linux/drivers/md/bcache/super.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * bcache setup/teardown code, and some metadata io - read a superblock and
   4 * figure out what to do with it.
   5 *
   6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
   7 * Copyright 2012 Google, Inc.
   8 */
   9
  10#include "bcache.h"
  11#include "btree.h"
  12#include "debug.h"
  13#include "extents.h"
  14#include "request.h"
  15#include "writeback.h"
  16
  17#include <linux/blkdev.h>
  18#include <linux/buffer_head.h>
  19#include <linux/debugfs.h>
  20#include <linux/genhd.h>
  21#include <linux/idr.h>
  22#include <linux/kthread.h>
  23#include <linux/module.h>
  24#include <linux/random.h>
  25#include <linux/reboot.h>
  26#include <linux/sysfs.h>
  27
  28unsigned int bch_cutoff_writeback;
  29unsigned int bch_cutoff_writeback_sync;
  30
  31static const char bcache_magic[] = {
  32        0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
  33        0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
  34};
  35
  36static const char invalid_uuid[] = {
  37        0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
  38        0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
  39};
  40
  41static struct kobject *bcache_kobj;
  42struct mutex bch_register_lock;
  43bool bcache_is_reboot;
  44LIST_HEAD(bch_cache_sets);
  45static LIST_HEAD(uncached_devices);
  46
  47static int bcache_major;
  48static DEFINE_IDA(bcache_device_idx);
  49static wait_queue_head_t unregister_wait;
  50struct workqueue_struct *bcache_wq;
  51struct workqueue_struct *bch_journal_wq;
  52
  53
  54#define BTREE_MAX_PAGES         (256 * 1024 / PAGE_SIZE)
  55/* limitation of partitions number on single bcache device */
  56#define BCACHE_MINORS           128
  57/* limitation of bcache devices number on single system */
  58#define BCACHE_DEVICE_IDX_MAX   ((1U << MINORBITS)/BCACHE_MINORS)
  59
  60/* Superblock */
  61
  62static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
  63                              struct page **res)
  64{
  65        const char *err;
  66        struct cache_sb *s;
  67        struct buffer_head *bh = __bread(bdev, 1, SB_SIZE);
  68        unsigned int i;
  69
  70        if (!bh)
  71                return "IO error";
  72
  73        s = (struct cache_sb *) bh->b_data;
  74
  75        sb->offset              = le64_to_cpu(s->offset);
  76        sb->version             = le64_to_cpu(s->version);
  77
  78        memcpy(sb->magic,       s->magic, 16);
  79        memcpy(sb->uuid,        s->uuid, 16);
  80        memcpy(sb->set_uuid,    s->set_uuid, 16);
  81        memcpy(sb->label,       s->label, SB_LABEL_SIZE);
  82
  83        sb->flags               = le64_to_cpu(s->flags);
  84        sb->seq                 = le64_to_cpu(s->seq);
  85        sb->last_mount          = le32_to_cpu(s->last_mount);
  86        sb->first_bucket        = le16_to_cpu(s->first_bucket);
  87        sb->keys                = le16_to_cpu(s->keys);
  88
  89        for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
  90                sb->d[i] = le64_to_cpu(s->d[i]);
  91
  92        pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u",
  93                 sb->version, sb->flags, sb->seq, sb->keys);
  94
  95        err = "Not a bcache superblock";
  96        if (sb->offset != SB_SECTOR)
  97                goto err;
  98
  99        if (memcmp(sb->magic, bcache_magic, 16))
 100                goto err;
 101
 102        err = "Too many journal buckets";
 103        if (sb->keys > SB_JOURNAL_BUCKETS)
 104                goto err;
 105
 106        err = "Bad checksum";
 107        if (s->csum != csum_set(s))
 108                goto err;
 109
 110        err = "Bad UUID";
 111        if (bch_is_zero(sb->uuid, 16))
 112                goto err;
 113
 114        sb->block_size  = le16_to_cpu(s->block_size);
 115
 116        err = "Superblock block size smaller than device block size";
 117        if (sb->block_size << 9 < bdev_logical_block_size(bdev))
 118                goto err;
 119
 120        switch (sb->version) {
 121        case BCACHE_SB_VERSION_BDEV:
 122                sb->data_offset = BDEV_DATA_START_DEFAULT;
 123                break;
 124        case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
 125                sb->data_offset = le64_to_cpu(s->data_offset);
 126
 127                err = "Bad data offset";
 128                if (sb->data_offset < BDEV_DATA_START_DEFAULT)
 129                        goto err;
 130
 131                break;
 132        case BCACHE_SB_VERSION_CDEV:
 133        case BCACHE_SB_VERSION_CDEV_WITH_UUID:
 134                sb->nbuckets    = le64_to_cpu(s->nbuckets);
 135                sb->bucket_size = le16_to_cpu(s->bucket_size);
 136
 137                sb->nr_in_set   = le16_to_cpu(s->nr_in_set);
 138                sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
 139
 140                err = "Too many buckets";
 141                if (sb->nbuckets > LONG_MAX)
 142                        goto err;
 143
 144                err = "Not enough buckets";
 145                if (sb->nbuckets < 1 << 7)
 146                        goto err;
 147
 148                err = "Bad block/bucket size";
 149                if (!is_power_of_2(sb->block_size) ||
 150                    sb->block_size > PAGE_SECTORS ||
 151                    !is_power_of_2(sb->bucket_size) ||
 152                    sb->bucket_size < PAGE_SECTORS)
 153                        goto err;
 154
 155                err = "Invalid superblock: device too small";
 156                if (get_capacity(bdev->bd_disk) <
 157                    sb->bucket_size * sb->nbuckets)
 158                        goto err;
 159
 160                err = "Bad UUID";
 161                if (bch_is_zero(sb->set_uuid, 16))
 162                        goto err;
 163
 164                err = "Bad cache device number in set";
 165                if (!sb->nr_in_set ||
 166                    sb->nr_in_set <= sb->nr_this_dev ||
 167                    sb->nr_in_set > MAX_CACHES_PER_SET)
 168                        goto err;
 169
 170                err = "Journal buckets not sequential";
 171                for (i = 0; i < sb->keys; i++)
 172                        if (sb->d[i] != sb->first_bucket + i)
 173                                goto err;
 174
 175                err = "Too many journal buckets";
 176                if (sb->first_bucket + sb->keys > sb->nbuckets)
 177                        goto err;
 178
 179                err = "Invalid superblock: first bucket comes before end of super";
 180                if (sb->first_bucket * sb->bucket_size < 16)
 181                        goto err;
 182
 183                break;
 184        default:
 185                err = "Unsupported superblock version";
 186                goto err;
 187        }
 188
 189        sb->last_mount = (u32)ktime_get_real_seconds();
 190        err = NULL;
 191
 192        get_page(bh->b_page);
 193        *res = bh->b_page;
 194err:
 195        put_bh(bh);
 196        return err;
 197}
 198
 199static void write_bdev_super_endio(struct bio *bio)
 200{
 201        struct cached_dev *dc = bio->bi_private;
 202
 203        if (bio->bi_status)
 204                bch_count_backing_io_errors(dc, bio);
 205
 206        closure_put(&dc->sb_write);
 207}
 208
 209static void __write_super(struct cache_sb *sb, struct bio *bio)
 210{
 211        struct cache_sb *out = page_address(bio_first_page_all(bio));
 212        unsigned int i;
 213
 214        bio->bi_iter.bi_sector  = SB_SECTOR;
 215        bio->bi_iter.bi_size    = SB_SIZE;
 216        bio_set_op_attrs(bio, REQ_OP_WRITE, REQ_SYNC|REQ_META);
 217        bch_bio_map(bio, NULL);
 218
 219        out->offset             = cpu_to_le64(sb->offset);
 220        out->version            = cpu_to_le64(sb->version);
 221
 222        memcpy(out->uuid,       sb->uuid, 16);
 223        memcpy(out->set_uuid,   sb->set_uuid, 16);
 224        memcpy(out->label,      sb->label, SB_LABEL_SIZE);
 225
 226        out->flags              = cpu_to_le64(sb->flags);
 227        out->seq                = cpu_to_le64(sb->seq);
 228
 229        out->last_mount         = cpu_to_le32(sb->last_mount);
 230        out->first_bucket       = cpu_to_le16(sb->first_bucket);
 231        out->keys               = cpu_to_le16(sb->keys);
 232
 233        for (i = 0; i < sb->keys; i++)
 234                out->d[i] = cpu_to_le64(sb->d[i]);
 235
 236        out->csum = csum_set(out);
 237
 238        pr_debug("ver %llu, flags %llu, seq %llu",
 239                 sb->version, sb->flags, sb->seq);
 240
 241        submit_bio(bio);
 242}
 243
 244static void bch_write_bdev_super_unlock(struct closure *cl)
 245{
 246        struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
 247
 248        up(&dc->sb_write_mutex);
 249}
 250
 251void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
 252{
 253        struct closure *cl = &dc->sb_write;
 254        struct bio *bio = &dc->sb_bio;
 255
 256        down(&dc->sb_write_mutex);
 257        closure_init(cl, parent);
 258
 259        bio_reset(bio);
 260        bio_set_dev(bio, dc->bdev);
 261        bio->bi_end_io  = write_bdev_super_endio;
 262        bio->bi_private = dc;
 263
 264        closure_get(cl);
 265        /* I/O request sent to backing device */
 266        __write_super(&dc->sb, bio);
 267
 268        closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
 269}
 270
 271static void write_super_endio(struct bio *bio)
 272{
 273        struct cache *ca = bio->bi_private;
 274
 275        /* is_read = 0 */
 276        bch_count_io_errors(ca, bio->bi_status, 0,
 277                            "writing superblock");
 278        closure_put(&ca->set->sb_write);
 279}
 280
 281static void bcache_write_super_unlock(struct closure *cl)
 282{
 283        struct cache_set *c = container_of(cl, struct cache_set, sb_write);
 284
 285        up(&c->sb_write_mutex);
 286}
 287
 288void bcache_write_super(struct cache_set *c)
 289{
 290        struct closure *cl = &c->sb_write;
 291        struct cache *ca;
 292        unsigned int i;
 293
 294        down(&c->sb_write_mutex);
 295        closure_init(cl, &c->cl);
 296
 297        c->sb.seq++;
 298
 299        for_each_cache(ca, c, i) {
 300                struct bio *bio = &ca->sb_bio;
 301
 302                ca->sb.version          = BCACHE_SB_VERSION_CDEV_WITH_UUID;
 303                ca->sb.seq              = c->sb.seq;
 304                ca->sb.last_mount       = c->sb.last_mount;
 305
 306                SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
 307
 308                bio_reset(bio);
 309                bio_set_dev(bio, ca->bdev);
 310                bio->bi_end_io  = write_super_endio;
 311                bio->bi_private = ca;
 312
 313                closure_get(cl);
 314                __write_super(&ca->sb, bio);
 315        }
 316
 317        closure_return_with_destructor(cl, bcache_write_super_unlock);
 318}
 319
 320/* UUID io */
 321
 322static void uuid_endio(struct bio *bio)
 323{
 324        struct closure *cl = bio->bi_private;
 325        struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
 326
 327        cache_set_err_on(bio->bi_status, c, "accessing uuids");
 328        bch_bbio_free(bio, c);
 329        closure_put(cl);
 330}
 331
 332static void uuid_io_unlock(struct closure *cl)
 333{
 334        struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
 335
 336        up(&c->uuid_write_mutex);
 337}
 338
 339static void uuid_io(struct cache_set *c, int op, unsigned long op_flags,
 340                    struct bkey *k, struct closure *parent)
 341{
 342        struct closure *cl = &c->uuid_write;
 343        struct uuid_entry *u;
 344        unsigned int i;
 345        char buf[80];
 346
 347        BUG_ON(!parent);
 348        down(&c->uuid_write_mutex);
 349        closure_init(cl, parent);
 350
 351        for (i = 0; i < KEY_PTRS(k); i++) {
 352                struct bio *bio = bch_bbio_alloc(c);
 353
 354                bio->bi_opf = REQ_SYNC | REQ_META | op_flags;
 355                bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
 356
 357                bio->bi_end_io  = uuid_endio;
 358                bio->bi_private = cl;
 359                bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
 360                bch_bio_map(bio, c->uuids);
 361
 362                bch_submit_bbio(bio, c, k, i);
 363
 364                if (op != REQ_OP_WRITE)
 365                        break;
 366        }
 367
 368        bch_extent_to_text(buf, sizeof(buf), k);
 369        pr_debug("%s UUIDs at %s", op == REQ_OP_WRITE ? "wrote" : "read", buf);
 370
 371        for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
 372                if (!bch_is_zero(u->uuid, 16))
 373                        pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u",
 374                                 u - c->uuids, u->uuid, u->label,
 375                                 u->first_reg, u->last_reg, u->invalidated);
 376
 377        closure_return_with_destructor(cl, uuid_io_unlock);
 378}
 379
 380static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
 381{
 382        struct bkey *k = &j->uuid_bucket;
 383
 384        if (__bch_btree_ptr_invalid(c, k))
 385                return "bad uuid pointer";
 386
 387        bkey_copy(&c->uuid_bucket, k);
 388        uuid_io(c, REQ_OP_READ, 0, k, cl);
 389
 390        if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
 391                struct uuid_entry_v0    *u0 = (void *) c->uuids;
 392                struct uuid_entry       *u1 = (void *) c->uuids;
 393                int i;
 394
 395                closure_sync(cl);
 396
 397                /*
 398                 * Since the new uuid entry is bigger than the old, we have to
 399                 * convert starting at the highest memory address and work down
 400                 * in order to do it in place
 401                 */
 402
 403                for (i = c->nr_uuids - 1;
 404                     i >= 0;
 405                     --i) {
 406                        memcpy(u1[i].uuid,      u0[i].uuid, 16);
 407                        memcpy(u1[i].label,     u0[i].label, 32);
 408
 409                        u1[i].first_reg         = u0[i].first_reg;
 410                        u1[i].last_reg          = u0[i].last_reg;
 411                        u1[i].invalidated       = u0[i].invalidated;
 412
 413                        u1[i].flags     = 0;
 414                        u1[i].sectors   = 0;
 415                }
 416        }
 417
 418        return NULL;
 419}
 420
 421static int __uuid_write(struct cache_set *c)
 422{
 423        BKEY_PADDED(key) k;
 424        struct closure cl;
 425        struct cache *ca;
 426
 427        closure_init_stack(&cl);
 428        lockdep_assert_held(&bch_register_lock);
 429
 430        if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, true))
 431                return 1;
 432
 433        SET_KEY_SIZE(&k.key, c->sb.bucket_size);
 434        uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl);
 435        closure_sync(&cl);
 436
 437        /* Only one bucket used for uuid write */
 438        ca = PTR_CACHE(c, &k.key, 0);
 439        atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written);
 440
 441        bkey_copy(&c->uuid_bucket, &k.key);
 442        bkey_put(c, &k.key);
 443        return 0;
 444}
 445
 446int bch_uuid_write(struct cache_set *c)
 447{
 448        int ret = __uuid_write(c);
 449
 450        if (!ret)
 451                bch_journal_meta(c, NULL);
 452
 453        return ret;
 454}
 455
 456static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
 457{
 458        struct uuid_entry *u;
 459
 460        for (u = c->uuids;
 461             u < c->uuids + c->nr_uuids; u++)
 462                if (!memcmp(u->uuid, uuid, 16))
 463                        return u;
 464
 465        return NULL;
 466}
 467
 468static struct uuid_entry *uuid_find_empty(struct cache_set *c)
 469{
 470        static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
 471
 472        return uuid_find(c, zero_uuid);
 473}
 474
 475/*
 476 * Bucket priorities/gens:
 477 *
 478 * For each bucket, we store on disk its
 479 *   8 bit gen
 480 *  16 bit priority
 481 *
 482 * See alloc.c for an explanation of the gen. The priority is used to implement
 483 * lru (and in the future other) cache replacement policies; for most purposes
 484 * it's just an opaque integer.
 485 *
 486 * The gens and the priorities don't have a whole lot to do with each other, and
 487 * it's actually the gens that must be written out at specific times - it's no
 488 * big deal if the priorities don't get written, if we lose them we just reuse
 489 * buckets in suboptimal order.
 490 *
 491 * On disk they're stored in a packed array, and in as many buckets are required
 492 * to fit them all. The buckets we use to store them form a list; the journal
 493 * header points to the first bucket, the first bucket points to the second
 494 * bucket, et cetera.
 495 *
 496 * This code is used by the allocation code; periodically (whenever it runs out
 497 * of buckets to allocate from) the allocation code will invalidate some
 498 * buckets, but it can't use those buckets until their new gens are safely on
 499 * disk.
 500 */
 501
 502static void prio_endio(struct bio *bio)
 503{
 504        struct cache *ca = bio->bi_private;
 505
 506        cache_set_err_on(bio->bi_status, ca->set, "accessing priorities");
 507        bch_bbio_free(bio, ca->set);
 508        closure_put(&ca->prio);
 509}
 510
 511static void prio_io(struct cache *ca, uint64_t bucket, int op,
 512                    unsigned long op_flags)
 513{
 514        struct closure *cl = &ca->prio;
 515        struct bio *bio = bch_bbio_alloc(ca->set);
 516
 517        closure_init_stack(cl);
 518
 519        bio->bi_iter.bi_sector  = bucket * ca->sb.bucket_size;
 520        bio_set_dev(bio, ca->bdev);
 521        bio->bi_iter.bi_size    = bucket_bytes(ca);
 522
 523        bio->bi_end_io  = prio_endio;
 524        bio->bi_private = ca;
 525        bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
 526        bch_bio_map(bio, ca->disk_buckets);
 527
 528        closure_bio_submit(ca->set, bio, &ca->prio);
 529        closure_sync(cl);
 530}
 531
 532void bch_prio_write(struct cache *ca)
 533{
 534        int i;
 535        struct bucket *b;
 536        struct closure cl;
 537
 538        closure_init_stack(&cl);
 539
 540        lockdep_assert_held(&ca->set->bucket_lock);
 541
 542        ca->disk_buckets->seq++;
 543
 544        atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
 545                        &ca->meta_sectors_written);
 546
 547        //pr_debug("free %zu, free_inc %zu, unused %zu", fifo_used(&ca->free),
 548        //       fifo_used(&ca->free_inc), fifo_used(&ca->unused));
 549
 550        for (i = prio_buckets(ca) - 1; i >= 0; --i) {
 551                long bucket;
 552                struct prio_set *p = ca->disk_buckets;
 553                struct bucket_disk *d = p->data;
 554                struct bucket_disk *end = d + prios_per_bucket(ca);
 555
 556                for (b = ca->buckets + i * prios_per_bucket(ca);
 557                     b < ca->buckets + ca->sb.nbuckets && d < end;
 558                     b++, d++) {
 559                        d->prio = cpu_to_le16(b->prio);
 560                        d->gen = b->gen;
 561                }
 562
 563                p->next_bucket  = ca->prio_buckets[i + 1];
 564                p->magic        = pset_magic(&ca->sb);
 565                p->csum         = bch_crc64(&p->magic, bucket_bytes(ca) - 8);
 566
 567                bucket = bch_bucket_alloc(ca, RESERVE_PRIO, true);
 568                BUG_ON(bucket == -1);
 569
 570                mutex_unlock(&ca->set->bucket_lock);
 571                prio_io(ca, bucket, REQ_OP_WRITE, 0);
 572                mutex_lock(&ca->set->bucket_lock);
 573
 574                ca->prio_buckets[i] = bucket;
 575                atomic_dec_bug(&ca->buckets[bucket].pin);
 576        }
 577
 578        mutex_unlock(&ca->set->bucket_lock);
 579
 580        bch_journal_meta(ca->set, &cl);
 581        closure_sync(&cl);
 582
 583        mutex_lock(&ca->set->bucket_lock);
 584
 585        /*
 586         * Don't want the old priorities to get garbage collected until after we
 587         * finish writing the new ones, and they're journalled
 588         */
 589        for (i = 0; i < prio_buckets(ca); i++) {
 590                if (ca->prio_last_buckets[i])
 591                        __bch_bucket_free(ca,
 592                                &ca->buckets[ca->prio_last_buckets[i]]);
 593
 594                ca->prio_last_buckets[i] = ca->prio_buckets[i];
 595        }
 596}
 597
 598static void prio_read(struct cache *ca, uint64_t bucket)
 599{
 600        struct prio_set *p = ca->disk_buckets;
 601        struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
 602        struct bucket *b;
 603        unsigned int bucket_nr = 0;
 604
 605        for (b = ca->buckets;
 606             b < ca->buckets + ca->sb.nbuckets;
 607             b++, d++) {
 608                if (d == end) {
 609                        ca->prio_buckets[bucket_nr] = bucket;
 610                        ca->prio_last_buckets[bucket_nr] = bucket;
 611                        bucket_nr++;
 612
 613                        prio_io(ca, bucket, REQ_OP_READ, 0);
 614
 615                        if (p->csum !=
 616                            bch_crc64(&p->magic, bucket_bytes(ca) - 8))
 617                                pr_warn("bad csum reading priorities");
 618
 619                        if (p->magic != pset_magic(&ca->sb))
 620                                pr_warn("bad magic reading priorities");
 621
 622                        bucket = p->next_bucket;
 623                        d = p->data;
 624                }
 625
 626                b->prio = le16_to_cpu(d->prio);
 627                b->gen = b->last_gc = d->gen;
 628        }
 629}
 630
 631/* Bcache device */
 632
 633static int open_dev(struct block_device *b, fmode_t mode)
 634{
 635        struct bcache_device *d = b->bd_disk->private_data;
 636
 637        if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
 638                return -ENXIO;
 639
 640        closure_get(&d->cl);
 641        return 0;
 642}
 643
 644static void release_dev(struct gendisk *b, fmode_t mode)
 645{
 646        struct bcache_device *d = b->private_data;
 647
 648        closure_put(&d->cl);
 649}
 650
 651static int ioctl_dev(struct block_device *b, fmode_t mode,
 652                     unsigned int cmd, unsigned long arg)
 653{
 654        struct bcache_device *d = b->bd_disk->private_data;
 655
 656        return d->ioctl(d, mode, cmd, arg);
 657}
 658
 659static const struct block_device_operations bcache_ops = {
 660        .open           = open_dev,
 661        .release        = release_dev,
 662        .ioctl          = ioctl_dev,
 663        .owner          = THIS_MODULE,
 664};
 665
 666void bcache_device_stop(struct bcache_device *d)
 667{
 668        if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
 669                /*
 670                 * closure_fn set to
 671                 * - cached device: cached_dev_flush()
 672                 * - flash dev: flash_dev_flush()
 673                 */
 674                closure_queue(&d->cl);
 675}
 676
 677static void bcache_device_unlink(struct bcache_device *d)
 678{
 679        lockdep_assert_held(&bch_register_lock);
 680
 681        if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
 682                unsigned int i;
 683                struct cache *ca;
 684
 685                sysfs_remove_link(&d->c->kobj, d->name);
 686                sysfs_remove_link(&d->kobj, "cache");
 687
 688                for_each_cache(ca, d->c, i)
 689                        bd_unlink_disk_holder(ca->bdev, d->disk);
 690        }
 691}
 692
 693static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
 694                               const char *name)
 695{
 696        unsigned int i;
 697        struct cache *ca;
 698        int ret;
 699
 700        for_each_cache(ca, d->c, i)
 701                bd_link_disk_holder(ca->bdev, d->disk);
 702
 703        snprintf(d->name, BCACHEDEVNAME_SIZE,
 704                 "%s%u", name, d->id);
 705
 706        ret = sysfs_create_link(&d->kobj, &c->kobj, "cache");
 707        if (ret < 0)
 708                pr_err("Couldn't create device -> cache set symlink");
 709
 710        ret = sysfs_create_link(&c->kobj, &d->kobj, d->name);
 711        if (ret < 0)
 712                pr_err("Couldn't create cache set -> device symlink");
 713
 714        clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
 715}
 716
 717static void bcache_device_detach(struct bcache_device *d)
 718{
 719        lockdep_assert_held(&bch_register_lock);
 720
 721        atomic_dec(&d->c->attached_dev_nr);
 722
 723        if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
 724                struct uuid_entry *u = d->c->uuids + d->id;
 725
 726                SET_UUID_FLASH_ONLY(u, 0);
 727                memcpy(u->uuid, invalid_uuid, 16);
 728                u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
 729                bch_uuid_write(d->c);
 730        }
 731
 732        bcache_device_unlink(d);
 733
 734        d->c->devices[d->id] = NULL;
 735        closure_put(&d->c->caching);
 736        d->c = NULL;
 737}
 738
 739static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
 740                                 unsigned int id)
 741{
 742        d->id = id;
 743        d->c = c;
 744        c->devices[id] = d;
 745
 746        if (id >= c->devices_max_used)
 747                c->devices_max_used = id + 1;
 748
 749        closure_get(&c->caching);
 750}
 751
 752static inline int first_minor_to_idx(int first_minor)
 753{
 754        return (first_minor/BCACHE_MINORS);
 755}
 756
 757static inline int idx_to_first_minor(int idx)
 758{
 759        return (idx * BCACHE_MINORS);
 760}
 761
 762static void bcache_device_free(struct bcache_device *d)
 763{
 764        lockdep_assert_held(&bch_register_lock);
 765
 766        pr_info("%s stopped", d->disk->disk_name);
 767
 768        if (d->c)
 769                bcache_device_detach(d);
 770        if (d->disk && d->disk->flags & GENHD_FL_UP)
 771                del_gendisk(d->disk);
 772        if (d->disk && d->disk->queue)
 773                blk_cleanup_queue(d->disk->queue);
 774        if (d->disk) {
 775                ida_simple_remove(&bcache_device_idx,
 776                                  first_minor_to_idx(d->disk->first_minor));
 777                put_disk(d->disk);
 778        }
 779
 780        bioset_exit(&d->bio_split);
 781        kvfree(d->full_dirty_stripes);
 782        kvfree(d->stripe_sectors_dirty);
 783
 784        closure_debug_destroy(&d->cl);
 785}
 786
 787static int bcache_device_init(struct bcache_device *d, unsigned int block_size,
 788                              sector_t sectors)
 789{
 790        struct request_queue *q;
 791        const size_t max_stripes = min_t(size_t, INT_MAX,
 792                                         SIZE_MAX / sizeof(atomic_t));
 793        size_t n;
 794        int idx;
 795
 796        if (!d->stripe_size)
 797                d->stripe_size = 1 << 31;
 798
 799        d->nr_stripes = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
 800
 801        if (!d->nr_stripes || d->nr_stripes > max_stripes) {
 802                pr_err("nr_stripes too large or invalid: %u (start sector beyond end of disk?)",
 803                        (unsigned int)d->nr_stripes);
 804                return -ENOMEM;
 805        }
 806
 807        n = d->nr_stripes * sizeof(atomic_t);
 808        d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL);
 809        if (!d->stripe_sectors_dirty)
 810                return -ENOMEM;
 811
 812        n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
 813        d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL);
 814        if (!d->full_dirty_stripes)
 815                return -ENOMEM;
 816
 817        idx = ida_simple_get(&bcache_device_idx, 0,
 818                                BCACHE_DEVICE_IDX_MAX, GFP_KERNEL);
 819        if (idx < 0)
 820                return idx;
 821
 822        if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio),
 823                        BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER))
 824                goto err;
 825
 826        d->disk = alloc_disk(BCACHE_MINORS);
 827        if (!d->disk)
 828                goto err;
 829
 830        set_capacity(d->disk, sectors);
 831        snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx);
 832
 833        d->disk->major          = bcache_major;
 834        d->disk->first_minor    = idx_to_first_minor(idx);
 835        d->disk->fops           = &bcache_ops;
 836        d->disk->private_data   = d;
 837
 838        q = blk_alloc_queue(GFP_KERNEL);
 839        if (!q)
 840                return -ENOMEM;
 841
 842        blk_queue_make_request(q, NULL);
 843        d->disk->queue                  = q;
 844        q->queuedata                    = d;
 845        q->backing_dev_info->congested_data = d;
 846        q->limits.max_hw_sectors        = UINT_MAX;
 847        q->limits.max_sectors           = UINT_MAX;
 848        q->limits.max_segment_size      = UINT_MAX;
 849        q->limits.max_segments          = BIO_MAX_PAGES;
 850        blk_queue_max_discard_sectors(q, UINT_MAX);
 851        q->limits.discard_granularity   = 512;
 852        q->limits.io_min                = block_size;
 853        q->limits.logical_block_size    = block_size;
 854        q->limits.physical_block_size   = block_size;
 855        blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue);
 856        blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, d->disk->queue);
 857        blk_queue_flag_set(QUEUE_FLAG_DISCARD, d->disk->queue);
 858
 859        blk_queue_write_cache(q, true, true);
 860
 861        return 0;
 862
 863err:
 864        ida_simple_remove(&bcache_device_idx, idx);
 865        return -ENOMEM;
 866
 867}
 868
 869/* Cached device */
 870
 871static void calc_cached_dev_sectors(struct cache_set *c)
 872{
 873        uint64_t sectors = 0;
 874        struct cached_dev *dc;
 875
 876        list_for_each_entry(dc, &c->cached_devs, list)
 877                sectors += bdev_sectors(dc->bdev);
 878
 879        c->cached_dev_sectors = sectors;
 880}
 881
 882#define BACKING_DEV_OFFLINE_TIMEOUT 5
 883static int cached_dev_status_update(void *arg)
 884{
 885        struct cached_dev *dc = arg;
 886        struct request_queue *q;
 887
 888        /*
 889         * If this delayed worker is stopping outside, directly quit here.
 890         * dc->io_disable might be set via sysfs interface, so check it
 891         * here too.
 892         */
 893        while (!kthread_should_stop() && !dc->io_disable) {
 894                q = bdev_get_queue(dc->bdev);
 895                if (blk_queue_dying(q))
 896                        dc->offline_seconds++;
 897                else
 898                        dc->offline_seconds = 0;
 899
 900                if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) {
 901                        pr_err("%s: device offline for %d seconds",
 902                               dc->backing_dev_name,
 903                               BACKING_DEV_OFFLINE_TIMEOUT);
 904                        pr_err("%s: disable I/O request due to backing "
 905                               "device offline", dc->disk.name);
 906                        dc->io_disable = true;
 907                        /* let others know earlier that io_disable is true */
 908                        smp_mb();
 909                        bcache_device_stop(&dc->disk);
 910                        break;
 911                }
 912                schedule_timeout_interruptible(HZ);
 913        }
 914
 915        wait_for_kthread_stop();
 916        return 0;
 917}
 918
 919
 920int bch_cached_dev_run(struct cached_dev *dc)
 921{
 922        struct bcache_device *d = &dc->disk;
 923        char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL);
 924        char *env[] = {
 925                "DRIVER=bcache",
 926                kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
 927                kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""),
 928                NULL,
 929        };
 930
 931        if (dc->io_disable) {
 932                pr_err("I/O disabled on cached dev %s",
 933                       dc->backing_dev_name);
 934                kfree(env[1]);
 935                kfree(env[2]);
 936                kfree(buf);
 937                return -EIO;
 938        }
 939
 940        if (atomic_xchg(&dc->running, 1)) {
 941                kfree(env[1]);
 942                kfree(env[2]);
 943                kfree(buf);
 944                pr_info("cached dev %s is running already",
 945                       dc->backing_dev_name);
 946                return -EBUSY;
 947        }
 948
 949        if (!d->c &&
 950            BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
 951                struct closure cl;
 952
 953                closure_init_stack(&cl);
 954
 955                SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
 956                bch_write_bdev_super(dc, &cl);
 957                closure_sync(&cl);
 958        }
 959
 960        add_disk(d->disk);
 961        bd_link_disk_holder(dc->bdev, dc->disk.disk);
 962        /*
 963         * won't show up in the uevent file, use udevadm monitor -e instead
 964         * only class / kset properties are persistent
 965         */
 966        kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
 967        kfree(env[1]);
 968        kfree(env[2]);
 969        kfree(buf);
 970
 971        if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
 972            sysfs_create_link(&disk_to_dev(d->disk)->kobj,
 973                              &d->kobj, "bcache")) {
 974                pr_err("Couldn't create bcache dev <-> disk sysfs symlinks");
 975                return -ENOMEM;
 976        }
 977
 978        dc->status_update_thread = kthread_run(cached_dev_status_update,
 979                                               dc, "bcache_status_update");
 980        if (IS_ERR(dc->status_update_thread)) {
 981                pr_warn("failed to create bcache_status_update kthread, "
 982                        "continue to run without monitoring backing "
 983                        "device status");
 984        }
 985
 986        return 0;
 987}
 988
 989/*
 990 * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed
 991 * work dc->writeback_rate_update is running. Wait until the routine
 992 * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to
 993 * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out
 994 * seconds, give up waiting here and continue to cancel it too.
 995 */
 996static void cancel_writeback_rate_update_dwork(struct cached_dev *dc)
 997{
 998        int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ;
 999
1000        do {
1001                if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING,
1002                              &dc->disk.flags))
1003                        break;
1004                time_out--;
1005                schedule_timeout_interruptible(1);
1006        } while (time_out > 0);
1007
1008        if (time_out == 0)
1009                pr_warn("give up waiting for dc->writeback_write_update to quit");
1010
1011        cancel_delayed_work_sync(&dc->writeback_rate_update);
1012}
1013
1014static void cached_dev_detach_finish(struct work_struct *w)
1015{
1016        struct cached_dev *dc = container_of(w, struct cached_dev, detach);
1017        struct closure cl;
1018
1019        closure_init_stack(&cl);
1020
1021        BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
1022        BUG_ON(refcount_read(&dc->count));
1023
1024
1025        if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1026                cancel_writeback_rate_update_dwork(dc);
1027
1028        if (!IS_ERR_OR_NULL(dc->writeback_thread)) {
1029                kthread_stop(dc->writeback_thread);
1030                dc->writeback_thread = NULL;
1031        }
1032
1033        memset(&dc->sb.set_uuid, 0, 16);
1034        SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
1035
1036        bch_write_bdev_super(dc, &cl);
1037        closure_sync(&cl);
1038
1039        mutex_lock(&bch_register_lock);
1040
1041        calc_cached_dev_sectors(dc->disk.c);
1042        bcache_device_detach(&dc->disk);
1043        list_move(&dc->list, &uncached_devices);
1044
1045        clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
1046        clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
1047
1048        mutex_unlock(&bch_register_lock);
1049
1050        pr_info("Caching disabled for %s", dc->backing_dev_name);
1051
1052        /* Drop ref we took in cached_dev_detach() */
1053        closure_put(&dc->disk.cl);
1054}
1055
1056void bch_cached_dev_detach(struct cached_dev *dc)
1057{
1058        lockdep_assert_held(&bch_register_lock);
1059
1060        if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1061                return;
1062
1063        if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
1064                return;
1065
1066        /*
1067         * Block the device from being closed and freed until we're finished
1068         * detaching
1069         */
1070        closure_get(&dc->disk.cl);
1071
1072        bch_writeback_queue(dc);
1073
1074        cached_dev_put(dc);
1075}
1076
1077int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
1078                          uint8_t *set_uuid)
1079{
1080        uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds());
1081        struct uuid_entry *u;
1082        struct cached_dev *exist_dc, *t;
1083        int ret = 0;
1084
1085        if ((set_uuid && memcmp(set_uuid, c->sb.set_uuid, 16)) ||
1086            (!set_uuid && memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16)))
1087                return -ENOENT;
1088
1089        if (dc->disk.c) {
1090                pr_err("Can't attach %s: already attached",
1091                       dc->backing_dev_name);
1092                return -EINVAL;
1093        }
1094
1095        if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
1096                pr_err("Can't attach %s: shutting down",
1097                       dc->backing_dev_name);
1098                return -EINVAL;
1099        }
1100
1101        if (dc->sb.block_size < c->sb.block_size) {
1102                /* Will die */
1103                pr_err("Couldn't attach %s: block size less than set's block size",
1104                       dc->backing_dev_name);
1105                return -EINVAL;
1106        }
1107
1108        /* Check whether already attached */
1109        list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) {
1110                if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) {
1111                        pr_err("Tried to attach %s but duplicate UUID already attached",
1112                                dc->backing_dev_name);
1113
1114                        return -EINVAL;
1115                }
1116        }
1117
1118        u = uuid_find(c, dc->sb.uuid);
1119
1120        if (u &&
1121            (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
1122             BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
1123                memcpy(u->uuid, invalid_uuid, 16);
1124                u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
1125                u = NULL;
1126        }
1127
1128        if (!u) {
1129                if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1130                        pr_err("Couldn't find uuid for %s in set",
1131                               dc->backing_dev_name);
1132                        return -ENOENT;
1133                }
1134
1135                u = uuid_find_empty(c);
1136                if (!u) {
1137                        pr_err("Not caching %s, no room for UUID",
1138                               dc->backing_dev_name);
1139                        return -EINVAL;
1140                }
1141        }
1142
1143        /*
1144         * Deadlocks since we're called via sysfs...
1145         * sysfs_remove_file(&dc->kobj, &sysfs_attach);
1146         */
1147
1148        if (bch_is_zero(u->uuid, 16)) {
1149                struct closure cl;
1150
1151                closure_init_stack(&cl);
1152
1153                memcpy(u->uuid, dc->sb.uuid, 16);
1154                memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1155                u->first_reg = u->last_reg = rtime;
1156                bch_uuid_write(c);
1157
1158                memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
1159                SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1160
1161                bch_write_bdev_super(dc, &cl);
1162                closure_sync(&cl);
1163        } else {
1164                u->last_reg = rtime;
1165                bch_uuid_write(c);
1166        }
1167
1168        bcache_device_attach(&dc->disk, c, u - c->uuids);
1169        list_move(&dc->list, &c->cached_devs);
1170        calc_cached_dev_sectors(c);
1171
1172        /*
1173         * dc->c must be set before dc->count != 0 - paired with the mb in
1174         * cached_dev_get()
1175         */
1176        smp_wmb();
1177        refcount_set(&dc->count, 1);
1178
1179        /* Block writeback thread, but spawn it */
1180        down_write(&dc->writeback_lock);
1181        if (bch_cached_dev_writeback_start(dc)) {
1182                up_write(&dc->writeback_lock);
1183                pr_err("Couldn't start writeback facilities for %s",
1184                       dc->disk.disk->disk_name);
1185                return -ENOMEM;
1186        }
1187
1188        if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1189                atomic_set(&dc->has_dirty, 1);
1190                bch_writeback_queue(dc);
1191        }
1192
1193        bch_sectors_dirty_init(&dc->disk);
1194
1195        ret = bch_cached_dev_run(dc);
1196        if (ret && (ret != -EBUSY)) {
1197                up_write(&dc->writeback_lock);
1198                /*
1199                 * bch_register_lock is held, bcache_device_stop() is not
1200                 * able to be directly called. The kthread and kworker
1201                 * created previously in bch_cached_dev_writeback_start()
1202                 * have to be stopped manually here.
1203                 */
1204                kthread_stop(dc->writeback_thread);
1205                cancel_writeback_rate_update_dwork(dc);
1206                pr_err("Couldn't run cached device %s",
1207                       dc->backing_dev_name);
1208                return ret;
1209        }
1210
1211        bcache_device_link(&dc->disk, c, "bdev");
1212        atomic_inc(&c->attached_dev_nr);
1213
1214        /* Allow the writeback thread to proceed */
1215        up_write(&dc->writeback_lock);
1216
1217        pr_info("Caching %s as %s on set %pU",
1218                dc->backing_dev_name,
1219                dc->disk.disk->disk_name,
1220                dc->disk.c->sb.set_uuid);
1221        return 0;
1222}
1223
1224/* when dc->disk.kobj released */
1225void bch_cached_dev_release(struct kobject *kobj)
1226{
1227        struct cached_dev *dc = container_of(kobj, struct cached_dev,
1228                                             disk.kobj);
1229        kfree(dc);
1230        module_put(THIS_MODULE);
1231}
1232
1233static void cached_dev_free(struct closure *cl)
1234{
1235        struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1236
1237        if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1238                cancel_writeback_rate_update_dwork(dc);
1239
1240        if (!IS_ERR_OR_NULL(dc->writeback_thread))
1241                kthread_stop(dc->writeback_thread);
1242        if (!IS_ERR_OR_NULL(dc->status_update_thread))
1243                kthread_stop(dc->status_update_thread);
1244
1245        mutex_lock(&bch_register_lock);
1246
1247        if (atomic_read(&dc->running))
1248                bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1249        bcache_device_free(&dc->disk);
1250        list_del(&dc->list);
1251
1252        mutex_unlock(&bch_register_lock);
1253
1254        if (!IS_ERR_OR_NULL(dc->bdev))
1255                blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1256
1257        wake_up(&unregister_wait);
1258
1259        kobject_put(&dc->disk.kobj);
1260}
1261
1262static void cached_dev_flush(struct closure *cl)
1263{
1264        struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1265        struct bcache_device *d = &dc->disk;
1266
1267        mutex_lock(&bch_register_lock);
1268        bcache_device_unlink(d);
1269        mutex_unlock(&bch_register_lock);
1270
1271        bch_cache_accounting_destroy(&dc->accounting);
1272        kobject_del(&d->kobj);
1273
1274        continue_at(cl, cached_dev_free, system_wq);
1275}
1276
1277static int cached_dev_init(struct cached_dev *dc, unsigned int block_size)
1278{
1279        int ret;
1280        struct io *io;
1281        struct request_queue *q = bdev_get_queue(dc->bdev);
1282
1283        __module_get(THIS_MODULE);
1284        INIT_LIST_HEAD(&dc->list);
1285        closure_init(&dc->disk.cl, NULL);
1286        set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1287        kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1288        INIT_WORK(&dc->detach, cached_dev_detach_finish);
1289        sema_init(&dc->sb_write_mutex, 1);
1290        INIT_LIST_HEAD(&dc->io_lru);
1291        spin_lock_init(&dc->io_lock);
1292        bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1293
1294        dc->sequential_cutoff           = 4 << 20;
1295
1296        for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1297                list_add(&io->lru, &dc->io_lru);
1298                hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1299        }
1300
1301        dc->disk.stripe_size = q->limits.io_opt >> 9;
1302
1303        if (dc->disk.stripe_size)
1304                dc->partial_stripes_expensive =
1305                        q->limits.raid_partial_stripes_expensive;
1306
1307        ret = bcache_device_init(&dc->disk, block_size,
1308                         dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1309        if (ret)
1310                return ret;
1311
1312        dc->disk.disk->queue->backing_dev_info->ra_pages =
1313                max(dc->disk.disk->queue->backing_dev_info->ra_pages,
1314                    q->backing_dev_info->ra_pages);
1315
1316        atomic_set(&dc->io_errors, 0);
1317        dc->io_disable = false;
1318        dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT;
1319        /* default to auto */
1320        dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO;
1321
1322        bch_cached_dev_request_init(dc);
1323        bch_cached_dev_writeback_init(dc);
1324        return 0;
1325}
1326
1327/* Cached device - bcache superblock */
1328
1329static int register_bdev(struct cache_sb *sb, struct page *sb_page,
1330                                 struct block_device *bdev,
1331                                 struct cached_dev *dc)
1332{
1333        const char *err = "cannot allocate memory";
1334        struct cache_set *c;
1335        int ret = -ENOMEM;
1336
1337        bdevname(bdev, dc->backing_dev_name);
1338        memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1339        dc->bdev = bdev;
1340        dc->bdev->bd_holder = dc;
1341
1342        bio_init(&dc->sb_bio, dc->sb_bio.bi_inline_vecs, 1);
1343        bio_first_bvec_all(&dc->sb_bio)->bv_page = sb_page;
1344        get_page(sb_page);
1345
1346
1347        if (cached_dev_init(dc, sb->block_size << 9))
1348                goto err;
1349
1350        err = "error creating kobject";
1351        if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1352                        "bcache"))
1353                goto err;
1354        if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1355                goto err;
1356
1357        pr_info("registered backing device %s", dc->backing_dev_name);
1358
1359        list_add(&dc->list, &uncached_devices);
1360        /* attach to a matched cache set if it exists */
1361        list_for_each_entry(c, &bch_cache_sets, list)
1362                bch_cached_dev_attach(dc, c, NULL);
1363
1364        if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1365            BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) {
1366                err = "failed to run cached device";
1367                ret = bch_cached_dev_run(dc);
1368                if (ret)
1369                        goto err;
1370        }
1371
1372        return 0;
1373err:
1374        pr_notice("error %s: %s", dc->backing_dev_name, err);
1375        bcache_device_stop(&dc->disk);
1376        return ret;
1377}
1378
1379/* Flash only volumes */
1380
1381/* When d->kobj released */
1382void bch_flash_dev_release(struct kobject *kobj)
1383{
1384        struct bcache_device *d = container_of(kobj, struct bcache_device,
1385                                               kobj);
1386        kfree(d);
1387}
1388
1389static void flash_dev_free(struct closure *cl)
1390{
1391        struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1392
1393        mutex_lock(&bch_register_lock);
1394        atomic_long_sub(bcache_dev_sectors_dirty(d),
1395                        &d->c->flash_dev_dirty_sectors);
1396        bcache_device_free(d);
1397        mutex_unlock(&bch_register_lock);
1398        kobject_put(&d->kobj);
1399}
1400
1401static void flash_dev_flush(struct closure *cl)
1402{
1403        struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1404
1405        mutex_lock(&bch_register_lock);
1406        bcache_device_unlink(d);
1407        mutex_unlock(&bch_register_lock);
1408        kobject_del(&d->kobj);
1409        continue_at(cl, flash_dev_free, system_wq);
1410}
1411
1412static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1413{
1414        struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1415                                          GFP_KERNEL);
1416        if (!d)
1417                return -ENOMEM;
1418
1419        closure_init(&d->cl, NULL);
1420        set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1421
1422        kobject_init(&d->kobj, &bch_flash_dev_ktype);
1423
1424        if (bcache_device_init(d, block_bytes(c), u->sectors))
1425                goto err;
1426
1427        bcache_device_attach(d, c, u - c->uuids);
1428        bch_sectors_dirty_init(d);
1429        bch_flash_dev_request_init(d);
1430        add_disk(d->disk);
1431
1432        if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1433                goto err;
1434
1435        bcache_device_link(d, c, "volume");
1436
1437        return 0;
1438err:
1439        kobject_put(&d->kobj);
1440        return -ENOMEM;
1441}
1442
1443static int flash_devs_run(struct cache_set *c)
1444{
1445        int ret = 0;
1446        struct uuid_entry *u;
1447
1448        for (u = c->uuids;
1449             u < c->uuids + c->nr_uuids && !ret;
1450             u++)
1451                if (UUID_FLASH_ONLY(u))
1452                        ret = flash_dev_run(c, u);
1453
1454        return ret;
1455}
1456
1457int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1458{
1459        struct uuid_entry *u;
1460
1461        if (test_bit(CACHE_SET_STOPPING, &c->flags))
1462                return -EINTR;
1463
1464        if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1465                return -EPERM;
1466
1467        u = uuid_find_empty(c);
1468        if (!u) {
1469                pr_err("Can't create volume, no room for UUID");
1470                return -EINVAL;
1471        }
1472
1473        get_random_bytes(u->uuid, 16);
1474        memset(u->label, 0, 32);
1475        u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds());
1476
1477        SET_UUID_FLASH_ONLY(u, 1);
1478        u->sectors = size >> 9;
1479
1480        bch_uuid_write(c);
1481
1482        return flash_dev_run(c, u);
1483}
1484
1485bool bch_cached_dev_error(struct cached_dev *dc)
1486{
1487        if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1488                return false;
1489
1490        dc->io_disable = true;
1491        /* make others know io_disable is true earlier */
1492        smp_mb();
1493
1494        pr_err("stop %s: too many IO errors on backing device %s\n",
1495                dc->disk.disk->disk_name, dc->backing_dev_name);
1496
1497        bcache_device_stop(&dc->disk);
1498        return true;
1499}
1500
1501/* Cache set */
1502
1503__printf(2, 3)
1504bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1505{
1506        va_list args;
1507
1508        if (c->on_error != ON_ERROR_PANIC &&
1509            test_bit(CACHE_SET_STOPPING, &c->flags))
1510                return false;
1511
1512        if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags))
1513                pr_info("CACHE_SET_IO_DISABLE already set");
1514
1515        /*
1516         * XXX: we can be called from atomic context
1517         * acquire_console_sem();
1518         */
1519
1520        pr_err("bcache: error on %pU: ", c->sb.set_uuid);
1521
1522        va_start(args, fmt);
1523        vprintk(fmt, args);
1524        va_end(args);
1525
1526        pr_err(", disabling caching\n");
1527
1528        if (c->on_error == ON_ERROR_PANIC)
1529                panic("panic forced after error\n");
1530
1531        bch_cache_set_unregister(c);
1532        return true;
1533}
1534
1535/* When c->kobj released */
1536void bch_cache_set_release(struct kobject *kobj)
1537{
1538        struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1539
1540        kfree(c);
1541        module_put(THIS_MODULE);
1542}
1543
1544static void cache_set_free(struct closure *cl)
1545{
1546        struct cache_set *c = container_of(cl, struct cache_set, cl);
1547        struct cache *ca;
1548        unsigned int i;
1549
1550        debugfs_remove(c->debug);
1551
1552        bch_open_buckets_free(c);
1553        bch_btree_cache_free(c);
1554        bch_journal_free(c);
1555
1556        mutex_lock(&bch_register_lock);
1557        for_each_cache(ca, c, i)
1558                if (ca) {
1559                        ca->set = NULL;
1560                        c->cache[ca->sb.nr_this_dev] = NULL;
1561                        kobject_put(&ca->kobj);
1562                }
1563
1564        bch_bset_sort_state_free(&c->sort);
1565        free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
1566
1567        if (c->moving_gc_wq)
1568                destroy_workqueue(c->moving_gc_wq);
1569        bioset_exit(&c->bio_split);
1570        mempool_exit(&c->fill_iter);
1571        mempool_exit(&c->bio_meta);
1572        mempool_exit(&c->search);
1573        kfree(c->devices);
1574
1575        list_del(&c->list);
1576        mutex_unlock(&bch_register_lock);
1577
1578        pr_info("Cache set %pU unregistered", c->sb.set_uuid);
1579        wake_up(&unregister_wait);
1580
1581        closure_debug_destroy(&c->cl);
1582        kobject_put(&c->kobj);
1583}
1584
1585static void cache_set_flush(struct closure *cl)
1586{
1587        struct cache_set *c = container_of(cl, struct cache_set, caching);
1588        struct cache *ca;
1589        struct btree *b;
1590        unsigned int i;
1591
1592        bch_cache_accounting_destroy(&c->accounting);
1593
1594        kobject_put(&c->internal);
1595        kobject_del(&c->kobj);
1596
1597        if (!IS_ERR_OR_NULL(c->gc_thread))
1598                kthread_stop(c->gc_thread);
1599
1600        if (!IS_ERR_OR_NULL(c->root))
1601                list_add(&c->root->list, &c->btree_cache);
1602
1603        /*
1604         * Avoid flushing cached nodes if cache set is retiring
1605         * due to too many I/O errors detected.
1606         */
1607        if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1608                list_for_each_entry(b, &c->btree_cache, list) {
1609                        mutex_lock(&b->write_lock);
1610                        if (btree_node_dirty(b))
1611                                __bch_btree_node_write(b, NULL);
1612                        mutex_unlock(&b->write_lock);
1613                }
1614
1615        for_each_cache(ca, c, i)
1616                if (ca->alloc_thread)
1617                        kthread_stop(ca->alloc_thread);
1618
1619        if (c->journal.cur) {
1620                cancel_delayed_work_sync(&c->journal.work);
1621                /* flush last journal entry if needed */
1622                c->journal.work.work.func(&c->journal.work.work);
1623        }
1624
1625        closure_return(cl);
1626}
1627
1628/*
1629 * This function is only called when CACHE_SET_IO_DISABLE is set, which means
1630 * cache set is unregistering due to too many I/O errors. In this condition,
1631 * the bcache device might be stopped, it depends on stop_when_cache_set_failed
1632 * value and whether the broken cache has dirty data:
1633 *
1634 * dc->stop_when_cache_set_failed    dc->has_dirty   stop bcache device
1635 *  BCH_CACHED_STOP_AUTO               0               NO
1636 *  BCH_CACHED_STOP_AUTO               1               YES
1637 *  BCH_CACHED_DEV_STOP_ALWAYS         0               YES
1638 *  BCH_CACHED_DEV_STOP_ALWAYS         1               YES
1639 *
1640 * The expected behavior is, if stop_when_cache_set_failed is configured to
1641 * "auto" via sysfs interface, the bcache device will not be stopped if the
1642 * backing device is clean on the broken cache device.
1643 */
1644static void conditional_stop_bcache_device(struct cache_set *c,
1645                                           struct bcache_device *d,
1646                                           struct cached_dev *dc)
1647{
1648        if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) {
1649                pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.",
1650                        d->disk->disk_name, c->sb.set_uuid);
1651                bcache_device_stop(d);
1652        } else if (atomic_read(&dc->has_dirty)) {
1653                /*
1654                 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1655                 * and dc->has_dirty == 1
1656                 */
1657                pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.",
1658                        d->disk->disk_name);
1659                /*
1660                 * There might be a small time gap that cache set is
1661                 * released but bcache device is not. Inside this time
1662                 * gap, regular I/O requests will directly go into
1663                 * backing device as no cache set attached to. This
1664                 * behavior may also introduce potential inconsistence
1665                 * data in writeback mode while cache is dirty.
1666                 * Therefore before calling bcache_device_stop() due
1667                 * to a broken cache device, dc->io_disable should be
1668                 * explicitly set to true.
1669                 */
1670                dc->io_disable = true;
1671                /* make others know io_disable is true earlier */
1672                smp_mb();
1673                bcache_device_stop(d);
1674        } else {
1675                /*
1676                 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1677                 * and dc->has_dirty == 0
1678                 */
1679                pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.",
1680                        d->disk->disk_name);
1681        }
1682}
1683
1684static void __cache_set_unregister(struct closure *cl)
1685{
1686        struct cache_set *c = container_of(cl, struct cache_set, caching);
1687        struct cached_dev *dc;
1688        struct bcache_device *d;
1689        size_t i;
1690
1691        mutex_lock(&bch_register_lock);
1692
1693        for (i = 0; i < c->devices_max_used; i++) {
1694                d = c->devices[i];
1695                if (!d)
1696                        continue;
1697
1698                if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1699                    test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1700                        dc = container_of(d, struct cached_dev, disk);
1701                        bch_cached_dev_detach(dc);
1702                        if (test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1703                                conditional_stop_bcache_device(c, d, dc);
1704                } else {
1705                        bcache_device_stop(d);
1706                }
1707        }
1708
1709        mutex_unlock(&bch_register_lock);
1710
1711        continue_at(cl, cache_set_flush, system_wq);
1712}
1713
1714void bch_cache_set_stop(struct cache_set *c)
1715{
1716        if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1717                /* closure_fn set to __cache_set_unregister() */
1718                closure_queue(&c->caching);
1719}
1720
1721void bch_cache_set_unregister(struct cache_set *c)
1722{
1723        set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1724        bch_cache_set_stop(c);
1725}
1726
1727#define alloc_bucket_pages(gfp, c)                      \
1728        ((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
1729
1730struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1731{
1732        int iter_size;
1733        struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1734
1735        if (!c)
1736                return NULL;
1737
1738        __module_get(THIS_MODULE);
1739        closure_init(&c->cl, NULL);
1740        set_closure_fn(&c->cl, cache_set_free, system_wq);
1741
1742        closure_init(&c->caching, &c->cl);
1743        set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1744
1745        /* Maybe create continue_at_noreturn() and use it here? */
1746        closure_set_stopped(&c->cl);
1747        closure_put(&c->cl);
1748
1749        kobject_init(&c->kobj, &bch_cache_set_ktype);
1750        kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1751
1752        bch_cache_accounting_init(&c->accounting, &c->cl);
1753
1754        memcpy(c->sb.set_uuid, sb->set_uuid, 16);
1755        c->sb.block_size        = sb->block_size;
1756        c->sb.bucket_size       = sb->bucket_size;
1757        c->sb.nr_in_set         = sb->nr_in_set;
1758        c->sb.last_mount        = sb->last_mount;
1759        c->bucket_bits          = ilog2(sb->bucket_size);
1760        c->block_bits           = ilog2(sb->block_size);
1761        c->nr_uuids             = bucket_bytes(c) / sizeof(struct uuid_entry);
1762        c->devices_max_used     = 0;
1763        atomic_set(&c->attached_dev_nr, 0);
1764        c->btree_pages          = bucket_pages(c);
1765        if (c->btree_pages > BTREE_MAX_PAGES)
1766                c->btree_pages = max_t(int, c->btree_pages / 4,
1767                                       BTREE_MAX_PAGES);
1768
1769        sema_init(&c->sb_write_mutex, 1);
1770        mutex_init(&c->bucket_lock);
1771        init_waitqueue_head(&c->btree_cache_wait);
1772        init_waitqueue_head(&c->bucket_wait);
1773        init_waitqueue_head(&c->gc_wait);
1774        sema_init(&c->uuid_write_mutex, 1);
1775
1776        spin_lock_init(&c->btree_gc_time.lock);
1777        spin_lock_init(&c->btree_split_time.lock);
1778        spin_lock_init(&c->btree_read_time.lock);
1779
1780        bch_moving_init_cache_set(c);
1781
1782        INIT_LIST_HEAD(&c->list);
1783        INIT_LIST_HEAD(&c->cached_devs);
1784        INIT_LIST_HEAD(&c->btree_cache);
1785        INIT_LIST_HEAD(&c->btree_cache_freeable);
1786        INIT_LIST_HEAD(&c->btree_cache_freed);
1787        INIT_LIST_HEAD(&c->data_buckets);
1788
1789        iter_size = (sb->bucket_size / sb->block_size + 1) *
1790                sizeof(struct btree_iter_set);
1791
1792        if (!(c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL)) ||
1793            mempool_init_slab_pool(&c->search, 32, bch_search_cache) ||
1794            mempool_init_kmalloc_pool(&c->bio_meta, 2,
1795                                sizeof(struct bbio) + sizeof(struct bio_vec) *
1796                                bucket_pages(c)) ||
1797            mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) ||
1798            bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio),
1799                        BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER) ||
1800            !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
1801            !(c->moving_gc_wq = alloc_workqueue("bcache_gc",
1802                                                WQ_MEM_RECLAIM, 0)) ||
1803            bch_journal_alloc(c) ||
1804            bch_btree_cache_alloc(c) ||
1805            bch_open_buckets_alloc(c) ||
1806            bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1807                goto err;
1808
1809        c->congested_read_threshold_us  = 2000;
1810        c->congested_write_threshold_us = 20000;
1811        c->error_limit  = DEFAULT_IO_ERROR_LIMIT;
1812        WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags));
1813
1814        return c;
1815err:
1816        bch_cache_set_unregister(c);
1817        return NULL;
1818}
1819
1820static int run_cache_set(struct cache_set *c)
1821{
1822        const char *err = "cannot allocate memory";
1823        struct cached_dev *dc, *t;
1824        struct cache *ca;
1825        struct closure cl;
1826        unsigned int i;
1827        LIST_HEAD(journal);
1828        struct journal_replay *l;
1829
1830        closure_init_stack(&cl);
1831
1832        for_each_cache(ca, c, i)
1833                c->nbuckets += ca->sb.nbuckets;
1834        set_gc_sectors(c);
1835
1836        if (CACHE_SYNC(&c->sb)) {
1837                struct bkey *k;
1838                struct jset *j;
1839
1840                err = "cannot allocate memory for journal";
1841                if (bch_journal_read(c, &journal))
1842                        goto err;
1843
1844                pr_debug("btree_journal_read() done");
1845
1846                err = "no journal entries found";
1847                if (list_empty(&journal))
1848                        goto err;
1849
1850                j = &list_entry(journal.prev, struct journal_replay, list)->j;
1851
1852                err = "IO error reading priorities";
1853                for_each_cache(ca, c, i)
1854                        prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]);
1855
1856                /*
1857                 * If prio_read() fails it'll call cache_set_error and we'll
1858                 * tear everything down right away, but if we perhaps checked
1859                 * sooner we could avoid journal replay.
1860                 */
1861
1862                k = &j->btree_root;
1863
1864                err = "bad btree root";
1865                if (__bch_btree_ptr_invalid(c, k))
1866                        goto err;
1867
1868                err = "error reading btree root";
1869                c->root = bch_btree_node_get(c, NULL, k,
1870                                             j->btree_level,
1871                                             true, NULL);
1872                if (IS_ERR_OR_NULL(c->root))
1873                        goto err;
1874
1875                list_del_init(&c->root->list);
1876                rw_unlock(true, c->root);
1877
1878                err = uuid_read(c, j, &cl);
1879                if (err)
1880                        goto err;
1881
1882                err = "error in recovery";
1883                if (bch_btree_check(c))
1884                        goto err;
1885
1886                /*
1887                 * bch_btree_check() may occupy too much system memory which
1888                 * has negative effects to user space application (e.g. data
1889                 * base) performance. Shrink the mca cache memory proactively
1890                 * here to avoid competing memory with user space workloads..
1891                 */
1892                if (!c->shrinker_disabled) {
1893                        struct shrink_control sc;
1894
1895                        sc.gfp_mask = GFP_KERNEL;
1896                        sc.nr_to_scan = c->btree_cache_used * c->btree_pages;
1897                        /* first run to clear b->accessed tag */
1898                        c->shrink.scan_objects(&c->shrink, &sc);
1899                        /* second run to reap non-accessed nodes */
1900                        c->shrink.scan_objects(&c->shrink, &sc);
1901                }
1902
1903                bch_journal_mark(c, &journal);
1904                bch_initial_gc_finish(c);
1905                pr_debug("btree_check() done");
1906
1907                /*
1908                 * bcache_journal_next() can't happen sooner, or
1909                 * btree_gc_finish() will give spurious errors about last_gc >
1910                 * gc_gen - this is a hack but oh well.
1911                 */
1912                bch_journal_next(&c->journal);
1913
1914                err = "error starting allocator thread";
1915                for_each_cache(ca, c, i)
1916                        if (bch_cache_allocator_start(ca))
1917                                goto err;
1918
1919                /*
1920                 * First place it's safe to allocate: btree_check() and
1921                 * btree_gc_finish() have to run before we have buckets to
1922                 * allocate, and bch_bucket_alloc_set() might cause a journal
1923                 * entry to be written so bcache_journal_next() has to be called
1924                 * first.
1925                 *
1926                 * If the uuids were in the old format we have to rewrite them
1927                 * before the next journal entry is written:
1928                 */
1929                if (j->version < BCACHE_JSET_VERSION_UUID)
1930                        __uuid_write(c);
1931
1932                err = "bcache: replay journal failed";
1933                if (bch_journal_replay(c, &journal))
1934                        goto err;
1935        } else {
1936                pr_notice("invalidating existing data");
1937
1938                for_each_cache(ca, c, i) {
1939                        unsigned int j;
1940
1941                        ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
1942                                              2, SB_JOURNAL_BUCKETS);
1943
1944                        for (j = 0; j < ca->sb.keys; j++)
1945                                ca->sb.d[j] = ca->sb.first_bucket + j;
1946                }
1947
1948                bch_initial_gc_finish(c);
1949
1950                err = "error starting allocator thread";
1951                for_each_cache(ca, c, i)
1952                        if (bch_cache_allocator_start(ca))
1953                                goto err;
1954
1955                mutex_lock(&c->bucket_lock);
1956                for_each_cache(ca, c, i)
1957                        bch_prio_write(ca);
1958                mutex_unlock(&c->bucket_lock);
1959
1960                err = "cannot allocate new UUID bucket";
1961                if (__uuid_write(c))
1962                        goto err;
1963
1964                err = "cannot allocate new btree root";
1965                c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
1966                if (IS_ERR_OR_NULL(c->root))
1967                        goto err;
1968
1969                mutex_lock(&c->root->write_lock);
1970                bkey_copy_key(&c->root->key, &MAX_KEY);
1971                bch_btree_node_write(c->root, &cl);
1972                mutex_unlock(&c->root->write_lock);
1973
1974                bch_btree_set_root(c->root);
1975                rw_unlock(true, c->root);
1976
1977                /*
1978                 * We don't want to write the first journal entry until
1979                 * everything is set up - fortunately journal entries won't be
1980                 * written until the SET_CACHE_SYNC() here:
1981                 */
1982                SET_CACHE_SYNC(&c->sb, true);
1983
1984                bch_journal_next(&c->journal);
1985                bch_journal_meta(c, &cl);
1986        }
1987
1988        err = "error starting gc thread";
1989        if (bch_gc_thread_start(c))
1990                goto err;
1991
1992        closure_sync(&cl);
1993        c->sb.last_mount = (u32)ktime_get_real_seconds();
1994        bcache_write_super(c);
1995
1996        list_for_each_entry_safe(dc, t, &uncached_devices, list)
1997                bch_cached_dev_attach(dc, c, NULL);
1998
1999        flash_devs_run(c);
2000
2001        set_bit(CACHE_SET_RUNNING, &c->flags);
2002        return 0;
2003err:
2004        while (!list_empty(&journal)) {
2005                l = list_first_entry(&journal, struct journal_replay, list);
2006                list_del(&l->list);
2007                kfree(l);
2008        }
2009
2010        closure_sync(&cl);
2011
2012        bch_cache_set_error(c, "%s", err);
2013
2014        return -EIO;
2015}
2016
2017static bool can_attach_cache(struct cache *ca, struct cache_set *c)
2018{
2019        return ca->sb.block_size        == c->sb.block_size &&
2020                ca->sb.bucket_size      == c->sb.bucket_size &&
2021                ca->sb.nr_in_set        == c->sb.nr_in_set;
2022}
2023
2024static const char *register_cache_set(struct cache *ca)
2025{
2026        char buf[12];
2027        const char *err = "cannot allocate memory";
2028        struct cache_set *c;
2029
2030        list_for_each_entry(c, &bch_cache_sets, list)
2031                if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
2032                        if (c->cache[ca->sb.nr_this_dev])
2033                                return "duplicate cache set member";
2034
2035                        if (!can_attach_cache(ca, c))
2036                                return "cache sb does not match set";
2037
2038                        if (!CACHE_SYNC(&ca->sb))
2039                                SET_CACHE_SYNC(&c->sb, false);
2040
2041                        goto found;
2042                }
2043
2044        c = bch_cache_set_alloc(&ca->sb);
2045        if (!c)
2046                return err;
2047
2048        err = "error creating kobject";
2049        if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
2050            kobject_add(&c->internal, &c->kobj, "internal"))
2051                goto err;
2052
2053        if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
2054                goto err;
2055
2056        bch_debug_init_cache_set(c);
2057
2058        list_add(&c->list, &bch_cache_sets);
2059found:
2060        sprintf(buf, "cache%i", ca->sb.nr_this_dev);
2061        if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
2062            sysfs_create_link(&c->kobj, &ca->kobj, buf))
2063                goto err;
2064
2065        if (ca->sb.seq > c->sb.seq) {
2066                c->sb.version           = ca->sb.version;
2067                memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
2068                c->sb.flags             = ca->sb.flags;
2069                c->sb.seq               = ca->sb.seq;
2070                pr_debug("set version = %llu", c->sb.version);
2071        }
2072
2073        kobject_get(&ca->kobj);
2074        ca->set = c;
2075        ca->set->cache[ca->sb.nr_this_dev] = ca;
2076        c->cache_by_alloc[c->caches_loaded++] = ca;
2077
2078        if (c->caches_loaded == c->sb.nr_in_set) {
2079                err = "failed to run cache set";
2080                if (run_cache_set(c) < 0)
2081                        goto err;
2082        }
2083
2084        return NULL;
2085err:
2086        bch_cache_set_unregister(c);
2087        return err;
2088}
2089
2090/* Cache device */
2091
2092/* When ca->kobj released */
2093void bch_cache_release(struct kobject *kobj)
2094{
2095        struct cache *ca = container_of(kobj, struct cache, kobj);
2096        unsigned int i;
2097
2098        if (ca->set) {
2099                BUG_ON(ca->set->cache[ca->sb.nr_this_dev] != ca);
2100                ca->set->cache[ca->sb.nr_this_dev] = NULL;
2101        }
2102
2103        free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
2104        kfree(ca->prio_buckets);
2105        vfree(ca->buckets);
2106
2107        free_heap(&ca->heap);
2108        free_fifo(&ca->free_inc);
2109
2110        for (i = 0; i < RESERVE_NR; i++)
2111                free_fifo(&ca->free[i]);
2112
2113        if (ca->sb_bio.bi_inline_vecs[0].bv_page)
2114                put_page(bio_first_page_all(&ca->sb_bio));
2115
2116        if (!IS_ERR_OR_NULL(ca->bdev))
2117                blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2118
2119        kfree(ca);
2120        module_put(THIS_MODULE);
2121}
2122
2123static int cache_alloc(struct cache *ca)
2124{
2125        size_t free;
2126        size_t btree_buckets;
2127        struct bucket *b;
2128        int ret = -ENOMEM;
2129        const char *err = NULL;
2130
2131        __module_get(THIS_MODULE);
2132        kobject_init(&ca->kobj, &bch_cache_ktype);
2133
2134        bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8);
2135
2136        /*
2137         * when ca->sb.njournal_buckets is not zero, journal exists,
2138         * and in bch_journal_replay(), tree node may split,
2139         * so bucket of RESERVE_BTREE type is needed,
2140         * the worst situation is all journal buckets are valid journal,
2141         * and all the keys need to replay,
2142         * so the number of  RESERVE_BTREE type buckets should be as much
2143         * as journal buckets
2144         */
2145        btree_buckets = ca->sb.njournal_buckets ?: 8;
2146        free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
2147        if (!free) {
2148                ret = -EPERM;
2149                err = "ca->sb.nbuckets is too small";
2150                goto err_free;
2151        }
2152
2153        if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets,
2154                                                GFP_KERNEL)) {
2155                err = "ca->free[RESERVE_BTREE] alloc failed";
2156                goto err_btree_alloc;
2157        }
2158
2159        if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca),
2160                                                        GFP_KERNEL)) {
2161                err = "ca->free[RESERVE_PRIO] alloc failed";
2162                goto err_prio_alloc;
2163        }
2164
2165        if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) {
2166                err = "ca->free[RESERVE_MOVINGGC] alloc failed";
2167                goto err_movinggc_alloc;
2168        }
2169
2170        if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) {
2171                err = "ca->free[RESERVE_NONE] alloc failed";
2172                goto err_none_alloc;
2173        }
2174
2175        if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) {
2176                err = "ca->free_inc alloc failed";
2177                goto err_free_inc_alloc;
2178        }
2179
2180        if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) {
2181                err = "ca->heap alloc failed";
2182                goto err_heap_alloc;
2183        }
2184
2185        ca->buckets = vzalloc(array_size(sizeof(struct bucket),
2186                              ca->sb.nbuckets));
2187        if (!ca->buckets) {
2188                err = "ca->buckets alloc failed";
2189                goto err_buckets_alloc;
2190        }
2191
2192        ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t),
2193                                   prio_buckets(ca), 2),
2194                                   GFP_KERNEL);
2195        if (!ca->prio_buckets) {
2196                err = "ca->prio_buckets alloc failed";
2197                goto err_prio_buckets_alloc;
2198        }
2199
2200        ca->disk_buckets = alloc_bucket_pages(GFP_KERNEL, ca);
2201        if (!ca->disk_buckets) {
2202                err = "ca->disk_buckets alloc failed";
2203                goto err_disk_buckets_alloc;
2204        }
2205
2206        ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
2207
2208        for_each_bucket(b, ca)
2209                atomic_set(&b->pin, 0);
2210        return 0;
2211
2212err_disk_buckets_alloc:
2213        kfree(ca->prio_buckets);
2214err_prio_buckets_alloc:
2215        vfree(ca->buckets);
2216err_buckets_alloc:
2217        free_heap(&ca->heap);
2218err_heap_alloc:
2219        free_fifo(&ca->free_inc);
2220err_free_inc_alloc:
2221        free_fifo(&ca->free[RESERVE_NONE]);
2222err_none_alloc:
2223        free_fifo(&ca->free[RESERVE_MOVINGGC]);
2224err_movinggc_alloc:
2225        free_fifo(&ca->free[RESERVE_PRIO]);
2226err_prio_alloc:
2227        free_fifo(&ca->free[RESERVE_BTREE]);
2228err_btree_alloc:
2229err_free:
2230        module_put(THIS_MODULE);
2231        if (err)
2232                pr_notice("error %s: %s", ca->cache_dev_name, err);
2233        return ret;
2234}
2235
2236static int register_cache(struct cache_sb *sb, struct page *sb_page,
2237                                struct block_device *bdev, struct cache *ca)
2238{
2239        const char *err = NULL; /* must be set for any error case */
2240        int ret = 0;
2241
2242        bdevname(bdev, ca->cache_dev_name);
2243        memcpy(&ca->sb, sb, sizeof(struct cache_sb));
2244        ca->bdev = bdev;
2245        ca->bdev->bd_holder = ca;
2246
2247        bio_init(&ca->sb_bio, ca->sb_bio.bi_inline_vecs, 1);
2248        bio_first_bvec_all(&ca->sb_bio)->bv_page = sb_page;
2249        get_page(sb_page);
2250
2251        if (blk_queue_discard(bdev_get_queue(bdev)))
2252                ca->discard = CACHE_DISCARD(&ca->sb);
2253
2254        ret = cache_alloc(ca);
2255        if (ret != 0) {
2256                /*
2257                 * If we failed here, it means ca->kobj is not initialized yet,
2258                 * kobject_put() won't be called and there is no chance to
2259                 * call blkdev_put() to bdev in bch_cache_release(). So we
2260                 * explicitly call blkdev_put() here.
2261                 */
2262                blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2263                if (ret == -ENOMEM)
2264                        err = "cache_alloc(): -ENOMEM";
2265                else if (ret == -EPERM)
2266                        err = "cache_alloc(): cache device is too small";
2267                else
2268                        err = "cache_alloc(): unknown error";
2269                goto err;
2270        }
2271
2272        if (kobject_add(&ca->kobj,
2273                        &part_to_dev(bdev->bd_part)->kobj,
2274                        "bcache")) {
2275                err = "error calling kobject_add";
2276                ret = -ENOMEM;
2277                goto out;
2278        }
2279
2280        mutex_lock(&bch_register_lock);
2281        err = register_cache_set(ca);
2282        mutex_unlock(&bch_register_lock);
2283
2284        if (err) {
2285                ret = -ENODEV;
2286                goto out;
2287        }
2288
2289        pr_info("registered cache device %s", ca->cache_dev_name);
2290
2291out:
2292        kobject_put(&ca->kobj);
2293
2294err:
2295        if (err)
2296                pr_notice("error %s: %s", ca->cache_dev_name, err);
2297
2298        return ret;
2299}
2300
2301/* Global interfaces/init */
2302
2303static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2304                               const char *buffer, size_t size);
2305static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2306                                         struct kobj_attribute *attr,
2307                                         const char *buffer, size_t size);
2308
2309kobj_attribute_write(register,          register_bcache);
2310kobj_attribute_write(register_quiet,    register_bcache);
2311kobj_attribute_write(pendings_cleanup,  bch_pending_bdevs_cleanup);
2312
2313static bool bch_is_open_backing(struct block_device *bdev)
2314{
2315        struct cache_set *c, *tc;
2316        struct cached_dev *dc, *t;
2317
2318        list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2319                list_for_each_entry_safe(dc, t, &c->cached_devs, list)
2320                        if (dc->bdev == bdev)
2321                                return true;
2322        list_for_each_entry_safe(dc, t, &uncached_devices, list)
2323                if (dc->bdev == bdev)
2324                        return true;
2325        return false;
2326}
2327
2328static bool bch_is_open_cache(struct block_device *bdev)
2329{
2330        struct cache_set *c, *tc;
2331        struct cache *ca;
2332        unsigned int i;
2333
2334        list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2335                for_each_cache(ca, c, i)
2336                        if (ca->bdev == bdev)
2337                                return true;
2338        return false;
2339}
2340
2341static bool bch_is_open(struct block_device *bdev)
2342{
2343        return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
2344}
2345
2346static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2347                               const char *buffer, size_t size)
2348{
2349        ssize_t ret = -EINVAL;
2350        const char *err = "cannot allocate memory";
2351        char *path = NULL;
2352        struct cache_sb *sb = NULL;
2353        struct block_device *bdev = NULL;
2354        struct page *sb_page = NULL;
2355
2356        if (!try_module_get(THIS_MODULE))
2357                return -EBUSY;
2358
2359        /* For latest state of bcache_is_reboot */
2360        smp_mb();
2361        if (bcache_is_reboot)
2362                return -EBUSY;
2363
2364        path = kstrndup(buffer, size, GFP_KERNEL);
2365        if (!path)
2366                goto err;
2367
2368        sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL);
2369        if (!sb)
2370                goto err;
2371
2372        err = "failed to open device";
2373        bdev = blkdev_get_by_path(strim(path),
2374                                  FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2375                                  sb);
2376        if (IS_ERR(bdev)) {
2377                if (bdev == ERR_PTR(-EBUSY)) {
2378                        bdev = lookup_bdev(strim(path));
2379                        mutex_lock(&bch_register_lock);
2380                        if (!IS_ERR(bdev) && bch_is_open(bdev))
2381                                err = "device already registered";
2382                        else
2383                                err = "device busy";
2384                        mutex_unlock(&bch_register_lock);
2385                        if (!IS_ERR(bdev))
2386                                bdput(bdev);
2387                        if (attr == &ksysfs_register_quiet)
2388                                goto quiet_out;
2389                }
2390                goto err;
2391        }
2392
2393        err = "failed to set blocksize";
2394        if (set_blocksize(bdev, 4096))
2395                goto err_close;
2396
2397        err = read_super(sb, bdev, &sb_page);
2398        if (err)
2399                goto err_close;
2400
2401        err = "failed to register device";
2402        if (SB_IS_BDEV(sb)) {
2403                struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2404
2405                if (!dc)
2406                        goto err_close;
2407
2408                mutex_lock(&bch_register_lock);
2409                ret = register_bdev(sb, sb_page, bdev, dc);
2410                mutex_unlock(&bch_register_lock);
2411                /* blkdev_put() will be called in cached_dev_free() */
2412                if (ret < 0)
2413                        goto err;
2414        } else {
2415                struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2416
2417                if (!ca)
2418                        goto err_close;
2419
2420                /* blkdev_put() will be called in bch_cache_release() */
2421                if (register_cache(sb, sb_page, bdev, ca) != 0)
2422                        goto err;
2423        }
2424quiet_out:
2425        ret = size;
2426out:
2427        if (sb_page)
2428                put_page(sb_page);
2429        kfree(sb);
2430        kfree(path);
2431        module_put(THIS_MODULE);
2432        return ret;
2433
2434err_close:
2435        blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2436err:
2437        pr_info("error %s: %s", path, err);
2438        goto out;
2439}
2440
2441
2442struct pdev {
2443        struct list_head list;
2444        struct cached_dev *dc;
2445};
2446
2447static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2448                                         struct kobj_attribute *attr,
2449                                         const char *buffer,
2450                                         size_t size)
2451{
2452        LIST_HEAD(pending_devs);
2453        ssize_t ret = size;
2454        struct cached_dev *dc, *tdc;
2455        struct pdev *pdev, *tpdev;
2456        struct cache_set *c, *tc;
2457
2458        mutex_lock(&bch_register_lock);
2459        list_for_each_entry_safe(dc, tdc, &uncached_devices, list) {
2460                pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL);
2461                if (!pdev)
2462                        break;
2463                pdev->dc = dc;
2464                list_add(&pdev->list, &pending_devs);
2465        }
2466
2467        list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2468                list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2469                        char *pdev_set_uuid = pdev->dc->sb.set_uuid;
2470                        char *set_uuid = c->sb.uuid;
2471
2472                        if (!memcmp(pdev_set_uuid, set_uuid, 16)) {
2473                                list_del(&pdev->list);
2474                                kfree(pdev);
2475                                break;
2476                        }
2477                }
2478        }
2479        mutex_unlock(&bch_register_lock);
2480
2481        list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2482                pr_info("delete pdev %p", pdev);
2483                list_del(&pdev->list);
2484                bcache_device_stop(&pdev->dc->disk);
2485                kfree(pdev);
2486        }
2487
2488        return ret;
2489}
2490
2491static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2492{
2493        if (bcache_is_reboot)
2494                return NOTIFY_DONE;
2495
2496        if (code == SYS_DOWN ||
2497            code == SYS_HALT ||
2498            code == SYS_POWER_OFF) {
2499                DEFINE_WAIT(wait);
2500                unsigned long start = jiffies;
2501                bool stopped = false;
2502
2503                struct cache_set *c, *tc;
2504                struct cached_dev *dc, *tdc;
2505
2506                mutex_lock(&bch_register_lock);
2507
2508                if (bcache_is_reboot)
2509                        goto out;
2510
2511                /* New registration is rejected since now */
2512                bcache_is_reboot = true;
2513                /*
2514                 * Make registering caller (if there is) on other CPU
2515                 * core know bcache_is_reboot set to true earlier
2516                 */
2517                smp_mb();
2518
2519                if (list_empty(&bch_cache_sets) &&
2520                    list_empty(&uncached_devices))
2521                        goto out;
2522
2523                mutex_unlock(&bch_register_lock);
2524
2525                pr_info("Stopping all devices:");
2526
2527                /*
2528                 * The reason bch_register_lock is not held to call
2529                 * bch_cache_set_stop() and bcache_device_stop() is to
2530                 * avoid potential deadlock during reboot, because cache
2531                 * set or bcache device stopping process will acqurie
2532                 * bch_register_lock too.
2533                 *
2534                 * We are safe here because bcache_is_reboot sets to
2535                 * true already, register_bcache() will reject new
2536                 * registration now. bcache_is_reboot also makes sure
2537                 * bcache_reboot() won't be re-entered on by other thread,
2538                 * so there is no race in following list iteration by
2539                 * list_for_each_entry_safe().
2540                 */
2541                list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2542                        bch_cache_set_stop(c);
2543
2544                list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2545                        bcache_device_stop(&dc->disk);
2546
2547
2548                /*
2549                 * Give an early chance for other kthreads and
2550                 * kworkers to stop themselves
2551                 */
2552                schedule();
2553
2554                /* What's a condition variable? */
2555                while (1) {
2556                        long timeout = start + 10 * HZ - jiffies;
2557
2558                        mutex_lock(&bch_register_lock);
2559                        stopped = list_empty(&bch_cache_sets) &&
2560                                list_empty(&uncached_devices);
2561
2562                        if (timeout < 0 || stopped)
2563                                break;
2564
2565                        prepare_to_wait(&unregister_wait, &wait,
2566                                        TASK_UNINTERRUPTIBLE);
2567
2568                        mutex_unlock(&bch_register_lock);
2569                        schedule_timeout(timeout);
2570                }
2571
2572                finish_wait(&unregister_wait, &wait);
2573
2574                if (stopped)
2575                        pr_info("All devices stopped");
2576                else
2577                        pr_notice("Timeout waiting for devices to be closed");
2578out:
2579                mutex_unlock(&bch_register_lock);
2580        }
2581
2582        return NOTIFY_DONE;
2583}
2584
2585static struct notifier_block reboot = {
2586        .notifier_call  = bcache_reboot,
2587        .priority       = INT_MAX, /* before any real devices */
2588};
2589
2590static void bcache_exit(void)
2591{
2592        bch_debug_exit();
2593        bch_request_exit();
2594        if (bcache_kobj)
2595                kobject_put(bcache_kobj);
2596        if (bcache_wq)
2597                destroy_workqueue(bcache_wq);
2598        if (bch_journal_wq)
2599                destroy_workqueue(bch_journal_wq);
2600
2601        if (bcache_major)
2602                unregister_blkdev(bcache_major, "bcache");
2603        unregister_reboot_notifier(&reboot);
2604        mutex_destroy(&bch_register_lock);
2605}
2606
2607/* Check and fixup module parameters */
2608static void check_module_parameters(void)
2609{
2610        if (bch_cutoff_writeback_sync == 0)
2611                bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC;
2612        else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) {
2613                pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u",
2614                        bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX);
2615                bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX;
2616        }
2617
2618        if (bch_cutoff_writeback == 0)
2619                bch_cutoff_writeback = CUTOFF_WRITEBACK;
2620        else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) {
2621                pr_warn("set bch_cutoff_writeback (%u) to max value %u",
2622                        bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX);
2623                bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX;
2624        }
2625
2626        if (bch_cutoff_writeback > bch_cutoff_writeback_sync) {
2627                pr_warn("set bch_cutoff_writeback (%u) to %u",
2628                        bch_cutoff_writeback, bch_cutoff_writeback_sync);
2629                bch_cutoff_writeback = bch_cutoff_writeback_sync;
2630        }
2631}
2632
2633static int __init bcache_init(void)
2634{
2635        static const struct attribute *files[] = {
2636                &ksysfs_register.attr,
2637                &ksysfs_register_quiet.attr,
2638                &ksysfs_pendings_cleanup.attr,
2639                NULL
2640        };
2641
2642        check_module_parameters();
2643
2644        mutex_init(&bch_register_lock);
2645        init_waitqueue_head(&unregister_wait);
2646        register_reboot_notifier(&reboot);
2647
2648        bcache_major = register_blkdev(0, "bcache");
2649        if (bcache_major < 0) {
2650                unregister_reboot_notifier(&reboot);
2651                mutex_destroy(&bch_register_lock);
2652                return bcache_major;
2653        }
2654
2655        bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0);
2656        if (!bcache_wq)
2657                goto err;
2658
2659        bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0);
2660        if (!bch_journal_wq)
2661                goto err;
2662
2663        bcache_kobj = kobject_create_and_add("bcache", fs_kobj);
2664        if (!bcache_kobj)
2665                goto err;
2666
2667        if (bch_request_init() ||
2668            sysfs_create_files(bcache_kobj, files))
2669                goto err;
2670
2671        bch_debug_init();
2672        closure_debug_init();
2673
2674        bcache_is_reboot = false;
2675
2676        return 0;
2677err:
2678        bcache_exit();
2679        return -ENOMEM;
2680}
2681
2682/*
2683 * Module hooks
2684 */
2685module_exit(bcache_exit);
2686module_init(bcache_init);
2687
2688module_param(bch_cutoff_writeback, uint, 0);
2689MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback");
2690
2691module_param(bch_cutoff_writeback_sync, uint, 0);
2692MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback");
2693
2694MODULE_DESCRIPTION("Bcache: a Linux block layer cache");
2695MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
2696MODULE_LICENSE("GPL");
2697