linux/drivers/md/dm-bufio.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2009-2011 Red Hat, Inc.
   3 *
   4 * Author: Mikulas Patocka <mpatocka@redhat.com>
   5 *
   6 * This file is released under the GPL.
   7 */
   8
   9#include <linux/dm-bufio.h>
  10
  11#include <linux/device-mapper.h>
  12#include <linux/dm-io.h>
  13#include <linux/slab.h>
  14#include <linux/sched/mm.h>
  15#include <linux/jiffies.h>
  16#include <linux/vmalloc.h>
  17#include <linux/shrinker.h>
  18#include <linux/module.h>
  19#include <linux/rbtree.h>
  20#include <linux/stacktrace.h>
  21
  22#define DM_MSG_PREFIX "bufio"
  23
  24/*
  25 * Memory management policy:
  26 *      Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
  27 *      or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
  28 *      Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
  29 *      Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
  30 *      dirty buffers.
  31 */
  32#define DM_BUFIO_MIN_BUFFERS            8
  33
  34#define DM_BUFIO_MEMORY_PERCENT         2
  35#define DM_BUFIO_VMALLOC_PERCENT        25
  36#define DM_BUFIO_WRITEBACK_PERCENT      75
  37
  38/*
  39 * Check buffer ages in this interval (seconds)
  40 */
  41#define DM_BUFIO_WORK_TIMER_SECS        30
  42
  43/*
  44 * Free buffers when they are older than this (seconds)
  45 */
  46#define DM_BUFIO_DEFAULT_AGE_SECS       300
  47
  48/*
  49 * The nr of bytes of cached data to keep around.
  50 */
  51#define DM_BUFIO_DEFAULT_RETAIN_BYTES   (256 * 1024)
  52
  53/*
  54 * Align buffer writes to this boundary.
  55 * Tests show that SSDs have the highest IOPS when using 4k writes.
  56 */
  57#define DM_BUFIO_WRITE_ALIGN            4096
  58
  59/*
  60 * dm_buffer->list_mode
  61 */
  62#define LIST_CLEAN      0
  63#define LIST_DIRTY      1
  64#define LIST_SIZE       2
  65
  66/*
  67 * Linking of buffers:
  68 *      All buffers are linked to buffer_tree with their node field.
  69 *
  70 *      Clean buffers that are not being written (B_WRITING not set)
  71 *      are linked to lru[LIST_CLEAN] with their lru_list field.
  72 *
  73 *      Dirty and clean buffers that are being written are linked to
  74 *      lru[LIST_DIRTY] with their lru_list field. When the write
  75 *      finishes, the buffer cannot be relinked immediately (because we
  76 *      are in an interrupt context and relinking requires process
  77 *      context), so some clean-not-writing buffers can be held on
  78 *      dirty_lru too.  They are later added to lru in the process
  79 *      context.
  80 */
  81struct dm_bufio_client {
  82        struct mutex lock;
  83
  84        struct list_head lru[LIST_SIZE];
  85        unsigned long n_buffers[LIST_SIZE];
  86
  87        struct block_device *bdev;
  88        unsigned block_size;
  89        s8 sectors_per_block_bits;
  90        void (*alloc_callback)(struct dm_buffer *);
  91        void (*write_callback)(struct dm_buffer *);
  92
  93        struct kmem_cache *slab_buffer;
  94        struct kmem_cache *slab_cache;
  95        struct dm_io_client *dm_io;
  96
  97        struct list_head reserved_buffers;
  98        unsigned need_reserved_buffers;
  99
 100        unsigned minimum_buffers;
 101
 102        struct rb_root buffer_tree;
 103        wait_queue_head_t free_buffer_wait;
 104
 105        sector_t start;
 106
 107        int async_write_error;
 108
 109        struct list_head client_list;
 110        struct shrinker shrinker;
 111};
 112
 113/*
 114 * Buffer state bits.
 115 */
 116#define B_READING       0
 117#define B_WRITING       1
 118#define B_DIRTY         2
 119
 120/*
 121 * Describes how the block was allocated:
 122 * kmem_cache_alloc(), __get_free_pages() or vmalloc().
 123 * See the comment at alloc_buffer_data.
 124 */
 125enum data_mode {
 126        DATA_MODE_SLAB = 0,
 127        DATA_MODE_GET_FREE_PAGES = 1,
 128        DATA_MODE_VMALLOC = 2,
 129        DATA_MODE_LIMIT = 3
 130};
 131
 132struct dm_buffer {
 133        struct rb_node node;
 134        struct list_head lru_list;
 135        sector_t block;
 136        void *data;
 137        unsigned char data_mode;                /* DATA_MODE_* */
 138        unsigned char list_mode;                /* LIST_* */
 139        blk_status_t read_error;
 140        blk_status_t write_error;
 141        unsigned hold_count;
 142        unsigned long state;
 143        unsigned long last_accessed;
 144        unsigned dirty_start;
 145        unsigned dirty_end;
 146        unsigned write_start;
 147        unsigned write_end;
 148        struct dm_bufio_client *c;
 149        struct list_head write_list;
 150        void (*end_io)(struct dm_buffer *, blk_status_t);
 151#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
 152#define MAX_STACK 10
 153        unsigned int stack_len;
 154        unsigned long stack_entries[MAX_STACK];
 155#endif
 156};
 157
 158/*----------------------------------------------------------------*/
 159
 160#define dm_bufio_in_request()   (!!current->bio_list)
 161
 162static void dm_bufio_lock(struct dm_bufio_client *c)
 163{
 164        mutex_lock_nested(&c->lock, dm_bufio_in_request());
 165}
 166
 167static int dm_bufio_trylock(struct dm_bufio_client *c)
 168{
 169        return mutex_trylock(&c->lock);
 170}
 171
 172static void dm_bufio_unlock(struct dm_bufio_client *c)
 173{
 174        mutex_unlock(&c->lock);
 175}
 176
 177/*----------------------------------------------------------------*/
 178
 179/*
 180 * Default cache size: available memory divided by the ratio.
 181 */
 182static unsigned long dm_bufio_default_cache_size;
 183
 184/*
 185 * Total cache size set by the user.
 186 */
 187static unsigned long dm_bufio_cache_size;
 188
 189/*
 190 * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
 191 * at any time.  If it disagrees, the user has changed cache size.
 192 */
 193static unsigned long dm_bufio_cache_size_latch;
 194
 195static DEFINE_SPINLOCK(param_spinlock);
 196
 197/*
 198 * Buffers are freed after this timeout
 199 */
 200static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
 201static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
 202
 203static unsigned long dm_bufio_peak_allocated;
 204static unsigned long dm_bufio_allocated_kmem_cache;
 205static unsigned long dm_bufio_allocated_get_free_pages;
 206static unsigned long dm_bufio_allocated_vmalloc;
 207static unsigned long dm_bufio_current_allocated;
 208
 209/*----------------------------------------------------------------*/
 210
 211/*
 212 * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count
 213 */
 214static unsigned long dm_bufio_cache_size_per_client;
 215
 216/*
 217 * The current number of clients.
 218 */
 219static int dm_bufio_client_count;
 220
 221/*
 222 * The list of all clients.
 223 */
 224static LIST_HEAD(dm_bufio_all_clients);
 225
 226/*
 227 * This mutex protects dm_bufio_cache_size_latch,
 228 * dm_bufio_cache_size_per_client and dm_bufio_client_count
 229 */
 230static DEFINE_MUTEX(dm_bufio_clients_lock);
 231
 232#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
 233static void buffer_record_stack(struct dm_buffer *b)
 234{
 235        b->stack_len = stack_trace_save(b->stack_entries, MAX_STACK, 2);
 236}
 237#endif
 238
 239/*----------------------------------------------------------------
 240 * A red/black tree acts as an index for all the buffers.
 241 *--------------------------------------------------------------*/
 242static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
 243{
 244        struct rb_node *n = c->buffer_tree.rb_node;
 245        struct dm_buffer *b;
 246
 247        while (n) {
 248                b = container_of(n, struct dm_buffer, node);
 249
 250                if (b->block == block)
 251                        return b;
 252
 253                n = (b->block < block) ? n->rb_left : n->rb_right;
 254        }
 255
 256        return NULL;
 257}
 258
 259static void __insert(struct dm_bufio_client *c, struct dm_buffer *b)
 260{
 261        struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL;
 262        struct dm_buffer *found;
 263
 264        while (*new) {
 265                found = container_of(*new, struct dm_buffer, node);
 266
 267                if (found->block == b->block) {
 268                        BUG_ON(found != b);
 269                        return;
 270                }
 271
 272                parent = *new;
 273                new = (found->block < b->block) ?
 274                        &((*new)->rb_left) : &((*new)->rb_right);
 275        }
 276
 277        rb_link_node(&b->node, parent, new);
 278        rb_insert_color(&b->node, &c->buffer_tree);
 279}
 280
 281static void __remove(struct dm_bufio_client *c, struct dm_buffer *b)
 282{
 283        rb_erase(&b->node, &c->buffer_tree);
 284}
 285
 286/*----------------------------------------------------------------*/
 287
 288static void adjust_total_allocated(unsigned char data_mode, long diff)
 289{
 290        static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
 291                &dm_bufio_allocated_kmem_cache,
 292                &dm_bufio_allocated_get_free_pages,
 293                &dm_bufio_allocated_vmalloc,
 294        };
 295
 296        spin_lock(&param_spinlock);
 297
 298        *class_ptr[data_mode] += diff;
 299
 300        dm_bufio_current_allocated += diff;
 301
 302        if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
 303                dm_bufio_peak_allocated = dm_bufio_current_allocated;
 304
 305        spin_unlock(&param_spinlock);
 306}
 307
 308/*
 309 * Change the number of clients and recalculate per-client limit.
 310 */
 311static void __cache_size_refresh(void)
 312{
 313        BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
 314        BUG_ON(dm_bufio_client_count < 0);
 315
 316        dm_bufio_cache_size_latch = READ_ONCE(dm_bufio_cache_size);
 317
 318        /*
 319         * Use default if set to 0 and report the actual cache size used.
 320         */
 321        if (!dm_bufio_cache_size_latch) {
 322                (void)cmpxchg(&dm_bufio_cache_size, 0,
 323                              dm_bufio_default_cache_size);
 324                dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
 325        }
 326
 327        dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch /
 328                                         (dm_bufio_client_count ? : 1);
 329}
 330
 331/*
 332 * Allocating buffer data.
 333 *
 334 * Small buffers are allocated with kmem_cache, to use space optimally.
 335 *
 336 * For large buffers, we choose between get_free_pages and vmalloc.
 337 * Each has advantages and disadvantages.
 338 *
 339 * __get_free_pages can randomly fail if the memory is fragmented.
 340 * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
 341 * as low as 128M) so using it for caching is not appropriate.
 342 *
 343 * If the allocation may fail we use __get_free_pages. Memory fragmentation
 344 * won't have a fatal effect here, but it just causes flushes of some other
 345 * buffers and more I/O will be performed. Don't use __get_free_pages if it
 346 * always fails (i.e. order >= MAX_ORDER).
 347 *
 348 * If the allocation shouldn't fail we use __vmalloc. This is only for the
 349 * initial reserve allocation, so there's no risk of wasting all vmalloc
 350 * space.
 351 */
 352static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
 353                               unsigned char *data_mode)
 354{
 355        if (unlikely(c->slab_cache != NULL)) {
 356                *data_mode = DATA_MODE_SLAB;
 357                return kmem_cache_alloc(c->slab_cache, gfp_mask);
 358        }
 359
 360        if (c->block_size <= KMALLOC_MAX_SIZE &&
 361            gfp_mask & __GFP_NORETRY) {
 362                *data_mode = DATA_MODE_GET_FREE_PAGES;
 363                return (void *)__get_free_pages(gfp_mask,
 364                                                c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
 365        }
 366
 367        *data_mode = DATA_MODE_VMALLOC;
 368
 369        /*
 370         * __vmalloc allocates the data pages and auxiliary structures with
 371         * gfp_flags that were specified, but pagetables are always allocated
 372         * with GFP_KERNEL, no matter what was specified as gfp_mask.
 373         *
 374         * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
 375         * all allocations done by this process (including pagetables) are done
 376         * as if GFP_NOIO was specified.
 377         */
 378        if (gfp_mask & __GFP_NORETRY) {
 379                unsigned noio_flag = memalloc_noio_save();
 380                void *ptr = __vmalloc(c->block_size, gfp_mask, PAGE_KERNEL);
 381
 382                memalloc_noio_restore(noio_flag);
 383                return ptr;
 384        }
 385
 386        return __vmalloc(c->block_size, gfp_mask, PAGE_KERNEL);
 387}
 388
 389/*
 390 * Free buffer's data.
 391 */
 392static void free_buffer_data(struct dm_bufio_client *c,
 393                             void *data, unsigned char data_mode)
 394{
 395        switch (data_mode) {
 396        case DATA_MODE_SLAB:
 397                kmem_cache_free(c->slab_cache, data);
 398                break;
 399
 400        case DATA_MODE_GET_FREE_PAGES:
 401                free_pages((unsigned long)data,
 402                           c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
 403                break;
 404
 405        case DATA_MODE_VMALLOC:
 406                vfree(data);
 407                break;
 408
 409        default:
 410                DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
 411                       data_mode);
 412                BUG();
 413        }
 414}
 415
 416/*
 417 * Allocate buffer and its data.
 418 */
 419static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
 420{
 421        struct dm_buffer *b = kmem_cache_alloc(c->slab_buffer, gfp_mask);
 422
 423        if (!b)
 424                return NULL;
 425
 426        b->c = c;
 427
 428        b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
 429        if (!b->data) {
 430                kmem_cache_free(c->slab_buffer, b);
 431                return NULL;
 432        }
 433
 434        adjust_total_allocated(b->data_mode, (long)c->block_size);
 435
 436#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
 437        b->stack_len = 0;
 438#endif
 439        return b;
 440}
 441
 442/*
 443 * Free buffer and its data.
 444 */
 445static void free_buffer(struct dm_buffer *b)
 446{
 447        struct dm_bufio_client *c = b->c;
 448
 449        adjust_total_allocated(b->data_mode, -(long)c->block_size);
 450
 451        free_buffer_data(c, b->data, b->data_mode);
 452        kmem_cache_free(c->slab_buffer, b);
 453}
 454
 455/*
 456 * Link buffer to the buffer tree and clean or dirty queue.
 457 */
 458static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
 459{
 460        struct dm_bufio_client *c = b->c;
 461
 462        c->n_buffers[dirty]++;
 463        b->block = block;
 464        b->list_mode = dirty;
 465        list_add(&b->lru_list, &c->lru[dirty]);
 466        __insert(b->c, b);
 467        b->last_accessed = jiffies;
 468}
 469
 470/*
 471 * Unlink buffer from the buffer tree and dirty or clean queue.
 472 */
 473static void __unlink_buffer(struct dm_buffer *b)
 474{
 475        struct dm_bufio_client *c = b->c;
 476
 477        BUG_ON(!c->n_buffers[b->list_mode]);
 478
 479        c->n_buffers[b->list_mode]--;
 480        __remove(b->c, b);
 481        list_del(&b->lru_list);
 482}
 483
 484/*
 485 * Place the buffer to the head of dirty or clean LRU queue.
 486 */
 487static void __relink_lru(struct dm_buffer *b, int dirty)
 488{
 489        struct dm_bufio_client *c = b->c;
 490
 491        BUG_ON(!c->n_buffers[b->list_mode]);
 492
 493        c->n_buffers[b->list_mode]--;
 494        c->n_buffers[dirty]++;
 495        b->list_mode = dirty;
 496        list_move(&b->lru_list, &c->lru[dirty]);
 497        b->last_accessed = jiffies;
 498}
 499
 500/*----------------------------------------------------------------
 501 * Submit I/O on the buffer.
 502 *
 503 * Bio interface is faster but it has some problems:
 504 *      the vector list is limited (increasing this limit increases
 505 *      memory-consumption per buffer, so it is not viable);
 506 *
 507 *      the memory must be direct-mapped, not vmalloced;
 508 *
 509 * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
 510 * it is not vmalloced, try using the bio interface.
 511 *
 512 * If the buffer is big, if it is vmalloced or if the underlying device
 513 * rejects the bio because it is too large, use dm-io layer to do the I/O.
 514 * The dm-io layer splits the I/O into multiple requests, avoiding the above
 515 * shortcomings.
 516 *--------------------------------------------------------------*/
 517
 518/*
 519 * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
 520 * that the request was handled directly with bio interface.
 521 */
 522static void dmio_complete(unsigned long error, void *context)
 523{
 524        struct dm_buffer *b = context;
 525
 526        b->end_io(b, unlikely(error != 0) ? BLK_STS_IOERR : 0);
 527}
 528
 529static void use_dmio(struct dm_buffer *b, int rw, sector_t sector,
 530                     unsigned n_sectors, unsigned offset)
 531{
 532        int r;
 533        struct dm_io_request io_req = {
 534                .bi_op = rw,
 535                .bi_op_flags = 0,
 536                .notify.fn = dmio_complete,
 537                .notify.context = b,
 538                .client = b->c->dm_io,
 539        };
 540        struct dm_io_region region = {
 541                .bdev = b->c->bdev,
 542                .sector = sector,
 543                .count = n_sectors,
 544        };
 545
 546        if (b->data_mode != DATA_MODE_VMALLOC) {
 547                io_req.mem.type = DM_IO_KMEM;
 548                io_req.mem.ptr.addr = (char *)b->data + offset;
 549        } else {
 550                io_req.mem.type = DM_IO_VMA;
 551                io_req.mem.ptr.vma = (char *)b->data + offset;
 552        }
 553
 554        r = dm_io(&io_req, 1, &region, NULL);
 555        if (unlikely(r))
 556                b->end_io(b, errno_to_blk_status(r));
 557}
 558
 559static void bio_complete(struct bio *bio)
 560{
 561        struct dm_buffer *b = bio->bi_private;
 562        blk_status_t status = bio->bi_status;
 563        bio_put(bio);
 564        b->end_io(b, status);
 565}
 566
 567static void use_bio(struct dm_buffer *b, int rw, sector_t sector,
 568                    unsigned n_sectors, unsigned offset)
 569{
 570        struct bio *bio;
 571        char *ptr;
 572        unsigned vec_size, len;
 573
 574        vec_size = b->c->block_size >> PAGE_SHIFT;
 575        if (unlikely(b->c->sectors_per_block_bits < PAGE_SHIFT - SECTOR_SHIFT))
 576                vec_size += 2;
 577
 578        bio = bio_kmalloc(GFP_NOWAIT | __GFP_NORETRY | __GFP_NOWARN, vec_size);
 579        if (!bio) {
 580dmio:
 581                use_dmio(b, rw, sector, n_sectors, offset);
 582                return;
 583        }
 584
 585        bio->bi_iter.bi_sector = sector;
 586        bio_set_dev(bio, b->c->bdev);
 587        bio_set_op_attrs(bio, rw, 0);
 588        bio->bi_end_io = bio_complete;
 589        bio->bi_private = b;
 590
 591        ptr = (char *)b->data + offset;
 592        len = n_sectors << SECTOR_SHIFT;
 593
 594        do {
 595                unsigned this_step = min((unsigned)(PAGE_SIZE - offset_in_page(ptr)), len);
 596                if (!bio_add_page(bio, virt_to_page(ptr), this_step,
 597                                  offset_in_page(ptr))) {
 598                        bio_put(bio);
 599                        goto dmio;
 600                }
 601
 602                len -= this_step;
 603                ptr += this_step;
 604        } while (len > 0);
 605
 606        submit_bio(bio);
 607}
 608
 609static void submit_io(struct dm_buffer *b, int rw, void (*end_io)(struct dm_buffer *, blk_status_t))
 610{
 611        unsigned n_sectors;
 612        sector_t sector;
 613        unsigned offset, end;
 614
 615        b->end_io = end_io;
 616
 617        if (likely(b->c->sectors_per_block_bits >= 0))
 618                sector = b->block << b->c->sectors_per_block_bits;
 619        else
 620                sector = b->block * (b->c->block_size >> SECTOR_SHIFT);
 621        sector += b->c->start;
 622
 623        if (rw != REQ_OP_WRITE) {
 624                n_sectors = b->c->block_size >> SECTOR_SHIFT;
 625                offset = 0;
 626        } else {
 627                if (b->c->write_callback)
 628                        b->c->write_callback(b);
 629                offset = b->write_start;
 630                end = b->write_end;
 631                offset &= -DM_BUFIO_WRITE_ALIGN;
 632                end += DM_BUFIO_WRITE_ALIGN - 1;
 633                end &= -DM_BUFIO_WRITE_ALIGN;
 634                if (unlikely(end > b->c->block_size))
 635                        end = b->c->block_size;
 636
 637                sector += offset >> SECTOR_SHIFT;
 638                n_sectors = (end - offset) >> SECTOR_SHIFT;
 639        }
 640
 641        if (b->data_mode != DATA_MODE_VMALLOC)
 642                use_bio(b, rw, sector, n_sectors, offset);
 643        else
 644                use_dmio(b, rw, sector, n_sectors, offset);
 645}
 646
 647/*----------------------------------------------------------------
 648 * Writing dirty buffers
 649 *--------------------------------------------------------------*/
 650
 651/*
 652 * The endio routine for write.
 653 *
 654 * Set the error, clear B_WRITING bit and wake anyone who was waiting on
 655 * it.
 656 */
 657static void write_endio(struct dm_buffer *b, blk_status_t status)
 658{
 659        b->write_error = status;
 660        if (unlikely(status)) {
 661                struct dm_bufio_client *c = b->c;
 662
 663                (void)cmpxchg(&c->async_write_error, 0,
 664                                blk_status_to_errno(status));
 665        }
 666
 667        BUG_ON(!test_bit(B_WRITING, &b->state));
 668
 669        smp_mb__before_atomic();
 670        clear_bit(B_WRITING, &b->state);
 671        smp_mb__after_atomic();
 672
 673        wake_up_bit(&b->state, B_WRITING);
 674}
 675
 676/*
 677 * Initiate a write on a dirty buffer, but don't wait for it.
 678 *
 679 * - If the buffer is not dirty, exit.
 680 * - If there some previous write going on, wait for it to finish (we can't
 681 *   have two writes on the same buffer simultaneously).
 682 * - Submit our write and don't wait on it. We set B_WRITING indicating
 683 *   that there is a write in progress.
 684 */
 685static void __write_dirty_buffer(struct dm_buffer *b,
 686                                 struct list_head *write_list)
 687{
 688        if (!test_bit(B_DIRTY, &b->state))
 689                return;
 690
 691        clear_bit(B_DIRTY, &b->state);
 692        wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
 693
 694        b->write_start = b->dirty_start;
 695        b->write_end = b->dirty_end;
 696
 697        if (!write_list)
 698                submit_io(b, REQ_OP_WRITE, write_endio);
 699        else
 700                list_add_tail(&b->write_list, write_list);
 701}
 702
 703static void __flush_write_list(struct list_head *write_list)
 704{
 705        struct blk_plug plug;
 706        blk_start_plug(&plug);
 707        while (!list_empty(write_list)) {
 708                struct dm_buffer *b =
 709                        list_entry(write_list->next, struct dm_buffer, write_list);
 710                list_del(&b->write_list);
 711                submit_io(b, REQ_OP_WRITE, write_endio);
 712                cond_resched();
 713        }
 714        blk_finish_plug(&plug);
 715}
 716
 717/*
 718 * Wait until any activity on the buffer finishes.  Possibly write the
 719 * buffer if it is dirty.  When this function finishes, there is no I/O
 720 * running on the buffer and the buffer is not dirty.
 721 */
 722static void __make_buffer_clean(struct dm_buffer *b)
 723{
 724        BUG_ON(b->hold_count);
 725
 726        if (!b->state)  /* fast case */
 727                return;
 728
 729        wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
 730        __write_dirty_buffer(b, NULL);
 731        wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
 732}
 733
 734/*
 735 * Find some buffer that is not held by anybody, clean it, unlink it and
 736 * return it.
 737 */
 738static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
 739{
 740        struct dm_buffer *b;
 741
 742        list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
 743                BUG_ON(test_bit(B_WRITING, &b->state));
 744                BUG_ON(test_bit(B_DIRTY, &b->state));
 745
 746                if (!b->hold_count) {
 747                        __make_buffer_clean(b);
 748                        __unlink_buffer(b);
 749                        return b;
 750                }
 751                cond_resched();
 752        }
 753
 754        list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
 755                BUG_ON(test_bit(B_READING, &b->state));
 756
 757                if (!b->hold_count) {
 758                        __make_buffer_clean(b);
 759                        __unlink_buffer(b);
 760                        return b;
 761                }
 762                cond_resched();
 763        }
 764
 765        return NULL;
 766}
 767
 768/*
 769 * Wait until some other threads free some buffer or release hold count on
 770 * some buffer.
 771 *
 772 * This function is entered with c->lock held, drops it and regains it
 773 * before exiting.
 774 */
 775static void __wait_for_free_buffer(struct dm_bufio_client *c)
 776{
 777        DECLARE_WAITQUEUE(wait, current);
 778
 779        add_wait_queue(&c->free_buffer_wait, &wait);
 780        set_current_state(TASK_UNINTERRUPTIBLE);
 781        dm_bufio_unlock(c);
 782
 783        io_schedule();
 784
 785        remove_wait_queue(&c->free_buffer_wait, &wait);
 786
 787        dm_bufio_lock(c);
 788}
 789
 790enum new_flag {
 791        NF_FRESH = 0,
 792        NF_READ = 1,
 793        NF_GET = 2,
 794        NF_PREFETCH = 3
 795};
 796
 797/*
 798 * Allocate a new buffer. If the allocation is not possible, wait until
 799 * some other thread frees a buffer.
 800 *
 801 * May drop the lock and regain it.
 802 */
 803static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
 804{
 805        struct dm_buffer *b;
 806        bool tried_noio_alloc = false;
 807
 808        /*
 809         * dm-bufio is resistant to allocation failures (it just keeps
 810         * one buffer reserved in cases all the allocations fail).
 811         * So set flags to not try too hard:
 812         *      GFP_NOWAIT: don't wait; if we need to sleep we'll release our
 813         *                  mutex and wait ourselves.
 814         *      __GFP_NORETRY: don't retry and rather return failure
 815         *      __GFP_NOMEMALLOC: don't use emergency reserves
 816         *      __GFP_NOWARN: don't print a warning in case of failure
 817         *
 818         * For debugging, if we set the cache size to 1, no new buffers will
 819         * be allocated.
 820         */
 821        while (1) {
 822                if (dm_bufio_cache_size_latch != 1) {
 823                        b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
 824                        if (b)
 825                                return b;
 826                }
 827
 828                if (nf == NF_PREFETCH)
 829                        return NULL;
 830
 831                if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) {
 832                        dm_bufio_unlock(c);
 833                        b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
 834                        dm_bufio_lock(c);
 835                        if (b)
 836                                return b;
 837                        tried_noio_alloc = true;
 838                }
 839
 840                if (!list_empty(&c->reserved_buffers)) {
 841                        b = list_entry(c->reserved_buffers.next,
 842                                       struct dm_buffer, lru_list);
 843                        list_del(&b->lru_list);
 844                        c->need_reserved_buffers++;
 845
 846                        return b;
 847                }
 848
 849                b = __get_unclaimed_buffer(c);
 850                if (b)
 851                        return b;
 852
 853                __wait_for_free_buffer(c);
 854        }
 855}
 856
 857static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
 858{
 859        struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
 860
 861        if (!b)
 862                return NULL;
 863
 864        if (c->alloc_callback)
 865                c->alloc_callback(b);
 866
 867        return b;
 868}
 869
 870/*
 871 * Free a buffer and wake other threads waiting for free buffers.
 872 */
 873static void __free_buffer_wake(struct dm_buffer *b)
 874{
 875        struct dm_bufio_client *c = b->c;
 876
 877        if (!c->need_reserved_buffers)
 878                free_buffer(b);
 879        else {
 880                list_add(&b->lru_list, &c->reserved_buffers);
 881                c->need_reserved_buffers--;
 882        }
 883
 884        wake_up(&c->free_buffer_wait);
 885}
 886
 887static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
 888                                        struct list_head *write_list)
 889{
 890        struct dm_buffer *b, *tmp;
 891
 892        list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
 893                BUG_ON(test_bit(B_READING, &b->state));
 894
 895                if (!test_bit(B_DIRTY, &b->state) &&
 896                    !test_bit(B_WRITING, &b->state)) {
 897                        __relink_lru(b, LIST_CLEAN);
 898                        continue;
 899                }
 900
 901                if (no_wait && test_bit(B_WRITING, &b->state))
 902                        return;
 903
 904                __write_dirty_buffer(b, write_list);
 905                cond_resched();
 906        }
 907}
 908
 909/*
 910 * Get writeback threshold and buffer limit for a given client.
 911 */
 912static void __get_memory_limit(struct dm_bufio_client *c,
 913                               unsigned long *threshold_buffers,
 914                               unsigned long *limit_buffers)
 915{
 916        unsigned long buffers;
 917
 918        if (unlikely(READ_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch)) {
 919                if (mutex_trylock(&dm_bufio_clients_lock)) {
 920                        __cache_size_refresh();
 921                        mutex_unlock(&dm_bufio_clients_lock);
 922                }
 923        }
 924
 925        buffers = dm_bufio_cache_size_per_client;
 926        if (likely(c->sectors_per_block_bits >= 0))
 927                buffers >>= c->sectors_per_block_bits + SECTOR_SHIFT;
 928        else
 929                buffers /= c->block_size;
 930
 931        if (buffers < c->minimum_buffers)
 932                buffers = c->minimum_buffers;
 933
 934        *limit_buffers = buffers;
 935        *threshold_buffers = mult_frac(buffers,
 936                                       DM_BUFIO_WRITEBACK_PERCENT, 100);
 937}
 938
 939/*
 940 * Check if we're over watermark.
 941 * If we are over threshold_buffers, start freeing buffers.
 942 * If we're over "limit_buffers", block until we get under the limit.
 943 */
 944static void __check_watermark(struct dm_bufio_client *c,
 945                              struct list_head *write_list)
 946{
 947        unsigned long threshold_buffers, limit_buffers;
 948
 949        __get_memory_limit(c, &threshold_buffers, &limit_buffers);
 950
 951        while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] >
 952               limit_buffers) {
 953
 954                struct dm_buffer *b = __get_unclaimed_buffer(c);
 955
 956                if (!b)
 957                        return;
 958
 959                __free_buffer_wake(b);
 960                cond_resched();
 961        }
 962
 963        if (c->n_buffers[LIST_DIRTY] > threshold_buffers)
 964                __write_dirty_buffers_async(c, 1, write_list);
 965}
 966
 967/*----------------------------------------------------------------
 968 * Getting a buffer
 969 *--------------------------------------------------------------*/
 970
 971static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
 972                                     enum new_flag nf, int *need_submit,
 973                                     struct list_head *write_list)
 974{
 975        struct dm_buffer *b, *new_b = NULL;
 976
 977        *need_submit = 0;
 978
 979        b = __find(c, block);
 980        if (b)
 981                goto found_buffer;
 982
 983        if (nf == NF_GET)
 984                return NULL;
 985
 986        new_b = __alloc_buffer_wait(c, nf);
 987        if (!new_b)
 988                return NULL;
 989
 990        /*
 991         * We've had a period where the mutex was unlocked, so need to
 992         * recheck the buffer tree.
 993         */
 994        b = __find(c, block);
 995        if (b) {
 996                __free_buffer_wake(new_b);
 997                goto found_buffer;
 998        }
 999
1000        __check_watermark(c, write_list);
1001
1002        b = new_b;
1003        b->hold_count = 1;
1004        b->read_error = 0;
1005        b->write_error = 0;
1006        __link_buffer(b, block, LIST_CLEAN);
1007
1008        if (nf == NF_FRESH) {
1009                b->state = 0;
1010                return b;
1011        }
1012
1013        b->state = 1 << B_READING;
1014        *need_submit = 1;
1015
1016        return b;
1017
1018found_buffer:
1019        if (nf == NF_PREFETCH)
1020                return NULL;
1021        /*
1022         * Note: it is essential that we don't wait for the buffer to be
1023         * read if dm_bufio_get function is used. Both dm_bufio_get and
1024         * dm_bufio_prefetch can be used in the driver request routine.
1025         * If the user called both dm_bufio_prefetch and dm_bufio_get on
1026         * the same buffer, it would deadlock if we waited.
1027         */
1028        if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
1029                return NULL;
1030
1031        b->hold_count++;
1032        __relink_lru(b, test_bit(B_DIRTY, &b->state) ||
1033                     test_bit(B_WRITING, &b->state));
1034        return b;
1035}
1036
1037/*
1038 * The endio routine for reading: set the error, clear the bit and wake up
1039 * anyone waiting on the buffer.
1040 */
1041static void read_endio(struct dm_buffer *b, blk_status_t status)
1042{
1043        b->read_error = status;
1044
1045        BUG_ON(!test_bit(B_READING, &b->state));
1046
1047        smp_mb__before_atomic();
1048        clear_bit(B_READING, &b->state);
1049        smp_mb__after_atomic();
1050
1051        wake_up_bit(&b->state, B_READING);
1052}
1053
1054/*
1055 * A common routine for dm_bufio_new and dm_bufio_read.  Operation of these
1056 * functions is similar except that dm_bufio_new doesn't read the
1057 * buffer from the disk (assuming that the caller overwrites all the data
1058 * and uses dm_bufio_mark_buffer_dirty to write new data back).
1059 */
1060static void *new_read(struct dm_bufio_client *c, sector_t block,
1061                      enum new_flag nf, struct dm_buffer **bp)
1062{
1063        int need_submit;
1064        struct dm_buffer *b;
1065
1066        LIST_HEAD(write_list);
1067
1068        dm_bufio_lock(c);
1069        b = __bufio_new(c, block, nf, &need_submit, &write_list);
1070#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1071        if (b && b->hold_count == 1)
1072                buffer_record_stack(b);
1073#endif
1074        dm_bufio_unlock(c);
1075
1076        __flush_write_list(&write_list);
1077
1078        if (!b)
1079                return NULL;
1080
1081        if (need_submit)
1082                submit_io(b, REQ_OP_READ, read_endio);
1083
1084        wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1085
1086        if (b->read_error) {
1087                int error = blk_status_to_errno(b->read_error);
1088
1089                dm_bufio_release(b);
1090
1091                return ERR_PTR(error);
1092        }
1093
1094        *bp = b;
1095
1096        return b->data;
1097}
1098
1099void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1100                   struct dm_buffer **bp)
1101{
1102        return new_read(c, block, NF_GET, bp);
1103}
1104EXPORT_SYMBOL_GPL(dm_bufio_get);
1105
1106void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1107                    struct dm_buffer **bp)
1108{
1109        BUG_ON(dm_bufio_in_request());
1110
1111        return new_read(c, block, NF_READ, bp);
1112}
1113EXPORT_SYMBOL_GPL(dm_bufio_read);
1114
1115void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1116                   struct dm_buffer **bp)
1117{
1118        BUG_ON(dm_bufio_in_request());
1119
1120        return new_read(c, block, NF_FRESH, bp);
1121}
1122EXPORT_SYMBOL_GPL(dm_bufio_new);
1123
1124void dm_bufio_prefetch(struct dm_bufio_client *c,
1125                       sector_t block, unsigned n_blocks)
1126{
1127        struct blk_plug plug;
1128
1129        LIST_HEAD(write_list);
1130
1131        BUG_ON(dm_bufio_in_request());
1132
1133        blk_start_plug(&plug);
1134        dm_bufio_lock(c);
1135
1136        for (; n_blocks--; block++) {
1137                int need_submit;
1138                struct dm_buffer *b;
1139                b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1140                                &write_list);
1141                if (unlikely(!list_empty(&write_list))) {
1142                        dm_bufio_unlock(c);
1143                        blk_finish_plug(&plug);
1144                        __flush_write_list(&write_list);
1145                        blk_start_plug(&plug);
1146                        dm_bufio_lock(c);
1147                }
1148                if (unlikely(b != NULL)) {
1149                        dm_bufio_unlock(c);
1150
1151                        if (need_submit)
1152                                submit_io(b, REQ_OP_READ, read_endio);
1153                        dm_bufio_release(b);
1154
1155                        cond_resched();
1156
1157                        if (!n_blocks)
1158                                goto flush_plug;
1159                        dm_bufio_lock(c);
1160                }
1161        }
1162
1163        dm_bufio_unlock(c);
1164
1165flush_plug:
1166        blk_finish_plug(&plug);
1167}
1168EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1169
1170void dm_bufio_release(struct dm_buffer *b)
1171{
1172        struct dm_bufio_client *c = b->c;
1173
1174        dm_bufio_lock(c);
1175
1176        BUG_ON(!b->hold_count);
1177
1178        b->hold_count--;
1179        if (!b->hold_count) {
1180                wake_up(&c->free_buffer_wait);
1181
1182                /*
1183                 * If there were errors on the buffer, and the buffer is not
1184                 * to be written, free the buffer. There is no point in caching
1185                 * invalid buffer.
1186                 */
1187                if ((b->read_error || b->write_error) &&
1188                    !test_bit(B_READING, &b->state) &&
1189                    !test_bit(B_WRITING, &b->state) &&
1190                    !test_bit(B_DIRTY, &b->state)) {
1191                        __unlink_buffer(b);
1192                        __free_buffer_wake(b);
1193                }
1194        }
1195
1196        dm_bufio_unlock(c);
1197}
1198EXPORT_SYMBOL_GPL(dm_bufio_release);
1199
1200void dm_bufio_mark_partial_buffer_dirty(struct dm_buffer *b,
1201                                        unsigned start, unsigned end)
1202{
1203        struct dm_bufio_client *c = b->c;
1204
1205        BUG_ON(start >= end);
1206        BUG_ON(end > b->c->block_size);
1207
1208        dm_bufio_lock(c);
1209
1210        BUG_ON(test_bit(B_READING, &b->state));
1211
1212        if (!test_and_set_bit(B_DIRTY, &b->state)) {
1213                b->dirty_start = start;
1214                b->dirty_end = end;
1215                __relink_lru(b, LIST_DIRTY);
1216        } else {
1217                if (start < b->dirty_start)
1218                        b->dirty_start = start;
1219                if (end > b->dirty_end)
1220                        b->dirty_end = end;
1221        }
1222
1223        dm_bufio_unlock(c);
1224}
1225EXPORT_SYMBOL_GPL(dm_bufio_mark_partial_buffer_dirty);
1226
1227void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1228{
1229        dm_bufio_mark_partial_buffer_dirty(b, 0, b->c->block_size);
1230}
1231EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1232
1233void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1234{
1235        LIST_HEAD(write_list);
1236
1237        BUG_ON(dm_bufio_in_request());
1238
1239        dm_bufio_lock(c);
1240        __write_dirty_buffers_async(c, 0, &write_list);
1241        dm_bufio_unlock(c);
1242        __flush_write_list(&write_list);
1243}
1244EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1245
1246/*
1247 * For performance, it is essential that the buffers are written asynchronously
1248 * and simultaneously (so that the block layer can merge the writes) and then
1249 * waited upon.
1250 *
1251 * Finally, we flush hardware disk cache.
1252 */
1253int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1254{
1255        int a, f;
1256        unsigned long buffers_processed = 0;
1257        struct dm_buffer *b, *tmp;
1258
1259        LIST_HEAD(write_list);
1260
1261        dm_bufio_lock(c);
1262        __write_dirty_buffers_async(c, 0, &write_list);
1263        dm_bufio_unlock(c);
1264        __flush_write_list(&write_list);
1265        dm_bufio_lock(c);
1266
1267again:
1268        list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1269                int dropped_lock = 0;
1270
1271                if (buffers_processed < c->n_buffers[LIST_DIRTY])
1272                        buffers_processed++;
1273
1274                BUG_ON(test_bit(B_READING, &b->state));
1275
1276                if (test_bit(B_WRITING, &b->state)) {
1277                        if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1278                                dropped_lock = 1;
1279                                b->hold_count++;
1280                                dm_bufio_unlock(c);
1281                                wait_on_bit_io(&b->state, B_WRITING,
1282                                               TASK_UNINTERRUPTIBLE);
1283                                dm_bufio_lock(c);
1284                                b->hold_count--;
1285                        } else
1286                                wait_on_bit_io(&b->state, B_WRITING,
1287                                               TASK_UNINTERRUPTIBLE);
1288                }
1289
1290                if (!test_bit(B_DIRTY, &b->state) &&
1291                    !test_bit(B_WRITING, &b->state))
1292                        __relink_lru(b, LIST_CLEAN);
1293
1294                cond_resched();
1295
1296                /*
1297                 * If we dropped the lock, the list is no longer consistent,
1298                 * so we must restart the search.
1299                 *
1300                 * In the most common case, the buffer just processed is
1301                 * relinked to the clean list, so we won't loop scanning the
1302                 * same buffer again and again.
1303                 *
1304                 * This may livelock if there is another thread simultaneously
1305                 * dirtying buffers, so we count the number of buffers walked
1306                 * and if it exceeds the total number of buffers, it means that
1307                 * someone is doing some writes simultaneously with us.  In
1308                 * this case, stop, dropping the lock.
1309                 */
1310                if (dropped_lock)
1311                        goto again;
1312        }
1313        wake_up(&c->free_buffer_wait);
1314        dm_bufio_unlock(c);
1315
1316        a = xchg(&c->async_write_error, 0);
1317        f = dm_bufio_issue_flush(c);
1318        if (a)
1319                return a;
1320
1321        return f;
1322}
1323EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1324
1325/*
1326 * Use dm-io to send an empty barrier to flush the device.
1327 */
1328int dm_bufio_issue_flush(struct dm_bufio_client *c)
1329{
1330        struct dm_io_request io_req = {
1331                .bi_op = REQ_OP_WRITE,
1332                .bi_op_flags = REQ_PREFLUSH | REQ_SYNC,
1333                .mem.type = DM_IO_KMEM,
1334                .mem.ptr.addr = NULL,
1335                .client = c->dm_io,
1336        };
1337        struct dm_io_region io_reg = {
1338                .bdev = c->bdev,
1339                .sector = 0,
1340                .count = 0,
1341        };
1342
1343        BUG_ON(dm_bufio_in_request());
1344
1345        return dm_io(&io_req, 1, &io_reg, NULL);
1346}
1347EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1348
1349/*
1350 * We first delete any other buffer that may be at that new location.
1351 *
1352 * Then, we write the buffer to the original location if it was dirty.
1353 *
1354 * Then, if we are the only one who is holding the buffer, relink the buffer
1355 * in the buffer tree for the new location.
1356 *
1357 * If there was someone else holding the buffer, we write it to the new
1358 * location but not relink it, because that other user needs to have the buffer
1359 * at the same place.
1360 */
1361void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1362{
1363        struct dm_bufio_client *c = b->c;
1364        struct dm_buffer *new;
1365
1366        BUG_ON(dm_bufio_in_request());
1367
1368        dm_bufio_lock(c);
1369
1370retry:
1371        new = __find(c, new_block);
1372        if (new) {
1373                if (new->hold_count) {
1374                        __wait_for_free_buffer(c);
1375                        goto retry;
1376                }
1377
1378                /*
1379                 * FIXME: Is there any point waiting for a write that's going
1380                 * to be overwritten in a bit?
1381                 */
1382                __make_buffer_clean(new);
1383                __unlink_buffer(new);
1384                __free_buffer_wake(new);
1385        }
1386
1387        BUG_ON(!b->hold_count);
1388        BUG_ON(test_bit(B_READING, &b->state));
1389
1390        __write_dirty_buffer(b, NULL);
1391        if (b->hold_count == 1) {
1392                wait_on_bit_io(&b->state, B_WRITING,
1393                               TASK_UNINTERRUPTIBLE);
1394                set_bit(B_DIRTY, &b->state);
1395                b->dirty_start = 0;
1396                b->dirty_end = c->block_size;
1397                __unlink_buffer(b);
1398                __link_buffer(b, new_block, LIST_DIRTY);
1399        } else {
1400                sector_t old_block;
1401                wait_on_bit_lock_io(&b->state, B_WRITING,
1402                                    TASK_UNINTERRUPTIBLE);
1403                /*
1404                 * Relink buffer to "new_block" so that write_callback
1405                 * sees "new_block" as a block number.
1406                 * After the write, link the buffer back to old_block.
1407                 * All this must be done in bufio lock, so that block number
1408                 * change isn't visible to other threads.
1409                 */
1410                old_block = b->block;
1411                __unlink_buffer(b);
1412                __link_buffer(b, new_block, b->list_mode);
1413                submit_io(b, REQ_OP_WRITE, write_endio);
1414                wait_on_bit_io(&b->state, B_WRITING,
1415                               TASK_UNINTERRUPTIBLE);
1416                __unlink_buffer(b);
1417                __link_buffer(b, old_block, b->list_mode);
1418        }
1419
1420        dm_bufio_unlock(c);
1421        dm_bufio_release(b);
1422}
1423EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1424
1425/*
1426 * Free the given buffer.
1427 *
1428 * This is just a hint, if the buffer is in use or dirty, this function
1429 * does nothing.
1430 */
1431void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
1432{
1433        struct dm_buffer *b;
1434
1435        dm_bufio_lock(c);
1436
1437        b = __find(c, block);
1438        if (b && likely(!b->hold_count) && likely(!b->state)) {
1439                __unlink_buffer(b);
1440                __free_buffer_wake(b);
1441        }
1442
1443        dm_bufio_unlock(c);
1444}
1445EXPORT_SYMBOL_GPL(dm_bufio_forget);
1446
1447void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n)
1448{
1449        c->minimum_buffers = n;
1450}
1451EXPORT_SYMBOL_GPL(dm_bufio_set_minimum_buffers);
1452
1453unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1454{
1455        return c->block_size;
1456}
1457EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1458
1459sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1460{
1461        sector_t s = i_size_read(c->bdev->bd_inode) >> SECTOR_SHIFT;
1462        if (likely(c->sectors_per_block_bits >= 0))
1463                s >>= c->sectors_per_block_bits;
1464        else
1465                sector_div(s, c->block_size >> SECTOR_SHIFT);
1466        return s;
1467}
1468EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1469
1470sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1471{
1472        return b->block;
1473}
1474EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1475
1476void *dm_bufio_get_block_data(struct dm_buffer *b)
1477{
1478        return b->data;
1479}
1480EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1481
1482void *dm_bufio_get_aux_data(struct dm_buffer *b)
1483{
1484        return b + 1;
1485}
1486EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1487
1488struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1489{
1490        return b->c;
1491}
1492EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1493
1494static void drop_buffers(struct dm_bufio_client *c)
1495{
1496        struct dm_buffer *b;
1497        int i;
1498        bool warned = false;
1499
1500        BUG_ON(dm_bufio_in_request());
1501
1502        /*
1503         * An optimization so that the buffers are not written one-by-one.
1504         */
1505        dm_bufio_write_dirty_buffers_async(c);
1506
1507        dm_bufio_lock(c);
1508
1509        while ((b = __get_unclaimed_buffer(c)))
1510                __free_buffer_wake(b);
1511
1512        for (i = 0; i < LIST_SIZE; i++)
1513                list_for_each_entry(b, &c->lru[i], lru_list) {
1514                        WARN_ON(!warned);
1515                        warned = true;
1516                        DMERR("leaked buffer %llx, hold count %u, list %d",
1517                              (unsigned long long)b->block, b->hold_count, i);
1518#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1519                        stack_trace_print(b->stack_entries, b->stack_len, 1);
1520                        /* mark unclaimed to avoid BUG_ON below */
1521                        b->hold_count = 0;
1522#endif
1523                }
1524
1525#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1526        while ((b = __get_unclaimed_buffer(c)))
1527                __free_buffer_wake(b);
1528#endif
1529
1530        for (i = 0; i < LIST_SIZE; i++)
1531                BUG_ON(!list_empty(&c->lru[i]));
1532
1533        dm_bufio_unlock(c);
1534}
1535
1536/*
1537 * We may not be able to evict this buffer if IO pending or the client
1538 * is still using it.  Caller is expected to know buffer is too old.
1539 *
1540 * And if GFP_NOFS is used, we must not do any I/O because we hold
1541 * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
1542 * rerouted to different bufio client.
1543 */
1544static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp)
1545{
1546        if (!(gfp & __GFP_FS)) {
1547                if (test_bit(B_READING, &b->state) ||
1548                    test_bit(B_WRITING, &b->state) ||
1549                    test_bit(B_DIRTY, &b->state))
1550                        return false;
1551        }
1552
1553        if (b->hold_count)
1554                return false;
1555
1556        __make_buffer_clean(b);
1557        __unlink_buffer(b);
1558        __free_buffer_wake(b);
1559
1560        return true;
1561}
1562
1563static unsigned long get_retain_buffers(struct dm_bufio_client *c)
1564{
1565        unsigned long retain_bytes = READ_ONCE(dm_bufio_retain_bytes);
1566        if (likely(c->sectors_per_block_bits >= 0))
1567                retain_bytes >>= c->sectors_per_block_bits + SECTOR_SHIFT;
1568        else
1569                retain_bytes /= c->block_size;
1570        return retain_bytes;
1571}
1572
1573static unsigned long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
1574                            gfp_t gfp_mask)
1575{
1576        int l;
1577        struct dm_buffer *b, *tmp;
1578        unsigned long freed = 0;
1579        unsigned long count = c->n_buffers[LIST_CLEAN] +
1580                              c->n_buffers[LIST_DIRTY];
1581        unsigned long retain_target = get_retain_buffers(c);
1582
1583        for (l = 0; l < LIST_SIZE; l++) {
1584                list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1585                        if (__try_evict_buffer(b, gfp_mask))
1586                                freed++;
1587                        if (!--nr_to_scan || ((count - freed) <= retain_target))
1588                                return freed;
1589                        cond_resched();
1590                }
1591        }
1592        return freed;
1593}
1594
1595static unsigned long
1596dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1597{
1598        struct dm_bufio_client *c;
1599        unsigned long freed;
1600
1601        c = container_of(shrink, struct dm_bufio_client, shrinker);
1602        if (sc->gfp_mask & __GFP_FS)
1603                dm_bufio_lock(c);
1604        else if (!dm_bufio_trylock(c))
1605                return SHRINK_STOP;
1606
1607        freed  = __scan(c, sc->nr_to_scan, sc->gfp_mask);
1608        dm_bufio_unlock(c);
1609        return freed;
1610}
1611
1612static unsigned long
1613dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1614{
1615        struct dm_bufio_client *c = container_of(shrink, struct dm_bufio_client, shrinker);
1616        unsigned long count = READ_ONCE(c->n_buffers[LIST_CLEAN]) +
1617                              READ_ONCE(c->n_buffers[LIST_DIRTY]);
1618        unsigned long retain_target = get_retain_buffers(c);
1619
1620        return (count < retain_target) ? 0 : (count - retain_target);
1621}
1622
1623/*
1624 * Create the buffering interface
1625 */
1626struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1627                                               unsigned reserved_buffers, unsigned aux_size,
1628                                               void (*alloc_callback)(struct dm_buffer *),
1629                                               void (*write_callback)(struct dm_buffer *))
1630{
1631        int r;
1632        struct dm_bufio_client *c;
1633        unsigned i;
1634        char slab_name[27];
1635
1636        if (!block_size || block_size & ((1 << SECTOR_SHIFT) - 1)) {
1637                DMERR("%s: block size not specified or is not multiple of 512b", __func__);
1638                r = -EINVAL;
1639                goto bad_client;
1640        }
1641
1642        c = kzalloc(sizeof(*c), GFP_KERNEL);
1643        if (!c) {
1644                r = -ENOMEM;
1645                goto bad_client;
1646        }
1647        c->buffer_tree = RB_ROOT;
1648
1649        c->bdev = bdev;
1650        c->block_size = block_size;
1651        if (is_power_of_2(block_size))
1652                c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
1653        else
1654                c->sectors_per_block_bits = -1;
1655
1656        c->alloc_callback = alloc_callback;
1657        c->write_callback = write_callback;
1658
1659        for (i = 0; i < LIST_SIZE; i++) {
1660                INIT_LIST_HEAD(&c->lru[i]);
1661                c->n_buffers[i] = 0;
1662        }
1663
1664        mutex_init(&c->lock);
1665        INIT_LIST_HEAD(&c->reserved_buffers);
1666        c->need_reserved_buffers = reserved_buffers;
1667
1668        dm_bufio_set_minimum_buffers(c, DM_BUFIO_MIN_BUFFERS);
1669
1670        init_waitqueue_head(&c->free_buffer_wait);
1671        c->async_write_error = 0;
1672
1673        c->dm_io = dm_io_client_create();
1674        if (IS_ERR(c->dm_io)) {
1675                r = PTR_ERR(c->dm_io);
1676                goto bad_dm_io;
1677        }
1678
1679        if (block_size <= KMALLOC_MAX_SIZE &&
1680            (block_size < PAGE_SIZE || !is_power_of_2(block_size))) {
1681                unsigned align = min(1U << __ffs(block_size), (unsigned)PAGE_SIZE);
1682                snprintf(slab_name, sizeof slab_name, "dm_bufio_cache-%u", block_size);
1683                c->slab_cache = kmem_cache_create(slab_name, block_size, align,
1684                                                  SLAB_RECLAIM_ACCOUNT, NULL);
1685                if (!c->slab_cache) {
1686                        r = -ENOMEM;
1687                        goto bad;
1688                }
1689        }
1690        if (aux_size)
1691                snprintf(slab_name, sizeof slab_name, "dm_bufio_buffer-%u", aux_size);
1692        else
1693                snprintf(slab_name, sizeof slab_name, "dm_bufio_buffer");
1694        c->slab_buffer = kmem_cache_create(slab_name, sizeof(struct dm_buffer) + aux_size,
1695                                           0, SLAB_RECLAIM_ACCOUNT, NULL);
1696        if (!c->slab_buffer) {
1697                r = -ENOMEM;
1698                goto bad;
1699        }
1700
1701        while (c->need_reserved_buffers) {
1702                struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1703
1704                if (!b) {
1705                        r = -ENOMEM;
1706                        goto bad;
1707                }
1708                __free_buffer_wake(b);
1709        }
1710
1711        c->shrinker.count_objects = dm_bufio_shrink_count;
1712        c->shrinker.scan_objects = dm_bufio_shrink_scan;
1713        c->shrinker.seeks = 1;
1714        c->shrinker.batch = 0;
1715        r = register_shrinker(&c->shrinker);
1716        if (r)
1717                goto bad;
1718
1719        mutex_lock(&dm_bufio_clients_lock);
1720        dm_bufio_client_count++;
1721        list_add(&c->client_list, &dm_bufio_all_clients);
1722        __cache_size_refresh();
1723        mutex_unlock(&dm_bufio_clients_lock);
1724
1725        return c;
1726
1727bad:
1728        while (!list_empty(&c->reserved_buffers)) {
1729                struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1730                                                 struct dm_buffer, lru_list);
1731                list_del(&b->lru_list);
1732                free_buffer(b);
1733        }
1734        kmem_cache_destroy(c->slab_cache);
1735        kmem_cache_destroy(c->slab_buffer);
1736        dm_io_client_destroy(c->dm_io);
1737bad_dm_io:
1738        mutex_destroy(&c->lock);
1739        kfree(c);
1740bad_client:
1741        return ERR_PTR(r);
1742}
1743EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1744
1745/*
1746 * Free the buffering interface.
1747 * It is required that there are no references on any buffers.
1748 */
1749void dm_bufio_client_destroy(struct dm_bufio_client *c)
1750{
1751        unsigned i;
1752
1753        drop_buffers(c);
1754
1755        unregister_shrinker(&c->shrinker);
1756
1757        mutex_lock(&dm_bufio_clients_lock);
1758
1759        list_del(&c->client_list);
1760        dm_bufio_client_count--;
1761        __cache_size_refresh();
1762
1763        mutex_unlock(&dm_bufio_clients_lock);
1764
1765        BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree));
1766        BUG_ON(c->need_reserved_buffers);
1767
1768        while (!list_empty(&c->reserved_buffers)) {
1769                struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1770                                                 struct dm_buffer, lru_list);
1771                list_del(&b->lru_list);
1772                free_buffer(b);
1773        }
1774
1775        for (i = 0; i < LIST_SIZE; i++)
1776                if (c->n_buffers[i])
1777                        DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1778
1779        for (i = 0; i < LIST_SIZE; i++)
1780                BUG_ON(c->n_buffers[i]);
1781
1782        kmem_cache_destroy(c->slab_cache);
1783        kmem_cache_destroy(c->slab_buffer);
1784        dm_io_client_destroy(c->dm_io);
1785        mutex_destroy(&c->lock);
1786        kfree(c);
1787}
1788EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1789
1790void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start)
1791{
1792        c->start = start;
1793}
1794EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset);
1795
1796static unsigned get_max_age_hz(void)
1797{
1798        unsigned max_age = READ_ONCE(dm_bufio_max_age);
1799
1800        if (max_age > UINT_MAX / HZ)
1801                max_age = UINT_MAX / HZ;
1802
1803        return max_age * HZ;
1804}
1805
1806static bool older_than(struct dm_buffer *b, unsigned long age_hz)
1807{
1808        return time_after_eq(jiffies, b->last_accessed + age_hz);
1809}
1810
1811static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
1812{
1813        struct dm_buffer *b, *tmp;
1814        unsigned long retain_target = get_retain_buffers(c);
1815        unsigned long count;
1816        LIST_HEAD(write_list);
1817
1818        dm_bufio_lock(c);
1819
1820        __check_watermark(c, &write_list);
1821        if (unlikely(!list_empty(&write_list))) {
1822                dm_bufio_unlock(c);
1823                __flush_write_list(&write_list);
1824                dm_bufio_lock(c);
1825        }
1826
1827        count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1828        list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) {
1829                if (count <= retain_target)
1830                        break;
1831
1832                if (!older_than(b, age_hz))
1833                        break;
1834
1835                if (__try_evict_buffer(b, 0))
1836                        count--;
1837
1838                cond_resched();
1839        }
1840
1841        dm_bufio_unlock(c);
1842}
1843
1844static void cleanup_old_buffers(void)
1845{
1846        unsigned long max_age_hz = get_max_age_hz();
1847        struct dm_bufio_client *c;
1848
1849        mutex_lock(&dm_bufio_clients_lock);
1850
1851        __cache_size_refresh();
1852
1853        list_for_each_entry(c, &dm_bufio_all_clients, client_list)
1854                __evict_old_buffers(c, max_age_hz);
1855
1856        mutex_unlock(&dm_bufio_clients_lock);
1857}
1858
1859static struct workqueue_struct *dm_bufio_wq;
1860static struct delayed_work dm_bufio_work;
1861
1862static void work_fn(struct work_struct *w)
1863{
1864        cleanup_old_buffers();
1865
1866        queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1867                           DM_BUFIO_WORK_TIMER_SECS * HZ);
1868}
1869
1870/*----------------------------------------------------------------
1871 * Module setup
1872 *--------------------------------------------------------------*/
1873
1874/*
1875 * This is called only once for the whole dm_bufio module.
1876 * It initializes memory limit.
1877 */
1878static int __init dm_bufio_init(void)
1879{
1880        __u64 mem;
1881
1882        dm_bufio_allocated_kmem_cache = 0;
1883        dm_bufio_allocated_get_free_pages = 0;
1884        dm_bufio_allocated_vmalloc = 0;
1885        dm_bufio_current_allocated = 0;
1886
1887        mem = (__u64)mult_frac(totalram_pages() - totalhigh_pages(),
1888                               DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT;
1889
1890        if (mem > ULONG_MAX)
1891                mem = ULONG_MAX;
1892
1893#ifdef CONFIG_MMU
1894        if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100))
1895                mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100);
1896#endif
1897
1898        dm_bufio_default_cache_size = mem;
1899
1900        mutex_lock(&dm_bufio_clients_lock);
1901        __cache_size_refresh();
1902        mutex_unlock(&dm_bufio_clients_lock);
1903
1904        dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0);
1905        if (!dm_bufio_wq)
1906                return -ENOMEM;
1907
1908        INIT_DELAYED_WORK(&dm_bufio_work, work_fn);
1909        queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1910                           DM_BUFIO_WORK_TIMER_SECS * HZ);
1911
1912        return 0;
1913}
1914
1915/*
1916 * This is called once when unloading the dm_bufio module.
1917 */
1918static void __exit dm_bufio_exit(void)
1919{
1920        int bug = 0;
1921
1922        cancel_delayed_work_sync(&dm_bufio_work);
1923        destroy_workqueue(dm_bufio_wq);
1924
1925        if (dm_bufio_client_count) {
1926                DMCRIT("%s: dm_bufio_client_count leaked: %d",
1927                        __func__, dm_bufio_client_count);
1928                bug = 1;
1929        }
1930
1931        if (dm_bufio_current_allocated) {
1932                DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
1933                        __func__, dm_bufio_current_allocated);
1934                bug = 1;
1935        }
1936
1937        if (dm_bufio_allocated_get_free_pages) {
1938                DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
1939                       __func__, dm_bufio_allocated_get_free_pages);
1940                bug = 1;
1941        }
1942
1943        if (dm_bufio_allocated_vmalloc) {
1944                DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
1945                       __func__, dm_bufio_allocated_vmalloc);
1946                bug = 1;
1947        }
1948
1949        BUG_ON(bug);
1950}
1951
1952module_init(dm_bufio_init)
1953module_exit(dm_bufio_exit)
1954
1955module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
1956MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
1957
1958module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
1959MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
1960
1961module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, S_IRUGO | S_IWUSR);
1962MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
1963
1964module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
1965MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
1966
1967module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
1968MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
1969
1970module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
1971MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
1972
1973module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
1974MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
1975
1976module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
1977MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
1978
1979MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
1980MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
1981MODULE_LICENSE("GPL");
1982