linux/drivers/md/bcache/btree.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
   4 *
   5 * Uses a block device as cache for other block devices; optimized for SSDs.
   6 * All allocation is done in buckets, which should match the erase block size
   7 * of the device.
   8 *
   9 * Buckets containing cached data are kept on a heap sorted by priority;
  10 * bucket priority is increased on cache hit, and periodically all the buckets
  11 * on the heap have their priority scaled down. This currently is just used as
  12 * an LRU but in the future should allow for more intelligent heuristics.
  13 *
  14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
  15 * counter. Garbage collection is used to remove stale pointers.
  16 *
  17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
  18 * as keys are inserted we only sort the pages that have not yet been written.
  19 * When garbage collection is run, we resort the entire node.
  20 *
  21 * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
  22 */
  23
  24#include "bcache.h"
  25#include "btree.h"
  26#include "debug.h"
  27#include "extents.h"
  28
  29#include <linux/slab.h>
  30#include <linux/bitops.h>
  31#include <linux/hash.h>
  32#include <linux/kthread.h>
  33#include <linux/prefetch.h>
  34#include <linux/random.h>
  35#include <linux/rcupdate.h>
  36#include <linux/sched/clock.h>
  37#include <linux/rculist.h>
  38#include <linux/delay.h>
  39#include <trace/events/bcache.h>
  40
  41/*
  42 * Todo:
  43 * register_bcache: Return errors out to userspace correctly
  44 *
  45 * Writeback: don't undirty key until after a cache flush
  46 *
  47 * Create an iterator for key pointers
  48 *
  49 * On btree write error, mark bucket such that it won't be freed from the cache
  50 *
  51 * Journalling:
  52 *   Check for bad keys in replay
  53 *   Propagate barriers
  54 *   Refcount journal entries in journal_replay
  55 *
  56 * Garbage collection:
  57 *   Finish incremental gc
  58 *   Gc should free old UUIDs, data for invalid UUIDs
  59 *
  60 * Provide a way to list backing device UUIDs we have data cached for, and
  61 * probably how long it's been since we've seen them, and a way to invalidate
  62 * dirty data for devices that will never be attached again
  63 *
  64 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
  65 * that based on that and how much dirty data we have we can keep writeback
  66 * from being starved
  67 *
  68 * Add a tracepoint or somesuch to watch for writeback starvation
  69 *
  70 * When btree depth > 1 and splitting an interior node, we have to make sure
  71 * alloc_bucket() cannot fail. This should be true but is not completely
  72 * obvious.
  73 *
  74 * Plugging?
  75 *
  76 * If data write is less than hard sector size of ssd, round up offset in open
  77 * bucket to the next whole sector
  78 *
  79 * Superblock needs to be fleshed out for multiple cache devices
  80 *
  81 * Add a sysfs tunable for the number of writeback IOs in flight
  82 *
  83 * Add a sysfs tunable for the number of open data buckets
  84 *
  85 * IO tracking: Can we track when one process is doing io on behalf of another?
  86 * IO tracking: Don't use just an average, weigh more recent stuff higher
  87 *
  88 * Test module load/unload
  89 */
  90
  91#define MAX_NEED_GC             64
  92#define MAX_SAVE_PRIO           72
  93#define MAX_GC_TIMES            100
  94#define MIN_GC_NODES            100
  95#define GC_SLEEP_MS             100
  96
  97#define PTR_DIRTY_BIT           (((uint64_t) 1 << 36))
  98
  99#define PTR_HASH(c, k)                                                  \
 100        (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
 101
 102#define insert_lock(s, b)       ((b)->level <= (s)->lock)
 103
 104/*
 105 * These macros are for recursing down the btree - they handle the details of
 106 * locking and looking up nodes in the cache for you. They're best treated as
 107 * mere syntax when reading code that uses them.
 108 *
 109 * op->lock determines whether we take a read or a write lock at a given depth.
 110 * If you've got a read lock and find that you need a write lock (i.e. you're
 111 * going to have to split), set op->lock and return -EINTR; btree_root() will
 112 * call you again and you'll have the correct lock.
 113 */
 114
 115/**
 116 * btree - recurse down the btree on a specified key
 117 * @fn:         function to call, which will be passed the child node
 118 * @key:        key to recurse on
 119 * @b:          parent btree node
 120 * @op:         pointer to struct btree_op
 121 */
 122#define btree(fn, key, b, op, ...)                                      \
 123({                                                                      \
 124        int _r, l = (b)->level - 1;                                     \
 125        bool _w = l <= (op)->lock;                                      \
 126        struct btree *_child = bch_btree_node_get((b)->c, op, key, l,   \
 127                                                  _w, b);               \
 128        if (!IS_ERR(_child)) {                                          \
 129                _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__);       \
 130                rw_unlock(_w, _child);                                  \
 131        } else                                                          \
 132                _r = PTR_ERR(_child);                                   \
 133        _r;                                                             \
 134})
 135
 136/**
 137 * btree_root - call a function on the root of the btree
 138 * @fn:         function to call, which will be passed the child node
 139 * @c:          cache set
 140 * @op:         pointer to struct btree_op
 141 */
 142#define btree_root(fn, c, op, ...)                                      \
 143({                                                                      \
 144        int _r = -EINTR;                                                \
 145        do {                                                            \
 146                struct btree *_b = (c)->root;                           \
 147                bool _w = insert_lock(op, _b);                          \
 148                rw_lock(_w, _b, _b->level);                             \
 149                if (_b == (c)->root &&                                  \
 150                    _w == insert_lock(op, _b)) {                        \
 151                        _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__);   \
 152                }                                                       \
 153                rw_unlock(_w, _b);                                      \
 154                bch_cannibalize_unlock(c);                              \
 155                if (_r == -EINTR)                                       \
 156                        schedule();                                     \
 157        } while (_r == -EINTR);                                         \
 158                                                                        \
 159        finish_wait(&(c)->btree_cache_wait, &(op)->wait);               \
 160        _r;                                                             \
 161})
 162
 163static inline struct bset *write_block(struct btree *b)
 164{
 165        return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c);
 166}
 167
 168static void bch_btree_init_next(struct btree *b)
 169{
 170        /* If not a leaf node, always sort */
 171        if (b->level && b->keys.nsets)
 172                bch_btree_sort(&b->keys, &b->c->sort);
 173        else
 174                bch_btree_sort_lazy(&b->keys, &b->c->sort);
 175
 176        if (b->written < btree_blocks(b))
 177                bch_bset_init_next(&b->keys, write_block(b),
 178                                   bset_magic(&b->c->sb));
 179
 180}
 181
 182/* Btree key manipulation */
 183
 184void bkey_put(struct cache_set *c, struct bkey *k)
 185{
 186        unsigned int i;
 187
 188        for (i = 0; i < KEY_PTRS(k); i++)
 189                if (ptr_available(c, k, i))
 190                        atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
 191}
 192
 193/* Btree IO */
 194
 195static uint64_t btree_csum_set(struct btree *b, struct bset *i)
 196{
 197        uint64_t crc = b->key.ptr[0];
 198        void *data = (void *) i + 8, *end = bset_bkey_last(i);
 199
 200        crc = bch_crc64_update(crc, data, end - data);
 201        return crc ^ 0xffffffffffffffffULL;
 202}
 203
 204void bch_btree_node_read_done(struct btree *b)
 205{
 206        const char *err = "bad btree header";
 207        struct bset *i = btree_bset_first(b);
 208        struct btree_iter *iter;
 209
 210        /*
 211         * c->fill_iter can allocate an iterator with more memory space
 212         * than static MAX_BSETS.
 213         * See the comment arount cache_set->fill_iter.
 214         */
 215        iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO);
 216        iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
 217        iter->used = 0;
 218
 219#ifdef CONFIG_BCACHE_DEBUG
 220        iter->b = &b->keys;
 221#endif
 222
 223        if (!i->seq)
 224                goto err;
 225
 226        for (;
 227             b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
 228             i = write_block(b)) {
 229                err = "unsupported bset version";
 230                if (i->version > BCACHE_BSET_VERSION)
 231                        goto err;
 232
 233                err = "bad btree header";
 234                if (b->written + set_blocks(i, block_bytes(b->c)) >
 235                    btree_blocks(b))
 236                        goto err;
 237
 238                err = "bad magic";
 239                if (i->magic != bset_magic(&b->c->sb))
 240                        goto err;
 241
 242                err = "bad checksum";
 243                switch (i->version) {
 244                case 0:
 245                        if (i->csum != csum_set(i))
 246                                goto err;
 247                        break;
 248                case BCACHE_BSET_VERSION:
 249                        if (i->csum != btree_csum_set(b, i))
 250                                goto err;
 251                        break;
 252                }
 253
 254                err = "empty set";
 255                if (i != b->keys.set[0].data && !i->keys)
 256                        goto err;
 257
 258                bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
 259
 260                b->written += set_blocks(i, block_bytes(b->c));
 261        }
 262
 263        err = "corrupted btree";
 264        for (i = write_block(b);
 265             bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
 266             i = ((void *) i) + block_bytes(b->c))
 267                if (i->seq == b->keys.set[0].data->seq)
 268                        goto err;
 269
 270        bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
 271
 272        i = b->keys.set[0].data;
 273        err = "short btree key";
 274        if (b->keys.set[0].size &&
 275            bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
 276                goto err;
 277
 278        if (b->written < btree_blocks(b))
 279                bch_bset_init_next(&b->keys, write_block(b),
 280                                   bset_magic(&b->c->sb));
 281out:
 282        mempool_free(iter, &b->c->fill_iter);
 283        return;
 284err:
 285        set_btree_node_io_error(b);
 286        bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
 287                            err, PTR_BUCKET_NR(b->c, &b->key, 0),
 288                            bset_block_offset(b, i), i->keys);
 289        goto out;
 290}
 291
 292static void btree_node_read_endio(struct bio *bio)
 293{
 294        struct closure *cl = bio->bi_private;
 295
 296        closure_put(cl);
 297}
 298
 299static void bch_btree_node_read(struct btree *b)
 300{
 301        uint64_t start_time = local_clock();
 302        struct closure cl;
 303        struct bio *bio;
 304
 305        trace_bcache_btree_read(b);
 306
 307        closure_init_stack(&cl);
 308
 309        bio = bch_bbio_alloc(b->c);
 310        bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
 311        bio->bi_end_io  = btree_node_read_endio;
 312        bio->bi_private = &cl;
 313        bio->bi_opf = REQ_OP_READ | REQ_META;
 314
 315        bch_bio_map(bio, b->keys.set[0].data);
 316
 317        bch_submit_bbio(bio, b->c, &b->key, 0);
 318        closure_sync(&cl);
 319
 320        if (bio->bi_status)
 321                set_btree_node_io_error(b);
 322
 323        bch_bbio_free(bio, b->c);
 324
 325        if (btree_node_io_error(b))
 326                goto err;
 327
 328        bch_btree_node_read_done(b);
 329        bch_time_stats_update(&b->c->btree_read_time, start_time);
 330
 331        return;
 332err:
 333        bch_cache_set_error(b->c, "io error reading bucket %zu",
 334                            PTR_BUCKET_NR(b->c, &b->key, 0));
 335}
 336
 337static void btree_complete_write(struct btree *b, struct btree_write *w)
 338{
 339        if (w->prio_blocked &&
 340            !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
 341                wake_up_allocators(b->c);
 342
 343        if (w->journal) {
 344                atomic_dec_bug(w->journal);
 345                __closure_wake_up(&b->c->journal.wait);
 346        }
 347
 348        w->prio_blocked = 0;
 349        w->journal      = NULL;
 350}
 351
 352static void btree_node_write_unlock(struct closure *cl)
 353{
 354        struct btree *b = container_of(cl, struct btree, io);
 355
 356        up(&b->io_mutex);
 357}
 358
 359static void __btree_node_write_done(struct closure *cl)
 360{
 361        struct btree *b = container_of(cl, struct btree, io);
 362        struct btree_write *w = btree_prev_write(b);
 363
 364        bch_bbio_free(b->bio, b->c);
 365        b->bio = NULL;
 366        btree_complete_write(b, w);
 367
 368        if (btree_node_dirty(b))
 369                schedule_delayed_work(&b->work, 30 * HZ);
 370
 371        closure_return_with_destructor(cl, btree_node_write_unlock);
 372}
 373
 374static void btree_node_write_done(struct closure *cl)
 375{
 376        struct btree *b = container_of(cl, struct btree, io);
 377
 378        bio_free_pages(b->bio);
 379        __btree_node_write_done(cl);
 380}
 381
 382static void btree_node_write_endio(struct bio *bio)
 383{
 384        struct closure *cl = bio->bi_private;
 385        struct btree *b = container_of(cl, struct btree, io);
 386
 387        if (bio->bi_status)
 388                set_btree_node_io_error(b);
 389
 390        bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree");
 391        closure_put(cl);
 392}
 393
 394static void do_btree_node_write(struct btree *b)
 395{
 396        struct closure *cl = &b->io;
 397        struct bset *i = btree_bset_last(b);
 398        BKEY_PADDED(key) k;
 399
 400        i->version      = BCACHE_BSET_VERSION;
 401        i->csum         = btree_csum_set(b, i);
 402
 403        BUG_ON(b->bio);
 404        b->bio = bch_bbio_alloc(b->c);
 405
 406        b->bio->bi_end_io       = btree_node_write_endio;
 407        b->bio->bi_private      = cl;
 408        b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c));
 409        b->bio->bi_opf          = REQ_OP_WRITE | REQ_META | REQ_FUA;
 410        bch_bio_map(b->bio, i);
 411
 412        /*
 413         * If we're appending to a leaf node, we don't technically need FUA -
 414         * this write just needs to be persisted before the next journal write,
 415         * which will be marked FLUSH|FUA.
 416         *
 417         * Similarly if we're writing a new btree root - the pointer is going to
 418         * be in the next journal entry.
 419         *
 420         * But if we're writing a new btree node (that isn't a root) or
 421         * appending to a non leaf btree node, we need either FUA or a flush
 422         * when we write the parent with the new pointer. FUA is cheaper than a
 423         * flush, and writes appending to leaf nodes aren't blocking anything so
 424         * just make all btree node writes FUA to keep things sane.
 425         */
 426
 427        bkey_copy(&k.key, &b->key);
 428        SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
 429                       bset_sector_offset(&b->keys, i));
 430
 431        if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
 432                struct bio_vec *bv;
 433                void *addr = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
 434                struct bvec_iter_all iter_all;
 435
 436                bio_for_each_segment_all(bv, b->bio, iter_all) {
 437                        memcpy(page_address(bv->bv_page), addr, PAGE_SIZE);
 438                        addr += PAGE_SIZE;
 439                }
 440
 441                bch_submit_bbio(b->bio, b->c, &k.key, 0);
 442
 443                continue_at(cl, btree_node_write_done, NULL);
 444        } else {
 445                /*
 446                 * No problem for multipage bvec since the bio is
 447                 * just allocated
 448                 */
 449                b->bio->bi_vcnt = 0;
 450                bch_bio_map(b->bio, i);
 451
 452                bch_submit_bbio(b->bio, b->c, &k.key, 0);
 453
 454                closure_sync(cl);
 455                continue_at_nobarrier(cl, __btree_node_write_done, NULL);
 456        }
 457}
 458
 459void __bch_btree_node_write(struct btree *b, struct closure *parent)
 460{
 461        struct bset *i = btree_bset_last(b);
 462
 463        lockdep_assert_held(&b->write_lock);
 464
 465        trace_bcache_btree_write(b);
 466
 467        BUG_ON(current->bio_list);
 468        BUG_ON(b->written >= btree_blocks(b));
 469        BUG_ON(b->written && !i->keys);
 470        BUG_ON(btree_bset_first(b)->seq != i->seq);
 471        bch_check_keys(&b->keys, "writing");
 472
 473        cancel_delayed_work(&b->work);
 474
 475        /* If caller isn't waiting for write, parent refcount is cache set */
 476        down(&b->io_mutex);
 477        closure_init(&b->io, parent ?: &b->c->cl);
 478
 479        clear_bit(BTREE_NODE_dirty,      &b->flags);
 480        change_bit(BTREE_NODE_write_idx, &b->flags);
 481
 482        do_btree_node_write(b);
 483
 484        atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size,
 485                        &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
 486
 487        b->written += set_blocks(i, block_bytes(b->c));
 488}
 489
 490void bch_btree_node_write(struct btree *b, struct closure *parent)
 491{
 492        unsigned int nsets = b->keys.nsets;
 493
 494        lockdep_assert_held(&b->lock);
 495
 496        __bch_btree_node_write(b, parent);
 497
 498        /*
 499         * do verify if there was more than one set initially (i.e. we did a
 500         * sort) and we sorted down to a single set:
 501         */
 502        if (nsets && !b->keys.nsets)
 503                bch_btree_verify(b);
 504
 505        bch_btree_init_next(b);
 506}
 507
 508static void bch_btree_node_write_sync(struct btree *b)
 509{
 510        struct closure cl;
 511
 512        closure_init_stack(&cl);
 513
 514        mutex_lock(&b->write_lock);
 515        bch_btree_node_write(b, &cl);
 516        mutex_unlock(&b->write_lock);
 517
 518        closure_sync(&cl);
 519}
 520
 521static void btree_node_write_work(struct work_struct *w)
 522{
 523        struct btree *b = container_of(to_delayed_work(w), struct btree, work);
 524
 525        mutex_lock(&b->write_lock);
 526        if (btree_node_dirty(b))
 527                __bch_btree_node_write(b, NULL);
 528        mutex_unlock(&b->write_lock);
 529}
 530
 531static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
 532{
 533        struct bset *i = btree_bset_last(b);
 534        struct btree_write *w = btree_current_write(b);
 535
 536        lockdep_assert_held(&b->write_lock);
 537
 538        BUG_ON(!b->written);
 539        BUG_ON(!i->keys);
 540
 541        if (!btree_node_dirty(b))
 542                schedule_delayed_work(&b->work, 30 * HZ);
 543
 544        set_btree_node_dirty(b);
 545
 546        if (journal_ref) {
 547                if (w->journal &&
 548                    journal_pin_cmp(b->c, w->journal, journal_ref)) {
 549                        atomic_dec_bug(w->journal);
 550                        w->journal = NULL;
 551                }
 552
 553                if (!w->journal) {
 554                        w->journal = journal_ref;
 555                        atomic_inc(w->journal);
 556                }
 557        }
 558
 559        /* Force write if set is too big */
 560        if (set_bytes(i) > PAGE_SIZE - 48 &&
 561            !current->bio_list)
 562                bch_btree_node_write(b, NULL);
 563}
 564
 565/*
 566 * Btree in memory cache - allocation/freeing
 567 * mca -> memory cache
 568 */
 569
 570#define mca_reserve(c)  (((c->root && c->root->level)           \
 571                          ? c->root->level : 1) * 8 + 16)
 572#define mca_can_free(c)                                         \
 573        max_t(int, 0, c->btree_cache_used - mca_reserve(c))
 574
 575static void mca_data_free(struct btree *b)
 576{
 577        BUG_ON(b->io_mutex.count != 1);
 578
 579        bch_btree_keys_free(&b->keys);
 580
 581        b->c->btree_cache_used--;
 582        list_move(&b->list, &b->c->btree_cache_freed);
 583}
 584
 585static void mca_bucket_free(struct btree *b)
 586{
 587        BUG_ON(btree_node_dirty(b));
 588
 589        b->key.ptr[0] = 0;
 590        hlist_del_init_rcu(&b->hash);
 591        list_move(&b->list, &b->c->btree_cache_freeable);
 592}
 593
 594static unsigned int btree_order(struct bkey *k)
 595{
 596        return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
 597}
 598
 599static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
 600{
 601        if (!bch_btree_keys_alloc(&b->keys,
 602                                  max_t(unsigned int,
 603                                        ilog2(b->c->btree_pages),
 604                                        btree_order(k)),
 605                                  gfp)) {
 606                b->c->btree_cache_used++;
 607                list_move(&b->list, &b->c->btree_cache);
 608        } else {
 609                list_move(&b->list, &b->c->btree_cache_freed);
 610        }
 611}
 612
 613static struct btree *mca_bucket_alloc(struct cache_set *c,
 614                                      struct bkey *k, gfp_t gfp)
 615{
 616        /*
 617         * kzalloc() is necessary here for initialization,
 618         * see code comments in bch_btree_keys_init().
 619         */
 620        struct btree *b = kzalloc(sizeof(struct btree), gfp);
 621
 622        if (!b)
 623                return NULL;
 624
 625        init_rwsem(&b->lock);
 626        lockdep_set_novalidate_class(&b->lock);
 627        mutex_init(&b->write_lock);
 628        lockdep_set_novalidate_class(&b->write_lock);
 629        INIT_LIST_HEAD(&b->list);
 630        INIT_DELAYED_WORK(&b->work, btree_node_write_work);
 631        b->c = c;
 632        sema_init(&b->io_mutex, 1);
 633
 634        mca_data_alloc(b, k, gfp);
 635        return b;
 636}
 637
 638static int mca_reap(struct btree *b, unsigned int min_order, bool flush)
 639{
 640        struct closure cl;
 641
 642        closure_init_stack(&cl);
 643        lockdep_assert_held(&b->c->bucket_lock);
 644
 645        if (!down_write_trylock(&b->lock))
 646                return -ENOMEM;
 647
 648        BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
 649
 650        if (b->keys.page_order < min_order)
 651                goto out_unlock;
 652
 653        if (!flush) {
 654                if (btree_node_dirty(b))
 655                        goto out_unlock;
 656
 657                if (down_trylock(&b->io_mutex))
 658                        goto out_unlock;
 659                up(&b->io_mutex);
 660        }
 661
 662retry:
 663        /*
 664         * BTREE_NODE_dirty might be cleared in btree_flush_btree() by
 665         * __bch_btree_node_write(). To avoid an extra flush, acquire
 666         * b->write_lock before checking BTREE_NODE_dirty bit.
 667         */
 668        mutex_lock(&b->write_lock);
 669        /*
 670         * If this btree node is selected in btree_flush_write() by journal
 671         * code, delay and retry until the node is flushed by journal code
 672         * and BTREE_NODE_journal_flush bit cleared by btree_flush_write().
 673         */
 674        if (btree_node_journal_flush(b)) {
 675                pr_debug("bnode %p is flushing by journal, retry", b);
 676                mutex_unlock(&b->write_lock);
 677                udelay(1);
 678                goto retry;
 679        }
 680
 681        if (btree_node_dirty(b))
 682                __bch_btree_node_write(b, &cl);
 683        mutex_unlock(&b->write_lock);
 684
 685        closure_sync(&cl);
 686
 687        /* wait for any in flight btree write */
 688        down(&b->io_mutex);
 689        up(&b->io_mutex);
 690
 691        return 0;
 692out_unlock:
 693        rw_unlock(true, b);
 694        return -ENOMEM;
 695}
 696
 697static unsigned long bch_mca_scan(struct shrinker *shrink,
 698                                  struct shrink_control *sc)
 699{
 700        struct cache_set *c = container_of(shrink, struct cache_set, shrink);
 701        struct btree *b, *t;
 702        unsigned long i, nr = sc->nr_to_scan;
 703        unsigned long freed = 0;
 704        unsigned int btree_cache_used;
 705
 706        if (c->shrinker_disabled)
 707                return SHRINK_STOP;
 708
 709        if (c->btree_cache_alloc_lock)
 710                return SHRINK_STOP;
 711
 712        /* Return -1 if we can't do anything right now */
 713        if (sc->gfp_mask & __GFP_IO)
 714                mutex_lock(&c->bucket_lock);
 715        else if (!mutex_trylock(&c->bucket_lock))
 716                return -1;
 717
 718        /*
 719         * It's _really_ critical that we don't free too many btree nodes - we
 720         * have to always leave ourselves a reserve. The reserve is how we
 721         * guarantee that allocating memory for a new btree node can always
 722         * succeed, so that inserting keys into the btree can always succeed and
 723         * IO can always make forward progress:
 724         */
 725        nr /= c->btree_pages;
 726        nr = min_t(unsigned long, nr, mca_can_free(c));
 727
 728        i = 0;
 729        btree_cache_used = c->btree_cache_used;
 730        list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
 731                if (nr <= 0)
 732                        goto out;
 733
 734                if (++i > 3 &&
 735                    !mca_reap(b, 0, false)) {
 736                        mca_data_free(b);
 737                        rw_unlock(true, b);
 738                        freed++;
 739                }
 740                nr--;
 741        }
 742
 743        for (;  (nr--) && i < btree_cache_used; i++) {
 744                if (list_empty(&c->btree_cache))
 745                        goto out;
 746
 747                b = list_first_entry(&c->btree_cache, struct btree, list);
 748                list_rotate_left(&c->btree_cache);
 749
 750                if (!b->accessed &&
 751                    !mca_reap(b, 0, false)) {
 752                        mca_bucket_free(b);
 753                        mca_data_free(b);
 754                        rw_unlock(true, b);
 755                        freed++;
 756                } else
 757                        b->accessed = 0;
 758        }
 759out:
 760        mutex_unlock(&c->bucket_lock);
 761        return freed * c->btree_pages;
 762}
 763
 764static unsigned long bch_mca_count(struct shrinker *shrink,
 765                                   struct shrink_control *sc)
 766{
 767        struct cache_set *c = container_of(shrink, struct cache_set, shrink);
 768
 769        if (c->shrinker_disabled)
 770                return 0;
 771
 772        if (c->btree_cache_alloc_lock)
 773                return 0;
 774
 775        return mca_can_free(c) * c->btree_pages;
 776}
 777
 778void bch_btree_cache_free(struct cache_set *c)
 779{
 780        struct btree *b;
 781        struct closure cl;
 782
 783        closure_init_stack(&cl);
 784
 785        if (c->shrink.list.next)
 786                unregister_shrinker(&c->shrink);
 787
 788        mutex_lock(&c->bucket_lock);
 789
 790#ifdef CONFIG_BCACHE_DEBUG
 791        if (c->verify_data)
 792                list_move(&c->verify_data->list, &c->btree_cache);
 793
 794        free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c)));
 795#endif
 796
 797        list_splice(&c->btree_cache_freeable,
 798                    &c->btree_cache);
 799
 800        while (!list_empty(&c->btree_cache)) {
 801                b = list_first_entry(&c->btree_cache, struct btree, list);
 802
 803                /*
 804                 * This function is called by cache_set_free(), no I/O
 805                 * request on cache now, it is unnecessary to acquire
 806                 * b->write_lock before clearing BTREE_NODE_dirty anymore.
 807                 */
 808                if (btree_node_dirty(b)) {
 809                        btree_complete_write(b, btree_current_write(b));
 810                        clear_bit(BTREE_NODE_dirty, &b->flags);
 811                }
 812                mca_data_free(b);
 813        }
 814
 815        while (!list_empty(&c->btree_cache_freed)) {
 816                b = list_first_entry(&c->btree_cache_freed,
 817                                     struct btree, list);
 818                list_del(&b->list);
 819                cancel_delayed_work_sync(&b->work);
 820                kfree(b);
 821        }
 822
 823        mutex_unlock(&c->bucket_lock);
 824}
 825
 826int bch_btree_cache_alloc(struct cache_set *c)
 827{
 828        unsigned int i;
 829
 830        for (i = 0; i < mca_reserve(c); i++)
 831                if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
 832                        return -ENOMEM;
 833
 834        list_splice_init(&c->btree_cache,
 835                         &c->btree_cache_freeable);
 836
 837#ifdef CONFIG_BCACHE_DEBUG
 838        mutex_init(&c->verify_lock);
 839
 840        c->verify_ondisk = (void *)
 841                __get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c)));
 842
 843        c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
 844
 845        if (c->verify_data &&
 846            c->verify_data->keys.set->data)
 847                list_del_init(&c->verify_data->list);
 848        else
 849                c->verify_data = NULL;
 850#endif
 851
 852        c->shrink.count_objects = bch_mca_count;
 853        c->shrink.scan_objects = bch_mca_scan;
 854        c->shrink.seeks = 4;
 855        c->shrink.batch = c->btree_pages * 2;
 856
 857        if (register_shrinker(&c->shrink))
 858                pr_warn("bcache: %s: could not register shrinker",
 859                                __func__);
 860
 861        return 0;
 862}
 863
 864/* Btree in memory cache - hash table */
 865
 866static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
 867{
 868        return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
 869}
 870
 871static struct btree *mca_find(struct cache_set *c, struct bkey *k)
 872{
 873        struct btree *b;
 874
 875        rcu_read_lock();
 876        hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
 877                if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
 878                        goto out;
 879        b = NULL;
 880out:
 881        rcu_read_unlock();
 882        return b;
 883}
 884
 885static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
 886{
 887        struct task_struct *old;
 888
 889        old = cmpxchg(&c->btree_cache_alloc_lock, NULL, current);
 890        if (old && old != current) {
 891                if (op)
 892                        prepare_to_wait(&c->btree_cache_wait, &op->wait,
 893                                        TASK_UNINTERRUPTIBLE);
 894                return -EINTR;
 895        }
 896
 897        return 0;
 898}
 899
 900static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
 901                                     struct bkey *k)
 902{
 903        struct btree *b;
 904
 905        trace_bcache_btree_cache_cannibalize(c);
 906
 907        if (mca_cannibalize_lock(c, op))
 908                return ERR_PTR(-EINTR);
 909
 910        list_for_each_entry_reverse(b, &c->btree_cache, list)
 911                if (!mca_reap(b, btree_order(k), false))
 912                        return b;
 913
 914        list_for_each_entry_reverse(b, &c->btree_cache, list)
 915                if (!mca_reap(b, btree_order(k), true))
 916                        return b;
 917
 918        WARN(1, "btree cache cannibalize failed\n");
 919        return ERR_PTR(-ENOMEM);
 920}
 921
 922/*
 923 * We can only have one thread cannibalizing other cached btree nodes at a time,
 924 * or we'll deadlock. We use an open coded mutex to ensure that, which a
 925 * cannibalize_bucket() will take. This means every time we unlock the root of
 926 * the btree, we need to release this lock if we have it held.
 927 */
 928static void bch_cannibalize_unlock(struct cache_set *c)
 929{
 930        if (c->btree_cache_alloc_lock == current) {
 931                c->btree_cache_alloc_lock = NULL;
 932                wake_up(&c->btree_cache_wait);
 933        }
 934}
 935
 936static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
 937                               struct bkey *k, int level)
 938{
 939        struct btree *b;
 940
 941        BUG_ON(current->bio_list);
 942
 943        lockdep_assert_held(&c->bucket_lock);
 944
 945        if (mca_find(c, k))
 946                return NULL;
 947
 948        /* btree_free() doesn't free memory; it sticks the node on the end of
 949         * the list. Check if there's any freed nodes there:
 950         */
 951        list_for_each_entry(b, &c->btree_cache_freeable, list)
 952                if (!mca_reap(b, btree_order(k), false))
 953                        goto out;
 954
 955        /* We never free struct btree itself, just the memory that holds the on
 956         * disk node. Check the freed list before allocating a new one:
 957         */
 958        list_for_each_entry(b, &c->btree_cache_freed, list)
 959                if (!mca_reap(b, 0, false)) {
 960                        mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
 961                        if (!b->keys.set[0].data)
 962                                goto err;
 963                        else
 964                                goto out;
 965                }
 966
 967        b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
 968        if (!b)
 969                goto err;
 970
 971        BUG_ON(!down_write_trylock(&b->lock));
 972        if (!b->keys.set->data)
 973                goto err;
 974out:
 975        BUG_ON(b->io_mutex.count != 1);
 976
 977        bkey_copy(&b->key, k);
 978        list_move(&b->list, &c->btree_cache);
 979        hlist_del_init_rcu(&b->hash);
 980        hlist_add_head_rcu(&b->hash, mca_hash(c, k));
 981
 982        lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
 983        b->parent       = (void *) ~0UL;
 984        b->flags        = 0;
 985        b->written      = 0;
 986        b->level        = level;
 987
 988        if (!b->level)
 989                bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
 990                                    &b->c->expensive_debug_checks);
 991        else
 992                bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
 993                                    &b->c->expensive_debug_checks);
 994
 995        return b;
 996err:
 997        if (b)
 998                rw_unlock(true, b);
 999
1000        b = mca_cannibalize(c, op, k);
1001        if (!IS_ERR(b))
1002                goto out;
1003
1004        return b;
1005}
1006
1007/*
1008 * bch_btree_node_get - find a btree node in the cache and lock it, reading it
1009 * in from disk if necessary.
1010 *
1011 * If IO is necessary and running under generic_make_request, returns -EAGAIN.
1012 *
1013 * The btree node will have either a read or a write lock held, depending on
1014 * level and op->lock.
1015 */
1016struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
1017                                 struct bkey *k, int level, bool write,
1018                                 struct btree *parent)
1019{
1020        int i = 0;
1021        struct btree *b;
1022
1023        BUG_ON(level < 0);
1024retry:
1025        b = mca_find(c, k);
1026
1027        if (!b) {
1028                if (current->bio_list)
1029                        return ERR_PTR(-EAGAIN);
1030
1031                mutex_lock(&c->bucket_lock);
1032                b = mca_alloc(c, op, k, level);
1033                mutex_unlock(&c->bucket_lock);
1034
1035                if (!b)
1036                        goto retry;
1037                if (IS_ERR(b))
1038                        return b;
1039
1040                bch_btree_node_read(b);
1041
1042                if (!write)
1043                        downgrade_write(&b->lock);
1044        } else {
1045                rw_lock(write, b, level);
1046                if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
1047                        rw_unlock(write, b);
1048                        goto retry;
1049                }
1050                BUG_ON(b->level != level);
1051        }
1052
1053        if (btree_node_io_error(b)) {
1054                rw_unlock(write, b);
1055                return ERR_PTR(-EIO);
1056        }
1057
1058        BUG_ON(!b->written);
1059
1060        b->parent = parent;
1061        b->accessed = 1;
1062
1063        for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1064                prefetch(b->keys.set[i].tree);
1065                prefetch(b->keys.set[i].data);
1066        }
1067
1068        for (; i <= b->keys.nsets; i++)
1069                prefetch(b->keys.set[i].data);
1070
1071        return b;
1072}
1073
1074static void btree_node_prefetch(struct btree *parent, struct bkey *k)
1075{
1076        struct btree *b;
1077
1078        mutex_lock(&parent->c->bucket_lock);
1079        b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1080        mutex_unlock(&parent->c->bucket_lock);
1081
1082        if (!IS_ERR_OR_NULL(b)) {
1083                b->parent = parent;
1084                bch_btree_node_read(b);
1085                rw_unlock(true, b);
1086        }
1087}
1088
1089/* Btree alloc */
1090
1091static void btree_node_free(struct btree *b)
1092{
1093        trace_bcache_btree_node_free(b);
1094
1095        BUG_ON(b == b->c->root);
1096
1097retry:
1098        mutex_lock(&b->write_lock);
1099        /*
1100         * If the btree node is selected and flushing in btree_flush_write(),
1101         * delay and retry until the BTREE_NODE_journal_flush bit cleared,
1102         * then it is safe to free the btree node here. Otherwise this btree
1103         * node will be in race condition.
1104         */
1105        if (btree_node_journal_flush(b)) {
1106                mutex_unlock(&b->write_lock);
1107                pr_debug("bnode %p journal_flush set, retry", b);
1108                udelay(1);
1109                goto retry;
1110        }
1111
1112        if (btree_node_dirty(b)) {
1113                btree_complete_write(b, btree_current_write(b));
1114                clear_bit(BTREE_NODE_dirty, &b->flags);
1115        }
1116
1117        mutex_unlock(&b->write_lock);
1118
1119        cancel_delayed_work(&b->work);
1120
1121        mutex_lock(&b->c->bucket_lock);
1122        bch_bucket_free(b->c, &b->key);
1123        mca_bucket_free(b);
1124        mutex_unlock(&b->c->bucket_lock);
1125}
1126
1127struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1128                                     int level, bool wait,
1129                                     struct btree *parent)
1130{
1131        BKEY_PADDED(key) k;
1132        struct btree *b = ERR_PTR(-EAGAIN);
1133
1134        mutex_lock(&c->bucket_lock);
1135retry:
1136        if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait))
1137                goto err;
1138
1139        bkey_put(c, &k.key);
1140        SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1141
1142        b = mca_alloc(c, op, &k.key, level);
1143        if (IS_ERR(b))
1144                goto err_free;
1145
1146        if (!b) {
1147                cache_bug(c,
1148                        "Tried to allocate bucket that was in btree cache");
1149                goto retry;
1150        }
1151
1152        b->accessed = 1;
1153        b->parent = parent;
1154        bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb));
1155
1156        mutex_unlock(&c->bucket_lock);
1157
1158        trace_bcache_btree_node_alloc(b);
1159        return b;
1160err_free:
1161        bch_bucket_free(c, &k.key);
1162err:
1163        mutex_unlock(&c->bucket_lock);
1164
1165        trace_bcache_btree_node_alloc_fail(c);
1166        return b;
1167}
1168
1169static struct btree *bch_btree_node_alloc(struct cache_set *c,
1170                                          struct btree_op *op, int level,
1171                                          struct btree *parent)
1172{
1173        return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
1174}
1175
1176static struct btree *btree_node_alloc_replacement(struct btree *b,
1177                                                  struct btree_op *op)
1178{
1179        struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1180
1181        if (!IS_ERR_OR_NULL(n)) {
1182                mutex_lock(&n->write_lock);
1183                bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1184                bkey_copy_key(&n->key, &b->key);
1185                mutex_unlock(&n->write_lock);
1186        }
1187
1188        return n;
1189}
1190
1191static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1192{
1193        unsigned int i;
1194
1195        mutex_lock(&b->c->bucket_lock);
1196
1197        atomic_inc(&b->c->prio_blocked);
1198
1199        bkey_copy(k, &b->key);
1200        bkey_copy_key(k, &ZERO_KEY);
1201
1202        for (i = 0; i < KEY_PTRS(k); i++)
1203                SET_PTR_GEN(k, i,
1204                            bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
1205                                        PTR_BUCKET(b->c, &b->key, i)));
1206
1207        mutex_unlock(&b->c->bucket_lock);
1208}
1209
1210static int btree_check_reserve(struct btree *b, struct btree_op *op)
1211{
1212        struct cache_set *c = b->c;
1213        struct cache *ca;
1214        unsigned int i, reserve = (c->root->level - b->level) * 2 + 1;
1215
1216        mutex_lock(&c->bucket_lock);
1217
1218        for_each_cache(ca, c, i)
1219                if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1220                        if (op)
1221                                prepare_to_wait(&c->btree_cache_wait, &op->wait,
1222                                                TASK_UNINTERRUPTIBLE);
1223                        mutex_unlock(&c->bucket_lock);
1224                        return -EINTR;
1225                }
1226
1227        mutex_unlock(&c->bucket_lock);
1228
1229        return mca_cannibalize_lock(b->c, op);
1230}
1231
1232/* Garbage collection */
1233
1234static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1235                                    struct bkey *k)
1236{
1237        uint8_t stale = 0;
1238        unsigned int i;
1239        struct bucket *g;
1240
1241        /*
1242         * ptr_invalid() can't return true for the keys that mark btree nodes as
1243         * freed, but since ptr_bad() returns true we'll never actually use them
1244         * for anything and thus we don't want mark their pointers here
1245         */
1246        if (!bkey_cmp(k, &ZERO_KEY))
1247                return stale;
1248
1249        for (i = 0; i < KEY_PTRS(k); i++) {
1250                if (!ptr_available(c, k, i))
1251                        continue;
1252
1253                g = PTR_BUCKET(c, k, i);
1254
1255                if (gen_after(g->last_gc, PTR_GEN(k, i)))
1256                        g->last_gc = PTR_GEN(k, i);
1257
1258                if (ptr_stale(c, k, i)) {
1259                        stale = max(stale, ptr_stale(c, k, i));
1260                        continue;
1261                }
1262
1263                cache_bug_on(GC_MARK(g) &&
1264                             (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1265                             c, "inconsistent ptrs: mark = %llu, level = %i",
1266                             GC_MARK(g), level);
1267
1268                if (level)
1269                        SET_GC_MARK(g, GC_MARK_METADATA);
1270                else if (KEY_DIRTY(k))
1271                        SET_GC_MARK(g, GC_MARK_DIRTY);
1272                else if (!GC_MARK(g))
1273                        SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
1274
1275                /* guard against overflow */
1276                SET_GC_SECTORS_USED(g, min_t(unsigned int,
1277                                             GC_SECTORS_USED(g) + KEY_SIZE(k),
1278                                             MAX_GC_SECTORS_USED));
1279
1280                BUG_ON(!GC_SECTORS_USED(g));
1281        }
1282
1283        return stale;
1284}
1285
1286#define btree_mark_key(b, k)    __bch_btree_mark_key(b->c, b->level, k)
1287
1288void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1289{
1290        unsigned int i;
1291
1292        for (i = 0; i < KEY_PTRS(k); i++)
1293                if (ptr_available(c, k, i) &&
1294                    !ptr_stale(c, k, i)) {
1295                        struct bucket *b = PTR_BUCKET(c, k, i);
1296
1297                        b->gen = PTR_GEN(k, i);
1298
1299                        if (level && bkey_cmp(k, &ZERO_KEY))
1300                                b->prio = BTREE_PRIO;
1301                        else if (!level && b->prio == BTREE_PRIO)
1302                                b->prio = INITIAL_PRIO;
1303                }
1304
1305        __bch_btree_mark_key(c, level, k);
1306}
1307
1308void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats)
1309{
1310        stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets;
1311}
1312
1313static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1314{
1315        uint8_t stale = 0;
1316        unsigned int keys = 0, good_keys = 0;
1317        struct bkey *k;
1318        struct btree_iter iter;
1319        struct bset_tree *t;
1320
1321        gc->nodes++;
1322
1323        for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1324                stale = max(stale, btree_mark_key(b, k));
1325                keys++;
1326
1327                if (bch_ptr_bad(&b->keys, k))
1328                        continue;
1329
1330                gc->key_bytes += bkey_u64s(k);
1331                gc->nkeys++;
1332                good_keys++;
1333
1334                gc->data += KEY_SIZE(k);
1335        }
1336
1337        for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1338                btree_bug_on(t->size &&
1339                             bset_written(&b->keys, t) &&
1340                             bkey_cmp(&b->key, &t->end) < 0,
1341                             b, "found short btree key in gc");
1342
1343        if (b->c->gc_always_rewrite)
1344                return true;
1345
1346        if (stale > 10)
1347                return true;
1348
1349        if ((keys - good_keys) * 2 > keys)
1350                return true;
1351
1352        return false;
1353}
1354
1355#define GC_MERGE_NODES  4U
1356
1357struct gc_merge_info {
1358        struct btree    *b;
1359        unsigned int    keys;
1360};
1361
1362static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
1363                                 struct keylist *insert_keys,
1364                                 atomic_t *journal_ref,
1365                                 struct bkey *replace_key);
1366
1367static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1368                             struct gc_stat *gc, struct gc_merge_info *r)
1369{
1370        unsigned int i, nodes = 0, keys = 0, blocks;
1371        struct btree *new_nodes[GC_MERGE_NODES];
1372        struct keylist keylist;
1373        struct closure cl;
1374        struct bkey *k;
1375
1376        bch_keylist_init(&keylist);
1377
1378        if (btree_check_reserve(b, NULL))
1379                return 0;
1380
1381        memset(new_nodes, 0, sizeof(new_nodes));
1382        closure_init_stack(&cl);
1383
1384        while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
1385                keys += r[nodes++].keys;
1386
1387        blocks = btree_default_blocks(b->c) * 2 / 3;
1388
1389        if (nodes < 2 ||
1390            __set_blocks(b->keys.set[0].data, keys,
1391                         block_bytes(b->c)) > blocks * (nodes - 1))
1392                return 0;
1393
1394        for (i = 0; i < nodes; i++) {
1395                new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
1396                if (IS_ERR_OR_NULL(new_nodes[i]))
1397                        goto out_nocoalesce;
1398        }
1399
1400        /*
1401         * We have to check the reserve here, after we've allocated our new
1402         * nodes, to make sure the insert below will succeed - we also check
1403         * before as an optimization to potentially avoid a bunch of expensive
1404         * allocs/sorts
1405         */
1406        if (btree_check_reserve(b, NULL))
1407                goto out_nocoalesce;
1408
1409        for (i = 0; i < nodes; i++)
1410                mutex_lock(&new_nodes[i]->write_lock);
1411
1412        for (i = nodes - 1; i > 0; --i) {
1413                struct bset *n1 = btree_bset_first(new_nodes[i]);
1414                struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1415                struct bkey *k, *last = NULL;
1416
1417                keys = 0;
1418
1419                if (i > 1) {
1420                        for (k = n2->start;
1421                             k < bset_bkey_last(n2);
1422                             k = bkey_next(k)) {
1423                                if (__set_blocks(n1, n1->keys + keys +
1424                                                 bkey_u64s(k),
1425                                                 block_bytes(b->c)) > blocks)
1426                                        break;
1427
1428                                last = k;
1429                                keys += bkey_u64s(k);
1430                        }
1431                } else {
1432                        /*
1433                         * Last node we're not getting rid of - we're getting
1434                         * rid of the node at r[0]. Have to try and fit all of
1435                         * the remaining keys into this node; we can't ensure
1436                         * they will always fit due to rounding and variable
1437                         * length keys (shouldn't be possible in practice,
1438                         * though)
1439                         */
1440                        if (__set_blocks(n1, n1->keys + n2->keys,
1441                                         block_bytes(b->c)) >
1442                            btree_blocks(new_nodes[i]))
1443                                goto out_nocoalesce;
1444
1445                        keys = n2->keys;
1446                        /* Take the key of the node we're getting rid of */
1447                        last = &r->b->key;
1448                }
1449
1450                BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) >
1451                       btree_blocks(new_nodes[i]));
1452
1453                if (last)
1454                        bkey_copy_key(&new_nodes[i]->key, last);
1455
1456                memcpy(bset_bkey_last(n1),
1457                       n2->start,
1458                       (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1459
1460                n1->keys += keys;
1461                r[i].keys = n1->keys;
1462
1463                memmove(n2->start,
1464                        bset_bkey_idx(n2, keys),
1465                        (void *) bset_bkey_last(n2) -
1466                        (void *) bset_bkey_idx(n2, keys));
1467
1468                n2->keys -= keys;
1469
1470                if (__bch_keylist_realloc(&keylist,
1471                                          bkey_u64s(&new_nodes[i]->key)))
1472                        goto out_nocoalesce;
1473
1474                bch_btree_node_write(new_nodes[i], &cl);
1475                bch_keylist_add(&keylist, &new_nodes[i]->key);
1476        }
1477
1478        for (i = 0; i < nodes; i++)
1479                mutex_unlock(&new_nodes[i]->write_lock);
1480
1481        closure_sync(&cl);
1482
1483        /* We emptied out this node */
1484        BUG_ON(btree_bset_first(new_nodes[0])->keys);
1485        btree_node_free(new_nodes[0]);
1486        rw_unlock(true, new_nodes[0]);
1487        new_nodes[0] = NULL;
1488
1489        for (i = 0; i < nodes; i++) {
1490                if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
1491                        goto out_nocoalesce;
1492
1493                make_btree_freeing_key(r[i].b, keylist.top);
1494                bch_keylist_push(&keylist);
1495        }
1496
1497        bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1498        BUG_ON(!bch_keylist_empty(&keylist));
1499
1500        for (i = 0; i < nodes; i++) {
1501                btree_node_free(r[i].b);
1502                rw_unlock(true, r[i].b);
1503
1504                r[i].b = new_nodes[i];
1505        }
1506
1507        memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1508        r[nodes - 1].b = ERR_PTR(-EINTR);
1509
1510        trace_bcache_btree_gc_coalesce(nodes);
1511        gc->nodes--;
1512
1513        bch_keylist_free(&keylist);
1514
1515        /* Invalidated our iterator */
1516        return -EINTR;
1517
1518out_nocoalesce:
1519        closure_sync(&cl);
1520
1521        while ((k = bch_keylist_pop(&keylist)))
1522                if (!bkey_cmp(k, &ZERO_KEY))
1523                        atomic_dec(&b->c->prio_blocked);
1524        bch_keylist_free(&keylist);
1525
1526        for (i = 0; i < nodes; i++)
1527                if (!IS_ERR_OR_NULL(new_nodes[i])) {
1528                        btree_node_free(new_nodes[i]);
1529                        rw_unlock(true, new_nodes[i]);
1530                }
1531        return 0;
1532}
1533
1534static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1535                                 struct btree *replace)
1536{
1537        struct keylist keys;
1538        struct btree *n;
1539
1540        if (btree_check_reserve(b, NULL))
1541                return 0;
1542
1543        n = btree_node_alloc_replacement(replace, NULL);
1544
1545        /* recheck reserve after allocating replacement node */
1546        if (btree_check_reserve(b, NULL)) {
1547                btree_node_free(n);
1548                rw_unlock(true, n);
1549                return 0;
1550        }
1551
1552        bch_btree_node_write_sync(n);
1553
1554        bch_keylist_init(&keys);
1555        bch_keylist_add(&keys, &n->key);
1556
1557        make_btree_freeing_key(replace, keys.top);
1558        bch_keylist_push(&keys);
1559
1560        bch_btree_insert_node(b, op, &keys, NULL, NULL);
1561        BUG_ON(!bch_keylist_empty(&keys));
1562
1563        btree_node_free(replace);
1564        rw_unlock(true, n);
1565
1566        /* Invalidated our iterator */
1567        return -EINTR;
1568}
1569
1570static unsigned int btree_gc_count_keys(struct btree *b)
1571{
1572        struct bkey *k;
1573        struct btree_iter iter;
1574        unsigned int ret = 0;
1575
1576        for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1577                ret += bkey_u64s(k);
1578
1579        return ret;
1580}
1581
1582static size_t btree_gc_min_nodes(struct cache_set *c)
1583{
1584        size_t min_nodes;
1585
1586        /*
1587         * Since incremental GC would stop 100ms when front
1588         * side I/O comes, so when there are many btree nodes,
1589         * if GC only processes constant (100) nodes each time,
1590         * GC would last a long time, and the front side I/Os
1591         * would run out of the buckets (since no new bucket
1592         * can be allocated during GC), and be blocked again.
1593         * So GC should not process constant nodes, but varied
1594         * nodes according to the number of btree nodes, which
1595         * realized by dividing GC into constant(100) times,
1596         * so when there are many btree nodes, GC can process
1597         * more nodes each time, otherwise, GC will process less
1598         * nodes each time (but no less than MIN_GC_NODES)
1599         */
1600        min_nodes = c->gc_stats.nodes / MAX_GC_TIMES;
1601        if (min_nodes < MIN_GC_NODES)
1602                min_nodes = MIN_GC_NODES;
1603
1604        return min_nodes;
1605}
1606
1607
1608static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1609                            struct closure *writes, struct gc_stat *gc)
1610{
1611        int ret = 0;
1612        bool should_rewrite;
1613        struct bkey *k;
1614        struct btree_iter iter;
1615        struct gc_merge_info r[GC_MERGE_NODES];
1616        struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1617
1618        bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
1619
1620        for (i = r; i < r + ARRAY_SIZE(r); i++)
1621                i->b = ERR_PTR(-EINTR);
1622
1623        while (1) {
1624                k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
1625                if (k) {
1626                        r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
1627                                                  true, b);
1628                        if (IS_ERR(r->b)) {
1629                                ret = PTR_ERR(r->b);
1630                                break;
1631                        }
1632
1633                        r->keys = btree_gc_count_keys(r->b);
1634
1635                        ret = btree_gc_coalesce(b, op, gc, r);
1636                        if (ret)
1637                                break;
1638                }
1639
1640                if (!last->b)
1641                        break;
1642
1643                if (!IS_ERR(last->b)) {
1644                        should_rewrite = btree_gc_mark_node(last->b, gc);
1645                        if (should_rewrite) {
1646                                ret = btree_gc_rewrite_node(b, op, last->b);
1647                                if (ret)
1648                                        break;
1649                        }
1650
1651                        if (last->b->level) {
1652                                ret = btree_gc_recurse(last->b, op, writes, gc);
1653                                if (ret)
1654                                        break;
1655                        }
1656
1657                        bkey_copy_key(&b->c->gc_done, &last->b->key);
1658
1659                        /*
1660                         * Must flush leaf nodes before gc ends, since replace
1661                         * operations aren't journalled
1662                         */
1663                        mutex_lock(&last->b->write_lock);
1664                        if (btree_node_dirty(last->b))
1665                                bch_btree_node_write(last->b, writes);
1666                        mutex_unlock(&last->b->write_lock);
1667                        rw_unlock(true, last->b);
1668                }
1669
1670                memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1671                r->b = NULL;
1672
1673                if (atomic_read(&b->c->search_inflight) &&
1674                    gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) {
1675                        gc->nodes_pre =  gc->nodes;
1676                        ret = -EAGAIN;
1677                        break;
1678                }
1679
1680                if (need_resched()) {
1681                        ret = -EAGAIN;
1682                        break;
1683                }
1684        }
1685
1686        for (i = r; i < r + ARRAY_SIZE(r); i++)
1687                if (!IS_ERR_OR_NULL(i->b)) {
1688                        mutex_lock(&i->b->write_lock);
1689                        if (btree_node_dirty(i->b))
1690                                bch_btree_node_write(i->b, writes);
1691                        mutex_unlock(&i->b->write_lock);
1692                        rw_unlock(true, i->b);
1693                }
1694
1695        return ret;
1696}
1697
1698static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1699                             struct closure *writes, struct gc_stat *gc)
1700{
1701        struct btree *n = NULL;
1702        int ret = 0;
1703        bool should_rewrite;
1704
1705        should_rewrite = btree_gc_mark_node(b, gc);
1706        if (should_rewrite) {
1707                n = btree_node_alloc_replacement(b, NULL);
1708
1709                if (!IS_ERR_OR_NULL(n)) {
1710                        bch_btree_node_write_sync(n);
1711
1712                        bch_btree_set_root(n);
1713                        btree_node_free(b);
1714                        rw_unlock(true, n);
1715
1716                        return -EINTR;
1717                }
1718        }
1719
1720        __bch_btree_mark_key(b->c, b->level + 1, &b->key);
1721
1722        if (b->level) {
1723                ret = btree_gc_recurse(b, op, writes, gc);
1724                if (ret)
1725                        return ret;
1726        }
1727
1728        bkey_copy_key(&b->c->gc_done, &b->key);
1729
1730        return ret;
1731}
1732
1733static void btree_gc_start(struct cache_set *c)
1734{
1735        struct cache *ca;
1736        struct bucket *b;
1737        unsigned int i;
1738
1739        if (!c->gc_mark_valid)
1740                return;
1741
1742        mutex_lock(&c->bucket_lock);
1743
1744        c->gc_mark_valid = 0;
1745        c->gc_done = ZERO_KEY;
1746
1747        for_each_cache(ca, c, i)
1748                for_each_bucket(b, ca) {
1749                        b->last_gc = b->gen;
1750                        if (!atomic_read(&b->pin)) {
1751                                SET_GC_MARK(b, 0);
1752                                SET_GC_SECTORS_USED(b, 0);
1753                        }
1754                }
1755
1756        mutex_unlock(&c->bucket_lock);
1757}
1758
1759static void bch_btree_gc_finish(struct cache_set *c)
1760{
1761        struct bucket *b;
1762        struct cache *ca;
1763        unsigned int i;
1764
1765        mutex_lock(&c->bucket_lock);
1766
1767        set_gc_sectors(c);
1768        c->gc_mark_valid = 1;
1769        c->need_gc      = 0;
1770
1771        for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1772                SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1773                            GC_MARK_METADATA);
1774
1775        /* don't reclaim buckets to which writeback keys point */
1776        rcu_read_lock();
1777        for (i = 0; i < c->devices_max_used; i++) {
1778                struct bcache_device *d = c->devices[i];
1779                struct cached_dev *dc;
1780                struct keybuf_key *w, *n;
1781                unsigned int j;
1782
1783                if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1784                        continue;
1785                dc = container_of(d, struct cached_dev, disk);
1786
1787                spin_lock(&dc->writeback_keys.lock);
1788                rbtree_postorder_for_each_entry_safe(w, n,
1789                                        &dc->writeback_keys.keys, node)
1790                        for (j = 0; j < KEY_PTRS(&w->key); j++)
1791                                SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1792                                            GC_MARK_DIRTY);
1793                spin_unlock(&dc->writeback_keys.lock);
1794        }
1795        rcu_read_unlock();
1796
1797        c->avail_nbuckets = 0;
1798        for_each_cache(ca, c, i) {
1799                uint64_t *i;
1800
1801                ca->invalidate_needs_gc = 0;
1802
1803                for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
1804                        SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1805
1806                for (i = ca->prio_buckets;
1807                     i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
1808                        SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1809
1810                for_each_bucket(b, ca) {
1811                        c->need_gc      = max(c->need_gc, bucket_gc_gen(b));
1812
1813                        if (atomic_read(&b->pin))
1814                                continue;
1815
1816                        BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1817
1818                        if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
1819                                c->avail_nbuckets++;
1820                }
1821        }
1822
1823        mutex_unlock(&c->bucket_lock);
1824}
1825
1826static void bch_btree_gc(struct cache_set *c)
1827{
1828        int ret;
1829        struct gc_stat stats;
1830        struct closure writes;
1831        struct btree_op op;
1832        uint64_t start_time = local_clock();
1833
1834        trace_bcache_gc_start(c);
1835
1836        memset(&stats, 0, sizeof(struct gc_stat));
1837        closure_init_stack(&writes);
1838        bch_btree_op_init(&op, SHRT_MAX);
1839
1840        btree_gc_start(c);
1841
1842        /* if CACHE_SET_IO_DISABLE set, gc thread should stop too */
1843        do {
1844                ret = btree_root(gc_root, c, &op, &writes, &stats);
1845                closure_sync(&writes);
1846                cond_resched();
1847
1848                if (ret == -EAGAIN)
1849                        schedule_timeout_interruptible(msecs_to_jiffies
1850                                                       (GC_SLEEP_MS));
1851                else if (ret)
1852                        pr_warn("gc failed!");
1853        } while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags));
1854
1855        bch_btree_gc_finish(c);
1856        wake_up_allocators(c);
1857
1858        bch_time_stats_update(&c->btree_gc_time, start_time);
1859
1860        stats.key_bytes *= sizeof(uint64_t);
1861        stats.data      <<= 9;
1862        bch_update_bucket_in_use(c, &stats);
1863        memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1864
1865        trace_bcache_gc_end(c);
1866
1867        bch_moving_gc(c);
1868}
1869
1870static bool gc_should_run(struct cache_set *c)
1871{
1872        struct cache *ca;
1873        unsigned int i;
1874
1875        for_each_cache(ca, c, i)
1876                if (ca->invalidate_needs_gc)
1877                        return true;
1878
1879        if (atomic_read(&c->sectors_to_gc) < 0)
1880                return true;
1881
1882        return false;
1883}
1884
1885static int bch_gc_thread(void *arg)
1886{
1887        struct cache_set *c = arg;
1888
1889        while (1) {
1890                wait_event_interruptible(c->gc_wait,
1891                           kthread_should_stop() ||
1892                           test_bit(CACHE_SET_IO_DISABLE, &c->flags) ||
1893                           gc_should_run(c));
1894
1895                if (kthread_should_stop() ||
1896                    test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1897                        break;
1898
1899                set_gc_sectors(c);
1900                bch_btree_gc(c);
1901        }
1902
1903        wait_for_kthread_stop();
1904        return 0;
1905}
1906
1907int bch_gc_thread_start(struct cache_set *c)
1908{
1909        c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
1910        return PTR_ERR_OR_ZERO(c->gc_thread);
1911}
1912
1913/* Initial partial gc */
1914
1915static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1916{
1917        int ret = 0;
1918        struct bkey *k, *p = NULL;
1919        struct btree_iter iter;
1920
1921        for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1922                bch_initial_mark_key(b->c, b->level, k);
1923
1924        bch_initial_mark_key(b->c, b->level + 1, &b->key);
1925
1926        if (b->level) {
1927                bch_btree_iter_init(&b->keys, &iter, NULL);
1928
1929                do {
1930                        k = bch_btree_iter_next_filter(&iter, &b->keys,
1931                                                       bch_ptr_bad);
1932                        if (k) {
1933                                btree_node_prefetch(b, k);
1934                                /*
1935                                 * initiallize c->gc_stats.nodes
1936                                 * for incremental GC
1937                                 */
1938                                b->c->gc_stats.nodes++;
1939                        }
1940
1941                        if (p)
1942                                ret = btree(check_recurse, p, b, op);
1943
1944                        p = k;
1945                } while (p && !ret);
1946        }
1947
1948        return ret;
1949}
1950
1951int bch_btree_check(struct cache_set *c)
1952{
1953        struct btree_op op;
1954
1955        bch_btree_op_init(&op, SHRT_MAX);
1956
1957        return btree_root(check_recurse, c, &op);
1958}
1959
1960void bch_initial_gc_finish(struct cache_set *c)
1961{
1962        struct cache *ca;
1963        struct bucket *b;
1964        unsigned int i;
1965
1966        bch_btree_gc_finish(c);
1967
1968        mutex_lock(&c->bucket_lock);
1969
1970        /*
1971         * We need to put some unused buckets directly on the prio freelist in
1972         * order to get the allocator thread started - it needs freed buckets in
1973         * order to rewrite the prios and gens, and it needs to rewrite prios
1974         * and gens in order to free buckets.
1975         *
1976         * This is only safe for buckets that have no live data in them, which
1977         * there should always be some of.
1978         */
1979        for_each_cache(ca, c, i) {
1980                for_each_bucket(b, ca) {
1981                        if (fifo_full(&ca->free[RESERVE_PRIO]) &&
1982                            fifo_full(&ca->free[RESERVE_BTREE]))
1983                                break;
1984
1985                        if (bch_can_invalidate_bucket(ca, b) &&
1986                            !GC_MARK(b)) {
1987                                __bch_invalidate_one_bucket(ca, b);
1988                                if (!fifo_push(&ca->free[RESERVE_PRIO],
1989                                   b - ca->buckets))
1990                                        fifo_push(&ca->free[RESERVE_BTREE],
1991                                                  b - ca->buckets);
1992                        }
1993                }
1994        }
1995
1996        mutex_unlock(&c->bucket_lock);
1997}
1998
1999/* Btree insertion */
2000
2001static bool btree_insert_key(struct btree *b, struct bkey *k,
2002                             struct bkey *replace_key)
2003{
2004        unsigned int status;
2005
2006        BUG_ON(bkey_cmp(k, &b->key) > 0);
2007
2008        status = bch_btree_insert_key(&b->keys, k, replace_key);
2009        if (status != BTREE_INSERT_STATUS_NO_INSERT) {
2010                bch_check_keys(&b->keys, "%u for %s", status,
2011                               replace_key ? "replace" : "insert");
2012
2013                trace_bcache_btree_insert_key(b, k, replace_key != NULL,
2014                                              status);
2015                return true;
2016        } else
2017                return false;
2018}
2019
2020static size_t insert_u64s_remaining(struct btree *b)
2021{
2022        long ret = bch_btree_keys_u64s_remaining(&b->keys);
2023
2024        /*
2025         * Might land in the middle of an existing extent and have to split it
2026         */
2027        if (b->keys.ops->is_extents)
2028                ret -= KEY_MAX_U64S;
2029
2030        return max(ret, 0L);
2031}
2032
2033static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
2034                                  struct keylist *insert_keys,
2035                                  struct bkey *replace_key)
2036{
2037        bool ret = false;
2038        int oldsize = bch_count_data(&b->keys);
2039
2040        while (!bch_keylist_empty(insert_keys)) {
2041                struct bkey *k = insert_keys->keys;
2042
2043                if (bkey_u64s(k) > insert_u64s_remaining(b))
2044                        break;
2045
2046                if (bkey_cmp(k, &b->key) <= 0) {
2047                        if (!b->level)
2048                                bkey_put(b->c, k);
2049
2050                        ret |= btree_insert_key(b, k, replace_key);
2051                        bch_keylist_pop_front(insert_keys);
2052                } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
2053                        BKEY_PADDED(key) temp;
2054                        bkey_copy(&temp.key, insert_keys->keys);
2055
2056                        bch_cut_back(&b->key, &temp.key);
2057                        bch_cut_front(&b->key, insert_keys->keys);
2058
2059                        ret |= btree_insert_key(b, &temp.key, replace_key);
2060                        break;
2061                } else {
2062                        break;
2063                }
2064        }
2065
2066        if (!ret)
2067                op->insert_collision = true;
2068
2069        BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
2070
2071        BUG_ON(bch_count_data(&b->keys) < oldsize);
2072        return ret;
2073}
2074
2075static int btree_split(struct btree *b, struct btree_op *op,
2076                       struct keylist *insert_keys,
2077                       struct bkey *replace_key)
2078{
2079        bool split;
2080        struct btree *n1, *n2 = NULL, *n3 = NULL;
2081        uint64_t start_time = local_clock();
2082        struct closure cl;
2083        struct keylist parent_keys;
2084
2085        closure_init_stack(&cl);
2086        bch_keylist_init(&parent_keys);
2087
2088        if (btree_check_reserve(b, op)) {
2089                if (!b->level)
2090                        return -EINTR;
2091                else
2092                        WARN(1, "insufficient reserve for split\n");
2093        }
2094
2095        n1 = btree_node_alloc_replacement(b, op);
2096        if (IS_ERR(n1))
2097                goto err;
2098
2099        split = set_blocks(btree_bset_first(n1),
2100                           block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5;
2101
2102        if (split) {
2103                unsigned int keys = 0;
2104
2105                trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
2106
2107                n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
2108                if (IS_ERR(n2))
2109                        goto err_free1;
2110
2111                if (!b->parent) {
2112                        n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
2113                        if (IS_ERR(n3))
2114                                goto err_free2;
2115                }
2116
2117                mutex_lock(&n1->write_lock);
2118                mutex_lock(&n2->write_lock);
2119
2120                bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2121
2122                /*
2123                 * Has to be a linear search because we don't have an auxiliary
2124                 * search tree yet
2125                 */
2126
2127                while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2128                        keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
2129                                                        keys));
2130
2131                bkey_copy_key(&n1->key,
2132                              bset_bkey_idx(btree_bset_first(n1), keys));
2133                keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
2134
2135                btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2136                btree_bset_first(n1)->keys = keys;
2137
2138                memcpy(btree_bset_first(n2)->start,
2139                       bset_bkey_last(btree_bset_first(n1)),
2140                       btree_bset_first(n2)->keys * sizeof(uint64_t));
2141
2142                bkey_copy_key(&n2->key, &b->key);
2143
2144                bch_keylist_add(&parent_keys, &n2->key);
2145                bch_btree_node_write(n2, &cl);
2146                mutex_unlock(&n2->write_lock);
2147                rw_unlock(true, n2);
2148        } else {
2149                trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
2150
2151                mutex_lock(&n1->write_lock);
2152                bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2153        }
2154
2155        bch_keylist_add(&parent_keys, &n1->key);
2156        bch_btree_node_write(n1, &cl);
2157        mutex_unlock(&n1->write_lock);
2158
2159        if (n3) {
2160                /* Depth increases, make a new root */
2161                mutex_lock(&n3->write_lock);
2162                bkey_copy_key(&n3->key, &MAX_KEY);
2163                bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2164                bch_btree_node_write(n3, &cl);
2165                mutex_unlock(&n3->write_lock);
2166
2167                closure_sync(&cl);
2168                bch_btree_set_root(n3);
2169                rw_unlock(true, n3);
2170        } else if (!b->parent) {
2171                /* Root filled up but didn't need to be split */
2172                closure_sync(&cl);
2173                bch_btree_set_root(n1);
2174        } else {
2175                /* Split a non root node */
2176                closure_sync(&cl);
2177                make_btree_freeing_key(b, parent_keys.top);
2178                bch_keylist_push(&parent_keys);
2179
2180                bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2181                BUG_ON(!bch_keylist_empty(&parent_keys));
2182        }
2183
2184        btree_node_free(b);
2185        rw_unlock(true, n1);
2186
2187        bch_time_stats_update(&b->c->btree_split_time, start_time);
2188
2189        return 0;
2190err_free2:
2191        bkey_put(b->c, &n2->key);
2192        btree_node_free(n2);
2193        rw_unlock(true, n2);
2194err_free1:
2195        bkey_put(b->c, &n1->key);
2196        btree_node_free(n1);
2197        rw_unlock(true, n1);
2198err:
2199        WARN(1, "bcache: btree split failed (level %u)", b->level);
2200
2201        if (n3 == ERR_PTR(-EAGAIN) ||
2202            n2 == ERR_PTR(-EAGAIN) ||
2203            n1 == ERR_PTR(-EAGAIN))
2204                return -EAGAIN;
2205
2206        return -ENOMEM;
2207}
2208
2209static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2210                                 struct keylist *insert_keys,
2211                                 atomic_t *journal_ref,
2212                                 struct bkey *replace_key)
2213{
2214        struct closure cl;
2215
2216        BUG_ON(b->level && replace_key);
2217
2218        closure_init_stack(&cl);
2219
2220        mutex_lock(&b->write_lock);
2221
2222        if (write_block(b) != btree_bset_last(b) &&
2223            b->keys.last_set_unwritten)
2224                bch_btree_init_next(b); /* just wrote a set */
2225
2226        if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2227                mutex_unlock(&b->write_lock);
2228                goto split;
2229        }
2230
2231        BUG_ON(write_block(b) != btree_bset_last(b));
2232
2233        if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2234                if (!b->level)
2235                        bch_btree_leaf_dirty(b, journal_ref);
2236                else
2237                        bch_btree_node_write(b, &cl);
2238        }
2239
2240        mutex_unlock(&b->write_lock);
2241
2242        /* wait for btree node write if necessary, after unlock */
2243        closure_sync(&cl);
2244
2245        return 0;
2246split:
2247        if (current->bio_list) {
2248                op->lock = b->c->root->level + 1;
2249                return -EAGAIN;
2250        } else if (op->lock <= b->c->root->level) {
2251                op->lock = b->c->root->level + 1;
2252                return -EINTR;
2253        } else {
2254                /* Invalidated all iterators */
2255                int ret = btree_split(b, op, insert_keys, replace_key);
2256
2257                if (bch_keylist_empty(insert_keys))
2258                        return 0;
2259                else if (!ret)
2260                        return -EINTR;
2261                return ret;
2262        }
2263}
2264
2265int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2266                               struct bkey *check_key)
2267{
2268        int ret = -EINTR;
2269        uint64_t btree_ptr = b->key.ptr[0];
2270        unsigned long seq = b->seq;
2271        struct keylist insert;
2272        bool upgrade = op->lock == -1;
2273
2274        bch_keylist_init(&insert);
2275
2276        if (upgrade) {
2277                rw_unlock(false, b);
2278                rw_lock(true, b, b->level);
2279
2280                if (b->key.ptr[0] != btree_ptr ||
2281                    b->seq != seq + 1) {
2282                        op->lock = b->level;
2283                        goto out;
2284                }
2285        }
2286
2287        SET_KEY_PTRS(check_key, 1);
2288        get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2289
2290        SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2291
2292        bch_keylist_add(&insert, check_key);
2293
2294        ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2295
2296        BUG_ON(!ret && !bch_keylist_empty(&insert));
2297out:
2298        if (upgrade)
2299                downgrade_write(&b->lock);
2300        return ret;
2301}
2302
2303struct btree_insert_op {
2304        struct btree_op op;
2305        struct keylist  *keys;
2306        atomic_t        *journal_ref;
2307        struct bkey     *replace_key;
2308};
2309
2310static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2311{
2312        struct btree_insert_op *op = container_of(b_op,
2313                                        struct btree_insert_op, op);
2314
2315        int ret = bch_btree_insert_node(b, &op->op, op->keys,
2316                                        op->journal_ref, op->replace_key);
2317        if (ret && !bch_keylist_empty(op->keys))
2318                return ret;
2319        else
2320                return MAP_DONE;
2321}
2322
2323int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2324                     atomic_t *journal_ref, struct bkey *replace_key)
2325{
2326        struct btree_insert_op op;
2327        int ret = 0;
2328
2329        BUG_ON(current->bio_list);
2330        BUG_ON(bch_keylist_empty(keys));
2331
2332        bch_btree_op_init(&op.op, 0);
2333        op.keys         = keys;
2334        op.journal_ref  = journal_ref;
2335        op.replace_key  = replace_key;
2336
2337        while (!ret && !bch_keylist_empty(keys)) {
2338                op.op.lock = 0;
2339                ret = bch_btree_map_leaf_nodes(&op.op, c,
2340                                               &START_KEY(keys->keys),
2341                                               btree_insert_fn);
2342        }
2343
2344        if (ret) {
2345                struct bkey *k;
2346
2347                pr_err("error %i", ret);
2348
2349                while ((k = bch_keylist_pop(keys)))
2350                        bkey_put(c, k);
2351        } else if (op.op.insert_collision)
2352                ret = -ESRCH;
2353
2354        return ret;
2355}
2356
2357void bch_btree_set_root(struct btree *b)
2358{
2359        unsigned int i;
2360        struct closure cl;
2361
2362        closure_init_stack(&cl);
2363
2364        trace_bcache_btree_set_root(b);
2365
2366        BUG_ON(!b->written);
2367
2368        for (i = 0; i < KEY_PTRS(&b->key); i++)
2369                BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2370
2371        mutex_lock(&b->c->bucket_lock);
2372        list_del_init(&b->list);
2373        mutex_unlock(&b->c->bucket_lock);
2374
2375        b->c->root = b;
2376
2377        bch_journal_meta(b->c, &cl);
2378        closure_sync(&cl);
2379}
2380
2381/* Map across nodes or keys */
2382
2383static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2384                                       struct bkey *from,
2385                                       btree_map_nodes_fn *fn, int flags)
2386{
2387        int ret = MAP_CONTINUE;
2388
2389        if (b->level) {
2390                struct bkey *k;
2391                struct btree_iter iter;
2392
2393                bch_btree_iter_init(&b->keys, &iter, from);
2394
2395                while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
2396                                                       bch_ptr_bad))) {
2397                        ret = btree(map_nodes_recurse, k, b,
2398                                    op, from, fn, flags);
2399                        from = NULL;
2400
2401                        if (ret != MAP_CONTINUE)
2402                                return ret;
2403                }
2404        }
2405
2406        if (!b->level || flags == MAP_ALL_NODES)
2407                ret = fn(op, b);
2408
2409        return ret;
2410}
2411
2412int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2413                          struct bkey *from, btree_map_nodes_fn *fn, int flags)
2414{
2415        return btree_root(map_nodes_recurse, c, op, from, fn, flags);
2416}
2417
2418static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2419                                      struct bkey *from, btree_map_keys_fn *fn,
2420                                      int flags)
2421{
2422        int ret = MAP_CONTINUE;
2423        struct bkey *k;
2424        struct btree_iter iter;
2425
2426        bch_btree_iter_init(&b->keys, &iter, from);
2427
2428        while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
2429                ret = !b->level
2430                        ? fn(op, b, k)
2431                        : btree(map_keys_recurse, k, b, op, from, fn, flags);
2432                from = NULL;
2433
2434                if (ret != MAP_CONTINUE)
2435                        return ret;
2436        }
2437
2438        if (!b->level && (flags & MAP_END_KEY))
2439                ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2440                                     KEY_OFFSET(&b->key), 0));
2441
2442        return ret;
2443}
2444
2445int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2446                       struct bkey *from, btree_map_keys_fn *fn, int flags)
2447{
2448        return btree_root(map_keys_recurse, c, op, from, fn, flags);
2449}
2450
2451/* Keybuf code */
2452
2453static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2454{
2455        /* Overlapping keys compare equal */
2456        if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2457                return -1;
2458        if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2459                return 1;
2460        return 0;
2461}
2462
2463static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2464                                            struct keybuf_key *r)
2465{
2466        return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2467}
2468
2469struct refill {
2470        struct btree_op op;
2471        unsigned int    nr_found;
2472        struct keybuf   *buf;
2473        struct bkey     *end;
2474        keybuf_pred_fn  *pred;
2475};
2476
2477static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2478                            struct bkey *k)
2479{
2480        struct refill *refill = container_of(op, struct refill, op);
2481        struct keybuf *buf = refill->buf;
2482        int ret = MAP_CONTINUE;
2483
2484        if (bkey_cmp(k, refill->end) > 0) {
2485                ret = MAP_DONE;
2486                goto out;
2487        }
2488
2489        if (!KEY_SIZE(k)) /* end key */
2490                goto out;
2491
2492        if (refill->pred(buf, k)) {
2493                struct keybuf_key *w;
2494
2495                spin_lock(&buf->lock);
2496
2497                w = array_alloc(&buf->freelist);
2498                if (!w) {
2499                        spin_unlock(&buf->lock);
2500                        return MAP_DONE;
2501                }
2502
2503                w->private = NULL;
2504                bkey_copy(&w->key, k);
2505
2506                if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2507                        array_free(&buf->freelist, w);
2508                else
2509                        refill->nr_found++;
2510
2511                if (array_freelist_empty(&buf->freelist))
2512                        ret = MAP_DONE;
2513
2514                spin_unlock(&buf->lock);
2515        }
2516out:
2517        buf->last_scanned = *k;
2518        return ret;
2519}
2520
2521void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2522                       struct bkey *end, keybuf_pred_fn *pred)
2523{
2524        struct bkey start = buf->last_scanned;
2525        struct refill refill;
2526
2527        cond_resched();
2528
2529        bch_btree_op_init(&refill.op, -1);
2530        refill.nr_found = 0;
2531        refill.buf      = buf;
2532        refill.end      = end;
2533        refill.pred     = pred;
2534
2535        bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2536                           refill_keybuf_fn, MAP_END_KEY);
2537
2538        trace_bcache_keyscan(refill.nr_found,
2539                             KEY_INODE(&start), KEY_OFFSET(&start),
2540                             KEY_INODE(&buf->last_scanned),
2541                             KEY_OFFSET(&buf->last_scanned));
2542
2543        spin_lock(&buf->lock);
2544
2545        if (!RB_EMPTY_ROOT(&buf->keys)) {
2546                struct keybuf_key *w;
2547
2548                w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2549                buf->start      = START_KEY(&w->key);
2550
2551                w = RB_LAST(&buf->keys, struct keybuf_key, node);
2552                buf->end        = w->key;
2553        } else {
2554                buf->start      = MAX_KEY;
2555                buf->end        = MAX_KEY;
2556        }
2557
2558        spin_unlock(&buf->lock);
2559}
2560
2561static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2562{
2563        rb_erase(&w->node, &buf->keys);
2564        array_free(&buf->freelist, w);
2565}
2566
2567void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2568{
2569        spin_lock(&buf->lock);
2570        __bch_keybuf_del(buf, w);
2571        spin_unlock(&buf->lock);
2572}
2573
2574bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2575                                  struct bkey *end)
2576{
2577        bool ret = false;
2578        struct keybuf_key *p, *w, s;
2579
2580        s.key = *start;
2581
2582        if (bkey_cmp(end, &buf->start) <= 0 ||
2583            bkey_cmp(start, &buf->end) >= 0)
2584                return false;
2585
2586        spin_lock(&buf->lock);
2587        w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2588
2589        while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2590                p = w;
2591                w = RB_NEXT(w, node);
2592
2593                if (p->private)
2594                        ret = true;
2595                else
2596                        __bch_keybuf_del(buf, p);
2597        }
2598
2599        spin_unlock(&buf->lock);
2600        return ret;
2601}
2602
2603struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2604{
2605        struct keybuf_key *w;
2606
2607        spin_lock(&buf->lock);
2608
2609        w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2610
2611        while (w && w->private)
2612                w = RB_NEXT(w, node);
2613
2614        if (w)
2615                w->private = ERR_PTR(-EINTR);
2616
2617        spin_unlock(&buf->lock);
2618        return w;
2619}
2620
2621struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2622                                          struct keybuf *buf,
2623                                          struct bkey *end,
2624                                          keybuf_pred_fn *pred)
2625{
2626        struct keybuf_key *ret;
2627
2628        while (1) {
2629                ret = bch_keybuf_next(buf);
2630                if (ret)
2631                        break;
2632
2633                if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2634                        pr_debug("scan finished");
2635                        break;
2636                }
2637
2638                bch_refill_keybuf(c, buf, end, pred);
2639        }
2640
2641        return ret;
2642}
2643
2644void bch_keybuf_init(struct keybuf *buf)
2645{
2646        buf->last_scanned       = MAX_KEY;
2647        buf->keys               = RB_ROOT;
2648
2649        spin_lock_init(&buf->lock);
2650        array_allocator_init(&buf->freelist);
2651}
2652