linux/drivers/md/bcache/writeback.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * background writeback - scan btree for dirty data and write it to the backing
   4 * device
   5 *
   6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
   7 * Copyright 2012 Google, Inc.
   8 */
   9
  10#include "bcache.h"
  11#include "btree.h"
  12#include "debug.h"
  13#include "writeback.h"
  14
  15#include <linux/delay.h>
  16#include <linux/kthread.h>
  17#include <linux/sched/clock.h>
  18#include <trace/events/bcache.h>
  19
  20static void update_gc_after_writeback(struct cache_set *c)
  21{
  22        if (c->gc_after_writeback != (BCH_ENABLE_AUTO_GC) ||
  23            c->gc_stats.in_use < BCH_AUTO_GC_DIRTY_THRESHOLD)
  24                return;
  25
  26        c->gc_after_writeback |= BCH_DO_AUTO_GC;
  27}
  28
  29/* Rate limiting */
  30static uint64_t __calc_target_rate(struct cached_dev *dc)
  31{
  32        struct cache_set *c = dc->disk.c;
  33
  34        /*
  35         * This is the size of the cache, minus the amount used for
  36         * flash-only devices
  37         */
  38        uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size -
  39                                atomic_long_read(&c->flash_dev_dirty_sectors);
  40
  41        /*
  42         * Unfortunately there is no control of global dirty data.  If the
  43         * user states that they want 10% dirty data in the cache, and has,
  44         * e.g., 5 backing volumes of equal size, we try and ensure each
  45         * backing volume uses about 2% of the cache for dirty data.
  46         */
  47        uint32_t bdev_share =
  48                div64_u64(bdev_sectors(dc->bdev) << WRITEBACK_SHARE_SHIFT,
  49                                c->cached_dev_sectors);
  50
  51        uint64_t cache_dirty_target =
  52                div_u64(cache_sectors * dc->writeback_percent, 100);
  53
  54        /* Ensure each backing dev gets at least one dirty share */
  55        if (bdev_share < 1)
  56                bdev_share = 1;
  57
  58        return (cache_dirty_target * bdev_share) >> WRITEBACK_SHARE_SHIFT;
  59}
  60
  61static void __update_writeback_rate(struct cached_dev *dc)
  62{
  63        /*
  64         * PI controller:
  65         * Figures out the amount that should be written per second.
  66         *
  67         * First, the error (number of sectors that are dirty beyond our
  68         * target) is calculated.  The error is accumulated (numerically
  69         * integrated).
  70         *
  71         * Then, the proportional value and integral value are scaled
  72         * based on configured values.  These are stored as inverses to
  73         * avoid fixed point math and to make configuration easy-- e.g.
  74         * the default value of 40 for writeback_rate_p_term_inverse
  75         * attempts to write at a rate that would retire all the dirty
  76         * blocks in 40 seconds.
  77         *
  78         * The writeback_rate_i_inverse value of 10000 means that 1/10000th
  79         * of the error is accumulated in the integral term per second.
  80         * This acts as a slow, long-term average that is not subject to
  81         * variations in usage like the p term.
  82         */
  83        int64_t target = __calc_target_rate(dc);
  84        int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
  85        int64_t error = dirty - target;
  86        int64_t proportional_scaled =
  87                div_s64(error, dc->writeback_rate_p_term_inverse);
  88        int64_t integral_scaled;
  89        uint32_t new_rate;
  90
  91        if ((error < 0 && dc->writeback_rate_integral > 0) ||
  92            (error > 0 && time_before64(local_clock(),
  93                         dc->writeback_rate.next + NSEC_PER_MSEC))) {
  94                /*
  95                 * Only decrease the integral term if it's more than
  96                 * zero.  Only increase the integral term if the device
  97                 * is keeping up.  (Don't wind up the integral
  98                 * ineffectively in either case).
  99                 *
 100                 * It's necessary to scale this by
 101                 * writeback_rate_update_seconds to keep the integral
 102                 * term dimensioned properly.
 103                 */
 104                dc->writeback_rate_integral += error *
 105                        dc->writeback_rate_update_seconds;
 106        }
 107
 108        integral_scaled = div_s64(dc->writeback_rate_integral,
 109                        dc->writeback_rate_i_term_inverse);
 110
 111        new_rate = clamp_t(int32_t, (proportional_scaled + integral_scaled),
 112                        dc->writeback_rate_minimum, NSEC_PER_SEC);
 113
 114        dc->writeback_rate_proportional = proportional_scaled;
 115        dc->writeback_rate_integral_scaled = integral_scaled;
 116        dc->writeback_rate_change = new_rate -
 117                        atomic_long_read(&dc->writeback_rate.rate);
 118        atomic_long_set(&dc->writeback_rate.rate, new_rate);
 119        dc->writeback_rate_target = target;
 120}
 121
 122static bool set_at_max_writeback_rate(struct cache_set *c,
 123                                       struct cached_dev *dc)
 124{
 125        /* Don't set max writeback rate if gc is running */
 126        if (!c->gc_mark_valid)
 127                return false;
 128        /*
 129         * Idle_counter is increased everytime when update_writeback_rate() is
 130         * called. If all backing devices attached to the same cache set have
 131         * identical dc->writeback_rate_update_seconds values, it is about 6
 132         * rounds of update_writeback_rate() on each backing device before
 133         * c->at_max_writeback_rate is set to 1, and then max wrteback rate set
 134         * to each dc->writeback_rate.rate.
 135         * In order to avoid extra locking cost for counting exact dirty cached
 136         * devices number, c->attached_dev_nr is used to calculate the idle
 137         * throushold. It might be bigger if not all cached device are in write-
 138         * back mode, but it still works well with limited extra rounds of
 139         * update_writeback_rate().
 140         */
 141        if (atomic_inc_return(&c->idle_counter) <
 142            atomic_read(&c->attached_dev_nr) * 6)
 143                return false;
 144
 145        if (atomic_read(&c->at_max_writeback_rate) != 1)
 146                atomic_set(&c->at_max_writeback_rate, 1);
 147
 148        atomic_long_set(&dc->writeback_rate.rate, INT_MAX);
 149
 150        /* keep writeback_rate_target as existing value */
 151        dc->writeback_rate_proportional = 0;
 152        dc->writeback_rate_integral_scaled = 0;
 153        dc->writeback_rate_change = 0;
 154
 155        /*
 156         * Check c->idle_counter and c->at_max_writeback_rate agagain in case
 157         * new I/O arrives during before set_at_max_writeback_rate() returns.
 158         * Then the writeback rate is set to 1, and its new value should be
 159         * decided via __update_writeback_rate().
 160         */
 161        if ((atomic_read(&c->idle_counter) <
 162             atomic_read(&c->attached_dev_nr) * 6) ||
 163            !atomic_read(&c->at_max_writeback_rate))
 164                return false;
 165
 166        return true;
 167}
 168
 169static void update_writeback_rate(struct work_struct *work)
 170{
 171        struct cached_dev *dc = container_of(to_delayed_work(work),
 172                                             struct cached_dev,
 173                                             writeback_rate_update);
 174        struct cache_set *c = dc->disk.c;
 175
 176        /*
 177         * should check BCACHE_DEV_RATE_DW_RUNNING before calling
 178         * cancel_delayed_work_sync().
 179         */
 180        set_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
 181        /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
 182        smp_mb();
 183
 184        /*
 185         * CACHE_SET_IO_DISABLE might be set via sysfs interface,
 186         * check it here too.
 187         */
 188        if (!test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) ||
 189            test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
 190                clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
 191                /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
 192                smp_mb();
 193                return;
 194        }
 195
 196        if (atomic_read(&dc->has_dirty) && dc->writeback_percent) {
 197                /*
 198                 * If the whole cache set is idle, set_at_max_writeback_rate()
 199                 * will set writeback rate to a max number. Then it is
 200                 * unncessary to update writeback rate for an idle cache set
 201                 * in maximum writeback rate number(s).
 202                 */
 203                if (!set_at_max_writeback_rate(c, dc)) {
 204                        down_read(&dc->writeback_lock);
 205                        __update_writeback_rate(dc);
 206                        update_gc_after_writeback(c);
 207                        up_read(&dc->writeback_lock);
 208                }
 209        }
 210
 211
 212        /*
 213         * CACHE_SET_IO_DISABLE might be set via sysfs interface,
 214         * check it here too.
 215         */
 216        if (test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) &&
 217            !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
 218                schedule_delayed_work(&dc->writeback_rate_update,
 219                              dc->writeback_rate_update_seconds * HZ);
 220        }
 221
 222        /*
 223         * should check BCACHE_DEV_RATE_DW_RUNNING before calling
 224         * cancel_delayed_work_sync().
 225         */
 226        clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
 227        /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
 228        smp_mb();
 229}
 230
 231static unsigned int writeback_delay(struct cached_dev *dc,
 232                                    unsigned int sectors)
 233{
 234        if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
 235            !dc->writeback_percent)
 236                return 0;
 237
 238        return bch_next_delay(&dc->writeback_rate, sectors);
 239}
 240
 241struct dirty_io {
 242        struct closure          cl;
 243        struct cached_dev       *dc;
 244        uint16_t                sequence;
 245        struct bio              bio;
 246};
 247
 248static void dirty_init(struct keybuf_key *w)
 249{
 250        struct dirty_io *io = w->private;
 251        struct bio *bio = &io->bio;
 252
 253        bio_init(bio, bio->bi_inline_vecs,
 254                 DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS));
 255        if (!io->dc->writeback_percent)
 256                bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
 257
 258        bio->bi_iter.bi_size    = KEY_SIZE(&w->key) << 9;
 259        bio->bi_private         = w;
 260        bch_bio_map(bio, NULL);
 261}
 262
 263static void dirty_io_destructor(struct closure *cl)
 264{
 265        struct dirty_io *io = container_of(cl, struct dirty_io, cl);
 266
 267        kfree(io);
 268}
 269
 270static void write_dirty_finish(struct closure *cl)
 271{
 272        struct dirty_io *io = container_of(cl, struct dirty_io, cl);
 273        struct keybuf_key *w = io->bio.bi_private;
 274        struct cached_dev *dc = io->dc;
 275
 276        bio_free_pages(&io->bio);
 277
 278        /* This is kind of a dumb way of signalling errors. */
 279        if (KEY_DIRTY(&w->key)) {
 280                int ret;
 281                unsigned int i;
 282                struct keylist keys;
 283
 284                bch_keylist_init(&keys);
 285
 286                bkey_copy(keys.top, &w->key);
 287                SET_KEY_DIRTY(keys.top, false);
 288                bch_keylist_push(&keys);
 289
 290                for (i = 0; i < KEY_PTRS(&w->key); i++)
 291                        atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
 292
 293                ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key);
 294
 295                if (ret)
 296                        trace_bcache_writeback_collision(&w->key);
 297
 298                atomic_long_inc(ret
 299                                ? &dc->disk.c->writeback_keys_failed
 300                                : &dc->disk.c->writeback_keys_done);
 301        }
 302
 303        bch_keybuf_del(&dc->writeback_keys, w);
 304        up(&dc->in_flight);
 305
 306        closure_return_with_destructor(cl, dirty_io_destructor);
 307}
 308
 309static void dirty_endio(struct bio *bio)
 310{
 311        struct keybuf_key *w = bio->bi_private;
 312        struct dirty_io *io = w->private;
 313
 314        if (bio->bi_status) {
 315                SET_KEY_DIRTY(&w->key, false);
 316                bch_count_backing_io_errors(io->dc, bio);
 317        }
 318
 319        closure_put(&io->cl);
 320}
 321
 322static void write_dirty(struct closure *cl)
 323{
 324        struct dirty_io *io = container_of(cl, struct dirty_io, cl);
 325        struct keybuf_key *w = io->bio.bi_private;
 326        struct cached_dev *dc = io->dc;
 327
 328        uint16_t next_sequence;
 329
 330        if (atomic_read(&dc->writeback_sequence_next) != io->sequence) {
 331                /* Not our turn to write; wait for a write to complete */
 332                closure_wait(&dc->writeback_ordering_wait, cl);
 333
 334                if (atomic_read(&dc->writeback_sequence_next) == io->sequence) {
 335                        /*
 336                         * Edge case-- it happened in indeterminate order
 337                         * relative to when we were added to wait list..
 338                         */
 339                        closure_wake_up(&dc->writeback_ordering_wait);
 340                }
 341
 342                continue_at(cl, write_dirty, io->dc->writeback_write_wq);
 343                return;
 344        }
 345
 346        next_sequence = io->sequence + 1;
 347
 348        /*
 349         * IO errors are signalled using the dirty bit on the key.
 350         * If we failed to read, we should not attempt to write to the
 351         * backing device.  Instead, immediately go to write_dirty_finish
 352         * to clean up.
 353         */
 354        if (KEY_DIRTY(&w->key)) {
 355                dirty_init(w);
 356                bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0);
 357                io->bio.bi_iter.bi_sector = KEY_START(&w->key);
 358                bio_set_dev(&io->bio, io->dc->bdev);
 359                io->bio.bi_end_io       = dirty_endio;
 360
 361                /* I/O request sent to backing device */
 362                closure_bio_submit(io->dc->disk.c, &io->bio, cl);
 363        }
 364
 365        atomic_set(&dc->writeback_sequence_next, next_sequence);
 366        closure_wake_up(&dc->writeback_ordering_wait);
 367
 368        continue_at(cl, write_dirty_finish, io->dc->writeback_write_wq);
 369}
 370
 371static void read_dirty_endio(struct bio *bio)
 372{
 373        struct keybuf_key *w = bio->bi_private;
 374        struct dirty_io *io = w->private;
 375
 376        /* is_read = 1 */
 377        bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0),
 378                            bio->bi_status, 1,
 379                            "reading dirty data from cache");
 380
 381        dirty_endio(bio);
 382}
 383
 384static void read_dirty_submit(struct closure *cl)
 385{
 386        struct dirty_io *io = container_of(cl, struct dirty_io, cl);
 387
 388        closure_bio_submit(io->dc->disk.c, &io->bio, cl);
 389
 390        continue_at(cl, write_dirty, io->dc->writeback_write_wq);
 391}
 392
 393static void read_dirty(struct cached_dev *dc)
 394{
 395        unsigned int delay = 0;
 396        struct keybuf_key *next, *keys[MAX_WRITEBACKS_IN_PASS], *w;
 397        size_t size;
 398        int nk, i;
 399        struct dirty_io *io;
 400        struct closure cl;
 401        uint16_t sequence = 0;
 402
 403        BUG_ON(!llist_empty(&dc->writeback_ordering_wait.list));
 404        atomic_set(&dc->writeback_sequence_next, sequence);
 405        closure_init_stack(&cl);
 406
 407        /*
 408         * XXX: if we error, background writeback just spins. Should use some
 409         * mempools.
 410         */
 411
 412        next = bch_keybuf_next(&dc->writeback_keys);
 413
 414        while (!kthread_should_stop() &&
 415               !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
 416               next) {
 417                size = 0;
 418                nk = 0;
 419
 420                do {
 421                        BUG_ON(ptr_stale(dc->disk.c, &next->key, 0));
 422
 423                        /*
 424                         * Don't combine too many operations, even if they
 425                         * are all small.
 426                         */
 427                        if (nk >= MAX_WRITEBACKS_IN_PASS)
 428                                break;
 429
 430                        /*
 431                         * If the current operation is very large, don't
 432                         * further combine operations.
 433                         */
 434                        if (size >= MAX_WRITESIZE_IN_PASS)
 435                                break;
 436
 437                        /*
 438                         * Operations are only eligible to be combined
 439                         * if they are contiguous.
 440                         *
 441                         * TODO: add a heuristic willing to fire a
 442                         * certain amount of non-contiguous IO per pass,
 443                         * so that we can benefit from backing device
 444                         * command queueing.
 445                         */
 446                        if ((nk != 0) && bkey_cmp(&keys[nk-1]->key,
 447                                                &START_KEY(&next->key)))
 448                                break;
 449
 450                        size += KEY_SIZE(&next->key);
 451                        keys[nk++] = next;
 452                } while ((next = bch_keybuf_next(&dc->writeback_keys)));
 453
 454                /* Now we have gathered a set of 1..5 keys to write back. */
 455                for (i = 0; i < nk; i++) {
 456                        w = keys[i];
 457
 458                        io = kzalloc(sizeof(struct dirty_io) +
 459                                     sizeof(struct bio_vec) *
 460                                     DIV_ROUND_UP(KEY_SIZE(&w->key),
 461                                                  PAGE_SECTORS),
 462                                     GFP_KERNEL);
 463                        if (!io)
 464                                goto err;
 465
 466                        w->private      = io;
 467                        io->dc          = dc;
 468                        io->sequence    = sequence++;
 469
 470                        dirty_init(w);
 471                        bio_set_op_attrs(&io->bio, REQ_OP_READ, 0);
 472                        io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0);
 473                        bio_set_dev(&io->bio,
 474                                    PTR_CACHE(dc->disk.c, &w->key, 0)->bdev);
 475                        io->bio.bi_end_io       = read_dirty_endio;
 476
 477                        if (bch_bio_alloc_pages(&io->bio, GFP_KERNEL))
 478                                goto err_free;
 479
 480                        trace_bcache_writeback(&w->key);
 481
 482                        down(&dc->in_flight);
 483
 484                        /*
 485                         * We've acquired a semaphore for the maximum
 486                         * simultaneous number of writebacks; from here
 487                         * everything happens asynchronously.
 488                         */
 489                        closure_call(&io->cl, read_dirty_submit, NULL, &cl);
 490                }
 491
 492                delay = writeback_delay(dc, size);
 493
 494                while (!kthread_should_stop() &&
 495                       !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
 496                       delay) {
 497                        schedule_timeout_interruptible(delay);
 498                        delay = writeback_delay(dc, 0);
 499                }
 500        }
 501
 502        if (0) {
 503err_free:
 504                kfree(w->private);
 505err:
 506                bch_keybuf_del(&dc->writeback_keys, w);
 507        }
 508
 509        /*
 510         * Wait for outstanding writeback IOs to finish (and keybuf slots to be
 511         * freed) before refilling again
 512         */
 513        closure_sync(&cl);
 514}
 515
 516/* Scan for dirty data */
 517
 518void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned int inode,
 519                                  uint64_t offset, int nr_sectors)
 520{
 521        struct bcache_device *d = c->devices[inode];
 522        unsigned int stripe_offset, stripe, sectors_dirty;
 523
 524        if (!d)
 525                return;
 526
 527        if (UUID_FLASH_ONLY(&c->uuids[inode]))
 528                atomic_long_add(nr_sectors, &c->flash_dev_dirty_sectors);
 529
 530        stripe = offset_to_stripe(d, offset);
 531        stripe_offset = offset & (d->stripe_size - 1);
 532
 533        while (nr_sectors) {
 534                int s = min_t(unsigned int, abs(nr_sectors),
 535                              d->stripe_size - stripe_offset);
 536
 537                if (nr_sectors < 0)
 538                        s = -s;
 539
 540                if (stripe >= d->nr_stripes)
 541                        return;
 542
 543                sectors_dirty = atomic_add_return(s,
 544                                        d->stripe_sectors_dirty + stripe);
 545                if (sectors_dirty == d->stripe_size)
 546                        set_bit(stripe, d->full_dirty_stripes);
 547                else
 548                        clear_bit(stripe, d->full_dirty_stripes);
 549
 550                nr_sectors -= s;
 551                stripe_offset = 0;
 552                stripe++;
 553        }
 554}
 555
 556static bool dirty_pred(struct keybuf *buf, struct bkey *k)
 557{
 558        struct cached_dev *dc = container_of(buf,
 559                                             struct cached_dev,
 560                                             writeback_keys);
 561
 562        BUG_ON(KEY_INODE(k) != dc->disk.id);
 563
 564        return KEY_DIRTY(k);
 565}
 566
 567static void refill_full_stripes(struct cached_dev *dc)
 568{
 569        struct keybuf *buf = &dc->writeback_keys;
 570        unsigned int start_stripe, stripe, next_stripe;
 571        bool wrapped = false;
 572
 573        stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned));
 574
 575        if (stripe >= dc->disk.nr_stripes)
 576                stripe = 0;
 577
 578        start_stripe = stripe;
 579
 580        while (1) {
 581                stripe = find_next_bit(dc->disk.full_dirty_stripes,
 582                                       dc->disk.nr_stripes, stripe);
 583
 584                if (stripe == dc->disk.nr_stripes)
 585                        goto next;
 586
 587                next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes,
 588                                                 dc->disk.nr_stripes, stripe);
 589
 590                buf->last_scanned = KEY(dc->disk.id,
 591                                        stripe * dc->disk.stripe_size, 0);
 592
 593                bch_refill_keybuf(dc->disk.c, buf,
 594                                  &KEY(dc->disk.id,
 595                                       next_stripe * dc->disk.stripe_size, 0),
 596                                  dirty_pred);
 597
 598                if (array_freelist_empty(&buf->freelist))
 599                        return;
 600
 601                stripe = next_stripe;
 602next:
 603                if (wrapped && stripe > start_stripe)
 604                        return;
 605
 606                if (stripe == dc->disk.nr_stripes) {
 607                        stripe = 0;
 608                        wrapped = true;
 609                }
 610        }
 611}
 612
 613/*
 614 * Returns true if we scanned the entire disk
 615 */
 616static bool refill_dirty(struct cached_dev *dc)
 617{
 618        struct keybuf *buf = &dc->writeback_keys;
 619        struct bkey start = KEY(dc->disk.id, 0, 0);
 620        struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0);
 621        struct bkey start_pos;
 622
 623        /*
 624         * make sure keybuf pos is inside the range for this disk - at bringup
 625         * we might not be attached yet so this disk's inode nr isn't
 626         * initialized then
 627         */
 628        if (bkey_cmp(&buf->last_scanned, &start) < 0 ||
 629            bkey_cmp(&buf->last_scanned, &end) > 0)
 630                buf->last_scanned = start;
 631
 632        if (dc->partial_stripes_expensive) {
 633                refill_full_stripes(dc);
 634                if (array_freelist_empty(&buf->freelist))
 635                        return false;
 636        }
 637
 638        start_pos = buf->last_scanned;
 639        bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
 640
 641        if (bkey_cmp(&buf->last_scanned, &end) < 0)
 642                return false;
 643
 644        /*
 645         * If we get to the end start scanning again from the beginning, and
 646         * only scan up to where we initially started scanning from:
 647         */
 648        buf->last_scanned = start;
 649        bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred);
 650
 651        return bkey_cmp(&buf->last_scanned, &start_pos) >= 0;
 652}
 653
 654static int bch_writeback_thread(void *arg)
 655{
 656        struct cached_dev *dc = arg;
 657        struct cache_set *c = dc->disk.c;
 658        bool searched_full_index;
 659
 660        bch_ratelimit_reset(&dc->writeback_rate);
 661
 662        while (!kthread_should_stop() &&
 663               !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
 664                down_write(&dc->writeback_lock);
 665                set_current_state(TASK_INTERRUPTIBLE);
 666                /*
 667                 * If the bache device is detaching, skip here and continue
 668                 * to perform writeback. Otherwise, if no dirty data on cache,
 669                 * or there is dirty data on cache but writeback is disabled,
 670                 * the writeback thread should sleep here and wait for others
 671                 * to wake up it.
 672                 */
 673                if (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) &&
 674                    (!atomic_read(&dc->has_dirty) || !dc->writeback_running)) {
 675                        up_write(&dc->writeback_lock);
 676
 677                        if (kthread_should_stop() ||
 678                            test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
 679                                set_current_state(TASK_RUNNING);
 680                                break;
 681                        }
 682
 683                        schedule();
 684                        continue;
 685                }
 686                set_current_state(TASK_RUNNING);
 687
 688                searched_full_index = refill_dirty(dc);
 689
 690                if (searched_full_index &&
 691                    RB_EMPTY_ROOT(&dc->writeback_keys.keys)) {
 692                        atomic_set(&dc->has_dirty, 0);
 693                        SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
 694                        bch_write_bdev_super(dc, NULL);
 695                        /*
 696                         * If bcache device is detaching via sysfs interface,
 697                         * writeback thread should stop after there is no dirty
 698                         * data on cache. BCACHE_DEV_DETACHING flag is set in
 699                         * bch_cached_dev_detach().
 700                         */
 701                        if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) {
 702                                up_write(&dc->writeback_lock);
 703                                break;
 704                        }
 705
 706                        /*
 707                         * When dirty data rate is high (e.g. 50%+), there might
 708                         * be heavy buckets fragmentation after writeback
 709                         * finished, which hurts following write performance.
 710                         * If users really care about write performance they
 711                         * may set BCH_ENABLE_AUTO_GC via sysfs, then when
 712                         * BCH_DO_AUTO_GC is set, garbage collection thread
 713                         * will be wake up here. After moving gc, the shrunk
 714                         * btree and discarded free buckets SSD space may be
 715                         * helpful for following write requests.
 716                         */
 717                        if (c->gc_after_writeback ==
 718                            (BCH_ENABLE_AUTO_GC|BCH_DO_AUTO_GC)) {
 719                                c->gc_after_writeback &= ~BCH_DO_AUTO_GC;
 720                                force_wake_up_gc(c);
 721                        }
 722                }
 723
 724                up_write(&dc->writeback_lock);
 725
 726                read_dirty(dc);
 727
 728                if (searched_full_index) {
 729                        unsigned int delay = dc->writeback_delay * HZ;
 730
 731                        while (delay &&
 732                               !kthread_should_stop() &&
 733                               !test_bit(CACHE_SET_IO_DISABLE, &c->flags) &&
 734                               !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
 735                                delay = schedule_timeout_interruptible(delay);
 736
 737                        bch_ratelimit_reset(&dc->writeback_rate);
 738                }
 739        }
 740
 741        if (dc->writeback_write_wq) {
 742                flush_workqueue(dc->writeback_write_wq);
 743                destroy_workqueue(dc->writeback_write_wq);
 744        }
 745        cached_dev_put(dc);
 746        wait_for_kthread_stop();
 747
 748        return 0;
 749}
 750
 751/* Init */
 752#define INIT_KEYS_EACH_TIME     500000
 753#define INIT_KEYS_SLEEP_MS      100
 754
 755struct sectors_dirty_init {
 756        struct btree_op op;
 757        unsigned int    inode;
 758        size_t          count;
 759        struct bkey     start;
 760};
 761
 762static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b,
 763                                 struct bkey *k)
 764{
 765        struct sectors_dirty_init *op = container_of(_op,
 766                                                struct sectors_dirty_init, op);
 767        if (KEY_INODE(k) > op->inode)
 768                return MAP_DONE;
 769
 770        if (KEY_DIRTY(k))
 771                bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
 772                                             KEY_START(k), KEY_SIZE(k));
 773
 774        op->count++;
 775        if (atomic_read(&b->c->search_inflight) &&
 776            !(op->count % INIT_KEYS_EACH_TIME)) {
 777                bkey_copy_key(&op->start, k);
 778                return -EAGAIN;
 779        }
 780
 781        return MAP_CONTINUE;
 782}
 783
 784void bch_sectors_dirty_init(struct bcache_device *d)
 785{
 786        struct sectors_dirty_init op;
 787        int ret;
 788
 789        bch_btree_op_init(&op.op, -1);
 790        op.inode = d->id;
 791        op.count = 0;
 792        op.start = KEY(op.inode, 0, 0);
 793
 794        do {
 795                ret = bch_btree_map_keys(&op.op, d->c, &op.start,
 796                                         sectors_dirty_init_fn, 0);
 797                if (ret == -EAGAIN)
 798                        schedule_timeout_interruptible(
 799                                msecs_to_jiffies(INIT_KEYS_SLEEP_MS));
 800                else if (ret < 0) {
 801                        pr_warn("sectors dirty init failed, ret=%d!", ret);
 802                        break;
 803                }
 804        } while (ret == -EAGAIN);
 805}
 806
 807void bch_cached_dev_writeback_init(struct cached_dev *dc)
 808{
 809        sema_init(&dc->in_flight, 64);
 810        init_rwsem(&dc->writeback_lock);
 811        bch_keybuf_init(&dc->writeback_keys);
 812
 813        dc->writeback_metadata          = true;
 814        dc->writeback_running           = false;
 815        dc->writeback_percent           = 10;
 816        dc->writeback_delay             = 30;
 817        atomic_long_set(&dc->writeback_rate.rate, 1024);
 818        dc->writeback_rate_minimum      = 8;
 819
 820        dc->writeback_rate_update_seconds = WRITEBACK_RATE_UPDATE_SECS_DEFAULT;
 821        dc->writeback_rate_p_term_inverse = 40;
 822        dc->writeback_rate_i_term_inverse = 10000;
 823
 824        WARN_ON(test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
 825        INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
 826}
 827
 828int bch_cached_dev_writeback_start(struct cached_dev *dc)
 829{
 830        dc->writeback_write_wq = alloc_workqueue("bcache_writeback_wq",
 831                                                WQ_MEM_RECLAIM, 0);
 832        if (!dc->writeback_write_wq)
 833                return -ENOMEM;
 834
 835        cached_dev_get(dc);
 836        dc->writeback_thread = kthread_create(bch_writeback_thread, dc,
 837                                              "bcache_writeback");
 838        if (IS_ERR(dc->writeback_thread)) {
 839                cached_dev_put(dc);
 840                destroy_workqueue(dc->writeback_write_wq);
 841                return PTR_ERR(dc->writeback_thread);
 842        }
 843        dc->writeback_running = true;
 844
 845        WARN_ON(test_and_set_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
 846        schedule_delayed_work(&dc->writeback_rate_update,
 847                              dc->writeback_rate_update_seconds * HZ);
 848
 849        bch_writeback_queue(dc);
 850
 851        return 0;
 852}
 853