linux/drivers/md/bcache/alloc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Primary bucket allocation code
   4 *
   5 * Copyright 2012 Google, Inc.
   6 *
   7 * Allocation in bcache is done in terms of buckets:
   8 *
   9 * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in
  10 * btree pointers - they must match for the pointer to be considered valid.
  11 *
  12 * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a
  13 * bucket simply by incrementing its gen.
  14 *
  15 * The gens (along with the priorities; it's really the gens are important but
  16 * the code is named as if it's the priorities) are written in an arbitrary list
  17 * of buckets on disk, with a pointer to them in the journal header.
  18 *
  19 * When we invalidate a bucket, we have to write its new gen to disk and wait
  20 * for that write to complete before we use it - otherwise after a crash we
  21 * could have pointers that appeared to be good but pointed to data that had
  22 * been overwritten.
  23 *
  24 * Since the gens and priorities are all stored contiguously on disk, we can
  25 * batch this up: We fill up the free_inc list with freshly invalidated buckets,
  26 * call prio_write(), and when prio_write() finishes we pull buckets off the
  27 * free_inc list and optionally discard them.
  28 *
  29 * free_inc isn't the only freelist - if it was, we'd often to sleep while
  30 * priorities and gens were being written before we could allocate. c->free is a
  31 * smaller freelist, and buckets on that list are always ready to be used.
  32 *
  33 * If we've got discards enabled, that happens when a bucket moves from the
  34 * free_inc list to the free list.
  35 *
  36 * There is another freelist, because sometimes we have buckets that we know
  37 * have nothing pointing into them - these we can reuse without waiting for
  38 * priorities to be rewritten. These come from freed btree nodes and buckets
  39 * that garbage collection discovered no longer had valid keys pointing into
  40 * them (because they were overwritten). That's the unused list - buckets on the
  41 * unused list move to the free list, optionally being discarded in the process.
  42 *
  43 * It's also important to ensure that gens don't wrap around - with respect to
  44 * either the oldest gen in the btree or the gen on disk. This is quite
  45 * difficult to do in practice, but we explicitly guard against it anyways - if
  46 * a bucket is in danger of wrapping around we simply skip invalidating it that
  47 * time around, and we garbage collect or rewrite the priorities sooner than we
  48 * would have otherwise.
  49 *
  50 * bch_bucket_alloc() allocates a single bucket from a specific cache.
  51 *
  52 * bch_bucket_alloc_set() allocates one or more buckets from different caches
  53 * out of a cache set.
  54 *
  55 * free_some_buckets() drives all the processes described above. It's called
  56 * from bch_bucket_alloc() and a few other places that need to make sure free
  57 * buckets are ready.
  58 *
  59 * invalidate_buckets_(lru|fifo)() find buckets that are available to be
  60 * invalidated, and then invalidate them and stick them on the free_inc list -
  61 * in either lru or fifo order.
  62 */
  63
  64#include "bcache.h"
  65#include "btree.h"
  66
  67#include <linux/blkdev.h>
  68#include <linux/kthread.h>
  69#include <linux/random.h>
  70#include <trace/events/bcache.h>
  71
  72#define MAX_OPEN_BUCKETS 128
  73
  74/* Bucket heap / gen */
  75
  76uint8_t bch_inc_gen(struct cache *ca, struct bucket *b)
  77{
  78        uint8_t ret = ++b->gen;
  79
  80        ca->set->need_gc = max(ca->set->need_gc, bucket_gc_gen(b));
  81        WARN_ON_ONCE(ca->set->need_gc > BUCKET_GC_GEN_MAX);
  82
  83        return ret;
  84}
  85
  86void bch_rescale_priorities(struct cache_set *c, int sectors)
  87{
  88        struct cache *ca;
  89        struct bucket *b;
  90        unsigned int next = c->nbuckets * c->sb.bucket_size / 1024;
  91        unsigned int i;
  92        int r;
  93
  94        atomic_sub(sectors, &c->rescale);
  95
  96        do {
  97                r = atomic_read(&c->rescale);
  98
  99                if (r >= 0)
 100                        return;
 101        } while (atomic_cmpxchg(&c->rescale, r, r + next) != r);
 102
 103        mutex_lock(&c->bucket_lock);
 104
 105        c->min_prio = USHRT_MAX;
 106
 107        for_each_cache(ca, c, i)
 108                for_each_bucket(b, ca)
 109                        if (b->prio &&
 110                            b->prio != BTREE_PRIO &&
 111                            !atomic_read(&b->pin)) {
 112                                b->prio--;
 113                                c->min_prio = min(c->min_prio, b->prio);
 114                        }
 115
 116        mutex_unlock(&c->bucket_lock);
 117}
 118
 119/*
 120 * Background allocation thread: scans for buckets to be invalidated,
 121 * invalidates them, rewrites prios/gens (marking them as invalidated on disk),
 122 * then optionally issues discard commands to the newly free buckets, then puts
 123 * them on the various freelists.
 124 */
 125
 126static inline bool can_inc_bucket_gen(struct bucket *b)
 127{
 128        return bucket_gc_gen(b) < BUCKET_GC_GEN_MAX;
 129}
 130
 131bool bch_can_invalidate_bucket(struct cache *ca, struct bucket *b)
 132{
 133        BUG_ON(!ca->set->gc_mark_valid);
 134
 135        return (!GC_MARK(b) ||
 136                GC_MARK(b) == GC_MARK_RECLAIMABLE) &&
 137                !atomic_read(&b->pin) &&
 138                can_inc_bucket_gen(b);
 139}
 140
 141void __bch_invalidate_one_bucket(struct cache *ca, struct bucket *b)
 142{
 143        lockdep_assert_held(&ca->set->bucket_lock);
 144        BUG_ON(GC_MARK(b) && GC_MARK(b) != GC_MARK_RECLAIMABLE);
 145
 146        if (GC_SECTORS_USED(b))
 147                trace_bcache_invalidate(ca, b - ca->buckets);
 148
 149        bch_inc_gen(ca, b);
 150        b->prio = INITIAL_PRIO;
 151        atomic_inc(&b->pin);
 152}
 153
 154static void bch_invalidate_one_bucket(struct cache *ca, struct bucket *b)
 155{
 156        __bch_invalidate_one_bucket(ca, b);
 157
 158        fifo_push(&ca->free_inc, b - ca->buckets);
 159}
 160
 161/*
 162 * Determines what order we're going to reuse buckets, smallest bucket_prio()
 163 * first: we also take into account the number of sectors of live data in that
 164 * bucket, and in order for that multiply to make sense we have to scale bucket
 165 *
 166 * Thus, we scale the bucket priorities so that the bucket with the smallest
 167 * prio is worth 1/8th of what INITIAL_PRIO is worth.
 168 */
 169
 170#define bucket_prio(b)                                                  \
 171({                                                                      \
 172        unsigned int min_prio = (INITIAL_PRIO - ca->set->min_prio) / 8; \
 173                                                                        \
 174        (b->prio - ca->set->min_prio + min_prio) * GC_SECTORS_USED(b);  \
 175})
 176
 177#define bucket_max_cmp(l, r)    (bucket_prio(l) < bucket_prio(r))
 178#define bucket_min_cmp(l, r)    (bucket_prio(l) > bucket_prio(r))
 179
 180static void invalidate_buckets_lru(struct cache *ca)
 181{
 182        struct bucket *b;
 183        ssize_t i;
 184
 185        ca->heap.used = 0;
 186
 187        for_each_bucket(b, ca) {
 188                if (!bch_can_invalidate_bucket(ca, b))
 189                        continue;
 190
 191                if (!heap_full(&ca->heap))
 192                        heap_add(&ca->heap, b, bucket_max_cmp);
 193                else if (bucket_max_cmp(b, heap_peek(&ca->heap))) {
 194                        ca->heap.data[0] = b;
 195                        heap_sift(&ca->heap, 0, bucket_max_cmp);
 196                }
 197        }
 198
 199        for (i = ca->heap.used / 2 - 1; i >= 0; --i)
 200                heap_sift(&ca->heap, i, bucket_min_cmp);
 201
 202        while (!fifo_full(&ca->free_inc)) {
 203                if (!heap_pop(&ca->heap, b, bucket_min_cmp)) {
 204                        /*
 205                         * We don't want to be calling invalidate_buckets()
 206                         * multiple times when it can't do anything
 207                         */
 208                        ca->invalidate_needs_gc = 1;
 209                        wake_up_gc(ca->set);
 210                        return;
 211                }
 212
 213                bch_invalidate_one_bucket(ca, b);
 214        }
 215}
 216
 217static void invalidate_buckets_fifo(struct cache *ca)
 218{
 219        struct bucket *b;
 220        size_t checked = 0;
 221
 222        while (!fifo_full(&ca->free_inc)) {
 223                if (ca->fifo_last_bucket <  ca->sb.first_bucket ||
 224                    ca->fifo_last_bucket >= ca->sb.nbuckets)
 225                        ca->fifo_last_bucket = ca->sb.first_bucket;
 226
 227                b = ca->buckets + ca->fifo_last_bucket++;
 228
 229                if (bch_can_invalidate_bucket(ca, b))
 230                        bch_invalidate_one_bucket(ca, b);
 231
 232                if (++checked >= ca->sb.nbuckets) {
 233                        ca->invalidate_needs_gc = 1;
 234                        wake_up_gc(ca->set);
 235                        return;
 236                }
 237        }
 238}
 239
 240static void invalidate_buckets_random(struct cache *ca)
 241{
 242        struct bucket *b;
 243        size_t checked = 0;
 244
 245        while (!fifo_full(&ca->free_inc)) {
 246                size_t n;
 247
 248                get_random_bytes(&n, sizeof(n));
 249
 250                n %= (size_t) (ca->sb.nbuckets - ca->sb.first_bucket);
 251                n += ca->sb.first_bucket;
 252
 253                b = ca->buckets + n;
 254
 255                if (bch_can_invalidate_bucket(ca, b))
 256                        bch_invalidate_one_bucket(ca, b);
 257
 258                if (++checked >= ca->sb.nbuckets / 2) {
 259                        ca->invalidate_needs_gc = 1;
 260                        wake_up_gc(ca->set);
 261                        return;
 262                }
 263        }
 264}
 265
 266static void invalidate_buckets(struct cache *ca)
 267{
 268        BUG_ON(ca->invalidate_needs_gc);
 269
 270        switch (CACHE_REPLACEMENT(&ca->sb)) {
 271        case CACHE_REPLACEMENT_LRU:
 272                invalidate_buckets_lru(ca);
 273                break;
 274        case CACHE_REPLACEMENT_FIFO:
 275                invalidate_buckets_fifo(ca);
 276                break;
 277        case CACHE_REPLACEMENT_RANDOM:
 278                invalidate_buckets_random(ca);
 279                break;
 280        }
 281}
 282
 283#define allocator_wait(ca, cond)                                        \
 284do {                                                                    \
 285        while (1) {                                                     \
 286                set_current_state(TASK_INTERRUPTIBLE);                  \
 287                if (cond)                                               \
 288                        break;                                          \
 289                                                                        \
 290                mutex_unlock(&(ca)->set->bucket_lock);                  \
 291                if (kthread_should_stop() ||                            \
 292                    test_bit(CACHE_SET_IO_DISABLE, &ca->set->flags)) {  \
 293                        set_current_state(TASK_RUNNING);                \
 294                        goto out;                                       \
 295                }                                                       \
 296                                                                        \
 297                schedule();                                             \
 298                mutex_lock(&(ca)->set->bucket_lock);                    \
 299        }                                                               \
 300        __set_current_state(TASK_RUNNING);                              \
 301} while (0)
 302
 303static int bch_allocator_push(struct cache *ca, long bucket)
 304{
 305        unsigned int i;
 306
 307        /* Prios/gens are actually the most important reserve */
 308        if (fifo_push(&ca->free[RESERVE_PRIO], bucket))
 309                return true;
 310
 311        for (i = 0; i < RESERVE_NR; i++)
 312                if (fifo_push(&ca->free[i], bucket))
 313                        return true;
 314
 315        return false;
 316}
 317
 318static int bch_allocator_thread(void *arg)
 319{
 320        struct cache *ca = arg;
 321
 322        mutex_lock(&ca->set->bucket_lock);
 323
 324        while (1) {
 325                /*
 326                 * First, we pull buckets off of the unused and free_inc lists,
 327                 * possibly issue discards to them, then we add the bucket to
 328                 * the free list:
 329                 */
 330                while (1) {
 331                        long bucket;
 332
 333                        if (!fifo_pop(&ca->free_inc, bucket))
 334                                break;
 335
 336                        if (ca->discard) {
 337                                mutex_unlock(&ca->set->bucket_lock);
 338                                blkdev_issue_discard(ca->bdev,
 339                                        bucket_to_sector(ca->set, bucket),
 340                                        ca->sb.bucket_size, GFP_KERNEL, 0);
 341                                mutex_lock(&ca->set->bucket_lock);
 342                        }
 343
 344                        allocator_wait(ca, bch_allocator_push(ca, bucket));
 345                        wake_up(&ca->set->btree_cache_wait);
 346                        wake_up(&ca->set->bucket_wait);
 347                }
 348
 349                /*
 350                 * We've run out of free buckets, we need to find some buckets
 351                 * we can invalidate. First, invalidate them in memory and add
 352                 * them to the free_inc list:
 353                 */
 354
 355retry_invalidate:
 356                allocator_wait(ca, ca->set->gc_mark_valid &&
 357                               !ca->invalidate_needs_gc);
 358                invalidate_buckets(ca);
 359
 360                /*
 361                 * Now, we write their new gens to disk so we can start writing
 362                 * new stuff to them:
 363                 */
 364                allocator_wait(ca, !atomic_read(&ca->set->prio_blocked));
 365                if (CACHE_SYNC(&ca->set->sb)) {
 366                        /*
 367                         * This could deadlock if an allocation with a btree
 368                         * node locked ever blocked - having the btree node
 369                         * locked would block garbage collection, but here we're
 370                         * waiting on garbage collection before we invalidate
 371                         * and free anything.
 372                         *
 373                         * But this should be safe since the btree code always
 374                         * uses btree_check_reserve() before allocating now, and
 375                         * if it fails it blocks without btree nodes locked.
 376                         */
 377                        if (!fifo_full(&ca->free_inc))
 378                                goto retry_invalidate;
 379
 380                        bch_prio_write(ca);
 381                }
 382        }
 383out:
 384        wait_for_kthread_stop();
 385        return 0;
 386}
 387
 388/* Allocation */
 389
 390long bch_bucket_alloc(struct cache *ca, unsigned int reserve, bool wait)
 391{
 392        DEFINE_WAIT(w);
 393        struct bucket *b;
 394        long r;
 395
 396
 397        /* No allocation if CACHE_SET_IO_DISABLE bit is set */
 398        if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &ca->set->flags)))
 399                return -1;
 400
 401        /* fastpath */
 402        if (fifo_pop(&ca->free[RESERVE_NONE], r) ||
 403            fifo_pop(&ca->free[reserve], r))
 404                goto out;
 405
 406        if (!wait) {
 407                trace_bcache_alloc_fail(ca, reserve);
 408                return -1;
 409        }
 410
 411        do {
 412                prepare_to_wait(&ca->set->bucket_wait, &w,
 413                                TASK_UNINTERRUPTIBLE);
 414
 415                mutex_unlock(&ca->set->bucket_lock);
 416                schedule();
 417                mutex_lock(&ca->set->bucket_lock);
 418        } while (!fifo_pop(&ca->free[RESERVE_NONE], r) &&
 419                 !fifo_pop(&ca->free[reserve], r));
 420
 421        finish_wait(&ca->set->bucket_wait, &w);
 422out:
 423        if (ca->alloc_thread)
 424                wake_up_process(ca->alloc_thread);
 425
 426        trace_bcache_alloc(ca, reserve);
 427
 428        if (expensive_debug_checks(ca->set)) {
 429                size_t iter;
 430                long i;
 431                unsigned int j;
 432
 433                for (iter = 0; iter < prio_buckets(ca) * 2; iter++)
 434                        BUG_ON(ca->prio_buckets[iter] == (uint64_t) r);
 435
 436                for (j = 0; j < RESERVE_NR; j++)
 437                        fifo_for_each(i, &ca->free[j], iter)
 438                                BUG_ON(i == r);
 439                fifo_for_each(i, &ca->free_inc, iter)
 440                        BUG_ON(i == r);
 441        }
 442
 443        b = ca->buckets + r;
 444
 445        BUG_ON(atomic_read(&b->pin) != 1);
 446
 447        SET_GC_SECTORS_USED(b, ca->sb.bucket_size);
 448
 449        if (reserve <= RESERVE_PRIO) {
 450                SET_GC_MARK(b, GC_MARK_METADATA);
 451                SET_GC_MOVE(b, 0);
 452                b->prio = BTREE_PRIO;
 453        } else {
 454                SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
 455                SET_GC_MOVE(b, 0);
 456                b->prio = INITIAL_PRIO;
 457        }
 458
 459        if (ca->set->avail_nbuckets > 0) {
 460                ca->set->avail_nbuckets--;
 461                bch_update_bucket_in_use(ca->set, &ca->set->gc_stats);
 462        }
 463
 464        return r;
 465}
 466
 467void __bch_bucket_free(struct cache *ca, struct bucket *b)
 468{
 469        SET_GC_MARK(b, 0);
 470        SET_GC_SECTORS_USED(b, 0);
 471
 472        if (ca->set->avail_nbuckets < ca->set->nbuckets) {
 473                ca->set->avail_nbuckets++;
 474                bch_update_bucket_in_use(ca->set, &ca->set->gc_stats);
 475        }
 476}
 477
 478void bch_bucket_free(struct cache_set *c, struct bkey *k)
 479{
 480        unsigned int i;
 481
 482        for (i = 0; i < KEY_PTRS(k); i++)
 483                __bch_bucket_free(PTR_CACHE(c, k, i),
 484                                  PTR_BUCKET(c, k, i));
 485}
 486
 487int __bch_bucket_alloc_set(struct cache_set *c, unsigned int reserve,
 488                           struct bkey *k, int n, bool wait)
 489{
 490        int i;
 491
 492        /* No allocation if CACHE_SET_IO_DISABLE bit is set */
 493        if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &c->flags)))
 494                return -1;
 495
 496        lockdep_assert_held(&c->bucket_lock);
 497        BUG_ON(!n || n > c->caches_loaded || n > MAX_CACHES_PER_SET);
 498
 499        bkey_init(k);
 500
 501        /* sort by free space/prio of oldest data in caches */
 502
 503        for (i = 0; i < n; i++) {
 504                struct cache *ca = c->cache_by_alloc[i];
 505                long b = bch_bucket_alloc(ca, reserve, wait);
 506
 507                if (b == -1)
 508                        goto err;
 509
 510                k->ptr[i] = MAKE_PTR(ca->buckets[b].gen,
 511                                bucket_to_sector(c, b),
 512                                ca->sb.nr_this_dev);
 513
 514                SET_KEY_PTRS(k, i + 1);
 515        }
 516
 517        return 0;
 518err:
 519        bch_bucket_free(c, k);
 520        bkey_put(c, k);
 521        return -1;
 522}
 523
 524int bch_bucket_alloc_set(struct cache_set *c, unsigned int reserve,
 525                         struct bkey *k, int n, bool wait)
 526{
 527        int ret;
 528
 529        mutex_lock(&c->bucket_lock);
 530        ret = __bch_bucket_alloc_set(c, reserve, k, n, wait);
 531        mutex_unlock(&c->bucket_lock);
 532        return ret;
 533}
 534
 535/* Sector allocator */
 536
 537struct open_bucket {
 538        struct list_head        list;
 539        unsigned int            last_write_point;
 540        unsigned int            sectors_free;
 541        BKEY_PADDED(key);
 542};
 543
 544/*
 545 * We keep multiple buckets open for writes, and try to segregate different
 546 * write streams for better cache utilization: first we try to segregate flash
 547 * only volume write streams from cached devices, secondly we look for a bucket
 548 * where the last write to it was sequential with the current write, and
 549 * failing that we look for a bucket that was last used by the same task.
 550 *
 551 * The ideas is if you've got multiple tasks pulling data into the cache at the
 552 * same time, you'll get better cache utilization if you try to segregate their
 553 * data and preserve locality.
 554 *
 555 * For example, dirty sectors of flash only volume is not reclaimable, if their
 556 * dirty sectors mixed with dirty sectors of cached device, such buckets will
 557 * be marked as dirty and won't be reclaimed, though the dirty data of cached
 558 * device have been written back to backend device.
 559 *
 560 * And say you've starting Firefox at the same time you're copying a
 561 * bunch of files. Firefox will likely end up being fairly hot and stay in the
 562 * cache awhile, but the data you copied might not be; if you wrote all that
 563 * data to the same buckets it'd get invalidated at the same time.
 564 *
 565 * Both of those tasks will be doing fairly random IO so we can't rely on
 566 * detecting sequential IO to segregate their data, but going off of the task
 567 * should be a sane heuristic.
 568 */
 569static struct open_bucket *pick_data_bucket(struct cache_set *c,
 570                                            const struct bkey *search,
 571                                            unsigned int write_point,
 572                                            struct bkey *alloc)
 573{
 574        struct open_bucket *ret, *ret_task = NULL;
 575
 576        list_for_each_entry_reverse(ret, &c->data_buckets, list)
 577                if (UUID_FLASH_ONLY(&c->uuids[KEY_INODE(&ret->key)]) !=
 578                    UUID_FLASH_ONLY(&c->uuids[KEY_INODE(search)]))
 579                        continue;
 580                else if (!bkey_cmp(&ret->key, search))
 581                        goto found;
 582                else if (ret->last_write_point == write_point)
 583                        ret_task = ret;
 584
 585        ret = ret_task ?: list_first_entry(&c->data_buckets,
 586                                           struct open_bucket, list);
 587found:
 588        if (!ret->sectors_free && KEY_PTRS(alloc)) {
 589                ret->sectors_free = c->sb.bucket_size;
 590                bkey_copy(&ret->key, alloc);
 591                bkey_init(alloc);
 592        }
 593
 594        if (!ret->sectors_free)
 595                ret = NULL;
 596
 597        return ret;
 598}
 599
 600/*
 601 * Allocates some space in the cache to write to, and k to point to the newly
 602 * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the
 603 * end of the newly allocated space).
 604 *
 605 * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many
 606 * sectors were actually allocated.
 607 *
 608 * If s->writeback is true, will not fail.
 609 */
 610bool bch_alloc_sectors(struct cache_set *c,
 611                       struct bkey *k,
 612                       unsigned int sectors,
 613                       unsigned int write_point,
 614                       unsigned int write_prio,
 615                       bool wait)
 616{
 617        struct open_bucket *b;
 618        BKEY_PADDED(key) alloc;
 619        unsigned int i;
 620
 621        /*
 622         * We might have to allocate a new bucket, which we can't do with a
 623         * spinlock held. So if we have to allocate, we drop the lock, allocate
 624         * and then retry. KEY_PTRS() indicates whether alloc points to
 625         * allocated bucket(s).
 626         */
 627
 628        bkey_init(&alloc.key);
 629        spin_lock(&c->data_bucket_lock);
 630
 631        while (!(b = pick_data_bucket(c, k, write_point, &alloc.key))) {
 632                unsigned int watermark = write_prio
 633                        ? RESERVE_MOVINGGC
 634                        : RESERVE_NONE;
 635
 636                spin_unlock(&c->data_bucket_lock);
 637
 638                if (bch_bucket_alloc_set(c, watermark, &alloc.key, 1, wait))
 639                        return false;
 640
 641                spin_lock(&c->data_bucket_lock);
 642        }
 643
 644        /*
 645         * If we had to allocate, we might race and not need to allocate the
 646         * second time we call pick_data_bucket(). If we allocated a bucket but
 647         * didn't use it, drop the refcount bch_bucket_alloc_set() took:
 648         */
 649        if (KEY_PTRS(&alloc.key))
 650                bkey_put(c, &alloc.key);
 651
 652        for (i = 0; i < KEY_PTRS(&b->key); i++)
 653                EBUG_ON(ptr_stale(c, &b->key, i));
 654
 655        /* Set up the pointer to the space we're allocating: */
 656
 657        for (i = 0; i < KEY_PTRS(&b->key); i++)
 658                k->ptr[i] = b->key.ptr[i];
 659
 660        sectors = min(sectors, b->sectors_free);
 661
 662        SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors);
 663        SET_KEY_SIZE(k, sectors);
 664        SET_KEY_PTRS(k, KEY_PTRS(&b->key));
 665
 666        /*
 667         * Move b to the end of the lru, and keep track of what this bucket was
 668         * last used for:
 669         */
 670        list_move_tail(&b->list, &c->data_buckets);
 671        bkey_copy_key(&b->key, k);
 672        b->last_write_point = write_point;
 673
 674        b->sectors_free -= sectors;
 675
 676        for (i = 0; i < KEY_PTRS(&b->key); i++) {
 677                SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors);
 678
 679                atomic_long_add(sectors,
 680                                &PTR_CACHE(c, &b->key, i)->sectors_written);
 681        }
 682
 683        if (b->sectors_free < c->sb.block_size)
 684                b->sectors_free = 0;
 685
 686        /*
 687         * k takes refcounts on the buckets it points to until it's inserted
 688         * into the btree, but if we're done with this bucket we just transfer
 689         * get_data_bucket()'s refcount.
 690         */
 691        if (b->sectors_free)
 692                for (i = 0; i < KEY_PTRS(&b->key); i++)
 693                        atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin);
 694
 695        spin_unlock(&c->data_bucket_lock);
 696        return true;
 697}
 698
 699/* Init */
 700
 701void bch_open_buckets_free(struct cache_set *c)
 702{
 703        struct open_bucket *b;
 704
 705        while (!list_empty(&c->data_buckets)) {
 706                b = list_first_entry(&c->data_buckets,
 707                                     struct open_bucket, list);
 708                list_del(&b->list);
 709                kfree(b);
 710        }
 711}
 712
 713int bch_open_buckets_alloc(struct cache_set *c)
 714{
 715        int i;
 716
 717        spin_lock_init(&c->data_bucket_lock);
 718
 719        for (i = 0; i < MAX_OPEN_BUCKETS; i++) {
 720                struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL);
 721
 722                if (!b)
 723                        return -ENOMEM;
 724
 725                list_add(&b->list, &c->data_buckets);
 726        }
 727
 728        return 0;
 729}
 730
 731int bch_cache_allocator_start(struct cache *ca)
 732{
 733        struct task_struct *k = kthread_run(bch_allocator_thread,
 734                                            ca, "bcache_allocator");
 735        if (IS_ERR(k))
 736                return PTR_ERR(k);
 737
 738        ca->alloc_thread = k;
 739        return 0;
 740}
 741