     },
3783        {},
3784};
3785
3786static int __init its_of_probe(struct device_node *node)
3787{
3788        struct device_node *np;
3789        struct resource res;
3790
3791        for (np = of_find_matching_node(node, its_device_id); np;
3792             np = of_find_matching_node(np, its_device_id)) {
3793                if (!of_device_is_available(np))
3794                        continue;
3795                if (!of_property_read_bool(np, "msi-controller")) {
3796                        pr_warn("%pOF: no msi-controller property, ITS ignored\n",
3797                                np);
3798                        continue;
3799                }
3800
3801                if (of_address_to_resource(np, 0, &res)) {
3802                        pr_warn("%pOF: no regs?\n", np);
3803                        continue;
3804                }
3805
3806                its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
3807        }
3808        return 0;
3809}
3810
3811#ifdef CONFIG_ACPI
3812
3813#define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
3814
3815#ifdef CONFIG_ACPI_NUMA
3816struct its_srat_map {
3817        /* numa node id */
3818        u32     numa_node;
3819        /* GIC ITS ID */
3820        u32     its_id;
3821};
3822
3823static struct its_srat_map *its_srat_maps __initdata;
3824static int its_in_srat __initdata;
3825
3826static int __init acpi_get_its_numa_node(u32 its_id)
3827{
3828        int i;
3829
3830        for (i = 0; i < its_in_srat; i++) {
3831                if (its_id == its_srat_maps[i].its_id)
3832                        return its_srat_maps[i].numa_node;
3833        }
3834        return NUMA_NO_NODE;
3835}
3836
3837static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
3838                                          const unsigned long end)
3839{
3840        return 0;
3841}
3842
3843static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
3844                         const unsigned long end)
3845{
3846        int node;
3847        struct acpi_srat_gic_its_affinity *its_affinity;
3848
3849        its_affinity = (struct acpi_srat_gic_its_affinity *)header;
3850        if (!its_affinity)
3851                return -EINVAL;
3852
3853        if (its_affinity->header.length < sizeof(*its_affinity)) {
3854                pr_err("SRAT: Invalid header length %d in ITS affinity\n",
3855                        its_affinity->header.length);
3856                return -EINVAL;
3857        }
3858
3859        node = acpi_map_pxm_to_node(its_affinity->proximity_domain);
3860
3861        if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
3862                pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
3863                return 0;
3864        }
3865
3866        its_srat_maps[its_in_srat].numa_node = node;
3867        its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
3868        its_in_srat++;
3869        pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
3870                its_affinity->proximity_domain, its_affinity->its_id, node);
3871
3872        return 0;
3873}
3874
3875static void __init acpi_table_parse_srat_its(void)
3876{
3877        int count;
3878
3879        count = acpi_table_parse_entries(ACPI_SIG_SRAT,
3880                        sizeof(struct acpi_table_srat),
3881                        ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
3882                        gic_acpi_match_srat_its, 0);
3883        if (count <= 0)
3884                return;
3885
3886        its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
3887                                      GFP_KERNEL);
3888        if (!its_srat_maps) {
3889                pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n");
3890                return;
3891        }
3892
3893        acpi_table_parse_entries(ACPI_SIG_SRAT,
3894                        sizeof(struct acpi_table_srat),
3895                        ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
3896                        gic_acpi_parse_srat_its, 0);
3897}
3898
3899/* free the its_srat_maps after ITS probing */
3900static void __init acpi_its_srat_maps_free(void)
3901{
3902        kfree(its_srat_maps);
3903}
3904#else
3905static void __init acpi_table_parse_srat_its(void)      { }
3906static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
3907static void __init acpi_its_srat_maps_free(void) { }
3908#endif
3909
3910static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
3911                                          const unsigned long end)
3912{
3913        struct acpi_madt_generic_translator *its_entry;
3914        struct fwnode_handle *dom_handle;
3915        struct resource res;
3916        int err;
3917
3918        its_entry = (struct acpi_madt_generic_translator *)header;
3919        memset(&res, 0, sizeof(res));
3920        res.start = its_entry->base_address;
3921        res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
3922        res.flags = IORESOURCE_MEM;
3923
3924        dom_handle = irq_domain_alloc_fwnode((void *)its_entry->base_address);
3925        if (!dom_handle) {
3926                pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
3927                       &res.start);
3928                return -ENOMEM;
3929        }
3930
3931        err = iort_register_domain_token(its_entry->translation_id, res.start,
3932                                         dom_handle);
3933        if (err) {
3934                pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
3935                       &res.start, its_entry->translation_id);
3936                goto dom_err;
3937        }
3938
3939        err = its_probe_one(&res, dom_handle,
3940                        acpi_get_its_numa_node(its_entry->translation_id));
3941        if (!err)
3942                return 0;
3943
3944        iort_deregister_domain_token(its_entry->translation_id);
3945dom_err:
3946        irq_domain_free_fwnode(dom_handle);
3947        return err;
3948}
3949
3950static void __init its_acpi_probe(void)
3951{
3952        acpi_table_parse_srat_its();
3953        acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
3954                              gic_acpi_parse_madt_its, 0);
3955        acpi_its_srat_maps_free();
3956}
3957#else
3958static void __init its_acpi_probe(void) { }
3959#endif
3960
3961int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
3962                    struct irq_domain *parent_domain)
3963{
3964        struct device_node *of_node;
3965        struct its_node *its;
3966        bool has_v4 = false;
3967        int err;
3968
3969        its_parent = parent_domain;
3970        of_node = to_of_node(handle);
3971        if (of_node)
3972                its_of_probe(of_node);
3973        else
3974                its_acpi_probe();
3975
3976        if (list_empty(&its_nodes)) {
3977                pr_warn("ITS: No ITS available, not enabling LPIs\n");
3978                return -ENXIO;
3979        }
3980
3981        gic_rdists = rdists;
3982
3983        err = allocate_lpi_tables();
3984        if (err)
3985                return err;
3986
3987        list_for_each_entry(its, &its_nodes, entry)
3988                has_v4 |= its->is_v4;
3989
3990        if (has_v4 & rdists->has_vlpis) {
3991                if (its_init_vpe_domain() ||
3992                    its_init_v4(parent_domain, &its_vpe_domain_ops)) {
3993                        rdists->has_vlpis = false;
3994                        pr_err("ITS: Disabling GICv4 support\n");
3995                }
3996        }
3997
3998        register_syscore_ops(&its_syscore_ops);
3999
4000        return 0;
4001}
4002