linux/drivers/leds/trigger/ledtrig-activity.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Activity LED trigger
   4 *
   5 * Copyright (C) 2017 Willy Tarreau <w@1wt.eu>
   6 * Partially based on Atsushi Nemoto's ledtrig-heartbeat.c.
   7 */
   8
   9#include <linux/init.h>
  10#include <linux/kernel.h>
  11#include <linux/kernel_stat.h>
  12#include <linux/leds.h>
  13#include <linux/module.h>
  14#include <linux/reboot.h>
  15#include <linux/sched.h>
  16#include <linux/slab.h>
  17#include <linux/timer.h>
  18#include "../leds.h"
  19
  20static int panic_detected;
  21
  22struct activity_data {
  23        struct timer_list timer;
  24        struct led_classdev *led_cdev;
  25        u64 last_used;
  26        u64 last_boot;
  27        int time_left;
  28        int state;
  29        int invert;
  30};
  31
  32static void led_activity_function(struct timer_list *t)
  33{
  34        struct activity_data *activity_data = from_timer(activity_data, t,
  35                                                         timer);
  36        struct led_classdev *led_cdev = activity_data->led_cdev;
  37        unsigned int target;
  38        unsigned int usage;
  39        int delay;
  40        u64 curr_used;
  41        u64 curr_boot;
  42        s32 diff_used;
  43        s32 diff_boot;
  44        int cpus;
  45        int i;
  46
  47        if (test_and_clear_bit(LED_BLINK_BRIGHTNESS_CHANGE, &led_cdev->work_flags))
  48                led_cdev->blink_brightness = led_cdev->new_blink_brightness;
  49
  50        if (unlikely(panic_detected)) {
  51                /* full brightness in case of panic */
  52                led_set_brightness_nosleep(led_cdev, led_cdev->blink_brightness);
  53                return;
  54        }
  55
  56        cpus = 0;
  57        curr_used = 0;
  58
  59        for_each_possible_cpu(i) {
  60                curr_used += kcpustat_cpu(i).cpustat[CPUTIME_USER]
  61                          +  kcpustat_cpu(i).cpustat[CPUTIME_NICE]
  62                          +  kcpustat_cpu(i).cpustat[CPUTIME_SYSTEM]
  63                          +  kcpustat_cpu(i).cpustat[CPUTIME_SOFTIRQ]
  64                          +  kcpustat_cpu(i).cpustat[CPUTIME_IRQ];
  65                cpus++;
  66        }
  67
  68        /* We come here every 100ms in the worst case, so that's 100M ns of
  69         * cumulated time. By dividing by 2^16, we get the time resolution
  70         * down to 16us, ensuring we won't overflow 32-bit computations below
  71         * even up to 3k CPUs, while keeping divides cheap on smaller systems.
  72         */
  73        curr_boot = ktime_get_boottime_ns() * cpus;
  74        diff_boot = (curr_boot - activity_data->last_boot) >> 16;
  75        diff_used = (curr_used - activity_data->last_used) >> 16;
  76        activity_data->last_boot = curr_boot;
  77        activity_data->last_used = curr_used;
  78
  79        if (diff_boot <= 0 || diff_used < 0)
  80                usage = 0;
  81        else if (diff_used >= diff_boot)
  82                usage = 100;
  83        else
  84                usage = 100 * diff_used / diff_boot;
  85
  86        /*
  87         * Now we know the total boot_time multiplied by the number of CPUs, and
  88         * the total idle+wait time for all CPUs. We'll compare how they evolved
  89         * since last call. The % of overall CPU usage is :
  90         *
  91         *      1 - delta_idle / delta_boot
  92         *
  93         * What we want is that when the CPU usage is zero, the LED must blink
  94         * slowly with very faint flashes that are detectable but not disturbing
  95         * (typically 10ms every second, or 10ms ON, 990ms OFF). Then we want
  96         * blinking frequency to increase up to the point where the load is
  97         * enough to saturate one core in multi-core systems or 50% in single
  98         * core systems. At this point it should reach 10 Hz with a 10/90 duty
  99         * cycle (10ms ON, 90ms OFF). After this point, the blinking frequency
 100         * remains stable (10 Hz) and only the duty cycle increases to report
 101         * the activity, up to the point where we have 90ms ON, 10ms OFF when
 102         * all cores are saturated. It's important that the LED never stays in
 103         * a steady state so that it's easy to distinguish an idle or saturated
 104         * machine from a hung one.
 105         *
 106         * This gives us :
 107         *   - a target CPU usage of min(50%, 100%/#CPU) for a 10% duty cycle
 108         *     (10ms ON, 90ms OFF)
 109         *   - below target :
 110         *      ON_ms  = 10
 111         *      OFF_ms = 90 + (1 - usage/target) * 900
 112         *   - above target :
 113         *      ON_ms  = 10 + (usage-target)/(100%-target) * 80
 114         *      OFF_ms = 90 - (usage-target)/(100%-target) * 80
 115         *
 116         * In order to keep a good responsiveness, we cap the sleep time to
 117         * 100 ms and keep track of the sleep time left. This allows us to
 118         * quickly change it if needed.
 119         */
 120
 121        activity_data->time_left -= 100;
 122        if (activity_data->time_left <= 0) {
 123                activity_data->time_left = 0;
 124                activity_data->state = !activity_data->state;
 125                led_set_brightness_nosleep(led_cdev,
 126                        (activity_data->state ^ activity_data->invert) ?
 127                        led_cdev->blink_brightness : LED_OFF);
 128        }
 129
 130        target = (cpus > 1) ? (100 / cpus) : 50;
 131
 132        if (usage < target)
 133                delay = activity_data->state ?
 134                        10 :                        /* ON  */
 135                        990 - 900 * usage / target; /* OFF */
 136        else
 137                delay = activity_data->state ?
 138                        10 + 80 * (usage - target) / (100 - target) : /* ON  */
 139                        90 - 80 * (usage - target) / (100 - target);  /* OFF */
 140
 141
 142        if (!activity_data->time_left || delay <= activity_data->time_left)
 143                activity_data->time_left = delay;
 144
 145        delay = min_t(int, activity_data->time_left, 100);
 146        mod_timer(&activity_data->timer, jiffies + msecs_to_jiffies(delay));
 147}
 148
 149static ssize_t led_invert_show(struct device *dev,
 150                               struct device_attribute *attr, char *buf)
 151{
 152        struct activity_data *activity_data = led_trigger_get_drvdata(dev);
 153
 154        return sprintf(buf, "%u\n", activity_data->invert);
 155}
 156
 157static ssize_t led_invert_store(struct device *dev,
 158                                struct device_attribute *attr,
 159                                const char *buf, size_t size)
 160{
 161        struct activity_data *activity_data = led_trigger_get_drvdata(dev);
 162        unsigned long state;
 163        int ret;
 164
 165        ret = kstrtoul(buf, 0, &state);
 166        if (ret)
 167                return ret;
 168
 169        activity_data->invert = !!state;
 170
 171        return size;
 172}
 173
 174static DEVICE_ATTR(invert, 0644, led_invert_show, led_invert_store);
 175
 176static struct attribute *activity_led_attrs[] = {
 177        &dev_attr_invert.attr,
 178        NULL
 179};
 180ATTRIBUTE_GROUPS(activity_led);
 181
 182static int activity_activate(struct led_classdev *led_cdev)
 183{
 184        struct activity_data *activity_data;
 185
 186        activity_data = kzalloc(sizeof(*activity_data), GFP_KERNEL);
 187        if (!activity_data)
 188                return -ENOMEM;
 189
 190        led_set_trigger_data(led_cdev, activity_data);
 191
 192        activity_data->led_cdev = led_cdev;
 193        timer_setup(&activity_data->timer, led_activity_function, 0);
 194        if (!led_cdev->blink_brightness)
 195                led_cdev->blink_brightness = led_cdev->max_brightness;
 196        led_activity_function(&activity_data->timer);
 197        set_bit(LED_BLINK_SW, &led_cdev->work_flags);
 198
 199        return 0;
 200}
 201
 202static void activity_deactivate(struct led_classdev *led_cdev)
 203{
 204        struct activity_data *activity_data = led_get_trigger_data(led_cdev);
 205
 206        del_timer_sync(&activity_data->timer);
 207        kfree(activity_data);
 208        clear_bit(LED_BLINK_SW, &led_cdev->work_flags);
 209}
 210
 211static struct led_trigger activity_led_trigger = {
 212        .name       = "activity",
 213        .activate   = activity_activate,
 214        .deactivate = activity_deactivate,
 215        .groups     = activity_led_groups,
 216};
 217
 218static int activity_reboot_notifier(struct notifier_block *nb,
 219                                    unsigned long code, void *unused)
 220{
 221        led_trigger_unregister(&activity_led_trigger);
 222        return NOTIFY_DONE;
 223}
 224
 225static int activity_panic_notifier(struct notifier_block *nb,
 226                                   unsigned long code, void *unused)
 227{
 228        panic_detected = 1;
 229        return NOTIFY_DONE;
 230}
 231
 232static struct notifier_block activity_reboot_nb = {
 233        .notifier_call = activity_reboot_notifier,
 234};
 235
 236static struct notifier_block activity_panic_nb = {
 237        .notifier_call = activity_panic_notifier,
 238};
 239
 240static int __init activity_init(void)
 241{
 242        int rc = led_trigger_register(&activity_led_trigger);
 243
 244        if (!rc) {
 245                atomic_notifier_chain_register(&panic_notifier_list,
 246                                               &activity_panic_nb);
 247                register_reboot_notifier(&activity_reboot_nb);
 248        }
 249        return rc;
 250}
 251
 252static void __exit activity_exit(void)
 253{
 254        unregister_reboot_notifier(&activity_reboot_nb);
 255        atomic_notifier_chain_unregister(&panic_notifier_list,
 256                                         &activity_panic_nb);
 257        led_trigger_unregister(&activity_led_trigger);
 258}
 259
 260module_init(activity_init);
 261module_exit(activity_exit);
 262
 263MODULE_AUTHOR("Willy Tarreau <w@1wt.eu>");
 264MODULE_DESCRIPTION("Activity LED trigger");
 265MODULE_LICENSE("GPL v2");
 266