linux/drivers/md/dm-table.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2001 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm-core.h"
   9
  10#include <linux/module.h>
  11#include <linux/vmalloc.h>
  12#include <linux/blkdev.h>
  13#include <linux/namei.h>
  14#include <linux/ctype.h>
  15#include <linux/string.h>
  16#include <linux/slab.h>
  17#include <linux/interrupt.h>
  18#include <linux/mutex.h>
  19#include <linux/delay.h>
  20#include <linux/atomic.h>
  21#include <linux/blk-mq.h>
  22#include <linux/mount.h>
  23#include <linux/dax.h>
  24
  25#define DM_MSG_PREFIX "table"
  26
  27#define MAX_DEPTH 16
  28#define NODE_SIZE L1_CACHE_BYTES
  29#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
  30#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
  31
  32struct dm_table {
  33        struct mapped_device *md;
  34        enum dm_queue_mode type;
  35
  36        /* btree table */
  37        unsigned int depth;
  38        unsigned int counts[MAX_DEPTH]; /* in nodes */
  39        sector_t *index[MAX_DEPTH];
  40
  41        unsigned int num_targets;
  42        unsigned int num_allocated;
  43        sector_t *highs;
  44        struct dm_target *targets;
  45
  46        struct target_type *immutable_target_type;
  47
  48        bool integrity_supported:1;
  49        bool singleton:1;
  50        unsigned integrity_added:1;
  51
  52        /*
  53         * Indicates the rw permissions for the new logical
  54         * device.  This should be a combination of FMODE_READ
  55         * and FMODE_WRITE.
  56         */
  57        fmode_t mode;
  58
  59        /* a list of devices used by this table */
  60        struct list_head devices;
  61
  62        /* events get handed up using this callback */
  63        void (*event_fn)(void *);
  64        void *event_context;
  65
  66        struct dm_md_mempools *mempools;
  67
  68        struct list_head target_callbacks;
  69};
  70
  71/*
  72 * Similar to ceiling(log_size(n))
  73 */
  74static unsigned int int_log(unsigned int n, unsigned int base)
  75{
  76        int result = 0;
  77
  78        while (n > 1) {
  79                n = dm_div_up(n, base);
  80                result++;
  81        }
  82
  83        return result;
  84}
  85
  86/*
  87 * Calculate the index of the child node of the n'th node k'th key.
  88 */
  89static inline unsigned int get_child(unsigned int n, unsigned int k)
  90{
  91        return (n * CHILDREN_PER_NODE) + k;
  92}
  93
  94/*
  95 * Return the n'th node of level l from table t.
  96 */
  97static inline sector_t *get_node(struct dm_table *t,
  98                                 unsigned int l, unsigned int n)
  99{
 100        return t->index[l] + (n * KEYS_PER_NODE);
 101}
 102
 103/*
 104 * Return the highest key that you could lookup from the n'th
 105 * node on level l of the btree.
 106 */
 107static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
 108{
 109        for (; l < t->depth - 1; l++)
 110                n = get_child(n, CHILDREN_PER_NODE - 1);
 111
 112        if (n >= t->counts[l])
 113                return (sector_t) - 1;
 114
 115        return get_node(t, l, n)[KEYS_PER_NODE - 1];
 116}
 117
 118/*
 119 * Fills in a level of the btree based on the highs of the level
 120 * below it.
 121 */
 122static int setup_btree_index(unsigned int l, struct dm_table *t)
 123{
 124        unsigned int n, k;
 125        sector_t *node;
 126
 127        for (n = 0U; n < t->counts[l]; n++) {
 128                node = get_node(t, l, n);
 129
 130                for (k = 0U; k < KEYS_PER_NODE; k++)
 131                        node[k] = high(t, l + 1, get_child(n, k));
 132        }
 133
 134        return 0;
 135}
 136
 137void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
 138{
 139        unsigned long size;
 140        void *addr;
 141
 142        /*
 143         * Check that we're not going to overflow.
 144         */
 145        if (nmemb > (ULONG_MAX / elem_size))
 146                return NULL;
 147
 148        size = nmemb * elem_size;
 149        addr = vzalloc(size);
 150
 151        return addr;
 152}
 153EXPORT_SYMBOL(dm_vcalloc);
 154
 155/*
 156 * highs, and targets are managed as dynamic arrays during a
 157 * table load.
 158 */
 159static int alloc_targets(struct dm_table *t, unsigned int num)
 160{
 161        sector_t *n_highs;
 162        struct dm_target *n_targets;
 163
 164        /*
 165         * Allocate both the target array and offset array at once.
 166         * Append an empty entry to catch sectors beyond the end of
 167         * the device.
 168         */
 169        n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
 170                                          sizeof(sector_t));
 171        if (!n_highs)
 172                return -ENOMEM;
 173
 174        n_targets = (struct dm_target *) (n_highs + num);
 175
 176        memset(n_highs, -1, sizeof(*n_highs) * num);
 177        vfree(t->highs);
 178
 179        t->num_allocated = num;
 180        t->highs = n_highs;
 181        t->targets = n_targets;
 182
 183        return 0;
 184}
 185
 186int dm_table_create(struct dm_table **result, fmode_t mode,
 187                    unsigned num_targets, struct mapped_device *md)
 188{
 189        struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
 190
 191        if (!t)
 192                return -ENOMEM;
 193
 194        INIT_LIST_HEAD(&t->devices);
 195        INIT_LIST_HEAD(&t->target_callbacks);
 196
 197        if (!num_targets)
 198                num_targets = KEYS_PER_NODE;
 199
 200        num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
 201
 202        if (!num_targets) {
 203                kfree(t);
 204                return -ENOMEM;
 205        }
 206
 207        if (alloc_targets(t, num_targets)) {
 208                kfree(t);
 209                return -ENOMEM;
 210        }
 211
 212        t->type = DM_TYPE_NONE;
 213        t->mode = mode;
 214        t->md = md;
 215        *result = t;
 216        return 0;
 217}
 218
 219static void free_devices(struct list_head *devices, struct mapped_device *md)
 220{
 221        struct list_head *tmp, *next;
 222
 223        list_for_each_safe(tmp, next, devices) {
 224                struct dm_dev_internal *dd =
 225                    list_entry(tmp, struct dm_dev_internal, list);
 226                DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
 227                       dm_device_name(md), dd->dm_dev->name);
 228                dm_put_table_device(md, dd->dm_dev);
 229                kfree(dd);
 230        }
 231}
 232
 233void dm_table_destroy(struct dm_table *t)
 234{
 235        unsigned int i;
 236
 237        if (!t)
 238                return;
 239
 240        /* free the indexes */
 241        if (t->depth >= 2)
 242                vfree(t->index[t->depth - 2]);
 243
 244        /* free the targets */
 245        for (i = 0; i < t->num_targets; i++) {
 246                struct dm_target *tgt = t->targets + i;
 247
 248                if (tgt->type->dtr)
 249                        tgt->type->dtr(tgt);
 250
 251                dm_put_target_type(tgt->type);
 252        }
 253
 254        vfree(t->highs);
 255
 256        /* free the device list */
 257        free_devices(&t->devices, t->md);
 258
 259        dm_free_md_mempools(t->mempools);
 260
 261        kfree(t);
 262}
 263
 264/*
 265 * See if we've already got a device in the list.
 266 */
 267static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
 268{
 269        struct dm_dev_internal *dd;
 270
 271        list_for_each_entry (dd, l, list)
 272                if (dd->dm_dev->bdev->bd_dev == dev)
 273                        return dd;
 274
 275        return NULL;
 276}
 277
 278/*
 279 * If possible, this checks an area of a destination device is invalid.
 280 */
 281static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
 282                                  sector_t start, sector_t len, void *data)
 283{
 284        struct request_queue *q;
 285        struct queue_limits *limits = data;
 286        struct block_device *bdev = dev->bdev;
 287        sector_t dev_size =
 288                i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
 289        unsigned short logical_block_size_sectors =
 290                limits->logical_block_size >> SECTOR_SHIFT;
 291        char b[BDEVNAME_SIZE];
 292
 293        /*
 294         * Some devices exist without request functions,
 295         * such as loop devices not yet bound to backing files.
 296         * Forbid the use of such devices.
 297         */
 298        q = bdev_get_queue(bdev);
 299        if (!q || !q->make_request_fn) {
 300                DMWARN("%s: %s is not yet initialised: "
 301                       "start=%llu, len=%llu, dev_size=%llu",
 302                       dm_device_name(ti->table->md), bdevname(bdev, b),
 303                       (unsigned long long)start,
 304                       (unsigned long long)len,
 305                       (unsigned long long)dev_size);
 306                return 1;
 307        }
 308
 309        if (!dev_size)
 310                return 0;
 311
 312        if ((start >= dev_size) || (start + len > dev_size)) {
 313                DMWARN("%s: %s too small for target: "
 314                       "start=%llu, len=%llu, dev_size=%llu",
 315                       dm_device_name(ti->table->md), bdevname(bdev, b),
 316                       (unsigned long long)start,
 317                       (unsigned long long)len,
 318                       (unsigned long long)dev_size);
 319                return 1;
 320        }
 321
 322        /*
 323         * If the target is mapped to zoned block device(s), check
 324         * that the zones are not partially mapped.
 325         */
 326        if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
 327                unsigned int zone_sectors = bdev_zone_sectors(bdev);
 328
 329                if (start & (zone_sectors - 1)) {
 330                        DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
 331                               dm_device_name(ti->table->md),
 332                               (unsigned long long)start,
 333                               zone_sectors, bdevname(bdev, b));
 334                        return 1;
 335                }
 336
 337                /*
 338                 * Note: The last zone of a zoned block device may be smaller
 339                 * than other zones. So for a target mapping the end of a
 340                 * zoned block device with such a zone, len would not be zone
 341                 * aligned. We do not allow such last smaller zone to be part
 342                 * of the mapping here to ensure that mappings with multiple
 343                 * devices do not end up with a smaller zone in the middle of
 344                 * the sector range.
 345                 */
 346                if (len & (zone_sectors - 1)) {
 347                        DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
 348                               dm_device_name(ti->table->md),
 349                               (unsigned long long)len,
 350                               zone_sectors, bdevname(bdev, b));
 351                        return 1;
 352                }
 353        }
 354
 355        if (logical_block_size_sectors <= 1)
 356                return 0;
 357
 358        if (start & (logical_block_size_sectors - 1)) {
 359                DMWARN("%s: start=%llu not aligned to h/w "
 360                       "logical block size %u of %s",
 361                       dm_device_name(ti->table->md),
 362                       (unsigned long long)start,
 363                       limits->logical_block_size, bdevname(bdev, b));
 364                return 1;
 365        }
 366
 367        if (len & (logical_block_size_sectors - 1)) {
 368                DMWARN("%s: len=%llu not aligned to h/w "
 369                       "logical block size %u of %s",
 370                       dm_device_name(ti->table->md),
 371                       (unsigned long long)len,
 372                       limits->logical_block_size, bdevname(bdev, b));
 373                return 1;
 374        }
 375
 376        return 0;
 377}
 378
 379/*
 380 * This upgrades the mode on an already open dm_dev, being
 381 * careful to leave things as they were if we fail to reopen the
 382 * device and not to touch the existing bdev field in case
 383 * it is accessed concurrently inside dm_table_any_congested().
 384 */
 385static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
 386                        struct mapped_device *md)
 387{
 388        int r;
 389        struct dm_dev *old_dev, *new_dev;
 390
 391        old_dev = dd->dm_dev;
 392
 393        r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
 394                                dd->dm_dev->mode | new_mode, &new_dev);
 395        if (r)
 396                return r;
 397
 398        dd->dm_dev = new_dev;
 399        dm_put_table_device(md, old_dev);
 400
 401        return 0;
 402}
 403
 404/*
 405 * Convert the path to a device
 406 */
 407dev_t dm_get_dev_t(const char *path)
 408{
 409        dev_t dev;
 410        struct block_device *bdev;
 411
 412        bdev = lookup_bdev(path);
 413        if (IS_ERR(bdev))
 414                dev = name_to_dev_t(path);
 415        else {
 416                dev = bdev->bd_dev;
 417                bdput(bdev);
 418        }
 419
 420        return dev;
 421}
 422EXPORT_SYMBOL_GPL(dm_get_dev_t);
 423
 424/*
 425 * Add a device to the list, or just increment the usage count if
 426 * it's already present.
 427 */
 428int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
 429                  struct dm_dev **result)
 430{
 431        int r;
 432        dev_t dev;
 433        struct dm_dev_internal *dd;
 434        struct dm_table *t = ti->table;
 435
 436        BUG_ON(!t);
 437
 438        dev = dm_get_dev_t(path);
 439        if (!dev)
 440                return -ENODEV;
 441
 442        dd = find_device(&t->devices, dev);
 443        if (!dd) {
 444                dd = kmalloc(sizeof(*dd), GFP_KERNEL);
 445                if (!dd)
 446                        return -ENOMEM;
 447
 448                if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
 449                        kfree(dd);
 450                        return r;
 451                }
 452
 453                refcount_set(&dd->count, 1);
 454                list_add(&dd->list, &t->devices);
 455                goto out;
 456
 457        } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
 458                r = upgrade_mode(dd, mode, t->md);
 459                if (r)
 460                        return r;
 461        }
 462        refcount_inc(&dd->count);
 463out:
 464        *result = dd->dm_dev;
 465        return 0;
 466}
 467EXPORT_SYMBOL(dm_get_device);
 468
 469static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
 470                                sector_t start, sector_t len, void *data)
 471{
 472        struct queue_limits *limits = data;
 473        struct block_device *bdev = dev->bdev;
 474        struct request_queue *q = bdev_get_queue(bdev);
 475        char b[BDEVNAME_SIZE];
 476
 477        if (unlikely(!q)) {
 478                DMWARN("%s: Cannot set limits for nonexistent device %s",
 479                       dm_device_name(ti->table->md), bdevname(bdev, b));
 480                return 0;
 481        }
 482
 483        if (bdev_stack_limits(limits, bdev, start) < 0)
 484                DMWARN("%s: adding target device %s caused an alignment inconsistency: "
 485                       "physical_block_size=%u, logical_block_size=%u, "
 486                       "alignment_offset=%u, start=%llu",
 487                       dm_device_name(ti->table->md), bdevname(bdev, b),
 488                       q->limits.physical_block_size,
 489                       q->limits.logical_block_size,
 490                       q->limits.alignment_offset,
 491                       (unsigned long long) start << SECTOR_SHIFT);
 492
 493        limits->zoned = blk_queue_zoned_model(q);
 494
 495        return 0;
 496}
 497
 498/*
 499 * Decrement a device's use count and remove it if necessary.
 500 */
 501void dm_put_device(struct dm_target *ti, struct dm_dev *d)
 502{
 503        int found = 0;
 504        struct list_head *devices = &ti->table->devices;
 505        struct dm_dev_internal *dd;
 506
 507        list_for_each_entry(dd, devices, list) {
 508                if (dd->dm_dev == d) {
 509                        found = 1;
 510                        break;
 511                }
 512        }
 513        if (!found) {
 514                DMWARN("%s: device %s not in table devices list",
 515                       dm_device_name(ti->table->md), d->name);
 516                return;
 517        }
 518        if (refcount_dec_and_test(&dd->count)) {
 519                dm_put_table_device(ti->table->md, d);
 520                list_del(&dd->list);
 521                kfree(dd);
 522        }
 523}
 524EXPORT_SYMBOL(dm_put_device);
 525
 526/*
 527 * Checks to see if the target joins onto the end of the table.
 528 */
 529static int adjoin(struct dm_table *table, struct dm_target *ti)
 530{
 531        struct dm_target *prev;
 532
 533        if (!table->num_targets)
 534                return !ti->begin;
 535
 536        prev = &table->targets[table->num_targets - 1];
 537        return (ti->begin == (prev->begin + prev->len));
 538}
 539
 540/*
 541 * Used to dynamically allocate the arg array.
 542 *
 543 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
 544 * process messages even if some device is suspended. These messages have a
 545 * small fixed number of arguments.
 546 *
 547 * On the other hand, dm-switch needs to process bulk data using messages and
 548 * excessive use of GFP_NOIO could cause trouble.
 549 */
 550static char **realloc_argv(unsigned *size, char **old_argv)
 551{
 552        char **argv;
 553        unsigned new_size;
 554        gfp_t gfp;
 555
 556        if (*size) {
 557                new_size = *size * 2;
 558                gfp = GFP_KERNEL;
 559        } else {
 560                new_size = 8;
 561                gfp = GFP_NOIO;
 562        }
 563        argv = kmalloc_array(new_size, sizeof(*argv), gfp);
 564        if (argv && old_argv) {
 565                memcpy(argv, old_argv, *size * sizeof(*argv));
 566                *size = new_size;
 567        }
 568
 569        kfree(old_argv);
 570        return argv;
 571}
 572
 573/*
 574 * Destructively splits up the argument list to pass to ctr.
 575 */
 576int dm_split_args(int *argc, char ***argvp, char *input)
 577{
 578        char *start, *end = input, *out, **argv = NULL;
 579        unsigned array_size = 0;
 580
 581        *argc = 0;
 582
 583        if (!input) {
 584                *argvp = NULL;
 585                return 0;
 586        }
 587
 588        argv = realloc_argv(&array_size, argv);
 589        if (!argv)
 590                return -ENOMEM;
 591
 592        while (1) {
 593                /* Skip whitespace */
 594                start = skip_spaces(end);
 595
 596                if (!*start)
 597                        break;  /* success, we hit the end */
 598
 599                /* 'out' is used to remove any back-quotes */
 600                end = out = start;
 601                while (*end) {
 602                        /* Everything apart from '\0' can be quoted */
 603                        if (*end == '\\' && *(end + 1)) {
 604                                *out++ = *(end + 1);
 605                                end += 2;
 606                                continue;
 607                        }
 608
 609                        if (isspace(*end))
 610                                break;  /* end of token */
 611
 612                        *out++ = *end++;
 613                }
 614
 615                /* have we already filled the array ? */
 616                if ((*argc + 1) > array_size) {
 617                        argv = realloc_argv(&array_size, argv);
 618                        if (!argv)
 619                                return -ENOMEM;
 620                }
 621
 622                /* we know this is whitespace */
 623                if (*end)
 624                        end++;
 625
 626                /* terminate the string and put it in the array */
 627                *out = '\0';
 628                argv[*argc] = start;
 629                (*argc)++;
 630        }
 631
 632        *argvp = argv;
 633        return 0;
 634}
 635
 636/*
 637 * Impose necessary and sufficient conditions on a devices's table such
 638 * that any incoming bio which respects its logical_block_size can be
 639 * processed successfully.  If it falls across the boundary between
 640 * two or more targets, the size of each piece it gets split into must
 641 * be compatible with the logical_block_size of the target processing it.
 642 */
 643static int validate_hardware_logical_block_alignment(struct dm_table *table,
 644                                                 struct queue_limits *limits)
 645{
 646        /*
 647         * This function uses arithmetic modulo the logical_block_size
 648         * (in units of 512-byte sectors).
 649         */
 650        unsigned short device_logical_block_size_sects =
 651                limits->logical_block_size >> SECTOR_SHIFT;
 652
 653        /*
 654         * Offset of the start of the next table entry, mod logical_block_size.
 655         */
 656        unsigned short next_target_start = 0;
 657
 658        /*
 659         * Given an aligned bio that extends beyond the end of a
 660         * target, how many sectors must the next target handle?
 661         */
 662        unsigned short remaining = 0;
 663
 664        struct dm_target *uninitialized_var(ti);
 665        struct queue_limits ti_limits;
 666        unsigned i;
 667
 668        /*
 669         * Check each entry in the table in turn.
 670         */
 671        for (i = 0; i < dm_table_get_num_targets(table); i++) {
 672                ti = dm_table_get_target(table, i);
 673
 674                blk_set_stacking_limits(&ti_limits);
 675
 676                /* combine all target devices' limits */
 677                if (ti->type->iterate_devices)
 678                        ti->type->iterate_devices(ti, dm_set_device_limits,
 679                                                  &ti_limits);
 680
 681                /*
 682                 * If the remaining sectors fall entirely within this
 683                 * table entry are they compatible with its logical_block_size?
 684                 */
 685                if (remaining < ti->len &&
 686                    remaining & ((ti_limits.logical_block_size >>
 687                                  SECTOR_SHIFT) - 1))
 688                        break;  /* Error */
 689
 690                next_target_start =
 691                    (unsigned short) ((next_target_start + ti->len) &
 692                                      (device_logical_block_size_sects - 1));
 693                remaining = next_target_start ?
 694                    device_logical_block_size_sects - next_target_start : 0;
 695        }
 696
 697        if (remaining) {
 698                DMWARN("%s: table line %u (start sect %llu len %llu) "
 699                       "not aligned to h/w logical block size %u",
 700                       dm_device_name(table->md), i,
 701                       (unsigned long long) ti->begin,
 702                       (unsigned long long) ti->len,
 703                       limits->logical_block_size);
 704                return -EINVAL;
 705        }
 706
 707        return 0;
 708}
 709
 710int dm_table_add_target(struct dm_table *t, const char *type,
 711                        sector_t start, sector_t len, char *params)
 712{
 713        int r = -EINVAL, argc;
 714        char **argv;
 715        struct dm_target *tgt;
 716
 717        if (t->singleton) {
 718                DMERR("%s: target type %s must appear alone in table",
 719                      dm_device_name(t->md), t->targets->type->name);
 720                return -EINVAL;
 721        }
 722
 723        BUG_ON(t->num_targets >= t->num_allocated);
 724
 725        tgt = t->targets + t->num_targets;
 726        memset(tgt, 0, sizeof(*tgt));
 727
 728        if (!len) {
 729                DMERR("%s: zero-length target", dm_device_name(t->md));
 730                return -EINVAL;
 731        }
 732
 733        tgt->type = dm_get_target_type(type);
 734        if (!tgt->type) {
 735                DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
 736                return -EINVAL;
 737        }
 738
 739        if (dm_target_needs_singleton(tgt->type)) {
 740                if (t->num_targets) {
 741                        tgt->error = "singleton target type must appear alone in table";
 742                        goto bad;
 743                }
 744                t->singleton = true;
 745        }
 746
 747        if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
 748                tgt->error = "target type may not be included in a read-only table";
 749                goto bad;
 750        }
 751
 752        if (t->immutable_target_type) {
 753                if (t->immutable_target_type != tgt->type) {
 754                        tgt->error = "immutable target type cannot be mixed with other target types";
 755                        goto bad;
 756                }
 757        } else if (dm_target_is_immutable(tgt->type)) {
 758                if (t->num_targets) {
 759                        tgt->error = "immutable target type cannot be mixed with other target types";
 760                        goto bad;
 761                }
 762                t->immutable_target_type = tgt->type;
 763        }
 764
 765        if (dm_target_has_integrity(tgt->type))
 766                t->integrity_added = 1;
 767
 768        tgt->table = t;
 769        tgt->begin = start;
 770        tgt->len = len;
 771        tgt->error = "Unknown error";
 772
 773        /*
 774         * Does this target adjoin the previous one ?
 775         */
 776        if (!adjoin(t, tgt)) {
 777                tgt->error = "Gap in table";
 778                goto bad;
 779        }
 780
 781        r = dm_split_args(&argc, &argv, params);
 782        if (r) {
 783                tgt->error = "couldn't split parameters (insufficient memory)";
 784                goto bad;
 785        }
 786
 787        r = tgt->type->ctr(tgt, argc, argv);
 788        kfree(argv);
 789        if (r)
 790                goto bad;
 791
 792        t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
 793
 794        if (!tgt->num_discard_bios && tgt->discards_supported)
 795                DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
 796                       dm_device_name(t->md), type);
 797
 798        return 0;
 799
 800 bad:
 801        DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
 802        dm_put_target_type(tgt->type);
 803        return r;
 804}
 805
 806/*
 807 * Target argument parsing helpers.
 808 */
 809static int validate_next_arg(const struct dm_arg *arg,
 810                             struct dm_arg_set *arg_set,
 811                             unsigned *value, char **error, unsigned grouped)
 812{
 813        const char *arg_str = dm_shift_arg(arg_set);
 814        char dummy;
 815
 816        if (!arg_str ||
 817            (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
 818            (*value < arg->min) ||
 819            (*value > arg->max) ||
 820            (grouped && arg_set->argc < *value)) {
 821                *error = arg->error;
 822                return -EINVAL;
 823        }
 824
 825        return 0;
 826}
 827
 828int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
 829                unsigned *value, char **error)
 830{
 831        return validate_next_arg(arg, arg_set, value, error, 0);
 832}
 833EXPORT_SYMBOL(dm_read_arg);
 834
 835int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
 836                      unsigned *value, char **error)
 837{
 838        return validate_next_arg(arg, arg_set, value, error, 1);
 839}
 840EXPORT_SYMBOL(dm_read_arg_group);
 841
 842const char *dm_shift_arg(struct dm_arg_set *as)
 843{
 844        char *r;
 845
 846        if (as->argc) {
 847                as->argc--;
 848                r = *as->argv;
 849                as->argv++;
 850                return r;
 851        }
 852
 853        return NULL;
 854}
 855EXPORT_SYMBOL(dm_shift_arg);
 856
 857void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
 858{
 859        BUG_ON(as->argc < num_args);
 860        as->argc -= num_args;
 861        as->argv += num_args;
 862}
 863EXPORT_SYMBOL(dm_consume_args);
 864
 865static bool __table_type_bio_based(enum dm_queue_mode table_type)
 866{
 867        return (table_type == DM_TYPE_BIO_BASED ||
 868                table_type == DM_TYPE_DAX_BIO_BASED ||
 869                table_type == DM_TYPE_NVME_BIO_BASED);
 870}
 871
 872static bool __table_type_request_based(enum dm_queue_mode table_type)
 873{
 874        return table_type == DM_TYPE_REQUEST_BASED;
 875}
 876
 877void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
 878{
 879        t->type = type;
 880}
 881EXPORT_SYMBOL_GPL(dm_table_set_type);
 882
 883/* validate the dax capability of the target device span */
 884int device_supports_dax(struct dm_target *ti, struct dm_dev *dev,
 885                        sector_t start, sector_t len, void *data)
 886{
 887        int blocksize = *(int *) data;
 888
 889        return generic_fsdax_supported(dev->dax_dev, dev->bdev, blocksize,
 890                                       start, len);
 891}
 892
 893/* Check devices support synchronous DAX */
 894static int device_dax_synchronous(struct dm_target *ti, struct dm_dev *dev,
 895                                  sector_t start, sector_t len, void *data)
 896{
 897        return dev->dax_dev && dax_synchronous(dev->dax_dev);
 898}
 899
 900bool dm_table_supports_dax(struct dm_table *t,
 901                           iterate_devices_callout_fn iterate_fn, int *blocksize)
 902{
 903        struct dm_target *ti;
 904        unsigned i;
 905
 906        /* Ensure that all targets support DAX. */
 907        for (i = 0; i < dm_table_get_num_targets(t); i++) {
 908                ti = dm_table_get_target(t, i);
 909
 910                if (!ti->type->direct_access)
 911                        return false;
 912
 913                if (!ti->type->iterate_devices ||
 914                    !ti->type->iterate_devices(ti, iterate_fn, blocksize))
 915                        return false;
 916        }
 917
 918        return true;
 919}
 920
 921static bool dm_table_does_not_support_partial_completion(struct dm_table *t);
 922
 923struct verify_rq_based_data {
 924        unsigned sq_count;
 925        unsigned mq_count;
 926};
 927
 928static int device_is_rq_based(struct dm_target *ti, struct dm_dev *dev,
 929                              sector_t start, sector_t len, void *data)
 930{
 931        struct request_queue *q = bdev_get_queue(dev->bdev);
 932        struct verify_rq_based_data *v = data;
 933
 934        if (queue_is_mq(q))
 935                v->mq_count++;
 936        else
 937                v->sq_count++;
 938
 939        return queue_is_mq(q);
 940}
 941
 942static int dm_table_determine_type(struct dm_table *t)
 943{
 944        unsigned i;
 945        unsigned bio_based = 0, request_based = 0, hybrid = 0;
 946        struct verify_rq_based_data v = {.sq_count = 0, .mq_count = 0};
 947        struct dm_target *tgt;
 948        struct list_head *devices = dm_table_get_devices(t);
 949        enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
 950        int page_size = PAGE_SIZE;
 951
 952        if (t->type != DM_TYPE_NONE) {
 953                /* target already set the table's type */
 954                if (t->type == DM_TYPE_BIO_BASED) {
 955                        /* possibly upgrade to a variant of bio-based */
 956                        goto verify_bio_based;
 957                }
 958                BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
 959                BUG_ON(t->type == DM_TYPE_NVME_BIO_BASED);
 960                goto verify_rq_based;
 961        }
 962
 963        for (i = 0; i < t->num_targets; i++) {
 964                tgt = t->targets + i;
 965                if (dm_target_hybrid(tgt))
 966                        hybrid = 1;
 967                else if (dm_target_request_based(tgt))
 968                        request_based = 1;
 969                else
 970                        bio_based = 1;
 971
 972                if (bio_based && request_based) {
 973                        DMERR("Inconsistent table: different target types"
 974                              " can't be mixed up");
 975                        return -EINVAL;
 976                }
 977        }
 978
 979        if (hybrid && !bio_based && !request_based) {
 980                /*
 981                 * The targets can work either way.
 982                 * Determine the type from the live device.
 983                 * Default to bio-based if device is new.
 984                 */
 985                if (__table_type_request_based(live_md_type))
 986                        request_based = 1;
 987                else
 988                        bio_based = 1;
 989        }
 990
 991        if (bio_based) {
 992verify_bio_based:
 993                /* We must use this table as bio-based */
 994                t->type = DM_TYPE_BIO_BASED;
 995                if (dm_table_supports_dax(t, device_supports_dax, &page_size) ||
 996                    (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
 997                        t->type = DM_TYPE_DAX_BIO_BASED;
 998                } else {
 999                        /* Check if upgrading to NVMe bio-based is valid or required */
1000                        tgt = dm_table_get_immutable_target(t);
1001                        if (tgt && !tgt->max_io_len && dm_table_does_not_support_partial_completion(t)) {
1002                                t->type = DM_TYPE_NVME_BIO_BASED;
1003                                goto verify_rq_based; /* must be stacked directly on NVMe (blk-mq) */
1004                        } else if (list_empty(devices) && live_md_type == DM_TYPE_NVME_BIO_BASED) {
1005                                t->type = DM_TYPE_NVME_BIO_BASED;
1006                        }
1007                }
1008                return 0;
1009        }
1010
1011        BUG_ON(!request_based); /* No targets in this table */
1012
1013        t->type = DM_TYPE_REQUEST_BASED;
1014
1015verify_rq_based:
1016        /*
1017         * Request-based dm supports only tables that have a single target now.
1018         * To support multiple targets, request splitting support is needed,
1019         * and that needs lots of changes in the block-layer.
1020         * (e.g. request completion process for partial completion.)
1021         */
1022        if (t->num_targets > 1) {
1023                DMERR("%s DM doesn't support multiple targets",
1024                      t->type == DM_TYPE_NVME_BIO_BASED ? "nvme bio-based" : "request-based");
1025                return -EINVAL;
1026        }
1027
1028        if (list_empty(devices)) {
1029                int srcu_idx;
1030                struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
1031
1032                /* inherit live table's type */
1033                if (live_table)
1034                        t->type = live_table->type;
1035                dm_put_live_table(t->md, srcu_idx);
1036                return 0;
1037        }
1038
1039        tgt = dm_table_get_immutable_target(t);
1040        if (!tgt) {
1041                DMERR("table load rejected: immutable target is required");
1042                return -EINVAL;
1043        } else if (tgt->max_io_len) {
1044                DMERR("table load rejected: immutable target that splits IO is not supported");
1045                return -EINVAL;
1046        }
1047
1048        /* Non-request-stackable devices can't be used for request-based dm */
1049        if (!tgt->type->iterate_devices ||
1050            !tgt->type->iterate_devices(tgt, device_is_rq_based, &v)) {
1051                DMERR("table load rejected: including non-request-stackable devices");
1052                return -EINVAL;
1053        }
1054        if (v.sq_count > 0) {
1055                DMERR("table load rejected: not all devices are blk-mq request-stackable");
1056                return -EINVAL;
1057        }
1058
1059        return 0;
1060}
1061
1062enum dm_queue_mode dm_table_get_type(struct dm_table *t)
1063{
1064        return t->type;
1065}
1066
1067struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
1068{
1069        return t->immutable_target_type;
1070}
1071
1072struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
1073{
1074        /* Immutable target is implicitly a singleton */
1075        if (t->num_targets > 1 ||
1076            !dm_target_is_immutable(t->targets[0].type))
1077                return NULL;
1078
1079        return t->targets;
1080}
1081
1082struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1083{
1084        struct dm_target *ti;
1085        unsigned i;
1086
1087        for (i = 0; i < dm_table_get_num_targets(t); i++) {
1088                ti = dm_table_get_target(t, i);
1089                if (dm_target_is_wildcard(ti->type))
1090                        return ti;
1091        }
1092
1093        return NULL;
1094}
1095
1096bool dm_table_bio_based(struct dm_table *t)
1097{
1098        return __table_type_bio_based(dm_table_get_type(t));
1099}
1100
1101bool dm_table_request_based(struct dm_table *t)
1102{
1103        return __table_type_request_based(dm_table_get_type(t));
1104}
1105
1106static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1107{
1108        enum dm_queue_mode type = dm_table_get_type(t);
1109        unsigned per_io_data_size = 0;
1110        unsigned min_pool_size = 0;
1111        struct dm_target *ti;
1112        unsigned i;
1113
1114        if (unlikely(type == DM_TYPE_NONE)) {
1115                DMWARN("no table type is set, can't allocate mempools");
1116                return -EINVAL;
1117        }
1118
1119        if (__table_type_bio_based(type))
1120                for (i = 0; i < t->num_targets; i++) {
1121                        ti = t->targets + i;
1122                        per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1123                        min_pool_size = max(min_pool_size, ti->num_flush_bios);
1124                }
1125
1126        t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
1127                                           per_io_data_size, min_pool_size);
1128        if (!t->mempools)
1129                return -ENOMEM;
1130
1131        return 0;
1132}
1133
1134void dm_table_free_md_mempools(struct dm_table *t)
1135{
1136        dm_free_md_mempools(t->mempools);
1137        t->mempools = NULL;
1138}
1139
1140struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1141{
1142        return t->mempools;
1143}
1144
1145static int setup_indexes(struct dm_table *t)
1146{
1147        int i;
1148        unsigned int total = 0;
1149        sector_t *indexes;
1150
1151        /* allocate the space for *all* the indexes */
1152        for (i = t->depth - 2; i >= 0; i--) {
1153                t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1154                total += t->counts[i];
1155        }
1156
1157        indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1158        if (!indexes)
1159                return -ENOMEM;
1160
1161        /* set up internal nodes, bottom-up */
1162        for (i = t->depth - 2; i >= 0; i--) {
1163                t->index[i] = indexes;
1164                indexes += (KEYS_PER_NODE * t->counts[i]);
1165                setup_btree_index(i, t);
1166        }
1167
1168        return 0;
1169}
1170
1171/*
1172 * Builds the btree to index the map.
1173 */
1174static int dm_table_build_index(struct dm_table *t)
1175{
1176        int r = 0;
1177        unsigned int leaf_nodes;
1178
1179        /* how many indexes will the btree have ? */
1180        leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1181        t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1182
1183        /* leaf layer has already been set up */
1184        t->counts[t->depth - 1] = leaf_nodes;
1185        t->index[t->depth - 1] = t->highs;
1186
1187        if (t->depth >= 2)
1188                r = setup_indexes(t);
1189
1190        return r;
1191}
1192
1193static bool integrity_profile_exists(struct gendisk *disk)
1194{
1195        return !!blk_get_integrity(disk);
1196}
1197
1198/*
1199 * Get a disk whose integrity profile reflects the table's profile.
1200 * Returns NULL if integrity support was inconsistent or unavailable.
1201 */
1202static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1203{
1204        struct list_head *devices = dm_table_get_devices(t);
1205        struct dm_dev_internal *dd = NULL;
1206        struct gendisk *prev_disk = NULL, *template_disk = NULL;
1207        unsigned i;
1208
1209        for (i = 0; i < dm_table_get_num_targets(t); i++) {
1210                struct dm_target *ti = dm_table_get_target(t, i);
1211                if (!dm_target_passes_integrity(ti->type))
1212                        goto no_integrity;
1213        }
1214
1215        list_for_each_entry(dd, devices, list) {
1216                template_disk = dd->dm_dev->bdev->bd_disk;
1217                if (!integrity_profile_exists(template_disk))
1218                        goto no_integrity;
1219                else if (prev_disk &&
1220                         blk_integrity_compare(prev_disk, template_disk) < 0)
1221                        goto no_integrity;
1222                prev_disk = template_disk;
1223        }
1224
1225        return template_disk;
1226
1227no_integrity:
1228        if (prev_disk)
1229                DMWARN("%s: integrity not set: %s and %s profile mismatch",
1230                       dm_device_name(t->md),
1231                       prev_disk->disk_name,
1232                       template_disk->disk_name);
1233        return NULL;
1234}
1235
1236/*
1237 * Register the mapped device for blk_integrity support if the
1238 * underlying devices have an integrity profile.  But all devices may
1239 * not have matching profiles (checking all devices isn't reliable
1240 * during table load because this table may use other DM device(s) which
1241 * must be resumed before they will have an initialized integity
1242 * profile).  Consequently, stacked DM devices force a 2 stage integrity
1243 * profile validation: First pass during table load, final pass during
1244 * resume.
1245 */
1246static int dm_table_register_integrity(struct dm_table *t)
1247{
1248        struct mapped_device *md = t->md;
1249        struct gendisk *template_disk = NULL;
1250
1251        /* If target handles integrity itself do not register it here. */
1252        if (t->integrity_added)
1253                return 0;
1254
1255        template_disk = dm_table_get_integrity_disk(t);
1256        if (!template_disk)
1257                return 0;
1258
1259        if (!integrity_profile_exists(dm_disk(md))) {
1260                t->integrity_supported = true;
1261                /*
1262                 * Register integrity profile during table load; we can do
1263                 * this because the final profile must match during resume.
1264                 */
1265                blk_integrity_register(dm_disk(md),
1266                                       blk_get_integrity(template_disk));
1267                return 0;
1268        }
1269
1270        /*
1271         * If DM device already has an initialized integrity
1272         * profile the new profile should not conflict.
1273         */
1274        if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1275                DMWARN("%s: conflict with existing integrity profile: "
1276                       "%s profile mismatch",
1277                       dm_device_name(t->md),
1278                       template_disk->disk_name);
1279                return 1;
1280        }
1281
1282        /* Preserve existing integrity profile */
1283        t->integrity_supported = true;
1284        return 0;
1285}
1286
1287/*
1288 * Prepares the table for use by building the indices,
1289 * setting the type, and allocating mempools.
1290 */
1291int dm_table_complete(struct dm_table *t)
1292{
1293        int r;
1294
1295        r = dm_table_determine_type(t);
1296        if (r) {
1297                DMERR("unable to determine table type");
1298                return r;
1299        }
1300
1301        r = dm_table_build_index(t);
1302        if (r) {
1303                DMERR("unable to build btrees");
1304                return r;
1305        }
1306
1307        r = dm_table_register_integrity(t);
1308        if (r) {
1309                DMERR("could not register integrity profile.");
1310                return r;
1311        }
1312
1313        r = dm_table_alloc_md_mempools(t, t->md);
1314        if (r)
1315                DMERR("unable to allocate mempools");
1316
1317        return r;
1318}
1319
1320static DEFINE_MUTEX(_event_lock);
1321void dm_table_event_callback(struct dm_table *t,
1322                             void (*fn)(void *), void *context)
1323{
1324        mutex_lock(&_event_lock);
1325        t->event_fn = fn;
1326        t->event_context = context;
1327        mutex_unlock(&_event_lock);
1328}
1329
1330void dm_table_event(struct dm_table *t)
1331{
1332        /*
1333         * You can no longer call dm_table_event() from interrupt
1334         * context, use a bottom half instead.
1335         */
1336        BUG_ON(in_interrupt());
1337
1338        mutex_lock(&_event_lock);
1339        if (t->event_fn)
1340                t->event_fn(t->event_context);
1341        mutex_unlock(&_event_lock);
1342}
1343EXPORT_SYMBOL(dm_table_event);
1344
1345inline sector_t dm_table_get_size(struct dm_table *t)
1346{
1347        return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1348}
1349EXPORT_SYMBOL(dm_table_get_size);
1350
1351struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1352{
1353        if (index >= t->num_targets)
1354                return NULL;
1355
1356        return t->targets + index;
1357}
1358
1359/*
1360 * Search the btree for the correct target.
1361 *
1362 * Caller should check returned pointer with dm_target_is_valid()
1363 * to trap I/O beyond end of device.
1364 */
1365struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1366{
1367        unsigned int l, n = 0, k = 0;
1368        sector_t *node;
1369
1370        if (unlikely(sector >= dm_table_get_size(t)))
1371                return &t->targets[t->num_targets];
1372
1373        for (l = 0; l < t->depth; l++) {
1374                n = get_child(n, k);
1375                node = get_node(t, l, n);
1376
1377                for (k = 0; k < KEYS_PER_NODE; k++)
1378                        if (node[k] >= sector)
1379                                break;
1380        }
1381
1382        return &t->targets[(KEYS_PER_NODE * n) + k];
1383}
1384
1385static int count_device(struct dm_target *ti, struct dm_dev *dev,
1386                        sector_t start, sector_t len, void *data)
1387{
1388        unsigned *num_devices = data;
1389
1390        (*num_devices)++;
1391
1392        return 0;
1393}
1394
1395/*
1396 * Check whether a table has no data devices attached using each
1397 * target's iterate_devices method.
1398 * Returns false if the result is unknown because a target doesn't
1399 * support iterate_devices.
1400 */
1401bool dm_table_has_no_data_devices(struct dm_table *table)
1402{
1403        struct dm_target *ti;
1404        unsigned i, num_devices;
1405
1406        for (i = 0; i < dm_table_get_num_targets(table); i++) {
1407                ti = dm_table_get_target(table, i);
1408
1409                if (!ti->type->iterate_devices)
1410                        return false;
1411
1412                num_devices = 0;
1413                ti->type->iterate_devices(ti, count_device, &num_devices);
1414                if (num_devices)
1415                        return false;
1416        }
1417
1418        return true;
1419}
1420
1421static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1422                                 sector_t start, sector_t len, void *data)
1423{
1424        struct request_queue *q = bdev_get_queue(dev->bdev);
1425        enum blk_zoned_model *zoned_model = data;
1426
1427        return q && blk_queue_zoned_model(q) == *zoned_model;
1428}
1429
1430static bool dm_table_supports_zoned_model(struct dm_table *t,
1431                                          enum blk_zoned_model zoned_model)
1432{
1433        struct dm_target *ti;
1434        unsigned i;
1435
1436        for (i = 0; i < dm_table_get_num_targets(t); i++) {
1437                ti = dm_table_get_target(t, i);
1438
1439                if (zoned_model == BLK_ZONED_HM &&
1440                    !dm_target_supports_zoned_hm(ti->type))
1441                        return false;
1442
1443                if (!ti->type->iterate_devices ||
1444                    !ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model))
1445                        return false;
1446        }
1447
1448        return true;
1449}
1450
1451static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1452                                       sector_t start, sector_t len, void *data)
1453{
1454        struct request_queue *q = bdev_get_queue(dev->bdev);
1455        unsigned int *zone_sectors = data;
1456
1457        return q && blk_queue_zone_sectors(q) == *zone_sectors;
1458}
1459
1460static bool dm_table_matches_zone_sectors(struct dm_table *t,
1461                                          unsigned int zone_sectors)
1462{
1463        struct dm_target *ti;
1464        unsigned i;
1465
1466        for (i = 0; i < dm_table_get_num_targets(t); i++) {
1467                ti = dm_table_get_target(t, i);
1468
1469                if (!ti->type->iterate_devices ||
1470                    !ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors))
1471                        return false;
1472        }
1473
1474        return true;
1475}
1476
1477static int validate_hardware_zoned_model(struct dm_table *table,
1478                                         enum blk_zoned_model zoned_model,
1479                                         unsigned int zone_sectors)
1480{
1481        if (zoned_model == BLK_ZONED_NONE)
1482                return 0;
1483
1484        if (!dm_table_supports_zoned_model(table, zoned_model)) {
1485                DMERR("%s: zoned model is not consistent across all devices",
1486                      dm_device_name(table->md));
1487                return -EINVAL;
1488        }
1489
1490        /* Check zone size validity and compatibility */
1491        if (!zone_sectors || !is_power_of_2(zone_sectors))
1492                return -EINVAL;
1493
1494        if (!dm_table_matches_zone_sectors(table, zone_sectors)) {
1495                DMERR("%s: zone sectors is not consistent across all devices",
1496                      dm_device_name(table->md));
1497                return -EINVAL;
1498        }
1499
1500        return 0;
1501}
1502
1503/*
1504 * Establish the new table's queue_limits and validate them.
1505 */
1506int dm_calculate_queue_limits(struct dm_table *table,
1507                              struct queue_limits *limits)
1508{
1509        struct dm_target *ti;
1510        struct queue_limits ti_limits;
1511        unsigned i;
1512        enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1513        unsigned int zone_sectors = 0;
1514
1515        blk_set_stacking_limits(limits);
1516
1517        for (i = 0; i < dm_table_get_num_targets(table); i++) {
1518                blk_set_stacking_limits(&ti_limits);
1519
1520                ti = dm_table_get_target(table, i);
1521
1522                if (!ti->type->iterate_devices)
1523                        goto combine_limits;
1524
1525                /*
1526                 * Combine queue limits of all the devices this target uses.
1527                 */
1528                ti->type->iterate_devices(ti, dm_set_device_limits,
1529                                          &ti_limits);
1530
1531                if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1532                        /*
1533                         * After stacking all limits, validate all devices
1534                         * in table support this zoned model and zone sectors.
1535                         */
1536                        zoned_model = ti_limits.zoned;
1537                        zone_sectors = ti_limits.chunk_sectors;
1538                }
1539
1540                /* Set I/O hints portion of queue limits */
1541                if (ti->type->io_hints)
1542                        ti->type->io_hints(ti, &ti_limits);
1543
1544                /*
1545                 * Check each device area is consistent with the target's
1546                 * overall queue limits.
1547                 */
1548                if (ti->type->iterate_devices(ti, device_area_is_invalid,
1549                                              &ti_limits))
1550                        return -EINVAL;
1551
1552combine_limits:
1553                /*
1554                 * Merge this target's queue limits into the overall limits
1555                 * for the table.
1556                 */
1557                if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1558                        DMWARN("%s: adding target device "
1559                               "(start sect %llu len %llu) "
1560                               "caused an alignment inconsistency",
1561                               dm_device_name(table->md),
1562                               (unsigned long long) ti->begin,
1563                               (unsigned long long) ti->len);
1564
1565                /*
1566                 * FIXME: this should likely be moved to blk_stack_limits(), would
1567                 * also eliminate limits->zoned stacking hack in dm_set_device_limits()
1568                 */
1569                if (limits->zoned == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1570                        /*
1571                         * By default, the stacked limits zoned model is set to
1572                         * BLK_ZONED_NONE in blk_set_stacking_limits(). Update
1573                         * this model using the first target model reported
1574                         * that is not BLK_ZONED_NONE. This will be either the
1575                         * first target device zoned model or the model reported
1576                         * by the target .io_hints.
1577                         */
1578                        limits->zoned = ti_limits.zoned;
1579                }
1580        }
1581
1582        /*
1583         * Verify that the zoned model and zone sectors, as determined before
1584         * any .io_hints override, are the same across all devices in the table.
1585         * - this is especially relevant if .io_hints is emulating a disk-managed
1586         *   zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1587         * BUT...
1588         */
1589        if (limits->zoned != BLK_ZONED_NONE) {
1590                /*
1591                 * ...IF the above limits stacking determined a zoned model
1592                 * validate that all of the table's devices conform to it.
1593                 */
1594                zoned_model = limits->zoned;
1595                zone_sectors = limits->chunk_sectors;
1596        }
1597        if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1598                return -EINVAL;
1599
1600        return validate_hardware_logical_block_alignment(table, limits);
1601}
1602
1603/*
1604 * Verify that all devices have an integrity profile that matches the
1605 * DM device's registered integrity profile.  If the profiles don't
1606 * match then unregister the DM device's integrity profile.
1607 */
1608static void dm_table_verify_integrity(struct dm_table *t)
1609{
1610        struct gendisk *template_disk = NULL;
1611
1612        if (t->integrity_added)
1613                return;
1614
1615        if (t->integrity_supported) {
1616                /*
1617                 * Verify that the original integrity profile
1618                 * matches all the devices in this table.
1619                 */
1620                template_disk = dm_table_get_integrity_disk(t);
1621                if (template_disk &&
1622                    blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1623                        return;
1624        }
1625
1626        if (integrity_profile_exists(dm_disk(t->md))) {
1627                DMWARN("%s: unable to establish an integrity profile",
1628                       dm_device_name(t->md));
1629                blk_integrity_unregister(dm_disk(t->md));
1630        }
1631}
1632
1633static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1634                                sector_t start, sector_t len, void *data)
1635{
1636        unsigned long flush = (unsigned long) data;
1637        struct request_queue *q = bdev_get_queue(dev->bdev);
1638
1639        return q && (q->queue_flags & flush);
1640}
1641
1642static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1643{
1644        struct dm_target *ti;
1645        unsigned i;
1646
1647        /*
1648         * Require at least one underlying device to support flushes.
1649         * t->devices includes internal dm devices such as mirror logs
1650         * so we need to use iterate_devices here, which targets
1651         * supporting flushes must provide.
1652         */
1653        for (i = 0; i < dm_table_get_num_targets(t); i++) {
1654                ti = dm_table_get_target(t, i);
1655
1656                if (!ti->num_flush_bios)
1657                        continue;
1658
1659                if (ti->flush_supported)
1660                        return true;
1661
1662                if (ti->type->iterate_devices &&
1663                    ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1664                        return true;
1665        }
1666
1667        return false;
1668}
1669
1670static int device_dax_write_cache_enabled(struct dm_target *ti,
1671                                          struct dm_dev *dev, sector_t start,
1672                                          sector_t len, void *data)
1673{
1674        struct dax_device *dax_dev = dev->dax_dev;
1675
1676        if (!dax_dev)
1677                return false;
1678
1679        if (dax_write_cache_enabled(dax_dev))
1680                return true;
1681        return false;
1682}
1683
1684static int dm_table_supports_dax_write_cache(struct dm_table *t)
1685{
1686        struct dm_target *ti;
1687        unsigned i;
1688
1689        for (i = 0; i < dm_table_get_num_targets(t); i++) {
1690                ti = dm_table_get_target(t, i);
1691
1692                if (ti->type->iterate_devices &&
1693                    ti->type->iterate_devices(ti,
1694                                device_dax_write_cache_enabled, NULL))
1695                        return true;
1696        }
1697
1698        return false;
1699}
1700
1701static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1702                            sector_t start, sector_t len, void *data)
1703{
1704        struct request_queue *q = bdev_get_queue(dev->bdev);
1705
1706        return q && blk_queue_nonrot(q);
1707}
1708
1709static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1710                             sector_t start, sector_t len, void *data)
1711{
1712        struct request_queue *q = bdev_get_queue(dev->bdev);
1713
1714        return q && !blk_queue_add_random(q);
1715}
1716
1717static bool dm_table_all_devices_attribute(struct dm_table *t,
1718                                           iterate_devices_callout_fn func)
1719{
1720        struct dm_target *ti;
1721        unsigned i;
1722
1723        for (i = 0; i < dm_table_get_num_targets(t); i++) {
1724                ti = dm_table_get_target(t, i);
1725
1726                if (!ti->type->iterate_devices ||
1727                    !ti->type->iterate_devices(ti, func, NULL))
1728                        return false;
1729        }
1730
1731        return true;
1732}
1733
1734static int device_no_partial_completion(struct dm_target *ti, struct dm_dev *dev,
1735                                        sector_t start, sector_t len, void *data)
1736{
1737        char b[BDEVNAME_SIZE];
1738
1739        /* For now, NVMe devices are the only devices of this class */
1740        return (strncmp(bdevname(dev->bdev, b), "nvme", 4) == 0);
1741}
1742
1743static bool dm_table_does_not_support_partial_completion(struct dm_table *t)
1744{
1745        return dm_table_all_devices_attribute(t, device_no_partial_completion);
1746}
1747
1748static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1749                                         sector_t start, sector_t len, void *data)
1750{
1751        struct request_queue *q = bdev_get_queue(dev->bdev);
1752
1753        return q && !q->limits.max_write_same_sectors;
1754}
1755
1756static bool dm_table_supports_write_same(struct dm_table *t)
1757{
1758        struct dm_target *ti;
1759        unsigned i;
1760
1761        for (i = 0; i < dm_table_get_num_targets(t); i++) {
1762                ti = dm_table_get_target(t, i);
1763
1764                if (!ti->num_write_same_bios)
1765                        return false;
1766
1767                if (!ti->type->iterate_devices ||
1768                    ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1769                        return false;
1770        }
1771
1772        return true;
1773}
1774
1775static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1776                                           sector_t start, sector_t len, void *data)
1777{
1778        struct request_queue *q = bdev_get_queue(dev->bdev);
1779
1780        return q && !q->limits.max_write_zeroes_sectors;
1781}
1782
1783static bool dm_table_supports_write_zeroes(struct dm_table *t)
1784{
1785        struct dm_target *ti;
1786        unsigned i = 0;
1787
1788        while (i < dm_table_get_num_targets(t)) {
1789                ti = dm_table_get_target(t, i++);
1790
1791                if (!ti->num_write_zeroes_bios)
1792                        return false;
1793
1794                if (!ti->type->iterate_devices ||
1795                    ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1796                        return false;
1797        }
1798
1799        return true;
1800}
1801
1802static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1803                                      sector_t start, sector_t len, void *data)
1804{
1805        struct request_queue *q = bdev_get_queue(dev->bdev);
1806
1807        return q && !blk_queue_discard(q);
1808}
1809
1810static bool dm_table_supports_discards(struct dm_table *t)
1811{
1812        struct dm_target *ti;
1813        unsigned i;
1814
1815        for (i = 0; i < dm_table_get_num_targets(t); i++) {
1816                ti = dm_table_get_target(t, i);
1817
1818                if (!ti->num_discard_bios)
1819                        return false;
1820
1821                /*
1822                 * Either the target provides discard support (as implied by setting
1823                 * 'discards_supported') or it relies on _all_ data devices having
1824                 * discard support.
1825                 */
1826                if (!ti->discards_supported &&
1827                    (!ti->type->iterate_devices ||
1828                     ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1829                        return false;
1830        }
1831
1832        return true;
1833}
1834
1835static int device_not_secure_erase_capable(struct dm_target *ti,
1836                                           struct dm_dev *dev, sector_t start,
1837                                           sector_t len, void *data)
1838{
1839        struct request_queue *q = bdev_get_queue(dev->bdev);
1840
1841        return q && !blk_queue_secure_erase(q);
1842}
1843
1844static bool dm_table_supports_secure_erase(struct dm_table *t)
1845{
1846        struct dm_target *ti;
1847        unsigned int i;
1848
1849        for (i = 0; i < dm_table_get_num_targets(t); i++) {
1850                ti = dm_table_get_target(t, i);
1851
1852                if (!ti->num_secure_erase_bios)
1853                        return false;
1854
1855                if (!ti->type->iterate_devices ||
1856                    ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1857                        return false;
1858        }
1859
1860        return true;
1861}
1862
1863static int device_requires_stable_pages(struct dm_target *ti,
1864                                        struct dm_dev *dev, sector_t start,
1865                                        sector_t len, void *data)
1866{
1867        struct request_queue *q = bdev_get_queue(dev->bdev);
1868
1869        return q && bdi_cap_stable_pages_required(q->backing_dev_info);
1870}
1871
1872/*
1873 * If any underlying device requires stable pages, a table must require
1874 * them as well.  Only targets that support iterate_devices are considered:
1875 * don't want error, zero, etc to require stable pages.
1876 */
1877static bool dm_table_requires_stable_pages(struct dm_table *t)
1878{
1879        struct dm_target *ti;
1880        unsigned i;
1881
1882        for (i = 0; i < dm_table_get_num_targets(t); i++) {
1883                ti = dm_table_get_target(t, i);
1884
1885                if (ti->type->iterate_devices &&
1886                    ti->type->iterate_devices(ti, device_requires_stable_pages, NULL))
1887                        return true;
1888        }
1889
1890        return false;
1891}
1892
1893void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1894                               struct queue_limits *limits)
1895{
1896        bool wc = false, fua = false;
1897        int page_size = PAGE_SIZE;
1898
1899        /*
1900         * Copy table's limits to the DM device's request_queue
1901         */
1902        q->limits = *limits;
1903
1904        if (!dm_table_supports_discards(t)) {
1905                blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
1906                /* Must also clear discard limits... */
1907                q->limits.max_discard_sectors = 0;
1908                q->limits.max_hw_discard_sectors = 0;
1909                q->limits.discard_granularity = 0;
1910                q->limits.discard_alignment = 0;
1911                q->limits.discard_misaligned = 0;
1912        } else
1913                blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
1914
1915        if (dm_table_supports_secure_erase(t))
1916                blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
1917
1918        if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1919                wc = true;
1920                if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1921                        fua = true;
1922        }
1923        blk_queue_write_cache(q, wc, fua);
1924
1925        if (dm_table_supports_dax(t, device_supports_dax, &page_size)) {
1926                blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1927                if (dm_table_supports_dax(t, device_dax_synchronous, NULL))
1928                        set_dax_synchronous(t->md->dax_dev);
1929        }
1930        else
1931                blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
1932
1933        if (dm_table_supports_dax_write_cache(t))
1934                dax_write_cache(t->md->dax_dev, true);
1935
1936        /* Ensure that all underlying devices are non-rotational. */
1937        if (dm_table_all_devices_attribute(t, device_is_nonrot))
1938                blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
1939        else
1940                blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
1941
1942        if (!dm_table_supports_write_same(t))
1943                q->limits.max_write_same_sectors = 0;
1944        if (!dm_table_supports_write_zeroes(t))
1945                q->limits.max_write_zeroes_sectors = 0;
1946
1947        dm_table_verify_integrity(t);
1948
1949        /*
1950         * Some devices don't use blk_integrity but still want stable pages
1951         * because they do their own checksumming.
1952         */
1953        if (dm_table_requires_stable_pages(t))
1954                q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES;
1955        else
1956                q->backing_dev_info->capabilities &= ~BDI_CAP_STABLE_WRITES;
1957
1958        /*
1959         * Determine whether or not this queue's I/O timings contribute
1960         * to the entropy pool, Only request-based targets use this.
1961         * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1962         * have it set.
1963         */
1964        if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1965                blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
1966
1967        /*
1968         * For a zoned target, the number of zones should be updated for the
1969         * correct value to be exposed in sysfs queue/nr_zones. For a BIO based
1970         * target, this is all that is needed. For a request based target, the
1971         * queue zone bitmaps must also be updated.
1972         * Use blk_revalidate_disk_zones() to handle this.
1973         */
1974        if (blk_queue_is_zoned(q))
1975                blk_revalidate_disk_zones(t->md->disk);
1976
1977        /* Allow reads to exceed readahead limits */
1978        q->backing_dev_info->io_pages = limits->max_sectors >> (PAGE_SHIFT - 9);
1979}
1980
1981unsigned int dm_table_get_num_targets(struct dm_table *t)
1982{
1983        return t->num_targets;
1984}
1985
1986struct list_head *dm_table_get_devices(struct dm_table *t)
1987{
1988        return &t->devices;
1989}
1990
1991fmode_t dm_table_get_mode(struct dm_table *t)
1992{
1993        return t->mode;
1994}
1995EXPORT_SYMBOL(dm_table_get_mode);
1996
1997enum suspend_mode {
1998        PRESUSPEND,
1999        PRESUSPEND_UNDO,
2000        POSTSUSPEND,
2001};
2002
2003static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
2004{
2005        int i = t->num_targets;
2006        struct dm_target *ti = t->targets;
2007
2008        lockdep_assert_held(&t->md->suspend_lock);
2009
2010        while (i--) {
2011                switch (mode) {
2012                case PRESUSPEND:
2013                        if (ti->type->presuspend)
2014                                ti->type->presuspend(ti);
2015                        break;
2016                case PRESUSPEND_UNDO:
2017                        if (ti->type->presuspend_undo)
2018                                ti->type->presuspend_undo(ti);
2019                        break;
2020                case POSTSUSPEND:
2021                        if (ti->type->postsuspend)
2022                                ti->type->postsuspend(ti);
2023                        break;
2024                }
2025                ti++;
2026        }
2027}
2028
2029void dm_table_presuspend_targets(struct dm_table *t)
2030{
2031        if (!t)
2032                return;
2033
2034        suspend_targets(t, PRESUSPEND);
2035}
2036
2037void dm_table_presuspend_undo_targets(struct dm_table *t)
2038{
2039        if (!t)
2040                return;
2041
2042        suspend_targets(t, PRESUSPEND_UNDO);
2043}
2044
2045void dm_table_postsuspend_targets(struct dm_table *t)
2046{
2047        if (!t)
2048                return;
2049
2050        suspend_targets(t, POSTSUSPEND);
2051}
2052
2053int dm_table_resume_targets(struct dm_table *t)
2054{
2055        int i, r = 0;
2056
2057        lockdep_assert_held(&t->md->suspend_lock);
2058
2059        for (i = 0; i < t->num_targets; i++) {
2060                struct dm_target *ti = t->targets + i;
2061
2062                if (!ti->type->preresume)
2063                        continue;
2064
2065                r = ti->type->preresume(ti);
2066                if (r) {
2067                        DMERR("%s: %s: preresume failed, error = %d",
2068                              dm_device_name(t->md), ti->type->name, r);
2069                        return r;
2070                }
2071        }
2072
2073        for (i = 0; i < t->num_targets; i++) {
2074                struct dm_target *ti = t->targets + i;
2075
2076                if (ti->type->resume)
2077                        ti->type->resume(ti);
2078        }
2079
2080        return 0;
2081}
2082
2083void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
2084{
2085        list_add(&cb->list, &t->target_callbacks);
2086}
2087EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
2088
2089int dm_table_any_congested(struct dm_table *t, int bdi_bits)
2090{
2091        struct dm_dev_internal *dd;
2092        struct list_head *devices = dm_table_get_devices(t);
2093        struct dm_target_callbacks *cb;
2094        int r = 0;
2095
2096        list_for_each_entry(dd, devices, list) {
2097                struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
2098                char b[BDEVNAME_SIZE];
2099
2100                if (likely(q))
2101                        r |= bdi_congested(q->backing_dev_info, bdi_bits);
2102                else
2103                        DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
2104                                     dm_device_name(t->md),
2105                                     bdevname(dd->dm_dev->bdev, b));
2106        }
2107
2108        list_for_each_entry(cb, &t->target_callbacks, list)
2109                if (cb->congested_fn)
2110                        r |= cb->congested_fn(cb, bdi_bits);
2111
2112        return r;
2113}
2114
2115struct mapped_device *dm_table_get_md(struct dm_table *t)
2116{
2117        return t->md;
2118}
2119EXPORT_SYMBOL(dm_table_get_md);
2120
2121const char *dm_table_device_name(struct dm_table *t)
2122{
2123        return dm_device_name(t->md);
2124}
2125EXPORT_SYMBOL_GPL(dm_table_device_name);
2126
2127void dm_table_run_md_queue_async(struct dm_table *t)
2128{
2129        struct mapped_device *md;
2130        struct request_queue *queue;
2131
2132        if (!dm_table_request_based(t))
2133                return;
2134
2135        md = dm_table_get_md(t);
2136        queue = dm_get_md_queue(md);
2137        if (queue)
2138                blk_mq_run_hw_queues(queue, true);
2139}
2140EXPORT_SYMBOL(dm_table_run_md_queue_async);
2141
2142