linux/drivers/md/bcache/bset.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Code for working with individual keys, and sorted sets of keys with in a
   4 * btree node
   5 *
   6 * Copyright 2012 Google, Inc.
   7 */
   8
   9#define pr_fmt(fmt) "bcache: %s() " fmt "\n", __func__
  10
  11#include "util.h"
  12#include "bset.h"
  13
  14#include <linux/console.h>
  15#include <linux/sched/clock.h>
  16#include <linux/random.h>
  17#include <linux/prefetch.h>
  18
  19#ifdef CONFIG_BCACHE_DEBUG
  20
  21void bch_dump_bset(struct btree_keys *b, struct bset *i, unsigned int set)
  22{
  23        struct bkey *k, *next;
  24
  25        for (k = i->start; k < bset_bkey_last(i); k = next) {
  26                next = bkey_next(k);
  27
  28                pr_err("block %u key %u/%u: ", set,
  29                       (unsigned int) ((u64 *) k - i->d), i->keys);
  30
  31                if (b->ops->key_dump)
  32                        b->ops->key_dump(b, k);
  33                else
  34                        pr_err("%llu:%llu\n", KEY_INODE(k), KEY_OFFSET(k));
  35
  36                if (next < bset_bkey_last(i) &&
  37                    bkey_cmp(k, b->ops->is_extents ?
  38                             &START_KEY(next) : next) > 0)
  39                        pr_err("Key skipped backwards\n");
  40        }
  41}
  42
  43void bch_dump_bucket(struct btree_keys *b)
  44{
  45        unsigned int i;
  46
  47        console_lock();
  48        for (i = 0; i <= b->nsets; i++)
  49                bch_dump_bset(b, b->set[i].data,
  50                              bset_sector_offset(b, b->set[i].data));
  51        console_unlock();
  52}
  53
  54int __bch_count_data(struct btree_keys *b)
  55{
  56        unsigned int ret = 0;
  57        struct btree_iter iter;
  58        struct bkey *k;
  59
  60        if (b->ops->is_extents)
  61                for_each_key(b, k, &iter)
  62                        ret += KEY_SIZE(k);
  63        return ret;
  64}
  65
  66void __bch_check_keys(struct btree_keys *b, const char *fmt, ...)
  67{
  68        va_list args;
  69        struct bkey *k, *p = NULL;
  70        struct btree_iter iter;
  71        const char *err;
  72
  73        for_each_key(b, k, &iter) {
  74                if (b->ops->is_extents) {
  75                        err = "Keys out of order";
  76                        if (p && bkey_cmp(&START_KEY(p), &START_KEY(k)) > 0)
  77                                goto bug;
  78
  79                        if (bch_ptr_invalid(b, k))
  80                                continue;
  81
  82                        err =  "Overlapping keys";
  83                        if (p && bkey_cmp(p, &START_KEY(k)) > 0)
  84                                goto bug;
  85                } else {
  86                        if (bch_ptr_bad(b, k))
  87                                continue;
  88
  89                        err = "Duplicate keys";
  90                        if (p && !bkey_cmp(p, k))
  91                                goto bug;
  92                }
  93                p = k;
  94        }
  95#if 0
  96        err = "Key larger than btree node key";
  97        if (p && bkey_cmp(p, &b->key) > 0)
  98                goto bug;
  99#endif
 100        return;
 101bug:
 102        bch_dump_bucket(b);
 103
 104        va_start(args, fmt);
 105        vprintk(fmt, args);
 106        va_end(args);
 107
 108        panic("bch_check_keys error:  %s:\n", err);
 109}
 110
 111static void bch_btree_iter_next_check(struct btree_iter *iter)
 112{
 113        struct bkey *k = iter->data->k, *next = bkey_next(k);
 114
 115        if (next < iter->data->end &&
 116            bkey_cmp(k, iter->b->ops->is_extents ?
 117                     &START_KEY(next) : next) > 0) {
 118                bch_dump_bucket(iter->b);
 119                panic("Key skipped backwards\n");
 120        }
 121}
 122
 123#else
 124
 125static inline void bch_btree_iter_next_check(struct btree_iter *iter) {}
 126
 127#endif
 128
 129/* Keylists */
 130
 131int __bch_keylist_realloc(struct keylist *l, unsigned int u64s)
 132{
 133        size_t oldsize = bch_keylist_nkeys(l);
 134        size_t newsize = oldsize + u64s;
 135        uint64_t *old_keys = l->keys_p == l->inline_keys ? NULL : l->keys_p;
 136        uint64_t *new_keys;
 137
 138        newsize = roundup_pow_of_two(newsize);
 139
 140        if (newsize <= KEYLIST_INLINE ||
 141            roundup_pow_of_two(oldsize) == newsize)
 142                return 0;
 143
 144        new_keys = krealloc(old_keys, sizeof(uint64_t) * newsize, GFP_NOIO);
 145
 146        if (!new_keys)
 147                return -ENOMEM;
 148
 149        if (!old_keys)
 150                memcpy(new_keys, l->inline_keys, sizeof(uint64_t) * oldsize);
 151
 152        l->keys_p = new_keys;
 153        l->top_p = new_keys + oldsize;
 154
 155        return 0;
 156}
 157
 158struct bkey *bch_keylist_pop(struct keylist *l)
 159{
 160        struct bkey *k = l->keys;
 161
 162        if (k == l->top)
 163                return NULL;
 164
 165        while (bkey_next(k) != l->top)
 166                k = bkey_next(k);
 167
 168        return l->top = k;
 169}
 170
 171void bch_keylist_pop_front(struct keylist *l)
 172{
 173        l->top_p -= bkey_u64s(l->keys);
 174
 175        memmove(l->keys,
 176                bkey_next(l->keys),
 177                bch_keylist_bytes(l));
 178}
 179
 180/* Key/pointer manipulation */
 181
 182void bch_bkey_copy_single_ptr(struct bkey *dest, const struct bkey *src,
 183                              unsigned int i)
 184{
 185        BUG_ON(i > KEY_PTRS(src));
 186
 187        /* Only copy the header, key, and one pointer. */
 188        memcpy(dest, src, 2 * sizeof(uint64_t));
 189        dest->ptr[0] = src->ptr[i];
 190        SET_KEY_PTRS(dest, 1);
 191        /* We didn't copy the checksum so clear that bit. */
 192        SET_KEY_CSUM(dest, 0);
 193}
 194
 195bool __bch_cut_front(const struct bkey *where, struct bkey *k)
 196{
 197        unsigned int i, len = 0;
 198
 199        if (bkey_cmp(where, &START_KEY(k)) <= 0)
 200                return false;
 201
 202        if (bkey_cmp(where, k) < 0)
 203                len = KEY_OFFSET(k) - KEY_OFFSET(where);
 204        else
 205                bkey_copy_key(k, where);
 206
 207        for (i = 0; i < KEY_PTRS(k); i++)
 208                SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + KEY_SIZE(k) - len);
 209
 210        BUG_ON(len > KEY_SIZE(k));
 211        SET_KEY_SIZE(k, len);
 212        return true;
 213}
 214
 215bool __bch_cut_back(const struct bkey *where, struct bkey *k)
 216{
 217        unsigned int len = 0;
 218
 219        if (bkey_cmp(where, k) >= 0)
 220                return false;
 221
 222        BUG_ON(KEY_INODE(where) != KEY_INODE(k));
 223
 224        if (bkey_cmp(where, &START_KEY(k)) > 0)
 225                len = KEY_OFFSET(where) - KEY_START(k);
 226
 227        bkey_copy_key(k, where);
 228
 229        BUG_ON(len > KEY_SIZE(k));
 230        SET_KEY_SIZE(k, len);
 231        return true;
 232}
 233
 234/* Auxiliary search trees */
 235
 236/* 32 bits total: */
 237#define BKEY_MID_BITS           3
 238#define BKEY_EXPONENT_BITS      7
 239#define BKEY_MANTISSA_BITS      (32 - BKEY_MID_BITS - BKEY_EXPONENT_BITS)
 240#define BKEY_MANTISSA_MASK      ((1 << BKEY_MANTISSA_BITS) - 1)
 241
 242struct bkey_float {
 243        unsigned int    exponent:BKEY_EXPONENT_BITS;
 244        unsigned int    m:BKEY_MID_BITS;
 245        unsigned int    mantissa:BKEY_MANTISSA_BITS;
 246} __packed;
 247
 248/*
 249 * BSET_CACHELINE was originally intended to match the hardware cacheline size -
 250 * it used to be 64, but I realized the lookup code would touch slightly less
 251 * memory if it was 128.
 252 *
 253 * It definites the number of bytes (in struct bset) per struct bkey_float in
 254 * the auxiliar search tree - when we're done searching the bset_float tree we
 255 * have this many bytes left that we do a linear search over.
 256 *
 257 * Since (after level 5) every level of the bset_tree is on a new cacheline,
 258 * we're touching one fewer cacheline in the bset tree in exchange for one more
 259 * cacheline in the linear search - but the linear search might stop before it
 260 * gets to the second cacheline.
 261 */
 262
 263#define BSET_CACHELINE          128
 264
 265/* Space required for the btree node keys */
 266static inline size_t btree_keys_bytes(struct btree_keys *b)
 267{
 268        return PAGE_SIZE << b->page_order;
 269}
 270
 271static inline size_t btree_keys_cachelines(struct btree_keys *b)
 272{
 273        return btree_keys_bytes(b) / BSET_CACHELINE;
 274}
 275
 276/* Space required for the auxiliary search trees */
 277static inline size_t bset_tree_bytes(struct btree_keys *b)
 278{
 279        return btree_keys_cachelines(b) * sizeof(struct bkey_float);
 280}
 281
 282/* Space required for the prev pointers */
 283static inline size_t bset_prev_bytes(struct btree_keys *b)
 284{
 285        return btree_keys_cachelines(b) * sizeof(uint8_t);
 286}
 287
 288/* Memory allocation */
 289
 290void bch_btree_keys_free(struct btree_keys *b)
 291{
 292        struct bset_tree *t = b->set;
 293
 294        if (bset_prev_bytes(b) < PAGE_SIZE)
 295                kfree(t->prev);
 296        else
 297                free_pages((unsigned long) t->prev,
 298                           get_order(bset_prev_bytes(b)));
 299
 300        if (bset_tree_bytes(b) < PAGE_SIZE)
 301                kfree(t->tree);
 302        else
 303                free_pages((unsigned long) t->tree,
 304                           get_order(bset_tree_bytes(b)));
 305
 306        free_pages((unsigned long) t->data, b->page_order);
 307
 308        t->prev = NULL;
 309        t->tree = NULL;
 310        t->data = NULL;
 311}
 312EXPORT_SYMBOL(bch_btree_keys_free);
 313
 314int bch_btree_keys_alloc(struct btree_keys *b,
 315                         unsigned int page_order,
 316                         gfp_t gfp)
 317{
 318        struct bset_tree *t = b->set;
 319
 320        BUG_ON(t->data);
 321
 322        b->page_order = page_order;
 323
 324        t->data = (void *) __get_free_pages(gfp, b->page_order);
 325        if (!t->data)
 326                goto err;
 327
 328        t->tree = bset_tree_bytes(b) < PAGE_SIZE
 329                ? kmalloc(bset_tree_bytes(b), gfp)
 330                : (void *) __get_free_pages(gfp, get_order(bset_tree_bytes(b)));
 331        if (!t->tree)
 332                goto err;
 333
 334        t->prev = bset_prev_bytes(b) < PAGE_SIZE
 335                ? kmalloc(bset_prev_bytes(b), gfp)
 336                : (void *) __get_free_pages(gfp, get_order(bset_prev_bytes(b)));
 337        if (!t->prev)
 338                goto err;
 339
 340        return 0;
 341err:
 342        bch_btree_keys_free(b);
 343        return -ENOMEM;
 344}
 345EXPORT_SYMBOL(bch_btree_keys_alloc);
 346
 347void bch_btree_keys_init(struct btree_keys *b, const struct btree_keys_ops *ops,
 348                         bool *expensive_debug_checks)
 349{
 350        b->ops = ops;
 351        b->expensive_debug_checks = expensive_debug_checks;
 352        b->nsets = 0;
 353        b->last_set_unwritten = 0;
 354
 355        /*
 356         * struct btree_keys in embedded in struct btree, and struct
 357         * bset_tree is embedded into struct btree_keys. They are all
 358         * initialized as 0 by kzalloc() in mca_bucket_alloc(), and
 359         * b->set[0].data is allocated in bch_btree_keys_alloc(), so we
 360         * don't have to initiate b->set[].size and b->set[].data here
 361         * any more.
 362         */
 363}
 364EXPORT_SYMBOL(bch_btree_keys_init);
 365
 366/* Binary tree stuff for auxiliary search trees */
 367
 368/*
 369 * return array index next to j when does in-order traverse
 370 * of a binary tree which is stored in a linear array
 371 */
 372static unsigned int inorder_next(unsigned int j, unsigned int size)
 373{
 374        if (j * 2 + 1 < size) {
 375                j = j * 2 + 1;
 376
 377                while (j * 2 < size)
 378                        j *= 2;
 379        } else
 380                j >>= ffz(j) + 1;
 381
 382        return j;
 383}
 384
 385/*
 386 * return array index previous to j when does in-order traverse
 387 * of a binary tree which is stored in a linear array
 388 */
 389static unsigned int inorder_prev(unsigned int j, unsigned int size)
 390{
 391        if (j * 2 < size) {
 392                j = j * 2;
 393
 394                while (j * 2 + 1 < size)
 395                        j = j * 2 + 1;
 396        } else
 397                j >>= ffs(j);
 398
 399        return j;
 400}
 401
 402/*
 403 * I have no idea why this code works... and I'm the one who wrote it
 404 *
 405 * However, I do know what it does:
 406 * Given a binary tree constructed in an array (i.e. how you normally implement
 407 * a heap), it converts a node in the tree - referenced by array index - to the
 408 * index it would have if you did an inorder traversal.
 409 *
 410 * Also tested for every j, size up to size somewhere around 6 million.
 411 *
 412 * The binary tree starts at array index 1, not 0
 413 * extra is a function of size:
 414 *   extra = (size - rounddown_pow_of_two(size - 1)) << 1;
 415 */
 416static unsigned int __to_inorder(unsigned int j,
 417                                  unsigned int size,
 418                                  unsigned int extra)
 419{
 420        unsigned int b = fls(j);
 421        unsigned int shift = fls(size - 1) - b;
 422
 423        j  ^= 1U << (b - 1);
 424        j <<= 1;
 425        j  |= 1;
 426        j <<= shift;
 427
 428        if (j > extra)
 429                j -= (j - extra) >> 1;
 430
 431        return j;
 432}
 433
 434/*
 435 * Return the cacheline index in bset_tree->data, where j is index
 436 * from a linear array which stores the auxiliar binary tree
 437 */
 438static unsigned int to_inorder(unsigned int j, struct bset_tree *t)
 439{
 440        return __to_inorder(j, t->size, t->extra);
 441}
 442
 443static unsigned int __inorder_to_tree(unsigned int j,
 444                                      unsigned int size,
 445                                      unsigned int extra)
 446{
 447        unsigned int shift;
 448
 449        if (j > extra)
 450                j += j - extra;
 451
 452        shift = ffs(j);
 453
 454        j >>= shift;
 455        j  |= roundup_pow_of_two(size) >> shift;
 456
 457        return j;
 458}
 459
 460/*
 461 * Return an index from a linear array which stores the auxiliar binary
 462 * tree, j is the cacheline index of t->data.
 463 */
 464static unsigned int inorder_to_tree(unsigned int j, struct bset_tree *t)
 465{
 466        return __inorder_to_tree(j, t->size, t->extra);
 467}
 468
 469#if 0
 470void inorder_test(void)
 471{
 472        unsigned long done = 0;
 473        ktime_t start = ktime_get();
 474
 475        for (unsigned int size = 2;
 476             size < 65536000;
 477             size++) {
 478                unsigned int extra =
 479                        (size - rounddown_pow_of_two(size - 1)) << 1;
 480                unsigned int i = 1, j = rounddown_pow_of_two(size - 1);
 481
 482                if (!(size % 4096))
 483                        pr_notice("loop %u, %llu per us\n", size,
 484                               done / ktime_us_delta(ktime_get(), start));
 485
 486                while (1) {
 487                        if (__inorder_to_tree(i, size, extra) != j)
 488                                panic("size %10u j %10u i %10u", size, j, i);
 489
 490                        if (__to_inorder(j, size, extra) != i)
 491                                panic("size %10u j %10u i %10u", size, j, i);
 492
 493                        if (j == rounddown_pow_of_two(size) - 1)
 494                                break;
 495
 496                        BUG_ON(inorder_prev(inorder_next(j, size), size) != j);
 497
 498                        j = inorder_next(j, size);
 499                        i++;
 500                }
 501
 502                done += size - 1;
 503        }
 504}
 505#endif
 506
 507/*
 508 * Cacheline/offset <-> bkey pointer arithmetic:
 509 *
 510 * t->tree is a binary search tree in an array; each node corresponds to a key
 511 * in one cacheline in t->set (BSET_CACHELINE bytes).
 512 *
 513 * This means we don't have to store the full index of the key that a node in
 514 * the binary tree points to; to_inorder() gives us the cacheline, and then
 515 * bkey_float->m gives us the offset within that cacheline, in units of 8 bytes.
 516 *
 517 * cacheline_to_bkey() and friends abstract out all the pointer arithmetic to
 518 * make this work.
 519 *
 520 * To construct the bfloat for an arbitrary key we need to know what the key
 521 * immediately preceding it is: we have to check if the two keys differ in the
 522 * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size
 523 * of the previous key so we can walk backwards to it from t->tree[j]'s key.
 524 */
 525
 526static struct bkey *cacheline_to_bkey(struct bset_tree *t,
 527                                      unsigned int cacheline,
 528                                      unsigned int offset)
 529{
 530        return ((void *) t->data) + cacheline * BSET_CACHELINE + offset * 8;
 531}
 532
 533static unsigned int bkey_to_cacheline(struct bset_tree *t, struct bkey *k)
 534{
 535        return ((void *) k - (void *) t->data) / BSET_CACHELINE;
 536}
 537
 538static unsigned int bkey_to_cacheline_offset(struct bset_tree *t,
 539                                         unsigned int cacheline,
 540                                         struct bkey *k)
 541{
 542        return (u64 *) k - (u64 *) cacheline_to_bkey(t, cacheline, 0);
 543}
 544
 545static struct bkey *tree_to_bkey(struct bset_tree *t, unsigned int j)
 546{
 547        return cacheline_to_bkey(t, to_inorder(j, t), t->tree[j].m);
 548}
 549
 550static struct bkey *tree_to_prev_bkey(struct bset_tree *t, unsigned int j)
 551{
 552        return (void *) (((uint64_t *) tree_to_bkey(t, j)) - t->prev[j]);
 553}
 554
 555/*
 556 * For the write set - the one we're currently inserting keys into - we don't
 557 * maintain a full search tree, we just keep a simple lookup table in t->prev.
 558 */
 559static struct bkey *table_to_bkey(struct bset_tree *t, unsigned int cacheline)
 560{
 561        return cacheline_to_bkey(t, cacheline, t->prev[cacheline]);
 562}
 563
 564static inline uint64_t shrd128(uint64_t high, uint64_t low, uint8_t shift)
 565{
 566        low >>= shift;
 567        low  |= (high << 1) << (63U - shift);
 568        return low;
 569}
 570
 571/*
 572 * Calculate mantissa value for struct bkey_float.
 573 * If most significant bit of f->exponent is not set, then
 574 *  - f->exponent >> 6 is 0
 575 *  - p[0] points to bkey->low
 576 *  - p[-1] borrows bits from KEY_INODE() of bkey->high
 577 * if most isgnificant bits of f->exponent is set, then
 578 *  - f->exponent >> 6 is 1
 579 *  - p[0] points to bits from KEY_INODE() of bkey->high
 580 *  - p[-1] points to other bits from KEY_INODE() of
 581 *    bkey->high too.
 582 * See make_bfloat() to check when most significant bit of f->exponent
 583 * is set or not.
 584 */
 585static inline unsigned int bfloat_mantissa(const struct bkey *k,
 586                                       struct bkey_float *f)
 587{
 588        const uint64_t *p = &k->low - (f->exponent >> 6);
 589
 590        return shrd128(p[-1], p[0], f->exponent & 63) & BKEY_MANTISSA_MASK;
 591}
 592
 593static void make_bfloat(struct bset_tree *t, unsigned int j)
 594{
 595        struct bkey_float *f = &t->tree[j];
 596        struct bkey *m = tree_to_bkey(t, j);
 597        struct bkey *p = tree_to_prev_bkey(t, j);
 598
 599        struct bkey *l = is_power_of_2(j)
 600                ? t->data->start
 601                : tree_to_prev_bkey(t, j >> ffs(j));
 602
 603        struct bkey *r = is_power_of_2(j + 1)
 604                ? bset_bkey_idx(t->data, t->data->keys - bkey_u64s(&t->end))
 605                : tree_to_bkey(t, j >> (ffz(j) + 1));
 606
 607        BUG_ON(m < l || m > r);
 608        BUG_ON(bkey_next(p) != m);
 609
 610        /*
 611         * If l and r have different KEY_INODE values (different backing
 612         * device), f->exponent records how many least significant bits
 613         * are different in KEY_INODE values and sets most significant
 614         * bits to 1 (by +64).
 615         * If l and r have same KEY_INODE value, f->exponent records
 616         * how many different bits in least significant bits of bkey->low.
 617         * See bfloat_mantiss() how the most significant bit of
 618         * f->exponent is used to calculate bfloat mantissa value.
 619         */
 620        if (KEY_INODE(l) != KEY_INODE(r))
 621                f->exponent = fls64(KEY_INODE(r) ^ KEY_INODE(l)) + 64;
 622        else
 623                f->exponent = fls64(r->low ^ l->low);
 624
 625        f->exponent = max_t(int, f->exponent - BKEY_MANTISSA_BITS, 0);
 626
 627        /*
 628         * Setting f->exponent = 127 flags this node as failed, and causes the
 629         * lookup code to fall back to comparing against the original key.
 630         */
 631
 632        if (bfloat_mantissa(m, f) != bfloat_mantissa(p, f))
 633                f->mantissa = bfloat_mantissa(m, f) - 1;
 634        else
 635                f->exponent = 127;
 636}
 637
 638static void bset_alloc_tree(struct btree_keys *b, struct bset_tree *t)
 639{
 640        if (t != b->set) {
 641                unsigned int j = roundup(t[-1].size,
 642                                     64 / sizeof(struct bkey_float));
 643
 644                t->tree = t[-1].tree + j;
 645                t->prev = t[-1].prev + j;
 646        }
 647
 648        while (t < b->set + MAX_BSETS)
 649                t++->size = 0;
 650}
 651
 652static void bch_bset_build_unwritten_tree(struct btree_keys *b)
 653{
 654        struct bset_tree *t = bset_tree_last(b);
 655
 656        BUG_ON(b->last_set_unwritten);
 657        b->last_set_unwritten = 1;
 658
 659        bset_alloc_tree(b, t);
 660
 661        if (t->tree != b->set->tree + btree_keys_cachelines(b)) {
 662                t->prev[0] = bkey_to_cacheline_offset(t, 0, t->data->start);
 663                t->size = 1;
 664        }
 665}
 666
 667void bch_bset_init_next(struct btree_keys *b, struct bset *i, uint64_t magic)
 668{
 669        if (i != b->set->data) {
 670                b->set[++b->nsets].data = i;
 671                i->seq = b->set->data->seq;
 672        } else
 673                get_random_bytes(&i->seq, sizeof(uint64_t));
 674
 675        i->magic        = magic;
 676        i->version      = 0;
 677        i->keys         = 0;
 678
 679        bch_bset_build_unwritten_tree(b);
 680}
 681EXPORT_SYMBOL(bch_bset_init_next);
 682
 683/*
 684 * Build auxiliary binary tree 'struct bset_tree *t', this tree is used to
 685 * accelerate bkey search in a btree node (pointed by bset_tree->data in
 686 * memory). After search in the auxiliar tree by calling bset_search_tree(),
 687 * a struct bset_search_iter is returned which indicates range [l, r] from
 688 * bset_tree->data where the searching bkey might be inside. Then a followed
 689 * linear comparison does the exact search, see __bch_bset_search() for how
 690 * the auxiliary tree is used.
 691 */
 692void bch_bset_build_written_tree(struct btree_keys *b)
 693{
 694        struct bset_tree *t = bset_tree_last(b);
 695        struct bkey *prev = NULL, *k = t->data->start;
 696        unsigned int j, cacheline = 1;
 697
 698        b->last_set_unwritten = 0;
 699
 700        bset_alloc_tree(b, t);
 701
 702        t->size = min_t(unsigned int,
 703                        bkey_to_cacheline(t, bset_bkey_last(t->data)),
 704                        b->set->tree + btree_keys_cachelines(b) - t->tree);
 705
 706        if (t->size < 2) {
 707                t->size = 0;
 708                return;
 709        }
 710
 711        t->extra = (t->size - rounddown_pow_of_two(t->size - 1)) << 1;
 712
 713        /* First we figure out where the first key in each cacheline is */
 714        for (j = inorder_next(0, t->size);
 715             j;
 716             j = inorder_next(j, t->size)) {
 717                while (bkey_to_cacheline(t, k) < cacheline)
 718                        prev = k, k = bkey_next(k);
 719
 720                t->prev[j] = bkey_u64s(prev);
 721                t->tree[j].m = bkey_to_cacheline_offset(t, cacheline++, k);
 722        }
 723
 724        while (bkey_next(k) != bset_bkey_last(t->data))
 725                k = bkey_next(k);
 726
 727        t->end = *k;
 728
 729        /* Then we build the tree */
 730        for (j = inorder_next(0, t->size);
 731             j;
 732             j = inorder_next(j, t->size))
 733                make_bfloat(t, j);
 734}
 735EXPORT_SYMBOL(bch_bset_build_written_tree);
 736
 737/* Insert */
 738
 739void bch_bset_fix_invalidated_key(struct btree_keys *b, struct bkey *k)
 740{
 741        struct bset_tree *t;
 742        unsigned int inorder, j = 1;
 743
 744        for (t = b->set; t <= bset_tree_last(b); t++)
 745                if (k < bset_bkey_last(t->data))
 746                        goto found_set;
 747
 748        BUG();
 749found_set:
 750        if (!t->size || !bset_written(b, t))
 751                return;
 752
 753        inorder = bkey_to_cacheline(t, k);
 754
 755        if (k == t->data->start)
 756                goto fix_left;
 757
 758        if (bkey_next(k) == bset_bkey_last(t->data)) {
 759                t->end = *k;
 760                goto fix_right;
 761        }
 762
 763        j = inorder_to_tree(inorder, t);
 764
 765        if (j &&
 766            j < t->size &&
 767            k == tree_to_bkey(t, j))
 768fix_left:       do {
 769                        make_bfloat(t, j);
 770                        j = j * 2;
 771                } while (j < t->size);
 772
 773        j = inorder_to_tree(inorder + 1, t);
 774
 775        if (j &&
 776            j < t->size &&
 777            k == tree_to_prev_bkey(t, j))
 778fix_right:      do {
 779                        make_bfloat(t, j);
 780                        j = j * 2 + 1;
 781                } while (j < t->size);
 782}
 783EXPORT_SYMBOL(bch_bset_fix_invalidated_key);
 784
 785static void bch_bset_fix_lookup_table(struct btree_keys *b,
 786                                      struct bset_tree *t,
 787                                      struct bkey *k)
 788{
 789        unsigned int shift = bkey_u64s(k);
 790        unsigned int j = bkey_to_cacheline(t, k);
 791
 792        /* We're getting called from btree_split() or btree_gc, just bail out */
 793        if (!t->size)
 794                return;
 795
 796        /*
 797         * k is the key we just inserted; we need to find the entry in the
 798         * lookup table for the first key that is strictly greater than k:
 799         * it's either k's cacheline or the next one
 800         */
 801        while (j < t->size &&
 802               table_to_bkey(t, j) <= k)
 803                j++;
 804
 805        /*
 806         * Adjust all the lookup table entries, and find a new key for any that
 807         * have gotten too big
 808         */
 809        for (; j < t->size; j++) {
 810                t->prev[j] += shift;
 811
 812                if (t->prev[j] > 7) {
 813                        k = table_to_bkey(t, j - 1);
 814
 815                        while (k < cacheline_to_bkey(t, j, 0))
 816                                k = bkey_next(k);
 817
 818                        t->prev[j] = bkey_to_cacheline_offset(t, j, k);
 819                }
 820        }
 821
 822        if (t->size == b->set->tree + btree_keys_cachelines(b) - t->tree)
 823                return;
 824
 825        /* Possibly add a new entry to the end of the lookup table */
 826
 827        for (k = table_to_bkey(t, t->size - 1);
 828             k != bset_bkey_last(t->data);
 829             k = bkey_next(k))
 830                if (t->size == bkey_to_cacheline(t, k)) {
 831                        t->prev[t->size] =
 832                                bkey_to_cacheline_offset(t, t->size, k);
 833                        t->size++;
 834                }
 835}
 836
 837/*
 838 * Tries to merge l and r: l should be lower than r
 839 * Returns true if we were able to merge. If we did merge, l will be the merged
 840 * key, r will be untouched.
 841 */
 842bool bch_bkey_try_merge(struct btree_keys *b, struct bkey *l, struct bkey *r)
 843{
 844        if (!b->ops->key_merge)
 845                return false;
 846
 847        /*
 848         * Generic header checks
 849         * Assumes left and right are in order
 850         * Left and right must be exactly aligned
 851         */
 852        if (!bch_bkey_equal_header(l, r) ||
 853             bkey_cmp(l, &START_KEY(r)))
 854                return false;
 855
 856        return b->ops->key_merge(b, l, r);
 857}
 858EXPORT_SYMBOL(bch_bkey_try_merge);
 859
 860void bch_bset_insert(struct btree_keys *b, struct bkey *where,
 861                     struct bkey *insert)
 862{
 863        struct bset_tree *t = bset_tree_last(b);
 864
 865        BUG_ON(!b->last_set_unwritten);
 866        BUG_ON(bset_byte_offset(b, t->data) +
 867               __set_bytes(t->data, t->data->keys + bkey_u64s(insert)) >
 868               PAGE_SIZE << b->page_order);
 869
 870        memmove((uint64_t *) where + bkey_u64s(insert),
 871                where,
 872                (void *) bset_bkey_last(t->data) - (void *) where);
 873
 874        t->data->keys += bkey_u64s(insert);
 875        bkey_copy(where, insert);
 876        bch_bset_fix_lookup_table(b, t, where);
 877}
 878EXPORT_SYMBOL(bch_bset_insert);
 879
 880unsigned int bch_btree_insert_key(struct btree_keys *b, struct bkey *k,
 881                              struct bkey *replace_key)
 882{
 883        unsigned int status = BTREE_INSERT_STATUS_NO_INSERT;
 884        struct bset *i = bset_tree_last(b)->data;
 885        struct bkey *m, *prev = NULL;
 886        struct btree_iter iter;
 887        struct bkey preceding_key_on_stack = ZERO_KEY;
 888        struct bkey *preceding_key_p = &preceding_key_on_stack;
 889
 890        BUG_ON(b->ops->is_extents && !KEY_SIZE(k));
 891
 892        /*
 893         * If k has preceding key, preceding_key_p will be set to address
 894         *  of k's preceding key; otherwise preceding_key_p will be set
 895         * to NULL inside preceding_key().
 896         */
 897        if (b->ops->is_extents)
 898                preceding_key(&START_KEY(k), &preceding_key_p);
 899        else
 900                preceding_key(k, &preceding_key_p);
 901
 902        m = bch_btree_iter_init(b, &iter, preceding_key_p);
 903
 904        if (b->ops->insert_fixup(b, k, &iter, replace_key))
 905                return status;
 906
 907        status = BTREE_INSERT_STATUS_INSERT;
 908
 909        while (m != bset_bkey_last(i) &&
 910               bkey_cmp(k, b->ops->is_extents ? &START_KEY(m) : m) > 0)
 911                prev = m, m = bkey_next(m);
 912
 913        /* prev is in the tree, if we merge we're done */
 914        status = BTREE_INSERT_STATUS_BACK_MERGE;
 915        if (prev &&
 916            bch_bkey_try_merge(b, prev, k))
 917                goto merged;
 918#if 0
 919        status = BTREE_INSERT_STATUS_OVERWROTE;
 920        if (m != bset_bkey_last(i) &&
 921            KEY_PTRS(m) == KEY_PTRS(k) && !KEY_SIZE(m))
 922                goto copy;
 923#endif
 924        status = BTREE_INSERT_STATUS_FRONT_MERGE;
 925        if (m != bset_bkey_last(i) &&
 926            bch_bkey_try_merge(b, k, m))
 927                goto copy;
 928
 929        bch_bset_insert(b, m, k);
 930copy:   bkey_copy(m, k);
 931merged:
 932        return status;
 933}
 934EXPORT_SYMBOL(bch_btree_insert_key);
 935
 936/* Lookup */
 937
 938struct bset_search_iter {
 939        struct bkey *l, *r;
 940};
 941
 942static struct bset_search_iter bset_search_write_set(struct bset_tree *t,
 943                                                     const struct bkey *search)
 944{
 945        unsigned int li = 0, ri = t->size;
 946
 947        while (li + 1 != ri) {
 948                unsigned int m = (li + ri) >> 1;
 949
 950                if (bkey_cmp(table_to_bkey(t, m), search) > 0)
 951                        ri = m;
 952                else
 953                        li = m;
 954        }
 955
 956        return (struct bset_search_iter) {
 957                table_to_bkey(t, li),
 958                ri < t->size ? table_to_bkey(t, ri) : bset_bkey_last(t->data)
 959        };
 960}
 961
 962static struct bset_search_iter bset_search_tree(struct bset_tree *t,
 963                                                const struct bkey *search)
 964{
 965        struct bkey *l, *r;
 966        struct bkey_float *f;
 967        unsigned int inorder, j, n = 1;
 968
 969        do {
 970                unsigned int p = n << 4;
 971
 972                if (p < t->size)
 973                        prefetch(&t->tree[p]);
 974
 975                j = n;
 976                f = &t->tree[j];
 977
 978                if (likely(f->exponent != 127)) {
 979                        if (f->mantissa >= bfloat_mantissa(search, f))
 980                                n = j * 2;
 981                        else
 982                                n = j * 2 + 1;
 983                } else {
 984                        if (bkey_cmp(tree_to_bkey(t, j), search) > 0)
 985                                n = j * 2;
 986                        else
 987                                n = j * 2 + 1;
 988                }
 989        } while (n < t->size);
 990
 991        inorder = to_inorder(j, t);
 992
 993        /*
 994         * n would have been the node we recursed to - the low bit tells us if
 995         * we recursed left or recursed right.
 996         */
 997        if (n & 1) {
 998                l = cacheline_to_bkey(t, inorder, f->m);
 999
1000                if (++inorder != t->size) {
1001                        f = &t->tree[inorder_next(j, t->size)];
1002                        r = cacheline_to_bkey(t, inorder, f->m);
1003                } else
1004                        r = bset_bkey_last(t->data);
1005        } else {
1006                r = cacheline_to_bkey(t, inorder, f->m);
1007
1008                if (--inorder) {
1009                        f = &t->tree[inorder_prev(j, t->size)];
1010                        l = cacheline_to_bkey(t, inorder, f->m);
1011                } else
1012                        l = t->data->start;
1013        }
1014
1015        return (struct bset_search_iter) {l, r};
1016}
1017
1018struct bkey *__bch_bset_search(struct btree_keys *b, struct bset_tree *t,
1019                               const struct bkey *search)
1020{
1021        struct bset_search_iter i;
1022
1023        /*
1024         * First, we search for a cacheline, then lastly we do a linear search
1025         * within that cacheline.
1026         *
1027         * To search for the cacheline, there's three different possibilities:
1028         *  * The set is too small to have a search tree, so we just do a linear
1029         *    search over the whole set.
1030         *  * The set is the one we're currently inserting into; keeping a full
1031         *    auxiliary search tree up to date would be too expensive, so we
1032         *    use a much simpler lookup table to do a binary search -
1033         *    bset_search_write_set().
1034         *  * Or we use the auxiliary search tree we constructed earlier -
1035         *    bset_search_tree()
1036         */
1037
1038        if (unlikely(!t->size)) {
1039                i.l = t->data->start;
1040                i.r = bset_bkey_last(t->data);
1041        } else if (bset_written(b, t)) {
1042                /*
1043                 * Each node in the auxiliary search tree covers a certain range
1044                 * of bits, and keys above and below the set it covers might
1045                 * differ outside those bits - so we have to special case the
1046                 * start and end - handle that here:
1047                 */
1048
1049                if (unlikely(bkey_cmp(search, &t->end) >= 0))
1050                        return bset_bkey_last(t->data);
1051
1052                if (unlikely(bkey_cmp(search, t->data->start) < 0))
1053                        return t->data->start;
1054
1055                i = bset_search_tree(t, search);
1056        } else {
1057                BUG_ON(!b->nsets &&
1058                       t->size < bkey_to_cacheline(t, bset_bkey_last(t->data)));
1059
1060                i = bset_search_write_set(t, search);
1061        }
1062
1063        if (btree_keys_expensive_checks(b)) {
1064                BUG_ON(bset_written(b, t) &&
1065                       i.l != t->data->start &&
1066                       bkey_cmp(tree_to_prev_bkey(t,
1067                          inorder_to_tree(bkey_to_cacheline(t, i.l), t)),
1068                                search) > 0);
1069
1070                BUG_ON(i.r != bset_bkey_last(t->data) &&
1071                       bkey_cmp(i.r, search) <= 0);
1072        }
1073
1074        while (likely(i.l != i.r) &&
1075               bkey_cmp(i.l, search) <= 0)
1076                i.l = bkey_next(i.l);
1077
1078        return i.l;
1079}
1080EXPORT_SYMBOL(__bch_bset_search);
1081
1082/* Btree iterator */
1083
1084typedef bool (btree_iter_cmp_fn)(struct btree_iter_set,
1085                                 struct btree_iter_set);
1086
1087static inline bool btree_iter_cmp(struct btree_iter_set l,
1088                                  struct btree_iter_set r)
1089{
1090        return bkey_cmp(l.k, r.k) > 0;
1091}
1092
1093static inline bool btree_iter_end(struct btree_iter *iter)
1094{
1095        return !iter->used;
1096}
1097
1098void bch_btree_iter_push(struct btree_iter *iter, struct bkey *k,
1099                         struct bkey *end)
1100{
1101        if (k != end)
1102                BUG_ON(!heap_add(iter,
1103                                 ((struct btree_iter_set) { k, end }),
1104                                 btree_iter_cmp));
1105}
1106
1107static struct bkey *__bch_btree_iter_init(struct btree_keys *b,
1108                                          struct btree_iter *iter,
1109                                          struct bkey *search,
1110                                          struct bset_tree *start)
1111{
1112        struct bkey *ret = NULL;
1113
1114        iter->size = ARRAY_SIZE(iter->data);
1115        iter->used = 0;
1116
1117#ifdef CONFIG_BCACHE_DEBUG
1118        iter->b = b;
1119#endif
1120
1121        for (; start <= bset_tree_last(b); start++) {
1122                ret = bch_bset_search(b, start, search);
1123                bch_btree_iter_push(iter, ret, bset_bkey_last(start->data));
1124        }
1125
1126        return ret;
1127}
1128
1129struct bkey *bch_btree_iter_init(struct btree_keys *b,
1130                                 struct btree_iter *iter,
1131                                 struct bkey *search)
1132{
1133        return __bch_btree_iter_init(b, iter, search, b->set);
1134}
1135EXPORT_SYMBOL(bch_btree_iter_init);
1136
1137static inline struct bkey *__bch_btree_iter_next(struct btree_iter *iter,
1138                                                 btree_iter_cmp_fn *cmp)
1139{
1140        struct btree_iter_set b __maybe_unused;
1141        struct bkey *ret = NULL;
1142
1143        if (!btree_iter_end(iter)) {
1144                bch_btree_iter_next_check(iter);
1145
1146                ret = iter->data->k;
1147                iter->data->k = bkey_next(iter->data->k);
1148
1149                if (iter->data->k > iter->data->end) {
1150                        WARN_ONCE(1, "bset was corrupt!\n");
1151                        iter->data->k = iter->data->end;
1152                }
1153
1154                if (iter->data->k == iter->data->end)
1155                        heap_pop(iter, b, cmp);
1156                else
1157                        heap_sift(iter, 0, cmp);
1158        }
1159
1160        return ret;
1161}
1162
1163struct bkey *bch_btree_iter_next(struct btree_iter *iter)
1164{
1165        return __bch_btree_iter_next(iter, btree_iter_cmp);
1166
1167}
1168EXPORT_SYMBOL(bch_btree_iter_next);
1169
1170struct bkey *bch_btree_iter_next_filter(struct btree_iter *iter,
1171                                        struct btree_keys *b, ptr_filter_fn fn)
1172{
1173        struct bkey *ret;
1174
1175        do {
1176                ret = bch_btree_iter_next(iter);
1177        } while (ret && fn(b, ret));
1178
1179        return ret;
1180}
1181
1182/* Mergesort */
1183
1184void bch_bset_sort_state_free(struct bset_sort_state *state)
1185{
1186        mempool_exit(&state->pool);
1187}
1188
1189int bch_bset_sort_state_init(struct bset_sort_state *state,
1190                             unsigned int page_order)
1191{
1192        spin_lock_init(&state->time.lock);
1193
1194        state->page_order = page_order;
1195        state->crit_factor = int_sqrt(1 << page_order);
1196
1197        return mempool_init_page_pool(&state->pool, 1, page_order);
1198}
1199EXPORT_SYMBOL(bch_bset_sort_state_init);
1200
1201static void btree_mergesort(struct btree_keys *b, struct bset *out,
1202                            struct btree_iter *iter,
1203                            bool fixup, bool remove_stale)
1204{
1205        int i;
1206        struct bkey *k, *last = NULL;
1207        BKEY_PADDED(k) tmp;
1208        bool (*bad)(struct btree_keys *, const struct bkey *) = remove_stale
1209                ? bch_ptr_bad
1210                : bch_ptr_invalid;
1211
1212        /* Heapify the iterator, using our comparison function */
1213        for (i = iter->used / 2 - 1; i >= 0; --i)
1214                heap_sift(iter, i, b->ops->sort_cmp);
1215
1216        while (!btree_iter_end(iter)) {
1217                if (b->ops->sort_fixup && fixup)
1218                        k = b->ops->sort_fixup(iter, &tmp.k);
1219                else
1220                        k = NULL;
1221
1222                if (!k)
1223                        k = __bch_btree_iter_next(iter, b->ops->sort_cmp);
1224
1225                if (bad(b, k))
1226                        continue;
1227
1228                if (!last) {
1229                        last = out->start;
1230                        bkey_copy(last, k);
1231                } else if (!bch_bkey_try_merge(b, last, k)) {
1232                        last = bkey_next(last);
1233                        bkey_copy(last, k);
1234                }
1235        }
1236
1237        out->keys = last ? (uint64_t *) bkey_next(last) - out->d : 0;
1238
1239        pr_debug("sorted %i keys", out->keys);
1240}
1241
1242static void __btree_sort(struct btree_keys *b, struct btree_iter *iter,
1243                         unsigned int start, unsigned int order, bool fixup,
1244                         struct bset_sort_state *state)
1245{
1246        uint64_t start_time;
1247        bool used_mempool = false;
1248        struct bset *out = (void *) __get_free_pages(__GFP_NOWARN|GFP_NOWAIT,
1249                                                     order);
1250        if (!out) {
1251                struct page *outp;
1252
1253                BUG_ON(order > state->page_order);
1254
1255                outp = mempool_alloc(&state->pool, GFP_NOIO);
1256                out = page_address(outp);
1257                used_mempool = true;
1258                order = state->page_order;
1259        }
1260
1261        start_time = local_clock();
1262
1263        btree_mergesort(b, out, iter, fixup, false);
1264        b->nsets = start;
1265
1266        if (!start && order == b->page_order) {
1267                /*
1268                 * Our temporary buffer is the same size as the btree node's
1269                 * buffer, we can just swap buffers instead of doing a big
1270                 * memcpy()
1271                 */
1272
1273                out->magic      = b->set->data->magic;
1274                out->seq        = b->set->data->seq;
1275                out->version    = b->set->data->version;
1276                swap(out, b->set->data);
1277        } else {
1278                b->set[start].data->keys = out->keys;
1279                memcpy(b->set[start].data->start, out->start,
1280                       (void *) bset_bkey_last(out) - (void *) out->start);
1281        }
1282
1283        if (used_mempool)
1284                mempool_free(virt_to_page(out), &state->pool);
1285        else
1286                free_pages((unsigned long) out, order);
1287
1288        bch_bset_build_written_tree(b);
1289
1290        if (!start)
1291                bch_time_stats_update(&state->time, start_time);
1292}
1293
1294void bch_btree_sort_partial(struct btree_keys *b, unsigned int start,
1295                            struct bset_sort_state *state)
1296{
1297        size_t order = b->page_order, keys = 0;
1298        struct btree_iter iter;
1299        int oldsize = bch_count_data(b);
1300
1301        __bch_btree_iter_init(b, &iter, NULL, &b->set[start]);
1302
1303        if (start) {
1304                unsigned int i;
1305
1306                for (i = start; i <= b->nsets; i++)
1307                        keys += b->set[i].data->keys;
1308
1309                order = get_order(__set_bytes(b->set->data, keys));
1310        }
1311
1312        __btree_sort(b, &iter, start, order, false, state);
1313
1314        EBUG_ON(oldsize >= 0 && bch_count_data(b) != oldsize);
1315}
1316EXPORT_SYMBOL(bch_btree_sort_partial);
1317
1318void bch_btree_sort_and_fix_extents(struct btree_keys *b,
1319                                    struct btree_iter *iter,
1320                                    struct bset_sort_state *state)
1321{
1322        __btree_sort(b, iter, 0, b->page_order, true, state);
1323}
1324
1325void bch_btree_sort_into(struct btree_keys *b, struct btree_keys *new,
1326                         struct bset_sort_state *state)
1327{
1328        uint64_t start_time = local_clock();
1329        struct btree_iter iter;
1330
1331        bch_btree_iter_init(b, &iter, NULL);
1332
1333        btree_mergesort(b, new->set->data, &iter, false, true);
1334
1335        bch_time_stats_update(&state->time, start_time);
1336
1337        new->set->size = 0; // XXX: why?
1338}
1339
1340#define SORT_CRIT       (4096 / sizeof(uint64_t))
1341
1342void bch_btree_sort_lazy(struct btree_keys *b, struct bset_sort_state *state)
1343{
1344        unsigned int crit = SORT_CRIT;
1345        int i;
1346
1347        /* Don't sort if nothing to do */
1348        if (!b->nsets)
1349                goto out;
1350
1351        for (i = b->nsets - 1; i >= 0; --i) {
1352                crit *= state->crit_factor;
1353
1354                if (b->set[i].data->keys < crit) {
1355                        bch_btree_sort_partial(b, i, state);
1356                        return;
1357                }
1358        }
1359
1360        /* Sort if we'd overflow */
1361        if (b->nsets + 1 == MAX_BSETS) {
1362                bch_btree_sort(b, state);
1363                return;
1364        }
1365
1366out:
1367        bch_bset_build_written_tree(b);
1368}
1369EXPORT_SYMBOL(bch_btree_sort_lazy);
1370
1371void bch_btree_keys_stats(struct btree_keys *b, struct bset_stats *stats)
1372{
1373        unsigned int i;
1374
1375        for (i = 0; i <= b->nsets; i++) {
1376                struct bset_tree *t = &b->set[i];
1377                size_t bytes = t->data->keys * sizeof(uint64_t);
1378                size_t j;
1379
1380                if (bset_written(b, t)) {
1381                        stats->sets_written++;
1382                        stats->bytes_written += bytes;
1383
1384                        stats->floats += t->size - 1;
1385
1386                        for (j = 1; j < t->size; j++)
1387                                if (t->tree[j].exponent == 127)
1388                                        stats->failed++;
1389                } else {
1390                        stats->sets_unwritten++;
1391                        stats->bytes_unwritten += bytes;
1392                }
1393        }
1394}
1395