linux/drivers/md/dm-crypt.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2003 Jana Saout <jana@saout.de>
   3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
   4 * Copyright (C) 2006-2017 Red Hat, Inc. All rights reserved.
   5 * Copyright (C) 2013-2017 Milan Broz <gmazyland@gmail.com>
   6 *
   7 * This file is released under the GPL.
   8 */
   9
  10#include <linux/completion.h>
  11#include <linux/err.h>
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/kernel.h>
  15#include <linux/key.h>
  16#include <linux/bio.h>
  17#include <linux/blkdev.h>
  18#include <linux/mempool.h>
  19#include <linux/slab.h>
  20#include <linux/crypto.h>
  21#include <linux/workqueue.h>
  22#include <linux/kthread.h>
  23#include <linux/backing-dev.h>
  24#include <linux/atomic.h>
  25#include <linux/scatterlist.h>
  26#include <linux/rbtree.h>
  27#include <linux/ctype.h>
  28#include <asm/page.h>
  29#include <asm/unaligned.h>
  30#include <crypto/hash.h>
  31#include <crypto/md5.h>
  32#include <crypto/algapi.h>
  33#include <crypto/skcipher.h>
  34#include <crypto/aead.h>
  35#include <crypto/authenc.h>
  36#include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
  37#include <keys/user-type.h>
  38
  39#include <linux/device-mapper.h>
  40
  41#define DM_MSG_PREFIX "crypt"
  42
  43/*
  44 * context holding the current state of a multi-part conversion
  45 */
  46struct convert_context {
  47        struct completion restart;
  48        struct bio *bio_in;
  49        struct bio *bio_out;
  50        struct bvec_iter iter_in;
  51        struct bvec_iter iter_out;
  52        u64 cc_sector;
  53        atomic_t cc_pending;
  54        union {
  55                struct skcipher_request *req;
  56                struct aead_request *req_aead;
  57        } r;
  58
  59};
  60
  61/*
  62 * per bio private data
  63 */
  64struct dm_crypt_io {
  65        struct crypt_config *cc;
  66        struct bio *base_bio;
  67        u8 *integrity_metadata;
  68        bool integrity_metadata_from_pool;
  69        struct work_struct work;
  70
  71        struct convert_context ctx;
  72
  73        atomic_t io_pending;
  74        blk_status_t error;
  75        sector_t sector;
  76
  77        struct rb_node rb_node;
  78} CRYPTO_MINALIGN_ATTR;
  79
  80struct dm_crypt_request {
  81        struct convert_context *ctx;
  82        struct scatterlist sg_in[4];
  83        struct scatterlist sg_out[4];
  84        u64 iv_sector;
  85};
  86
  87struct crypt_config;
  88
  89struct crypt_iv_operations {
  90        int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
  91                   const char *opts);
  92        void (*dtr)(struct crypt_config *cc);
  93        int (*init)(struct crypt_config *cc);
  94        int (*wipe)(struct crypt_config *cc);
  95        int (*generator)(struct crypt_config *cc, u8 *iv,
  96                         struct dm_crypt_request *dmreq);
  97        int (*post)(struct crypt_config *cc, u8 *iv,
  98                    struct dm_crypt_request *dmreq);
  99};
 100
 101struct iv_essiv_private {
 102        struct crypto_shash *hash_tfm;
 103        u8 *salt;
 104};
 105
 106struct iv_benbi_private {
 107        int shift;
 108};
 109
 110#define LMK_SEED_SIZE 64 /* hash + 0 */
 111struct iv_lmk_private {
 112        struct crypto_shash *hash_tfm;
 113        u8 *seed;
 114};
 115
 116#define TCW_WHITENING_SIZE 16
 117struct iv_tcw_private {
 118        struct crypto_shash *crc32_tfm;
 119        u8 *iv_seed;
 120        u8 *whitening;
 121};
 122
 123struct iv_eboiv_private {
 124        struct crypto_cipher *tfm;
 125};
 126
 127/*
 128 * Crypt: maps a linear range of a block device
 129 * and encrypts / decrypts at the same time.
 130 */
 131enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
 132             DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD };
 133
 134enum cipher_flags {
 135        CRYPT_MODE_INTEGRITY_AEAD,      /* Use authenticated mode for cihper */
 136        CRYPT_IV_LARGE_SECTORS,         /* Calculate IV from sector_size, not 512B sectors */
 137};
 138
 139/*
 140 * The fields in here must be read only after initialization.
 141 */
 142struct crypt_config {
 143        struct dm_dev *dev;
 144        sector_t start;
 145
 146        struct percpu_counter n_allocated_pages;
 147
 148        struct workqueue_struct *io_queue;
 149        struct workqueue_struct *crypt_queue;
 150
 151        spinlock_t write_thread_lock;
 152        struct task_struct *write_thread;
 153        struct rb_root write_tree;
 154
 155        char *cipher;
 156        char *cipher_string;
 157        char *cipher_auth;
 158        char *key_string;
 159
 160        const struct crypt_iv_operations *iv_gen_ops;
 161        union {
 162                struct iv_essiv_private essiv;
 163                struct iv_benbi_private benbi;
 164                struct iv_lmk_private lmk;
 165                struct iv_tcw_private tcw;
 166                struct iv_eboiv_private eboiv;
 167        } iv_gen_private;
 168        u64 iv_offset;
 169        unsigned int iv_size;
 170        unsigned short int sector_size;
 171        unsigned char sector_shift;
 172
 173        /* ESSIV: struct crypto_cipher *essiv_tfm */
 174        void *iv_private;
 175        union {
 176                struct crypto_skcipher **tfms;
 177                struct crypto_aead **tfms_aead;
 178        } cipher_tfm;
 179        unsigned tfms_count;
 180        unsigned long cipher_flags;
 181
 182        /*
 183         * Layout of each crypto request:
 184         *
 185         *   struct skcipher_request
 186         *      context
 187         *      padding
 188         *   struct dm_crypt_request
 189         *      padding
 190         *   IV
 191         *
 192         * The padding is added so that dm_crypt_request and the IV are
 193         * correctly aligned.
 194         */
 195        unsigned int dmreq_start;
 196
 197        unsigned int per_bio_data_size;
 198
 199        unsigned long flags;
 200        unsigned int key_size;
 201        unsigned int key_parts;      /* independent parts in key buffer */
 202        unsigned int key_extra_size; /* additional keys length */
 203        unsigned int key_mac_size;   /* MAC key size for authenc(...) */
 204
 205        unsigned int integrity_tag_size;
 206        unsigned int integrity_iv_size;
 207        unsigned int on_disk_tag_size;
 208
 209        /*
 210         * pool for per bio private data, crypto requests,
 211         * encryption requeusts/buffer pages and integrity tags
 212         */
 213        unsigned tag_pool_max_sectors;
 214        mempool_t tag_pool;
 215        mempool_t req_pool;
 216        mempool_t page_pool;
 217
 218        struct bio_set bs;
 219        struct mutex bio_alloc_lock;
 220
 221        u8 *authenc_key; /* space for keys in authenc() format (if used) */
 222        u8 key[0];
 223};
 224
 225#define MIN_IOS         64
 226#define MAX_TAG_SIZE    480
 227#define POOL_ENTRY_SIZE 512
 228
 229static DEFINE_SPINLOCK(dm_crypt_clients_lock);
 230static unsigned dm_crypt_clients_n = 0;
 231static volatile unsigned long dm_crypt_pages_per_client;
 232#define DM_CRYPT_MEMORY_PERCENT                 2
 233#define DM_CRYPT_MIN_PAGES_PER_CLIENT           (BIO_MAX_PAGES * 16)
 234
 235static void clone_init(struct dm_crypt_io *, struct bio *);
 236static void kcryptd_queue_crypt(struct dm_crypt_io *io);
 237static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
 238                                             struct scatterlist *sg);
 239
 240/*
 241 * Use this to access cipher attributes that are independent of the key.
 242 */
 243static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
 244{
 245        return cc->cipher_tfm.tfms[0];
 246}
 247
 248static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
 249{
 250        return cc->cipher_tfm.tfms_aead[0];
 251}
 252
 253/*
 254 * Different IV generation algorithms:
 255 *
 256 * plain: the initial vector is the 32-bit little-endian version of the sector
 257 *        number, padded with zeros if necessary.
 258 *
 259 * plain64: the initial vector is the 64-bit little-endian version of the sector
 260 *        number, padded with zeros if necessary.
 261 *
 262 * plain64be: the initial vector is the 64-bit big-endian version of the sector
 263 *        number, padded with zeros if necessary.
 264 *
 265 * essiv: "encrypted sector|salt initial vector", the sector number is
 266 *        encrypted with the bulk cipher using a salt as key. The salt
 267 *        should be derived from the bulk cipher's key via hashing.
 268 *
 269 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
 270 *        (needed for LRW-32-AES and possible other narrow block modes)
 271 *
 272 * null: the initial vector is always zero.  Provides compatibility with
 273 *       obsolete loop_fish2 devices.  Do not use for new devices.
 274 *
 275 * lmk:  Compatible implementation of the block chaining mode used
 276 *       by the Loop-AES block device encryption system
 277 *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
 278 *       It operates on full 512 byte sectors and uses CBC
 279 *       with an IV derived from the sector number, the data and
 280 *       optionally extra IV seed.
 281 *       This means that after decryption the first block
 282 *       of sector must be tweaked according to decrypted data.
 283 *       Loop-AES can use three encryption schemes:
 284 *         version 1: is plain aes-cbc mode
 285 *         version 2: uses 64 multikey scheme with lmk IV generator
 286 *         version 3: the same as version 2 with additional IV seed
 287 *                   (it uses 65 keys, last key is used as IV seed)
 288 *
 289 * tcw:  Compatible implementation of the block chaining mode used
 290 *       by the TrueCrypt device encryption system (prior to version 4.1).
 291 *       For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
 292 *       It operates on full 512 byte sectors and uses CBC
 293 *       with an IV derived from initial key and the sector number.
 294 *       In addition, whitening value is applied on every sector, whitening
 295 *       is calculated from initial key, sector number and mixed using CRC32.
 296 *       Note that this encryption scheme is vulnerable to watermarking attacks
 297 *       and should be used for old compatible containers access only.
 298 *
 299 * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode)
 300 *        The IV is encrypted little-endian byte-offset (with the same key
 301 *        and cipher as the volume).
 302 */
 303
 304static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
 305                              struct dm_crypt_request *dmreq)
 306{
 307        memset(iv, 0, cc->iv_size);
 308        *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
 309
 310        return 0;
 311}
 312
 313static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
 314                                struct dm_crypt_request *dmreq)
 315{
 316        memset(iv, 0, cc->iv_size);
 317        *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 318
 319        return 0;
 320}
 321
 322static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
 323                                  struct dm_crypt_request *dmreq)
 324{
 325        memset(iv, 0, cc->iv_size);
 326        /* iv_size is at least of size u64; usually it is 16 bytes */
 327        *(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
 328
 329        return 0;
 330}
 331
 332/* Initialise ESSIV - compute salt but no local memory allocations */
 333static int crypt_iv_essiv_init(struct crypt_config *cc)
 334{
 335        struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 336        SHASH_DESC_ON_STACK(desc, essiv->hash_tfm);
 337        struct crypto_cipher *essiv_tfm;
 338        int err;
 339
 340        desc->tfm = essiv->hash_tfm;
 341
 342        err = crypto_shash_digest(desc, cc->key, cc->key_size, essiv->salt);
 343        shash_desc_zero(desc);
 344        if (err)
 345                return err;
 346
 347        essiv_tfm = cc->iv_private;
 348
 349        err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
 350                            crypto_shash_digestsize(essiv->hash_tfm));
 351        if (err)
 352                return err;
 353
 354        return 0;
 355}
 356
 357/* Wipe salt and reset key derived from volume key */
 358static int crypt_iv_essiv_wipe(struct crypt_config *cc)
 359{
 360        struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 361        unsigned salt_size = crypto_shash_digestsize(essiv->hash_tfm);
 362        struct crypto_cipher *essiv_tfm;
 363        int r, err = 0;
 364
 365        memset(essiv->salt, 0, salt_size);
 366
 367        essiv_tfm = cc->iv_private;
 368        r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
 369        if (r)
 370                err = r;
 371
 372        return err;
 373}
 374
 375/* Allocate the cipher for ESSIV */
 376static struct crypto_cipher *alloc_essiv_cipher(struct crypt_config *cc,
 377                                                struct dm_target *ti,
 378                                                const u8 *salt,
 379                                                unsigned int saltsize)
 380{
 381        struct crypto_cipher *essiv_tfm;
 382        int err;
 383
 384        /* Setup the essiv_tfm with the given salt */
 385        essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, 0);
 386        if (IS_ERR(essiv_tfm)) {
 387                ti->error = "Error allocating crypto tfm for ESSIV";
 388                return essiv_tfm;
 389        }
 390
 391        if (crypto_cipher_blocksize(essiv_tfm) != cc->iv_size) {
 392                ti->error = "Block size of ESSIV cipher does "
 393                            "not match IV size of block cipher";
 394                crypto_free_cipher(essiv_tfm);
 395                return ERR_PTR(-EINVAL);
 396        }
 397
 398        err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
 399        if (err) {
 400                ti->error = "Failed to set key for ESSIV cipher";
 401                crypto_free_cipher(essiv_tfm);
 402                return ERR_PTR(err);
 403        }
 404
 405        return essiv_tfm;
 406}
 407
 408static void crypt_iv_essiv_dtr(struct crypt_config *cc)
 409{
 410        struct crypto_cipher *essiv_tfm;
 411        struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 412
 413        crypto_free_shash(essiv->hash_tfm);
 414        essiv->hash_tfm = NULL;
 415
 416        kzfree(essiv->salt);
 417        essiv->salt = NULL;
 418
 419        essiv_tfm = cc->iv_private;
 420
 421        if (essiv_tfm)
 422                crypto_free_cipher(essiv_tfm);
 423
 424        cc->iv_private = NULL;
 425}
 426
 427static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
 428                              const char *opts)
 429{
 430        struct crypto_cipher *essiv_tfm = NULL;
 431        struct crypto_shash *hash_tfm = NULL;
 432        u8 *salt = NULL;
 433        int err;
 434
 435        if (!opts) {
 436                ti->error = "Digest algorithm missing for ESSIV mode";
 437                return -EINVAL;
 438        }
 439
 440        /* Allocate hash algorithm */
 441        hash_tfm = crypto_alloc_shash(opts, 0, 0);
 442        if (IS_ERR(hash_tfm)) {
 443                ti->error = "Error initializing ESSIV hash";
 444                err = PTR_ERR(hash_tfm);
 445                goto bad;
 446        }
 447
 448        salt = kzalloc(crypto_shash_digestsize(hash_tfm), GFP_KERNEL);
 449        if (!salt) {
 450                ti->error = "Error kmallocing salt storage in ESSIV";
 451                err = -ENOMEM;
 452                goto bad;
 453        }
 454
 455        cc->iv_gen_private.essiv.salt = salt;
 456        cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
 457
 458        essiv_tfm = alloc_essiv_cipher(cc, ti, salt,
 459                                       crypto_shash_digestsize(hash_tfm));
 460        if (IS_ERR(essiv_tfm)) {
 461                crypt_iv_essiv_dtr(cc);
 462                return PTR_ERR(essiv_tfm);
 463        }
 464        cc->iv_private = essiv_tfm;
 465
 466        return 0;
 467
 468bad:
 469        if (hash_tfm && !IS_ERR(hash_tfm))
 470                crypto_free_shash(hash_tfm);
 471        kfree(salt);
 472        return err;
 473}
 474
 475static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
 476                              struct dm_crypt_request *dmreq)
 477{
 478        struct crypto_cipher *essiv_tfm = cc->iv_private;
 479
 480        memset(iv, 0, cc->iv_size);
 481        *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 482        crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
 483
 484        return 0;
 485}
 486
 487static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
 488                              const char *opts)
 489{
 490        unsigned bs = crypto_skcipher_blocksize(any_tfm(cc));
 491        int log = ilog2(bs);
 492
 493        /* we need to calculate how far we must shift the sector count
 494         * to get the cipher block count, we use this shift in _gen */
 495
 496        if (1 << log != bs) {
 497                ti->error = "cypher blocksize is not a power of 2";
 498                return -EINVAL;
 499        }
 500
 501        if (log > 9) {
 502                ti->error = "cypher blocksize is > 512";
 503                return -EINVAL;
 504        }
 505
 506        cc->iv_gen_private.benbi.shift = 9 - log;
 507
 508        return 0;
 509}
 510
 511static void crypt_iv_benbi_dtr(struct crypt_config *cc)
 512{
 513}
 514
 515static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
 516                              struct dm_crypt_request *dmreq)
 517{
 518        __be64 val;
 519
 520        memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
 521
 522        val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
 523        put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
 524
 525        return 0;
 526}
 527
 528static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
 529                             struct dm_crypt_request *dmreq)
 530{
 531        memset(iv, 0, cc->iv_size);
 532
 533        return 0;
 534}
 535
 536static void crypt_iv_lmk_dtr(struct crypt_config *cc)
 537{
 538        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 539
 540        if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
 541                crypto_free_shash(lmk->hash_tfm);
 542        lmk->hash_tfm = NULL;
 543
 544        kzfree(lmk->seed);
 545        lmk->seed = NULL;
 546}
 547
 548static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
 549                            const char *opts)
 550{
 551        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 552
 553        if (cc->sector_size != (1 << SECTOR_SHIFT)) {
 554                ti->error = "Unsupported sector size for LMK";
 555                return -EINVAL;
 556        }
 557
 558        lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
 559        if (IS_ERR(lmk->hash_tfm)) {
 560                ti->error = "Error initializing LMK hash";
 561                return PTR_ERR(lmk->hash_tfm);
 562        }
 563
 564        /* No seed in LMK version 2 */
 565        if (cc->key_parts == cc->tfms_count) {
 566                lmk->seed = NULL;
 567                return 0;
 568        }
 569
 570        lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
 571        if (!lmk->seed) {
 572                crypt_iv_lmk_dtr(cc);
 573                ti->error = "Error kmallocing seed storage in LMK";
 574                return -ENOMEM;
 575        }
 576
 577        return 0;
 578}
 579
 580static int crypt_iv_lmk_init(struct crypt_config *cc)
 581{
 582        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 583        int subkey_size = cc->key_size / cc->key_parts;
 584
 585        /* LMK seed is on the position of LMK_KEYS + 1 key */
 586        if (lmk->seed)
 587                memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
 588                       crypto_shash_digestsize(lmk->hash_tfm));
 589
 590        return 0;
 591}
 592
 593static int crypt_iv_lmk_wipe(struct crypt_config *cc)
 594{
 595        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 596
 597        if (lmk->seed)
 598                memset(lmk->seed, 0, LMK_SEED_SIZE);
 599
 600        return 0;
 601}
 602
 603static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
 604                            struct dm_crypt_request *dmreq,
 605                            u8 *data)
 606{
 607        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 608        SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
 609        struct md5_state md5state;
 610        __le32 buf[4];
 611        int i, r;
 612
 613        desc->tfm = lmk->hash_tfm;
 614
 615        r = crypto_shash_init(desc);
 616        if (r)
 617                return r;
 618
 619        if (lmk->seed) {
 620                r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
 621                if (r)
 622                        return r;
 623        }
 624
 625        /* Sector is always 512B, block size 16, add data of blocks 1-31 */
 626        r = crypto_shash_update(desc, data + 16, 16 * 31);
 627        if (r)
 628                return r;
 629
 630        /* Sector is cropped to 56 bits here */
 631        buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
 632        buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
 633        buf[2] = cpu_to_le32(4024);
 634        buf[3] = 0;
 635        r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
 636        if (r)
 637                return r;
 638
 639        /* No MD5 padding here */
 640        r = crypto_shash_export(desc, &md5state);
 641        if (r)
 642                return r;
 643
 644        for (i = 0; i < MD5_HASH_WORDS; i++)
 645                __cpu_to_le32s(&md5state.hash[i]);
 646        memcpy(iv, &md5state.hash, cc->iv_size);
 647
 648        return 0;
 649}
 650
 651static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
 652                            struct dm_crypt_request *dmreq)
 653{
 654        struct scatterlist *sg;
 655        u8 *src;
 656        int r = 0;
 657
 658        if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
 659                sg = crypt_get_sg_data(cc, dmreq->sg_in);
 660                src = kmap_atomic(sg_page(sg));
 661                r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
 662                kunmap_atomic(src);
 663        } else
 664                memset(iv, 0, cc->iv_size);
 665
 666        return r;
 667}
 668
 669static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
 670                             struct dm_crypt_request *dmreq)
 671{
 672        struct scatterlist *sg;
 673        u8 *dst;
 674        int r;
 675
 676        if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
 677                return 0;
 678
 679        sg = crypt_get_sg_data(cc, dmreq->sg_out);
 680        dst = kmap_atomic(sg_page(sg));
 681        r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
 682
 683        /* Tweak the first block of plaintext sector */
 684        if (!r)
 685                crypto_xor(dst + sg->offset, iv, cc->iv_size);
 686
 687        kunmap_atomic(dst);
 688        return r;
 689}
 690
 691static void crypt_iv_tcw_dtr(struct crypt_config *cc)
 692{
 693        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 694
 695        kzfree(tcw->iv_seed);
 696        tcw->iv_seed = NULL;
 697        kzfree(tcw->whitening);
 698        tcw->whitening = NULL;
 699
 700        if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
 701                crypto_free_shash(tcw->crc32_tfm);
 702        tcw->crc32_tfm = NULL;
 703}
 704
 705static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
 706                            const char *opts)
 707{
 708        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 709
 710        if (cc->sector_size != (1 << SECTOR_SHIFT)) {
 711                ti->error = "Unsupported sector size for TCW";
 712                return -EINVAL;
 713        }
 714
 715        if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
 716                ti->error = "Wrong key size for TCW";
 717                return -EINVAL;
 718        }
 719
 720        tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
 721        if (IS_ERR(tcw->crc32_tfm)) {
 722                ti->error = "Error initializing CRC32 in TCW";
 723                return PTR_ERR(tcw->crc32_tfm);
 724        }
 725
 726        tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
 727        tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
 728        if (!tcw->iv_seed || !tcw->whitening) {
 729                crypt_iv_tcw_dtr(cc);
 730                ti->error = "Error allocating seed storage in TCW";
 731                return -ENOMEM;
 732        }
 733
 734        return 0;
 735}
 736
 737static int crypt_iv_tcw_init(struct crypt_config *cc)
 738{
 739        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 740        int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
 741
 742        memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
 743        memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
 744               TCW_WHITENING_SIZE);
 745
 746        return 0;
 747}
 748
 749static int crypt_iv_tcw_wipe(struct crypt_config *cc)
 750{
 751        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 752
 753        memset(tcw->iv_seed, 0, cc->iv_size);
 754        memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
 755
 756        return 0;
 757}
 758
 759static int crypt_iv_tcw_whitening(struct crypt_config *cc,
 760                                  struct dm_crypt_request *dmreq,
 761                                  u8 *data)
 762{
 763        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 764        __le64 sector = cpu_to_le64(dmreq->iv_sector);
 765        u8 buf[TCW_WHITENING_SIZE];
 766        SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
 767        int i, r;
 768
 769        /* xor whitening with sector number */
 770        crypto_xor_cpy(buf, tcw->whitening, (u8 *)&sector, 8);
 771        crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)&sector, 8);
 772
 773        /* calculate crc32 for every 32bit part and xor it */
 774        desc->tfm = tcw->crc32_tfm;
 775        for (i = 0; i < 4; i++) {
 776                r = crypto_shash_init(desc);
 777                if (r)
 778                        goto out;
 779                r = crypto_shash_update(desc, &buf[i * 4], 4);
 780                if (r)
 781                        goto out;
 782                r = crypto_shash_final(desc, &buf[i * 4]);
 783                if (r)
 784                        goto out;
 785        }
 786        crypto_xor(&buf[0], &buf[12], 4);
 787        crypto_xor(&buf[4], &buf[8], 4);
 788
 789        /* apply whitening (8 bytes) to whole sector */
 790        for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
 791                crypto_xor(data + i * 8, buf, 8);
 792out:
 793        memzero_explicit(buf, sizeof(buf));
 794        return r;
 795}
 796
 797static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
 798                            struct dm_crypt_request *dmreq)
 799{
 800        struct scatterlist *sg;
 801        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 802        __le64 sector = cpu_to_le64(dmreq->iv_sector);
 803        u8 *src;
 804        int r = 0;
 805
 806        /* Remove whitening from ciphertext */
 807        if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
 808                sg = crypt_get_sg_data(cc, dmreq->sg_in);
 809                src = kmap_atomic(sg_page(sg));
 810                r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
 811                kunmap_atomic(src);
 812        }
 813
 814        /* Calculate IV */
 815        crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)&sector, 8);
 816        if (cc->iv_size > 8)
 817                crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)&sector,
 818                               cc->iv_size - 8);
 819
 820        return r;
 821}
 822
 823static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
 824                             struct dm_crypt_request *dmreq)
 825{
 826        struct scatterlist *sg;
 827        u8 *dst;
 828        int r;
 829
 830        if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
 831                return 0;
 832
 833        /* Apply whitening on ciphertext */
 834        sg = crypt_get_sg_data(cc, dmreq->sg_out);
 835        dst = kmap_atomic(sg_page(sg));
 836        r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
 837        kunmap_atomic(dst);
 838
 839        return r;
 840}
 841
 842static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
 843                                struct dm_crypt_request *dmreq)
 844{
 845        /* Used only for writes, there must be an additional space to store IV */
 846        get_random_bytes(iv, cc->iv_size);
 847        return 0;
 848}
 849
 850static void crypt_iv_eboiv_dtr(struct crypt_config *cc)
 851{
 852        struct iv_eboiv_private *eboiv = &cc->iv_gen_private.eboiv;
 853
 854        crypto_free_cipher(eboiv->tfm);
 855        eboiv->tfm = NULL;
 856}
 857
 858static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti,
 859                            const char *opts)
 860{
 861        struct iv_eboiv_private *eboiv = &cc->iv_gen_private.eboiv;
 862        struct crypto_cipher *tfm;
 863
 864        tfm = crypto_alloc_cipher(cc->cipher, 0, 0);
 865        if (IS_ERR(tfm)) {
 866                ti->error = "Error allocating crypto tfm for EBOIV";
 867                return PTR_ERR(tfm);
 868        }
 869
 870        if (crypto_cipher_blocksize(tfm) != cc->iv_size) {
 871                ti->error = "Block size of EBOIV cipher does "
 872                            "not match IV size of block cipher";
 873                crypto_free_cipher(tfm);
 874                return -EINVAL;
 875        }
 876
 877        eboiv->tfm = tfm;
 878        return 0;
 879}
 880
 881static int crypt_iv_eboiv_init(struct crypt_config *cc)
 882{
 883        struct iv_eboiv_private *eboiv = &cc->iv_gen_private.eboiv;
 884        int err;
 885
 886        err = crypto_cipher_setkey(eboiv->tfm, cc->key, cc->key_size);
 887        if (err)
 888                return err;
 889
 890        return 0;
 891}
 892
 893static int crypt_iv_eboiv_wipe(struct crypt_config *cc)
 894{
 895        /* Called after cc->key is set to random key in crypt_wipe() */
 896        return crypt_iv_eboiv_init(cc);
 897}
 898
 899static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv,
 900                            struct dm_crypt_request *dmreq)
 901{
 902        struct iv_eboiv_private *eboiv = &cc->iv_gen_private.eboiv;
 903
 904        memset(iv, 0, cc->iv_size);
 905        *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
 906        crypto_cipher_encrypt_one(eboiv->tfm, iv, iv);
 907
 908        return 0;
 909}
 910
 911static const struct crypt_iv_operations crypt_iv_plain_ops = {
 912        .generator = crypt_iv_plain_gen
 913};
 914
 915static const struct crypt_iv_operations crypt_iv_plain64_ops = {
 916        .generator = crypt_iv_plain64_gen
 917};
 918
 919static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
 920        .generator = crypt_iv_plain64be_gen
 921};
 922
 923static const struct crypt_iv_operations crypt_iv_essiv_ops = {
 924        .ctr       = crypt_iv_essiv_ctr,
 925        .dtr       = crypt_iv_essiv_dtr,
 926        .init      = crypt_iv_essiv_init,
 927        .wipe      = crypt_iv_essiv_wipe,
 928        .generator = crypt_iv_essiv_gen
 929};
 930
 931static const struct crypt_iv_operations crypt_iv_benbi_ops = {
 932        .ctr       = crypt_iv_benbi_ctr,
 933        .dtr       = crypt_iv_benbi_dtr,
 934        .generator = crypt_iv_benbi_gen
 935};
 936
 937static const struct crypt_iv_operations crypt_iv_null_ops = {
 938        .generator = crypt_iv_null_gen
 939};
 940
 941static const struct crypt_iv_operations crypt_iv_lmk_ops = {
 942        .ctr       = crypt_iv_lmk_ctr,
 943        .dtr       = crypt_iv_lmk_dtr,
 944        .init      = crypt_iv_lmk_init,
 945        .wipe      = crypt_iv_lmk_wipe,
 946        .generator = crypt_iv_lmk_gen,
 947        .post      = crypt_iv_lmk_post
 948};
 949
 950static const struct crypt_iv_operations crypt_iv_tcw_ops = {
 951        .ctr       = crypt_iv_tcw_ctr,
 952        .dtr       = crypt_iv_tcw_dtr,
 953        .init      = crypt_iv_tcw_init,
 954        .wipe      = crypt_iv_tcw_wipe,
 955        .generator = crypt_iv_tcw_gen,
 956        .post      = crypt_iv_tcw_post
 957};
 958
 959static struct crypt_iv_operations crypt_iv_random_ops = {
 960        .generator = crypt_iv_random_gen
 961};
 962
 963static struct crypt_iv_operations crypt_iv_eboiv_ops = {
 964        .ctr       = crypt_iv_eboiv_ctr,
 965        .dtr       = crypt_iv_eboiv_dtr,
 966        .init      = crypt_iv_eboiv_init,
 967        .wipe      = crypt_iv_eboiv_wipe,
 968        .generator = crypt_iv_eboiv_gen
 969};
 970
 971/*
 972 * Integrity extensions
 973 */
 974static bool crypt_integrity_aead(struct crypt_config *cc)
 975{
 976        return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
 977}
 978
 979static bool crypt_integrity_hmac(struct crypt_config *cc)
 980{
 981        return crypt_integrity_aead(cc) && cc->key_mac_size;
 982}
 983
 984/* Get sg containing data */
 985static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
 986                                             struct scatterlist *sg)
 987{
 988        if (unlikely(crypt_integrity_aead(cc)))
 989                return &sg[2];
 990
 991        return sg;
 992}
 993
 994static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
 995{
 996        struct bio_integrity_payload *bip;
 997        unsigned int tag_len;
 998        int ret;
 999
1000        if (!bio_sectors(bio) || !io->cc->on_disk_tag_size)
1001                return 0;
1002
1003        bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
1004        if (IS_ERR(bip))
1005                return PTR_ERR(bip);
1006
1007        tag_len = io->cc->on_disk_tag_size * (bio_sectors(bio) >> io->cc->sector_shift);
1008
1009        bip->bip_iter.bi_size = tag_len;
1010        bip->bip_iter.bi_sector = io->cc->start + io->sector;
1011
1012        ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
1013                                     tag_len, offset_in_page(io->integrity_metadata));
1014        if (unlikely(ret != tag_len))
1015                return -ENOMEM;
1016
1017        return 0;
1018}
1019
1020static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
1021{
1022#ifdef CONFIG_BLK_DEV_INTEGRITY
1023        struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
1024        struct mapped_device *md = dm_table_get_md(ti->table);
1025
1026        /* From now we require underlying device with our integrity profile */
1027        if (!bi || strcasecmp(bi->profile->name, "DM-DIF-EXT-TAG")) {
1028                ti->error = "Integrity profile not supported.";
1029                return -EINVAL;
1030        }
1031
1032        if (bi->tag_size != cc->on_disk_tag_size ||
1033            bi->tuple_size != cc->on_disk_tag_size) {
1034                ti->error = "Integrity profile tag size mismatch.";
1035                return -EINVAL;
1036        }
1037        if (1 << bi->interval_exp != cc->sector_size) {
1038                ti->error = "Integrity profile sector size mismatch.";
1039                return -EINVAL;
1040        }
1041
1042        if (crypt_integrity_aead(cc)) {
1043                cc->integrity_tag_size = cc->on_disk_tag_size - cc->integrity_iv_size;
1044                DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md),
1045                       cc->integrity_tag_size, cc->integrity_iv_size);
1046
1047                if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
1048                        ti->error = "Integrity AEAD auth tag size is not supported.";
1049                        return -EINVAL;
1050                }
1051        } else if (cc->integrity_iv_size)
1052                DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md),
1053                       cc->integrity_iv_size);
1054
1055        if ((cc->integrity_tag_size + cc->integrity_iv_size) != bi->tag_size) {
1056                ti->error = "Not enough space for integrity tag in the profile.";
1057                return -EINVAL;
1058        }
1059
1060        return 0;
1061#else
1062        ti->error = "Integrity profile not supported.";
1063        return -EINVAL;
1064#endif
1065}
1066
1067static void crypt_convert_init(struct crypt_config *cc,
1068                               struct convert_context *ctx,
1069                               struct bio *bio_out, struct bio *bio_in,
1070                               sector_t sector)
1071{
1072        ctx->bio_in = bio_in;
1073        ctx->bio_out = bio_out;
1074        if (bio_in)
1075                ctx->iter_in = bio_in->bi_iter;
1076        if (bio_out)
1077                ctx->iter_out = bio_out->bi_iter;
1078        ctx->cc_sector = sector + cc->iv_offset;
1079        init_completion(&ctx->restart);
1080}
1081
1082static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
1083                                             void *req)
1084{
1085        return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
1086}
1087
1088static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
1089{
1090        return (void *)((char *)dmreq - cc->dmreq_start);
1091}
1092
1093static u8 *iv_of_dmreq(struct crypt_config *cc,
1094                       struct dm_crypt_request *dmreq)
1095{
1096        if (crypt_integrity_aead(cc))
1097                return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1098                        crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
1099        else
1100                return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1101                        crypto_skcipher_alignmask(any_tfm(cc)) + 1);
1102}
1103
1104static u8 *org_iv_of_dmreq(struct crypt_config *cc,
1105                       struct dm_crypt_request *dmreq)
1106{
1107        return iv_of_dmreq(cc, dmreq) + cc->iv_size;
1108}
1109
1110static __le64 *org_sector_of_dmreq(struct crypt_config *cc,
1111                       struct dm_crypt_request *dmreq)
1112{
1113        u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
1114        return (__le64 *) ptr;
1115}
1116
1117static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
1118                       struct dm_crypt_request *dmreq)
1119{
1120        u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
1121                  cc->iv_size + sizeof(uint64_t);
1122        return (unsigned int*)ptr;
1123}
1124
1125static void *tag_from_dmreq(struct crypt_config *cc,
1126                                struct dm_crypt_request *dmreq)
1127{
1128        struct convert_context *ctx = dmreq->ctx;
1129        struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1130
1131        return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
1132                cc->on_disk_tag_size];
1133}
1134
1135static void *iv_tag_from_dmreq(struct crypt_config *cc,
1136                               struct dm_crypt_request *dmreq)
1137{
1138        return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
1139}
1140
1141static int crypt_convert_block_aead(struct crypt_config *cc,
1142                                     struct convert_context *ctx,
1143                                     struct aead_request *req,
1144                                     unsigned int tag_offset)
1145{
1146        struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1147        struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1148        struct dm_crypt_request *dmreq;
1149        u8 *iv, *org_iv, *tag_iv, *tag;
1150        __le64 *sector;
1151        int r = 0;
1152
1153        BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
1154
1155        /* Reject unexpected unaligned bio. */
1156        if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1157                return -EIO;
1158
1159        dmreq = dmreq_of_req(cc, req);
1160        dmreq->iv_sector = ctx->cc_sector;
1161        if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1162                dmreq->iv_sector >>= cc->sector_shift;
1163        dmreq->ctx = ctx;
1164
1165        *org_tag_of_dmreq(cc, dmreq) = tag_offset;
1166
1167        sector = org_sector_of_dmreq(cc, dmreq);
1168        *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1169
1170        iv = iv_of_dmreq(cc, dmreq);
1171        org_iv = org_iv_of_dmreq(cc, dmreq);
1172        tag = tag_from_dmreq(cc, dmreq);
1173        tag_iv = iv_tag_from_dmreq(cc, dmreq);
1174
1175        /* AEAD request:
1176         *  |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1177         *  | (authenticated) | (auth+encryption) |              |
1178         *  | sector_LE |  IV |  sector in/out    |  tag in/out  |
1179         */
1180        sg_init_table(dmreq->sg_in, 4);
1181        sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
1182        sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
1183        sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1184        sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
1185
1186        sg_init_table(dmreq->sg_out, 4);
1187        sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
1188        sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
1189        sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1190        sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
1191
1192        if (cc->iv_gen_ops) {
1193                /* For READs use IV stored in integrity metadata */
1194                if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1195                        memcpy(org_iv, tag_iv, cc->iv_size);
1196                } else {
1197                        r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1198                        if (r < 0)
1199                                return r;
1200                        /* Store generated IV in integrity metadata */
1201                        if (cc->integrity_iv_size)
1202                                memcpy(tag_iv, org_iv, cc->iv_size);
1203                }
1204                /* Working copy of IV, to be modified in crypto API */
1205                memcpy(iv, org_iv, cc->iv_size);
1206        }
1207
1208        aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
1209        if (bio_data_dir(ctx->bio_in) == WRITE) {
1210                aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1211                                       cc->sector_size, iv);
1212                r = crypto_aead_encrypt(req);
1213                if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size)
1214                        memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1215                               cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1216        } else {
1217                aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1218                                       cc->sector_size + cc->integrity_tag_size, iv);
1219                r = crypto_aead_decrypt(req);
1220        }
1221
1222        if (r == -EBADMSG) {
1223                char b[BDEVNAME_SIZE];
1224                DMERR_LIMIT("%s: INTEGRITY AEAD ERROR, sector %llu", bio_devname(ctx->bio_in, b),
1225                            (unsigned long long)le64_to_cpu(*sector));
1226        }
1227
1228        if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1229                r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1230
1231        bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1232        bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1233
1234        return r;
1235}
1236
1237static int crypt_convert_block_skcipher(struct crypt_config *cc,
1238                                        struct convert_context *ctx,
1239                                        struct skcipher_request *req,
1240                                        unsigned int tag_offset)
1241{
1242        struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1243        struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1244        struct scatterlist *sg_in, *sg_out;
1245        struct dm_crypt_request *dmreq;
1246        u8 *iv, *org_iv, *tag_iv;
1247        __le64 *sector;
1248        int r = 0;
1249
1250        /* Reject unexpected unaligned bio. */
1251        if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1252                return -EIO;
1253
1254        dmreq = dmreq_of_req(cc, req);
1255        dmreq->iv_sector = ctx->cc_sector;
1256        if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1257                dmreq->iv_sector >>= cc->sector_shift;
1258        dmreq->ctx = ctx;
1259
1260        *org_tag_of_dmreq(cc, dmreq) = tag_offset;
1261
1262        iv = iv_of_dmreq(cc, dmreq);
1263        org_iv = org_iv_of_dmreq(cc, dmreq);
1264        tag_iv = iv_tag_from_dmreq(cc, dmreq);
1265
1266        sector = org_sector_of_dmreq(cc, dmreq);
1267        *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1268
1269        /* For skcipher we use only the first sg item */
1270        sg_in  = &dmreq->sg_in[0];
1271        sg_out = &dmreq->sg_out[0];
1272
1273        sg_init_table(sg_in, 1);
1274        sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1275
1276        sg_init_table(sg_out, 1);
1277        sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1278
1279        if (cc->iv_gen_ops) {
1280                /* For READs use IV stored in integrity metadata */
1281                if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1282                        memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1283                } else {
1284                        r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1285                        if (r < 0)
1286                                return r;
1287                        /* Store generated IV in integrity metadata */
1288                        if (cc->integrity_iv_size)
1289                                memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1290                }
1291                /* Working copy of IV, to be modified in crypto API */
1292                memcpy(iv, org_iv, cc->iv_size);
1293        }
1294
1295        skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
1296
1297        if (bio_data_dir(ctx->bio_in) == WRITE)
1298                r = crypto_skcipher_encrypt(req);
1299        else
1300                r = crypto_skcipher_decrypt(req);
1301
1302        if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1303                r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1304
1305        bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1306        bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1307
1308        return r;
1309}
1310
1311static void kcryptd_async_done(struct crypto_async_request *async_req,
1312                               int error);
1313
1314static void crypt_alloc_req_skcipher(struct crypt_config *cc,
1315                                     struct convert_context *ctx)
1316{
1317        unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
1318
1319        if (!ctx->r.req)
1320                ctx->r.req = mempool_alloc(&cc->req_pool, GFP_NOIO);
1321
1322        skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
1323
1324        /*
1325         * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1326         * requests if driver request queue is full.
1327         */
1328        skcipher_request_set_callback(ctx->r.req,
1329            CRYPTO_TFM_REQ_MAY_BACKLOG,
1330            kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
1331}
1332
1333static void crypt_alloc_req_aead(struct crypt_config *cc,
1334                                 struct convert_context *ctx)
1335{
1336        if (!ctx->r.req_aead)
1337                ctx->r.req_aead = mempool_alloc(&cc->req_pool, GFP_NOIO);
1338
1339        aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
1340
1341        /*
1342         * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1343         * requests if driver request queue is full.
1344         */
1345        aead_request_set_callback(ctx->r.req_aead,
1346            CRYPTO_TFM_REQ_MAY_BACKLOG,
1347            kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
1348}
1349
1350static void crypt_alloc_req(struct crypt_config *cc,
1351                            struct convert_context *ctx)
1352{
1353        if (crypt_integrity_aead(cc))
1354                crypt_alloc_req_aead(cc, ctx);
1355        else
1356                crypt_alloc_req_skcipher(cc, ctx);
1357}
1358
1359static void crypt_free_req_skcipher(struct crypt_config *cc,
1360                                    struct skcipher_request *req, struct bio *base_bio)
1361{
1362        struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1363
1364        if ((struct skcipher_request *)(io + 1) != req)
1365                mempool_free(req, &cc->req_pool);
1366}
1367
1368static void crypt_free_req_aead(struct crypt_config *cc,
1369                                struct aead_request *req, struct bio *base_bio)
1370{
1371        struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1372
1373        if ((struct aead_request *)(io + 1) != req)
1374                mempool_free(req, &cc->req_pool);
1375}
1376
1377static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1378{
1379        if (crypt_integrity_aead(cc))
1380                crypt_free_req_aead(cc, req, base_bio);
1381        else
1382                crypt_free_req_skcipher(cc, req, base_bio);
1383}
1384
1385/*
1386 * Encrypt / decrypt data from one bio to another one (can be the same one)
1387 */
1388static blk_status_t crypt_convert(struct crypt_config *cc,
1389                         struct convert_context *ctx)
1390{
1391        unsigned int tag_offset = 0;
1392        unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1393        int r;
1394
1395        atomic_set(&ctx->cc_pending, 1);
1396
1397        while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
1398
1399                crypt_alloc_req(cc, ctx);
1400                atomic_inc(&ctx->cc_pending);
1401
1402                if (crypt_integrity_aead(cc))
1403                        r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset);
1404                else
1405                        r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset);
1406
1407                switch (r) {
1408                /*
1409                 * The request was queued by a crypto driver
1410                 * but the driver request queue is full, let's wait.
1411                 */
1412                case -EBUSY:
1413                        wait_for_completion(&ctx->restart);
1414                        reinit_completion(&ctx->restart);
1415                        /* fall through */
1416                /*
1417                 * The request is queued and processed asynchronously,
1418                 * completion function kcryptd_async_done() will be called.
1419                 */
1420                case -EINPROGRESS:
1421                        ctx->r.req = NULL;
1422                        ctx->cc_sector += sector_step;
1423                        tag_offset++;
1424                        continue;
1425                /*
1426                 * The request was already processed (synchronously).
1427                 */
1428                case 0:
1429                        atomic_dec(&ctx->cc_pending);
1430                        ctx->cc_sector += sector_step;
1431                        tag_offset++;
1432                        cond_resched();
1433                        continue;
1434                /*
1435                 * There was a data integrity error.
1436                 */
1437                case -EBADMSG:
1438                        atomic_dec(&ctx->cc_pending);
1439                        return BLK_STS_PROTECTION;
1440                /*
1441                 * There was an error while processing the request.
1442                 */
1443                default:
1444                        atomic_dec(&ctx->cc_pending);
1445                        return BLK_STS_IOERR;
1446                }
1447        }
1448
1449        return 0;
1450}
1451
1452static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
1453
1454/*
1455 * Generate a new unfragmented bio with the given size
1456 * This should never violate the device limitations (but only because
1457 * max_segment_size is being constrained to PAGE_SIZE).
1458 *
1459 * This function may be called concurrently. If we allocate from the mempool
1460 * concurrently, there is a possibility of deadlock. For example, if we have
1461 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1462 * the mempool concurrently, it may deadlock in a situation where both processes
1463 * have allocated 128 pages and the mempool is exhausted.
1464 *
1465 * In order to avoid this scenario we allocate the pages under a mutex.
1466 *
1467 * In order to not degrade performance with excessive locking, we try
1468 * non-blocking allocations without a mutex first but on failure we fallback
1469 * to blocking allocations with a mutex.
1470 */
1471static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
1472{
1473        struct crypt_config *cc = io->cc;
1474        struct bio *clone;
1475        unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1476        gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1477        unsigned i, len, remaining_size;
1478        struct page *page;
1479
1480retry:
1481        if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1482                mutex_lock(&cc->bio_alloc_lock);
1483
1484        clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, &cc->bs);
1485        if (!clone)
1486                goto out;
1487
1488        clone_init(io, clone);
1489
1490        remaining_size = size;
1491
1492        for (i = 0; i < nr_iovecs; i++) {
1493                page = mempool_alloc(&cc->page_pool, gfp_mask);
1494                if (!page) {
1495                        crypt_free_buffer_pages(cc, clone);
1496                        bio_put(clone);
1497                        gfp_mask |= __GFP_DIRECT_RECLAIM;
1498                        goto retry;
1499                }
1500
1501                len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
1502
1503                bio_add_page(clone, page, len, 0);
1504
1505                remaining_size -= len;
1506        }
1507
1508        /* Allocate space for integrity tags */
1509        if (dm_crypt_integrity_io_alloc(io, clone)) {
1510                crypt_free_buffer_pages(cc, clone);
1511                bio_put(clone);
1512                clone = NULL;
1513        }
1514out:
1515        if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1516                mutex_unlock(&cc->bio_alloc_lock);
1517
1518        return clone;
1519}
1520
1521static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1522{
1523        struct bio_vec *bv;
1524        struct bvec_iter_all iter_all;
1525
1526        bio_for_each_segment_all(bv, clone, iter_all) {
1527                BUG_ON(!bv->bv_page);
1528                mempool_free(bv->bv_page, &cc->page_pool);
1529        }
1530}
1531
1532static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1533                          struct bio *bio, sector_t sector)
1534{
1535        io->cc = cc;
1536        io->base_bio = bio;
1537        io->sector = sector;
1538        io->error = 0;
1539        io->ctx.r.req = NULL;
1540        io->integrity_metadata = NULL;
1541        io->integrity_metadata_from_pool = false;
1542        atomic_set(&io->io_pending, 0);
1543}
1544
1545static void crypt_inc_pending(struct dm_crypt_io *io)
1546{
1547        atomic_inc(&io->io_pending);
1548}
1549
1550/*
1551 * One of the bios was finished. Check for completion of
1552 * the whole request and correctly clean up the buffer.
1553 */
1554static void crypt_dec_pending(struct dm_crypt_io *io)
1555{
1556        struct crypt_config *cc = io->cc;
1557        struct bio *base_bio = io->base_bio;
1558        blk_status_t error = io->error;
1559
1560        if (!atomic_dec_and_test(&io->io_pending))
1561                return;
1562
1563        if (io->ctx.r.req)
1564                crypt_free_req(cc, io->ctx.r.req, base_bio);
1565
1566        if (unlikely(io->integrity_metadata_from_pool))
1567                mempool_free(io->integrity_metadata, &io->cc->tag_pool);
1568        else
1569                kfree(io->integrity_metadata);
1570
1571        base_bio->bi_status = error;
1572        bio_endio(base_bio);
1573}
1574
1575/*
1576 * kcryptd/kcryptd_io:
1577 *
1578 * Needed because it would be very unwise to do decryption in an
1579 * interrupt context.
1580 *
1581 * kcryptd performs the actual encryption or decryption.
1582 *
1583 * kcryptd_io performs the IO submission.
1584 *
1585 * They must be separated as otherwise the final stages could be
1586 * starved by new requests which can block in the first stages due
1587 * to memory allocation.
1588 *
1589 * The work is done per CPU global for all dm-crypt instances.
1590 * They should not depend on each other and do not block.
1591 */
1592static void crypt_endio(struct bio *clone)
1593{
1594        struct dm_crypt_io *io = clone->bi_private;
1595        struct crypt_config *cc = io->cc;
1596        unsigned rw = bio_data_dir(clone);
1597        blk_status_t error;
1598
1599        /*
1600         * free the processed pages
1601         */
1602        if (rw == WRITE)
1603                crypt_free_buffer_pages(cc, clone);
1604
1605        error = clone->bi_status;
1606        bio_put(clone);
1607
1608        if (rw == READ && !error) {
1609                kcryptd_queue_crypt(io);
1610                return;
1611        }
1612
1613        if (unlikely(error))
1614                io->error = error;
1615
1616        crypt_dec_pending(io);
1617}
1618
1619static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1620{
1621        struct crypt_config *cc = io->cc;
1622
1623        clone->bi_private = io;
1624        clone->bi_end_io  = crypt_endio;
1625        bio_set_dev(clone, cc->dev->bdev);
1626        clone->bi_opf     = io->base_bio->bi_opf;
1627}
1628
1629static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1630{
1631        struct crypt_config *cc = io->cc;
1632        struct bio *clone;
1633
1634        /*
1635         * We need the original biovec array in order to decrypt
1636         * the whole bio data *afterwards* -- thanks to immutable
1637         * biovecs we don't need to worry about the block layer
1638         * modifying the biovec array; so leverage bio_clone_fast().
1639         */
1640        clone = bio_clone_fast(io->base_bio, gfp, &cc->bs);
1641        if (!clone)
1642                return 1;
1643
1644        crypt_inc_pending(io);
1645
1646        clone_init(io, clone);
1647        clone->bi_iter.bi_sector = cc->start + io->sector;
1648
1649        if (dm_crypt_integrity_io_alloc(io, clone)) {
1650                crypt_dec_pending(io);
1651                bio_put(clone);
1652                return 1;
1653        }
1654
1655        generic_make_request(clone);
1656        return 0;
1657}
1658
1659static void kcryptd_io_read_work(struct work_struct *work)
1660{
1661        struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1662
1663        crypt_inc_pending(io);
1664        if (kcryptd_io_read(io, GFP_NOIO))
1665                io->error = BLK_STS_RESOURCE;
1666        crypt_dec_pending(io);
1667}
1668
1669static void kcryptd_queue_read(struct dm_crypt_io *io)
1670{
1671        struct crypt_config *cc = io->cc;
1672
1673        INIT_WORK(&io->work, kcryptd_io_read_work);
1674        queue_work(cc->io_queue, &io->work);
1675}
1676
1677static void kcryptd_io_write(struct dm_crypt_io *io)
1678{
1679        struct bio *clone = io->ctx.bio_out;
1680
1681        generic_make_request(clone);
1682}
1683
1684#define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1685
1686static int dmcrypt_write(void *data)
1687{
1688        struct crypt_config *cc = data;
1689        struct dm_crypt_io *io;
1690
1691        while (1) {
1692                struct rb_root write_tree;
1693                struct blk_plug plug;
1694
1695                spin_lock_irq(&cc->write_thread_lock);
1696continue_locked:
1697
1698                if (!RB_EMPTY_ROOT(&cc->write_tree))
1699                        goto pop_from_list;
1700
1701                set_current_state(TASK_INTERRUPTIBLE);
1702
1703                spin_unlock_irq(&cc->write_thread_lock);
1704
1705                if (unlikely(kthread_should_stop())) {
1706                        set_current_state(TASK_RUNNING);
1707                        break;
1708                }
1709
1710                schedule();
1711
1712                set_current_state(TASK_RUNNING);
1713                spin_lock_irq(&cc->write_thread_lock);
1714                goto continue_locked;
1715
1716pop_from_list:
1717                write_tree = cc->write_tree;
1718                cc->write_tree = RB_ROOT;
1719                spin_unlock_irq(&cc->write_thread_lock);
1720
1721                BUG_ON(rb_parent(write_tree.rb_node));
1722
1723                /*
1724                 * Note: we cannot walk the tree here with rb_next because
1725                 * the structures may be freed when kcryptd_io_write is called.
1726                 */
1727                blk_start_plug(&plug);
1728                do {
1729                        io = crypt_io_from_node(rb_first(&write_tree));
1730                        rb_erase(&io->rb_node, &write_tree);
1731                        kcryptd_io_write(io);
1732                } while (!RB_EMPTY_ROOT(&write_tree));
1733                blk_finish_plug(&plug);
1734        }
1735        return 0;
1736}
1737
1738static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1739{
1740        struct bio *clone = io->ctx.bio_out;
1741        struct crypt_config *cc = io->cc;
1742        unsigned long flags;
1743        sector_t sector;
1744        struct rb_node **rbp, *parent;
1745
1746        if (unlikely(io->error)) {
1747                crypt_free_buffer_pages(cc, clone);
1748                bio_put(clone);
1749                crypt_dec_pending(io);
1750                return;
1751        }
1752
1753        /* crypt_convert should have filled the clone bio */
1754        BUG_ON(io->ctx.iter_out.bi_size);
1755
1756        clone->bi_iter.bi_sector = cc->start + io->sector;
1757
1758        if (likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) {
1759                generic_make_request(clone);
1760                return;
1761        }
1762
1763        spin_lock_irqsave(&cc->write_thread_lock, flags);
1764        if (RB_EMPTY_ROOT(&cc->write_tree))
1765                wake_up_process(cc->write_thread);
1766        rbp = &cc->write_tree.rb_node;
1767        parent = NULL;
1768        sector = io->sector;
1769        while (*rbp) {
1770                parent = *rbp;
1771                if (sector < crypt_io_from_node(parent)->sector)
1772                        rbp = &(*rbp)->rb_left;
1773                else
1774                        rbp = &(*rbp)->rb_right;
1775        }
1776        rb_link_node(&io->rb_node, parent, rbp);
1777        rb_insert_color(&io->rb_node, &cc->write_tree);
1778        spin_unlock_irqrestore(&cc->write_thread_lock, flags);
1779}
1780
1781static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1782{
1783        struct crypt_config *cc = io->cc;
1784        struct bio *clone;
1785        int crypt_finished;
1786        sector_t sector = io->sector;
1787        blk_status_t r;
1788
1789        /*
1790         * Prevent io from disappearing until this function completes.
1791         */
1792        crypt_inc_pending(io);
1793        crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1794
1795        clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1796        if (unlikely(!clone)) {
1797                io->error = BLK_STS_IOERR;
1798                goto dec;
1799        }
1800
1801        io->ctx.bio_out = clone;
1802        io->ctx.iter_out = clone->bi_iter;
1803
1804        sector += bio_sectors(clone);
1805
1806        crypt_inc_pending(io);
1807        r = crypt_convert(cc, &io->ctx);
1808        if (r)
1809                io->error = r;
1810        crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1811
1812        /* Encryption was already finished, submit io now */
1813        if (crypt_finished) {
1814                kcryptd_crypt_write_io_submit(io, 0);
1815                io->sector = sector;
1816        }
1817
1818dec:
1819        crypt_dec_pending(io);
1820}
1821
1822static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1823{
1824        crypt_dec_pending(io);
1825}
1826
1827static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1828{
1829        struct crypt_config *cc = io->cc;
1830        blk_status_t r;
1831
1832        crypt_inc_pending(io);
1833
1834        crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1835                           io->sector);
1836
1837        r = crypt_convert(cc, &io->ctx);
1838        if (r)
1839                io->error = r;
1840
1841        if (atomic_dec_and_test(&io->ctx.cc_pending))
1842                kcryptd_crypt_read_done(io);
1843
1844        crypt_dec_pending(io);
1845}
1846
1847static void kcryptd_async_done(struct crypto_async_request *async_req,
1848                               int error)
1849{
1850        struct dm_crypt_request *dmreq = async_req->data;
1851        struct convert_context *ctx = dmreq->ctx;
1852        struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1853        struct crypt_config *cc = io->cc;
1854
1855        /*
1856         * A request from crypto driver backlog is going to be processed now,
1857         * finish the completion and continue in crypt_convert().
1858         * (Callback will be called for the second time for this request.)
1859         */
1860        if (error == -EINPROGRESS) {
1861                complete(&ctx->restart);
1862                return;
1863        }
1864
1865        if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1866                error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
1867
1868        if (error == -EBADMSG) {
1869                char b[BDEVNAME_SIZE];
1870                DMERR_LIMIT("%s: INTEGRITY AEAD ERROR, sector %llu", bio_devname(ctx->bio_in, b),
1871                            (unsigned long long)le64_to_cpu(*org_sector_of_dmreq(cc, dmreq)));
1872                io->error = BLK_STS_PROTECTION;
1873        } else if (error < 0)
1874                io->error = BLK_STS_IOERR;
1875
1876        crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
1877
1878        if (!atomic_dec_and_test(&ctx->cc_pending))
1879                return;
1880
1881        if (bio_data_dir(io->base_bio) == READ)
1882                kcryptd_crypt_read_done(io);
1883        else
1884                kcryptd_crypt_write_io_submit(io, 1);
1885}
1886
1887static void kcryptd_crypt(struct work_struct *work)
1888{
1889        struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1890
1891        if (bio_data_dir(io->base_bio) == READ)
1892                kcryptd_crypt_read_convert(io);
1893        else
1894                kcryptd_crypt_write_convert(io);
1895}
1896
1897static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1898{
1899        struct crypt_config *cc = io->cc;
1900
1901        INIT_WORK(&io->work, kcryptd_crypt);
1902        queue_work(cc->crypt_queue, &io->work);
1903}
1904
1905static void crypt_free_tfms_aead(struct crypt_config *cc)
1906{
1907        if (!cc->cipher_tfm.tfms_aead)
1908                return;
1909
1910        if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
1911                crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
1912                cc->cipher_tfm.tfms_aead[0] = NULL;
1913        }
1914
1915        kfree(cc->cipher_tfm.tfms_aead);
1916        cc->cipher_tfm.tfms_aead = NULL;
1917}
1918
1919static void crypt_free_tfms_skcipher(struct crypt_config *cc)
1920{
1921        unsigned i;
1922
1923        if (!cc->cipher_tfm.tfms)
1924                return;
1925
1926        for (i = 0; i < cc->tfms_count; i++)
1927                if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
1928                        crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
1929                        cc->cipher_tfm.tfms[i] = NULL;
1930                }
1931
1932        kfree(cc->cipher_tfm.tfms);
1933        cc->cipher_tfm.tfms = NULL;
1934}
1935
1936static void crypt_free_tfms(struct crypt_config *cc)
1937{
1938        if (crypt_integrity_aead(cc))
1939                crypt_free_tfms_aead(cc);
1940        else
1941                crypt_free_tfms_skcipher(cc);
1942}
1943
1944static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
1945{
1946        unsigned i;
1947        int err;
1948
1949        cc->cipher_tfm.tfms = kcalloc(cc->tfms_count,
1950                                      sizeof(struct crypto_skcipher *),
1951                                      GFP_KERNEL);
1952        if (!cc->cipher_tfm.tfms)
1953                return -ENOMEM;
1954
1955        for (i = 0; i < cc->tfms_count; i++) {
1956                cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0, 0);
1957                if (IS_ERR(cc->cipher_tfm.tfms[i])) {
1958                        err = PTR_ERR(cc->cipher_tfm.tfms[i]);
1959                        crypt_free_tfms(cc);
1960                        return err;
1961                }
1962        }
1963
1964        /*
1965         * dm-crypt performance can vary greatly depending on which crypto
1966         * algorithm implementation is used.  Help people debug performance
1967         * problems by logging the ->cra_driver_name.
1968         */
1969        DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
1970               crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name);
1971        return 0;
1972}
1973
1974static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
1975{
1976        int err;
1977
1978        cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
1979        if (!cc->cipher_tfm.tfms)
1980                return -ENOMEM;
1981
1982        cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0, 0);
1983        if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
1984                err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
1985                crypt_free_tfms(cc);
1986                return err;
1987        }
1988
1989        DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
1990               crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name);
1991        return 0;
1992}
1993
1994static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1995{
1996        if (crypt_integrity_aead(cc))
1997                return crypt_alloc_tfms_aead(cc, ciphermode);
1998        else
1999                return crypt_alloc_tfms_skcipher(cc, ciphermode);
2000}
2001
2002static unsigned crypt_subkey_size(struct crypt_config *cc)
2003{
2004        return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
2005}
2006
2007static unsigned crypt_authenckey_size(struct crypt_config *cc)
2008{
2009        return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
2010}
2011
2012/*
2013 * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
2014 * the key must be for some reason in special format.
2015 * This funcion converts cc->key to this special format.
2016 */
2017static void crypt_copy_authenckey(char *p, const void *key,
2018                                  unsigned enckeylen, unsigned authkeylen)
2019{
2020        struct crypto_authenc_key_param *param;
2021        struct rtattr *rta;
2022
2023        rta = (struct rtattr *)p;
2024        param = RTA_DATA(rta);
2025        param->enckeylen = cpu_to_be32(enckeylen);
2026        rta->rta_len = RTA_LENGTH(sizeof(*param));
2027        rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
2028        p += RTA_SPACE(sizeof(*param));
2029        memcpy(p, key + enckeylen, authkeylen);
2030        p += authkeylen;
2031        memcpy(p, key, enckeylen);
2032}
2033
2034static int crypt_setkey(struct crypt_config *cc)
2035{
2036        unsigned subkey_size;
2037        int err = 0, i, r;
2038
2039        /* Ignore extra keys (which are used for IV etc) */
2040        subkey_size = crypt_subkey_size(cc);
2041
2042        if (crypt_integrity_hmac(cc)) {
2043                if (subkey_size < cc->key_mac_size)
2044                        return -EINVAL;
2045
2046                crypt_copy_authenckey(cc->authenc_key, cc->key,
2047                                      subkey_size - cc->key_mac_size,
2048                                      cc->key_mac_size);
2049        }
2050
2051        for (i = 0; i < cc->tfms_count; i++) {
2052                if (crypt_integrity_hmac(cc))
2053                        r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2054                                cc->authenc_key, crypt_authenckey_size(cc));
2055                else if (crypt_integrity_aead(cc))
2056                        r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2057                                               cc->key + (i * subkey_size),
2058                                               subkey_size);
2059                else
2060                        r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
2061                                                   cc->key + (i * subkey_size),
2062                                                   subkey_size);
2063                if (r)
2064                        err = r;
2065        }
2066
2067        if (crypt_integrity_hmac(cc))
2068                memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
2069
2070        return err;
2071}
2072
2073#ifdef CONFIG_KEYS
2074
2075static bool contains_whitespace(const char *str)
2076{
2077        while (*str)
2078                if (isspace(*str++))
2079                        return true;
2080        return false;
2081}
2082
2083static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2084{
2085        char *new_key_string, *key_desc;
2086        int ret;
2087        struct key *key;
2088        const struct user_key_payload *ukp;
2089
2090        /*
2091         * Reject key_string with whitespace. dm core currently lacks code for
2092         * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
2093         */
2094        if (contains_whitespace(key_string)) {
2095                DMERR("whitespace chars not allowed in key string");
2096                return -EINVAL;
2097        }
2098
2099        /* look for next ':' separating key_type from key_description */
2100        key_desc = strpbrk(key_string, ":");
2101        if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
2102                return -EINVAL;
2103
2104        if (strncmp(key_string, "logon:", key_desc - key_string + 1) &&
2105            strncmp(key_string, "user:", key_desc - key_string + 1))
2106                return -EINVAL;
2107
2108        new_key_string = kstrdup(key_string, GFP_KERNEL);
2109        if (!new_key_string)
2110                return -ENOMEM;
2111
2112        key = request_key(key_string[0] == 'l' ? &key_type_logon : &key_type_user,
2113                          key_desc + 1, NULL);
2114        if (IS_ERR(key)) {
2115                kzfree(new_key_string);
2116                return PTR_ERR(key);
2117        }
2118
2119        down_read(&key->sem);
2120
2121        ukp = user_key_payload_locked(key);
2122        if (!ukp) {
2123                up_read(&key->sem);
2124                key_put(key);
2125                kzfree(new_key_string);
2126                return -EKEYREVOKED;
2127        }
2128
2129        if (cc->key_size != ukp->datalen) {
2130                up_read(&key->sem);
2131                key_put(key);
2132                kzfree(new_key_string);
2133                return -EINVAL;
2134        }
2135
2136        memcpy(cc->key, ukp->data, cc->key_size);
2137
2138        up_read(&key->sem);
2139        key_put(key);
2140
2141        /* clear the flag since following operations may invalidate previously valid key */
2142        clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2143
2144        ret = crypt_setkey(cc);
2145
2146        if (!ret) {
2147                set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2148                kzfree(cc->key_string);
2149                cc->key_string = new_key_string;
2150        } else
2151                kzfree(new_key_string);
2152
2153        return ret;
2154}
2155
2156static int get_key_size(char **key_string)
2157{
2158        char *colon, dummy;
2159        int ret;
2160
2161        if (*key_string[0] != ':')
2162                return strlen(*key_string) >> 1;
2163
2164        /* look for next ':' in key string */
2165        colon = strpbrk(*key_string + 1, ":");
2166        if (!colon)
2167                return -EINVAL;
2168
2169        if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
2170                return -EINVAL;
2171
2172        *key_string = colon;
2173
2174        /* remaining key string should be :<logon|user>:<key_desc> */
2175
2176        return ret;
2177}
2178
2179#else
2180
2181static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2182{
2183        return -EINVAL;
2184}
2185
2186static int get_key_size(char **key_string)
2187{
2188        return (*key_string[0] == ':') ? -EINVAL : strlen(*key_string) >> 1;
2189}
2190
2191#endif
2192
2193static int crypt_set_key(struct crypt_config *cc, char *key)
2194{
2195        int r = -EINVAL;
2196        int key_string_len = strlen(key);
2197
2198        /* Hyphen (which gives a key_size of zero) means there is no key. */
2199        if (!cc->key_size && strcmp(key, "-"))
2200                goto out;
2201
2202        /* ':' means the key is in kernel keyring, short-circuit normal key processing */
2203        if (key[0] == ':') {
2204                r = crypt_set_keyring_key(cc, key + 1);
2205                goto out;
2206        }
2207
2208        /* clear the flag since following operations may invalidate previously valid key */
2209        clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2210
2211        /* wipe references to any kernel keyring key */
2212        kzfree(cc->key_string);
2213        cc->key_string = NULL;
2214
2215        /* Decode key from its hex representation. */
2216        if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
2217                goto out;
2218
2219        r = crypt_setkey(cc);
2220        if (!r)
2221                set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2222
2223out:
2224        /* Hex key string not needed after here, so wipe it. */
2225        memset(key, '0', key_string_len);
2226
2227        return r;
2228}
2229
2230static int crypt_wipe_key(struct crypt_config *cc)
2231{
2232        int r;
2233
2234        clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2235        get_random_bytes(&cc->key, cc->key_size);
2236
2237        /* Wipe IV private keys */
2238        if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2239                r = cc->iv_gen_ops->wipe(cc);
2240                if (r)
2241                        return r;
2242        }
2243
2244        kzfree(cc->key_string);
2245        cc->key_string = NULL;
2246        r = crypt_setkey(cc);
2247        memset(&cc->key, 0, cc->key_size * sizeof(u8));
2248
2249        return r;
2250}
2251
2252static void crypt_calculate_pages_per_client(void)
2253{
2254        unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100;
2255
2256        if (!dm_crypt_clients_n)
2257                return;
2258
2259        pages /= dm_crypt_clients_n;
2260        if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT)
2261                pages = DM_CRYPT_MIN_PAGES_PER_CLIENT;
2262        dm_crypt_pages_per_client = pages;
2263}
2264
2265static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data)
2266{
2267        struct crypt_config *cc = pool_data;
2268        struct page *page;
2269
2270        if (unlikely(percpu_counter_compare(&cc->n_allocated_pages, dm_crypt_pages_per_client) >= 0) &&
2271            likely(gfp_mask & __GFP_NORETRY))
2272                return NULL;
2273
2274        page = alloc_page(gfp_mask);
2275        if (likely(page != NULL))
2276                percpu_counter_add(&cc->n_allocated_pages, 1);
2277
2278        return page;
2279}
2280
2281static void crypt_page_free(void *page, void *pool_data)
2282{
2283        struct crypt_config *cc = pool_data;
2284
2285        __free_page(page);
2286        percpu_counter_sub(&cc->n_allocated_pages, 1);
2287}
2288
2289static void crypt_dtr(struct dm_target *ti)
2290{
2291        struct crypt_config *cc = ti->private;
2292
2293        ti->private = NULL;
2294
2295        if (!cc)
2296                return;
2297
2298        if (cc->write_thread)
2299                kthread_stop(cc->write_thread);
2300
2301        if (cc->io_queue)
2302                destroy_workqueue(cc->io_queue);
2303        if (cc->crypt_queue)
2304                destroy_workqueue(cc->crypt_queue);
2305
2306        crypt_free_tfms(cc);
2307
2308        bioset_exit(&cc->bs);
2309
2310        mempool_exit(&cc->page_pool);
2311        mempool_exit(&cc->req_pool);
2312        mempool_exit(&cc->tag_pool);
2313
2314        WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0);
2315        percpu_counter_destroy(&cc->n_allocated_pages);
2316
2317        if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2318                cc->iv_gen_ops->dtr(cc);
2319
2320        if (cc->dev)
2321                dm_put_device(ti, cc->dev);
2322
2323        kzfree(cc->cipher);
2324        kzfree(cc->cipher_string);
2325        kzfree(cc->key_string);
2326        kzfree(cc->cipher_auth);
2327        kzfree(cc->authenc_key);
2328
2329        mutex_destroy(&cc->bio_alloc_lock);
2330
2331        /* Must zero key material before freeing */
2332        kzfree(cc);
2333
2334        spin_lock(&dm_crypt_clients_lock);
2335        WARN_ON(!dm_crypt_clients_n);
2336        dm_crypt_clients_n--;
2337        crypt_calculate_pages_per_client();
2338        spin_unlock(&dm_crypt_clients_lock);
2339}
2340
2341static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
2342{
2343        struct crypt_config *cc = ti->private;
2344
2345        if (crypt_integrity_aead(cc))
2346                cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2347        else
2348                cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2349
2350        if (cc->iv_size)
2351                /* at least a 64 bit sector number should fit in our buffer */
2352                cc->iv_size = max(cc->iv_size,
2353                                  (unsigned int)(sizeof(u64) / sizeof(u8)));
2354        else if (ivmode) {
2355                DMWARN("Selected cipher does not support IVs");
2356                ivmode = NULL;
2357        }
2358
2359        /* Choose ivmode, see comments at iv code. */
2360        if (ivmode == NULL)
2361                cc->iv_gen_ops = NULL;
2362        else if (strcmp(ivmode, "plain") == 0)
2363                cc->iv_gen_ops = &crypt_iv_plain_ops;
2364        else if (strcmp(ivmode, "plain64") == 0)
2365                cc->iv_gen_ops = &crypt_iv_plain64_ops;
2366        else if (strcmp(ivmode, "plain64be") == 0)
2367                cc->iv_gen_ops = &crypt_iv_plain64be_ops;
2368        else if (strcmp(ivmode, "essiv") == 0)
2369                cc->iv_gen_ops = &crypt_iv_essiv_ops;
2370        else if (strcmp(ivmode, "benbi") == 0)
2371                cc->iv_gen_ops = &crypt_iv_benbi_ops;
2372        else if (strcmp(ivmode, "null") == 0)
2373                cc->iv_gen_ops = &crypt_iv_null_ops;
2374        else if (strcmp(ivmode, "eboiv") == 0)
2375                cc->iv_gen_ops = &crypt_iv_eboiv_ops;
2376        else if (strcmp(ivmode, "lmk") == 0) {
2377                cc->iv_gen_ops = &crypt_iv_lmk_ops;
2378                /*
2379                 * Version 2 and 3 is recognised according
2380                 * to length of provided multi-key string.
2381                 * If present (version 3), last key is used as IV seed.
2382                 * All keys (including IV seed) are always the same size.
2383                 */
2384                if (cc->key_size % cc->key_parts) {
2385                        cc->key_parts++;
2386                        cc->key_extra_size = cc->key_size / cc->key_parts;
2387                }
2388        } else if (strcmp(ivmode, "tcw") == 0) {
2389                cc->iv_gen_ops = &crypt_iv_tcw_ops;
2390                cc->key_parts += 2; /* IV + whitening */
2391                cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2392        } else if (strcmp(ivmode, "random") == 0) {
2393                cc->iv_gen_ops = &crypt_iv_random_ops;
2394                /* Need storage space in integrity fields. */
2395                cc->integrity_iv_size = cc->iv_size;
2396        } else {
2397                ti->error = "Invalid IV mode";
2398                return -EINVAL;
2399        }
2400
2401        return 0;
2402}
2403
2404/*
2405 * Workaround to parse cipher algorithm from crypto API spec.
2406 * The cc->cipher is currently used only in ESSIV.
2407 * This should be probably done by crypto-api calls (once available...)
2408 */
2409static int crypt_ctr_blkdev_cipher(struct crypt_config *cc)
2410{
2411        const char *alg_name = NULL;
2412        char *start, *end;
2413
2414        if (crypt_integrity_aead(cc)) {
2415                alg_name = crypto_tfm_alg_name(crypto_aead_tfm(any_tfm_aead(cc)));
2416                if (!alg_name)
2417                        return -EINVAL;
2418                if (crypt_integrity_hmac(cc)) {
2419                        alg_name = strchr(alg_name, ',');
2420                        if (!alg_name)
2421                                return -EINVAL;
2422                }
2423                alg_name++;
2424        } else {
2425                alg_name = crypto_tfm_alg_name(crypto_skcipher_tfm(any_tfm(cc)));
2426                if (!alg_name)
2427                        return -EINVAL;
2428        }
2429
2430        start = strchr(alg_name, '(');
2431        end = strchr(alg_name, ')');
2432
2433        if (!start && !end) {
2434                cc->cipher = kstrdup(alg_name, GFP_KERNEL);
2435                return cc->cipher ? 0 : -ENOMEM;
2436        }
2437
2438        if (!start || !end || ++start >= end)
2439                return -EINVAL;
2440
2441        cc->cipher = kzalloc(end - start + 1, GFP_KERNEL);
2442        if (!cc->cipher)
2443                return -ENOMEM;
2444
2445        strncpy(cc->cipher, start, end - start);
2446
2447        return 0;
2448}
2449
2450/*
2451 * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2452 * The HMAC is needed to calculate tag size (HMAC digest size).
2453 * This should be probably done by crypto-api calls (once available...)
2454 */
2455static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2456{
2457        char *start, *end, *mac_alg = NULL;
2458        struct crypto_ahash *mac;
2459
2460        if (!strstarts(cipher_api, "authenc("))
2461                return 0;
2462
2463        start = strchr(cipher_api, '(');
2464        end = strchr(cipher_api, ',');
2465        if (!start || !end || ++start > end)
2466                return -EINVAL;
2467
2468        mac_alg = kzalloc(end - start + 1, GFP_KERNEL);
2469        if (!mac_alg)
2470                return -ENOMEM;
2471        strncpy(mac_alg, start, end - start);
2472
2473        mac = crypto_alloc_ahash(mac_alg, 0, 0);
2474        kfree(mac_alg);
2475
2476        if (IS_ERR(mac))
2477                return PTR_ERR(mac);
2478
2479        cc->key_mac_size = crypto_ahash_digestsize(mac);
2480        crypto_free_ahash(mac);
2481
2482        cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
2483        if (!cc->authenc_key)
2484                return -ENOMEM;
2485
2486        return 0;
2487}
2488
2489static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2490                                char **ivmode, char **ivopts)
2491{
2492        struct crypt_config *cc = ti->private;
2493        char *tmp, *cipher_api;
2494        int ret = -EINVAL;
2495
2496        cc->tfms_count = 1;
2497
2498        /*
2499         * New format (capi: prefix)
2500         * capi:cipher_api_spec-iv:ivopts
2501         */
2502        tmp = &cipher_in[strlen("capi:")];
2503
2504        /* Separate IV options if present, it can contain another '-' in hash name */
2505        *ivopts = strrchr(tmp, ':');
2506        if (*ivopts) {
2507                **ivopts = '\0';
2508                (*ivopts)++;
2509        }
2510        /* Parse IV mode */
2511        *ivmode = strrchr(tmp, '-');
2512        if (*ivmode) {
2513                **ivmode = '\0';
2514                (*ivmode)++;
2515        }
2516        /* The rest is crypto API spec */
2517        cipher_api = tmp;
2518
2519        if (*ivmode && !strcmp(*ivmode, "lmk"))
2520                cc->tfms_count = 64;
2521
2522        cc->key_parts = cc->tfms_count;
2523
2524        /* Allocate cipher */
2525        ret = crypt_alloc_tfms(cc, cipher_api);
2526        if (ret < 0) {
2527                ti->error = "Error allocating crypto tfm";
2528                return ret;
2529        }
2530
2531        /* Alloc AEAD, can be used only in new format. */
2532        if (crypt_integrity_aead(cc)) {
2533                ret = crypt_ctr_auth_cipher(cc, cipher_api);
2534                if (ret < 0) {
2535                        ti->error = "Invalid AEAD cipher spec";
2536                        return -ENOMEM;
2537                }
2538                cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2539        } else
2540                cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2541
2542        ret = crypt_ctr_blkdev_cipher(cc);
2543        if (ret < 0) {
2544                ti->error = "Cannot allocate cipher string";
2545                return -ENOMEM;
2546        }
2547
2548        return 0;
2549}
2550
2551static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
2552                                char **ivmode, char **ivopts)
2553{
2554        struct crypt_config *cc = ti->private;
2555        char *tmp, *cipher, *chainmode, *keycount;
2556        char *cipher_api = NULL;
2557        int ret = -EINVAL;
2558        char dummy;
2559
2560        if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
2561                ti->error = "Bad cipher specification";
2562                return -EINVAL;
2563        }
2564
2565        /*
2566         * Legacy dm-crypt cipher specification
2567         * cipher[:keycount]-mode-iv:ivopts
2568         */
2569        tmp = cipher_in;
2570        keycount = strsep(&tmp, "-");
2571        cipher = strsep(&keycount, ":");
2572
2573        if (!keycount)
2574                cc->tfms_count = 1;
2575        else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
2576                 !is_power_of_2(cc->tfms_count)) {
2577                ti->error = "Bad cipher key count specification";
2578                return -EINVAL;
2579        }
2580        cc->key_parts = cc->tfms_count;
2581
2582        cc->cipher = kstrdup(cipher, GFP_KERNEL);
2583        if (!cc->cipher)
2584                goto bad_mem;
2585
2586        chainmode = strsep(&tmp, "-");
2587        *ivmode = strsep(&tmp, ":");
2588        *ivopts = tmp;
2589
2590        /*
2591         * For compatibility with the original dm-crypt mapping format, if
2592         * only the cipher name is supplied, use cbc-plain.
2593         */
2594        if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
2595                chainmode = "cbc";
2596                *ivmode = "plain";
2597        }
2598
2599        if (strcmp(chainmode, "ecb") && !*ivmode) {
2600                ti->error = "IV mechanism required";
2601                return -EINVAL;
2602        }
2603
2604        cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
2605        if (!cipher_api)
2606                goto bad_mem;
2607
2608        ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
2609                       "%s(%s)", chainmode, cipher);
2610        if (ret < 0) {
2611                kfree(cipher_api);
2612                goto bad_mem;
2613        }
2614
2615        /* Allocate cipher */
2616        ret = crypt_alloc_tfms(cc, cipher_api);
2617        if (ret < 0) {
2618                ti->error = "Error allocating crypto tfm";
2619                kfree(cipher_api);
2620                return ret;
2621        }
2622        kfree(cipher_api);
2623
2624        return 0;
2625bad_mem:
2626        ti->error = "Cannot allocate cipher strings";
2627        return -ENOMEM;
2628}
2629
2630static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
2631{
2632        struct crypt_config *cc = ti->private;
2633        char *ivmode = NULL, *ivopts = NULL;
2634        int ret;
2635
2636        cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
2637        if (!cc->cipher_string) {
2638                ti->error = "Cannot allocate cipher strings";
2639                return -ENOMEM;
2640        }
2641
2642        if (strstarts(cipher_in, "capi:"))
2643                ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
2644        else
2645                ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
2646        if (ret)
2647                return ret;
2648
2649        /* Initialize IV */
2650        ret = crypt_ctr_ivmode(ti, ivmode);
2651        if (ret < 0)
2652                return ret;
2653
2654        /* Initialize and set key */
2655        ret = crypt_set_key(cc, key);
2656        if (ret < 0) {
2657                ti->error = "Error decoding and setting key";
2658                return ret;
2659        }
2660
2661        /* Allocate IV */
2662        if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
2663                ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
2664                if (ret < 0) {
2665                        ti->error = "Error creating IV";
2666                        return ret;
2667                }
2668        }
2669
2670        /* Initialize IV (set keys for ESSIV etc) */
2671        if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
2672                ret = cc->iv_gen_ops->init(cc);
2673                if (ret < 0) {
2674                        ti->error = "Error initialising IV";
2675                        return ret;
2676                }
2677        }
2678
2679        /* wipe the kernel key payload copy */
2680        if (cc->key_string)
2681                memset(cc->key, 0, cc->key_size * sizeof(u8));
2682
2683        return ret;
2684}
2685
2686static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
2687{
2688        struct crypt_config *cc = ti->private;
2689        struct dm_arg_set as;
2690        static const struct dm_arg _args[] = {
2691                {0, 6, "Invalid number of feature args"},
2692        };
2693        unsigned int opt_params, val;
2694        const char *opt_string, *sval;
2695        char dummy;
2696        int ret;
2697
2698        /* Optional parameters */
2699        as.argc = argc;
2700        as.argv = argv;
2701
2702        ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
2703        if (ret)
2704                return ret;
2705
2706        while (opt_params--) {
2707                opt_string = dm_shift_arg(&as);
2708                if (!opt_string) {
2709                        ti->error = "Not enough feature arguments";
2710                        return -EINVAL;
2711                }
2712
2713                if (!strcasecmp(opt_string, "allow_discards"))
2714                        ti->num_discard_bios = 1;
2715
2716                else if (!strcasecmp(opt_string, "same_cpu_crypt"))
2717                        set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
2718
2719                else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
2720                        set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
2721                else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
2722                        if (val == 0 || val > MAX_TAG_SIZE) {
2723                                ti->error = "Invalid integrity arguments";
2724                                return -EINVAL;
2725                        }
2726                        cc->on_disk_tag_size = val;
2727                        sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
2728                        if (!strcasecmp(sval, "aead")) {
2729                                set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
2730                        } else  if (strcasecmp(sval, "none")) {
2731                                ti->error = "Unknown integrity profile";
2732                                return -EINVAL;
2733                        }
2734
2735                        cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
2736                        if (!cc->cipher_auth)
2737                                return -ENOMEM;
2738                } else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
2739                        if (cc->sector_size < (1 << SECTOR_SHIFT) ||
2740                            cc->sector_size > 4096 ||
2741                            (cc->sector_size & (cc->sector_size - 1))) {
2742                                ti->error = "Invalid feature value for sector_size";
2743                                return -EINVAL;
2744                        }
2745                        if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) {
2746                                ti->error = "Device size is not multiple of sector_size feature";
2747                                return -EINVAL;
2748                        }
2749                        cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
2750                } else if (!strcasecmp(opt_string, "iv_large_sectors"))
2751                        set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
2752                else {
2753                        ti->error = "Invalid feature arguments";
2754                        return -EINVAL;
2755                }
2756        }
2757
2758        return 0;
2759}
2760
2761/*
2762 * Construct an encryption mapping:
2763 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
2764 */
2765static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2766{
2767        struct crypt_config *cc;
2768        const char *devname = dm_table_device_name(ti->table);
2769        int key_size;
2770        unsigned int align_mask;
2771        unsigned long long tmpll;
2772        int ret;
2773        size_t iv_size_padding, additional_req_size;
2774        char dummy;
2775
2776        if (argc < 5) {
2777                ti->error = "Not enough arguments";
2778                return -EINVAL;
2779        }
2780
2781        key_size = get_key_size(&argv[1]);
2782        if (key_size < 0) {
2783                ti->error = "Cannot parse key size";
2784                return -EINVAL;
2785        }
2786
2787        cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL);
2788        if (!cc) {
2789                ti->error = "Cannot allocate encryption context";
2790                return -ENOMEM;
2791        }
2792        cc->key_size = key_size;
2793        cc->sector_size = (1 << SECTOR_SHIFT);
2794        cc->sector_shift = 0;
2795
2796        ti->private = cc;
2797
2798        spin_lock(&dm_crypt_clients_lock);
2799        dm_crypt_clients_n++;
2800        crypt_calculate_pages_per_client();
2801        spin_unlock(&dm_crypt_clients_lock);
2802
2803        ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL);
2804        if (ret < 0)
2805                goto bad;
2806
2807        /* Optional parameters need to be read before cipher constructor */
2808        if (argc > 5) {
2809                ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
2810                if (ret)
2811                        goto bad;
2812        }
2813
2814        ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
2815        if (ret < 0)
2816                goto bad;
2817
2818        if (crypt_integrity_aead(cc)) {
2819                cc->dmreq_start = sizeof(struct aead_request);
2820                cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
2821                align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
2822        } else {
2823                cc->dmreq_start = sizeof(struct skcipher_request);
2824                cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
2825                align_mask = crypto_skcipher_alignmask(any_tfm(cc));
2826        }
2827        cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
2828
2829        if (align_mask < CRYPTO_MINALIGN) {
2830                /* Allocate the padding exactly */
2831                iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
2832                                & align_mask;
2833        } else {
2834                /*
2835                 * If the cipher requires greater alignment than kmalloc
2836                 * alignment, we don't know the exact position of the
2837                 * initialization vector. We must assume worst case.
2838                 */
2839                iv_size_padding = align_mask;
2840        }
2841
2842        /*  ...| IV + padding | original IV | original sec. number | bio tag offset | */
2843        additional_req_size = sizeof(struct dm_crypt_request) +
2844                iv_size_padding + cc->iv_size +
2845                cc->iv_size +
2846                sizeof(uint64_t) +
2847                sizeof(unsigned int);
2848
2849        ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size);
2850        if (ret) {
2851                ti->error = "Cannot allocate crypt request mempool";
2852                goto bad;
2853        }
2854
2855        cc->per_bio_data_size = ti->per_io_data_size =
2856                ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
2857                      ARCH_KMALLOC_MINALIGN);
2858
2859        ret = mempool_init(&cc->page_pool, BIO_MAX_PAGES, crypt_page_alloc, crypt_page_free, cc);
2860        if (ret) {
2861                ti->error = "Cannot allocate page mempool";
2862                goto bad;
2863        }
2864
2865        ret = bioset_init(&cc->bs, MIN_IOS, 0, BIOSET_NEED_BVECS);
2866        if (ret) {
2867                ti->error = "Cannot allocate crypt bioset";
2868                goto bad;
2869        }
2870
2871        mutex_init(&cc->bio_alloc_lock);
2872
2873        ret = -EINVAL;
2874        if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
2875            (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
2876                ti->error = "Invalid iv_offset sector";
2877                goto bad;
2878        }
2879        cc->iv_offset = tmpll;
2880
2881        ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
2882        if (ret) {
2883                ti->error = "Device lookup failed";
2884                goto bad;
2885        }
2886
2887        ret = -EINVAL;
2888        if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
2889                ti->error = "Invalid device sector";
2890                goto bad;
2891        }
2892        cc->start = tmpll;
2893
2894        if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
2895                ret = crypt_integrity_ctr(cc, ti);
2896                if (ret)
2897                        goto bad;
2898
2899                cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->on_disk_tag_size;
2900                if (!cc->tag_pool_max_sectors)
2901                        cc->tag_pool_max_sectors = 1;
2902
2903                ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS,
2904                        cc->tag_pool_max_sectors * cc->on_disk_tag_size);
2905                if (ret) {
2906                        ti->error = "Cannot allocate integrity tags mempool";
2907                        goto bad;
2908                }
2909
2910                cc->tag_pool_max_sectors <<= cc->sector_shift;
2911        }
2912
2913        ret = -ENOMEM;
2914        cc->io_queue = alloc_workqueue("kcryptd_io/%s",
2915                                       WQ_HIGHPRI | WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM,
2916                                       1, devname);
2917        if (!cc->io_queue) {
2918                ti->error = "Couldn't create kcryptd io queue";
2919                goto bad;
2920        }
2921
2922        if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
2923                cc->crypt_queue = alloc_workqueue("kcryptd/%s",
2924                                                  WQ_HIGHPRI | WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM,
2925                                                  1, devname);
2926        else
2927                cc->crypt_queue = alloc_workqueue("kcryptd/%s",
2928                                                  WQ_HIGHPRI | WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
2929                                                  num_online_cpus(), devname);
2930        if (!cc->crypt_queue) {
2931                ti->error = "Couldn't create kcryptd queue";
2932                goto bad;
2933        }
2934
2935        spin_lock_init(&cc->write_thread_lock);
2936        cc->write_tree = RB_ROOT;
2937
2938        cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write/%s", devname);
2939        if (IS_ERR(cc->write_thread)) {
2940                ret = PTR_ERR(cc->write_thread);
2941                cc->write_thread = NULL;
2942                ti->error = "Couldn't spawn write thread";
2943                goto bad;
2944        }
2945        wake_up_process(cc->write_thread);
2946
2947        ti->num_flush_bios = 1;
2948
2949        return 0;
2950
2951bad:
2952        crypt_dtr(ti);
2953        return ret;
2954}
2955
2956static int crypt_map(struct dm_target *ti, struct bio *bio)
2957{
2958        struct dm_crypt_io *io;
2959        struct crypt_config *cc = ti->private;
2960
2961        /*
2962         * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
2963         * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
2964         * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
2965         */
2966        if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
2967            bio_op(bio) == REQ_OP_DISCARD)) {
2968                bio_set_dev(bio, cc->dev->bdev);
2969                if (bio_sectors(bio))
2970                        bio->bi_iter.bi_sector = cc->start +
2971                                dm_target_offset(ti, bio->bi_iter.bi_sector);
2972                return DM_MAPIO_REMAPPED;
2973        }
2974
2975        /*
2976         * Check if bio is too large, split as needed.
2977         */
2978        if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_PAGES << PAGE_SHIFT)) &&
2979            (bio_data_dir(bio) == WRITE || cc->on_disk_tag_size))
2980                dm_accept_partial_bio(bio, ((BIO_MAX_PAGES << PAGE_SHIFT) >> SECTOR_SHIFT));
2981
2982        /*
2983         * Ensure that bio is a multiple of internal sector encryption size
2984         * and is aligned to this size as defined in IO hints.
2985         */
2986        if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
2987                return DM_MAPIO_KILL;
2988
2989        if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
2990                return DM_MAPIO_KILL;
2991
2992        io = dm_per_bio_data(bio, cc->per_bio_data_size);
2993        crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
2994
2995        if (cc->on_disk_tag_size) {
2996                unsigned tag_len = cc->on_disk_tag_size * (bio_sectors(bio) >> cc->sector_shift);
2997
2998                if (unlikely(tag_len > KMALLOC_MAX_SIZE) ||
2999                    unlikely(!(io->integrity_metadata = kmalloc(tag_len,
3000                                GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
3001                        if (bio_sectors(bio) > cc->tag_pool_max_sectors)
3002                                dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
3003                        io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO);
3004                        io->integrity_metadata_from_pool = true;
3005                }
3006        }
3007
3008        if (crypt_integrity_aead(cc))
3009                io->ctx.r.req_aead = (struct aead_request *)(io + 1);
3010        else
3011                io->ctx.r.req = (struct skcipher_request *)(io + 1);
3012
3013        if (bio_data_dir(io->base_bio) == READ) {
3014                if (kcryptd_io_read(io, GFP_NOWAIT))
3015                        kcryptd_queue_read(io);
3016        } else
3017                kcryptd_queue_crypt(io);
3018
3019        return DM_MAPIO_SUBMITTED;
3020}
3021
3022static void crypt_status(struct dm_target *ti, status_type_t type,
3023                         unsigned status_flags, char *result, unsigned maxlen)
3024{
3025        struct crypt_config *cc = ti->private;
3026        unsigned i, sz = 0;
3027        int num_feature_args = 0;
3028
3029        switch (type) {
3030        case STATUSTYPE_INFO:
3031                result[0] = '\0';
3032                break;
3033
3034        case STATUSTYPE_TABLE:
3035                DMEMIT("%s ", cc->cipher_string);
3036
3037                if (cc->key_size > 0) {
3038                        if (cc->key_string)
3039                                DMEMIT(":%u:%s", cc->key_size, cc->key_string);
3040                        else
3041                                for (i = 0; i < cc->key_size; i++)
3042                                        DMEMIT("%02x", cc->key[i]);
3043                } else
3044                        DMEMIT("-");
3045
3046                DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
3047                                cc->dev->name, (unsigned long long)cc->start);
3048
3049                num_feature_args += !!ti->num_discard_bios;
3050                num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3051                num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3052                num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
3053                num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3054                if (cc->on_disk_tag_size)
3055                        num_feature_args++;
3056                if (num_feature_args) {
3057                        DMEMIT(" %d", num_feature_args);
3058                        if (ti->num_discard_bios)
3059                                DMEMIT(" allow_discards");
3060                        if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3061                                DMEMIT(" same_cpu_crypt");
3062                        if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
3063                                DMEMIT(" submit_from_crypt_cpus");
3064                        if (cc->on_disk_tag_size)
3065                                DMEMIT(" integrity:%u:%s", cc->on_disk_tag_size, cc->cipher_auth);
3066                        if (cc->sector_size != (1 << SECTOR_SHIFT))
3067                                DMEMIT(" sector_size:%d", cc->sector_size);
3068                        if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
3069                                DMEMIT(" iv_large_sectors");
3070                }
3071
3072                break;
3073        }
3074}
3075
3076static void crypt_postsuspend(struct dm_target *ti)
3077{
3078        struct crypt_config *cc = ti->private;
3079
3080        set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3081}
3082
3083static int crypt_preresume(struct dm_target *ti)
3084{
3085        struct crypt_config *cc = ti->private;
3086
3087        if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
3088                DMERR("aborting resume - crypt key is not set.");
3089                return -EAGAIN;
3090        }
3091
3092        return 0;
3093}
3094
3095static void crypt_resume(struct dm_target *ti)
3096{
3097        struct crypt_config *cc = ti->private;
3098
3099        clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3100}
3101
3102/* Message interface
3103 *      key set <key>
3104 *      key wipe
3105 */
3106static int crypt_message(struct dm_target *ti, unsigned argc, char **argv,
3107                         char *result, unsigned maxlen)
3108{
3109        struct crypt_config *cc = ti->private;
3110        int key_size, ret = -EINVAL;
3111
3112        if (argc < 2)
3113                goto error;
3114
3115        if (!strcasecmp(argv[0], "key")) {
3116                if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
3117                        DMWARN("not suspended during key manipulation.");
3118                        return -EINVAL;
3119                }
3120                if (argc == 3 && !strcasecmp(argv[1], "set")) {
3121                        /* The key size may not be changed. */
3122                        key_size = get_key_size(&argv[2]);
3123                        if (key_size < 0 || cc->key_size != key_size) {
3124                                memset(argv[2], '0', strlen(argv[2]));
3125                                return -EINVAL;
3126                        }
3127
3128                        ret = crypt_set_key(cc, argv[2]);
3129                        if (ret)
3130                                return ret;
3131                        if (cc->iv_gen_ops && cc->iv_gen_ops->init)
3132                                ret = cc->iv_gen_ops->init(cc);
3133                        /* wipe the kernel key payload copy */
3134                        if (cc->key_string)
3135                                memset(cc->key, 0, cc->key_size * sizeof(u8));
3136                        return ret;
3137                }
3138                if (argc == 2 && !strcasecmp(argv[1], "wipe"))
3139                        return crypt_wipe_key(cc);
3140        }
3141
3142error:
3143        DMWARN("unrecognised message received.");
3144        return -EINVAL;
3145}
3146
3147static int crypt_iterate_devices(struct dm_target *ti,
3148                                 iterate_devices_callout_fn fn, void *data)
3149{
3150        struct crypt_config *cc = ti->private;
3151
3152        return fn(ti, cc->dev, cc->start, ti->len, data);
3153}
3154
3155static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
3156{
3157        struct crypt_config *cc = ti->private;
3158
3159        /*
3160         * Unfortunate constraint that is required to avoid the potential
3161         * for exceeding underlying device's max_segments limits -- due to
3162         * crypt_alloc_buffer() possibly allocating pages for the encryption
3163         * bio that are not as physically contiguous as the original bio.
3164         */
3165        limits->max_segment_size = PAGE_SIZE;
3166
3167        limits->logical_block_size =
3168                max_t(unsigned short, limits->logical_block_size, cc->sector_size);
3169        limits->physical_block_size =
3170                max_t(unsigned, limits->physical_block_size, cc->sector_size);
3171        limits->io_min = max_t(unsigned, limits->io_min, cc->sector_size);
3172}
3173
3174static struct target_type crypt_target = {
3175        .name   = "crypt",
3176        .version = {1, 19, 0},
3177        .module = THIS_MODULE,
3178        .ctr    = crypt_ctr,
3179        .dtr    = crypt_dtr,
3180        .map    = crypt_map,
3181        .status = crypt_status,
3182        .postsuspend = crypt_postsuspend,
3183        .preresume = crypt_preresume,
3184        .resume = crypt_resume,
3185        .message = crypt_message,
3186        .iterate_devices = crypt_iterate_devices,
3187        .io_hints = crypt_io_hints,
3188};
3189
3190static int __init dm_crypt_init(void)
3191{
3192        int r;
3193
3194        r = dm_register_target(&crypt_target);
3195        if (r < 0)
3196                DMERR("register failed %d", r);
3197
3198        return r;
3199}
3200
3201static void __exit dm_crypt_exit(void)
3202{
3203        dm_unregister_target(&crypt_target);
3204}
3205
3206module_init(dm_crypt_init);
3207module_exit(dm_crypt_exit);
3208
3209MODULE_AUTHOR("Jana Saout <jana@saout.de>");
3210MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3211MODULE_LICENSE("GPL");
3212