linux/drivers/md/dm-verity-target.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2012 Red Hat, Inc.
   4 *
   5 * Author: Mikulas Patocka <mpatocka@redhat.com>
   6 *
   7 * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
   8 *
   9 * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
  10 * default prefetch value. Data are read in "prefetch_cluster" chunks from the
  11 * hash device. Setting this greatly improves performance when data and hash
  12 * are on the same disk on different partitions on devices with poor random
  13 * access behavior.
  14 */
  15
  16#include "dm-verity.h"
  17#include "dm-verity-fec.h"
  18
  19#include <linux/module.h>
  20#include <linux/reboot.h>
  21
  22#define DM_MSG_PREFIX                   "verity"
  23
  24#define DM_VERITY_ENV_LENGTH            42
  25#define DM_VERITY_ENV_VAR_NAME          "DM_VERITY_ERR_BLOCK_NR"
  26
  27#define DM_VERITY_DEFAULT_PREFETCH_SIZE 262144
  28
  29#define DM_VERITY_MAX_CORRUPTED_ERRS    100
  30
  31#define DM_VERITY_OPT_LOGGING           "ignore_corruption"
  32#define DM_VERITY_OPT_RESTART           "restart_on_corruption"
  33#define DM_VERITY_OPT_IGN_ZEROES        "ignore_zero_blocks"
  34#define DM_VERITY_OPT_AT_MOST_ONCE      "check_at_most_once"
  35
  36#define DM_VERITY_OPTS_MAX              (2 + DM_VERITY_OPTS_FEC)
  37
  38static unsigned dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
  39
  40module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, S_IRUGO | S_IWUSR);
  41
  42struct dm_verity_prefetch_work {
  43        struct work_struct work;
  44        struct dm_verity *v;
  45        sector_t block;
  46        unsigned n_blocks;
  47};
  48
  49/*
  50 * Auxiliary structure appended to each dm-bufio buffer. If the value
  51 * hash_verified is nonzero, hash of the block has been verified.
  52 *
  53 * The variable hash_verified is set to 0 when allocating the buffer, then
  54 * it can be changed to 1 and it is never reset to 0 again.
  55 *
  56 * There is no lock around this value, a race condition can at worst cause
  57 * that multiple processes verify the hash of the same buffer simultaneously
  58 * and write 1 to hash_verified simultaneously.
  59 * This condition is harmless, so we don't need locking.
  60 */
  61struct buffer_aux {
  62        int hash_verified;
  63};
  64
  65/*
  66 * Initialize struct buffer_aux for a freshly created buffer.
  67 */
  68static void dm_bufio_alloc_callback(struct dm_buffer *buf)
  69{
  70        struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
  71
  72        aux->hash_verified = 0;
  73}
  74
  75/*
  76 * Translate input sector number to the sector number on the target device.
  77 */
  78static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
  79{
  80        return v->data_start + dm_target_offset(v->ti, bi_sector);
  81}
  82
  83/*
  84 * Return hash position of a specified block at a specified tree level
  85 * (0 is the lowest level).
  86 * The lowest "hash_per_block_bits"-bits of the result denote hash position
  87 * inside a hash block. The remaining bits denote location of the hash block.
  88 */
  89static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
  90                                         int level)
  91{
  92        return block >> (level * v->hash_per_block_bits);
  93}
  94
  95static int verity_hash_update(struct dm_verity *v, struct ahash_request *req,
  96                                const u8 *data, size_t len,
  97                                struct crypto_wait *wait)
  98{
  99        struct scatterlist sg;
 100
 101        if (likely(!is_vmalloc_addr(data))) {
 102                sg_init_one(&sg, data, len);
 103                ahash_request_set_crypt(req, &sg, NULL, len);
 104                return crypto_wait_req(crypto_ahash_update(req), wait);
 105        } else {
 106                do {
 107                        int r;
 108                        size_t this_step = min_t(size_t, len, PAGE_SIZE - offset_in_page(data));
 109                        flush_kernel_vmap_range((void *)data, this_step);
 110                        sg_init_table(&sg, 1);
 111                        sg_set_page(&sg, vmalloc_to_page(data), this_step, offset_in_page(data));
 112                        ahash_request_set_crypt(req, &sg, NULL, this_step);
 113                        r = crypto_wait_req(crypto_ahash_update(req), wait);
 114                        if (unlikely(r))
 115                                return r;
 116                        data += this_step;
 117                        len -= this_step;
 118                } while (len);
 119                return 0;
 120        }
 121}
 122
 123/*
 124 * Wrapper for crypto_ahash_init, which handles verity salting.
 125 */
 126static int verity_hash_init(struct dm_verity *v, struct ahash_request *req,
 127                                struct crypto_wait *wait)
 128{
 129        int r;
 130
 131        ahash_request_set_tfm(req, v->tfm);
 132        ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP |
 133                                        CRYPTO_TFM_REQ_MAY_BACKLOG,
 134                                        crypto_req_done, (void *)wait);
 135        crypto_init_wait(wait);
 136
 137        r = crypto_wait_req(crypto_ahash_init(req), wait);
 138
 139        if (unlikely(r < 0)) {
 140                DMERR("crypto_ahash_init failed: %d", r);
 141                return r;
 142        }
 143
 144        if (likely(v->salt_size && (v->version >= 1)))
 145                r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
 146
 147        return r;
 148}
 149
 150static int verity_hash_final(struct dm_verity *v, struct ahash_request *req,
 151                             u8 *digest, struct crypto_wait *wait)
 152{
 153        int r;
 154
 155        if (unlikely(v->salt_size && (!v->version))) {
 156                r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
 157
 158                if (r < 0) {
 159                        DMERR("verity_hash_final failed updating salt: %d", r);
 160                        goto out;
 161                }
 162        }
 163
 164        ahash_request_set_crypt(req, NULL, digest, 0);
 165        r = crypto_wait_req(crypto_ahash_final(req), wait);
 166out:
 167        return r;
 168}
 169
 170int verity_hash(struct dm_verity *v, struct ahash_request *req,
 171                const u8 *data, size_t len, u8 *digest)
 172{
 173        int r;
 174        struct crypto_wait wait;
 175
 176        r = verity_hash_init(v, req, &wait);
 177        if (unlikely(r < 0))
 178                goto out;
 179
 180        r = verity_hash_update(v, req, data, len, &wait);
 181        if (unlikely(r < 0))
 182                goto out;
 183
 184        r = verity_hash_final(v, req, digest, &wait);
 185
 186out:
 187        return r;
 188}
 189
 190static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
 191                                 sector_t *hash_block, unsigned *offset)
 192{
 193        sector_t position = verity_position_at_level(v, block, level);
 194        unsigned idx;
 195
 196        *hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
 197
 198        if (!offset)
 199                return;
 200
 201        idx = position & ((1 << v->hash_per_block_bits) - 1);
 202        if (!v->version)
 203                *offset = idx * v->digest_size;
 204        else
 205                *offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
 206}
 207
 208/*
 209 * Handle verification errors.
 210 */
 211static int verity_handle_err(struct dm_verity *v, enum verity_block_type type,
 212                             unsigned long long block)
 213{
 214        char verity_env[DM_VERITY_ENV_LENGTH];
 215        char *envp[] = { verity_env, NULL };
 216        const char *type_str = "";
 217        struct mapped_device *md = dm_table_get_md(v->ti->table);
 218
 219        /* Corruption should be visible in device status in all modes */
 220        v->hash_failed = 1;
 221
 222        if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS)
 223                goto out;
 224
 225        v->corrupted_errs++;
 226
 227        switch (type) {
 228        case DM_VERITY_BLOCK_TYPE_DATA:
 229                type_str = "data";
 230                break;
 231        case DM_VERITY_BLOCK_TYPE_METADATA:
 232                type_str = "metadata";
 233                break;
 234        default:
 235                BUG();
 236        }
 237
 238        DMERR_LIMIT("%s: %s block %llu is corrupted", v->data_dev->name,
 239                    type_str, block);
 240
 241        if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS)
 242                DMERR("%s: reached maximum errors", v->data_dev->name);
 243
 244        snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu",
 245                DM_VERITY_ENV_VAR_NAME, type, block);
 246
 247        kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp);
 248
 249out:
 250        if (v->mode == DM_VERITY_MODE_LOGGING)
 251                return 0;
 252
 253        if (v->mode == DM_VERITY_MODE_RESTART)
 254                kernel_restart("dm-verity device corrupted");
 255
 256        return 1;
 257}
 258
 259/*
 260 * Verify hash of a metadata block pertaining to the specified data block
 261 * ("block" argument) at a specified level ("level" argument).
 262 *
 263 * On successful return, verity_io_want_digest(v, io) contains the hash value
 264 * for a lower tree level or for the data block (if we're at the lowest level).
 265 *
 266 * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
 267 * If "skip_unverified" is false, unverified buffer is hashed and verified
 268 * against current value of verity_io_want_digest(v, io).
 269 */
 270static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io,
 271                               sector_t block, int level, bool skip_unverified,
 272                               u8 *want_digest)
 273{
 274        struct dm_buffer *buf;
 275        struct buffer_aux *aux;
 276        u8 *data;
 277        int r;
 278        sector_t hash_block;
 279        unsigned offset;
 280
 281        verity_hash_at_level(v, block, level, &hash_block, &offset);
 282
 283        data = dm_bufio_read(v->bufio, hash_block, &buf);
 284        if (IS_ERR(data))
 285                return PTR_ERR(data);
 286
 287        aux = dm_bufio_get_aux_data(buf);
 288
 289        if (!aux->hash_verified) {
 290                if (skip_unverified) {
 291                        r = 1;
 292                        goto release_ret_r;
 293                }
 294
 295                r = verity_hash(v, verity_io_hash_req(v, io),
 296                                data, 1 << v->hash_dev_block_bits,
 297                                verity_io_real_digest(v, io));
 298                if (unlikely(r < 0))
 299                        goto release_ret_r;
 300
 301                if (likely(memcmp(verity_io_real_digest(v, io), want_digest,
 302                                  v->digest_size) == 0))
 303                        aux->hash_verified = 1;
 304                else if (verity_fec_decode(v, io,
 305                                           DM_VERITY_BLOCK_TYPE_METADATA,
 306                                           hash_block, data, NULL) == 0)
 307                        aux->hash_verified = 1;
 308                else if (verity_handle_err(v,
 309                                           DM_VERITY_BLOCK_TYPE_METADATA,
 310                                           hash_block)) {
 311                        r = -EIO;
 312                        goto release_ret_r;
 313                }
 314        }
 315
 316        data += offset;
 317        memcpy(want_digest, data, v->digest_size);
 318        r = 0;
 319
 320release_ret_r:
 321        dm_bufio_release(buf);
 322        return r;
 323}
 324
 325/*
 326 * Find a hash for a given block, write it to digest and verify the integrity
 327 * of the hash tree if necessary.
 328 */
 329int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io,
 330                          sector_t block, u8 *digest, bool *is_zero)
 331{
 332        int r = 0, i;
 333
 334        if (likely(v->levels)) {
 335                /*
 336                 * First, we try to get the requested hash for
 337                 * the current block. If the hash block itself is
 338                 * verified, zero is returned. If it isn't, this
 339                 * function returns 1 and we fall back to whole
 340                 * chain verification.
 341                 */
 342                r = verity_verify_level(v, io, block, 0, true, digest);
 343                if (likely(r <= 0))
 344                        goto out;
 345        }
 346
 347        memcpy(digest, v->root_digest, v->digest_size);
 348
 349        for (i = v->levels - 1; i >= 0; i--) {
 350                r = verity_verify_level(v, io, block, i, false, digest);
 351                if (unlikely(r))
 352                        goto out;
 353        }
 354out:
 355        if (!r && v->zero_digest)
 356                *is_zero = !memcmp(v->zero_digest, digest, v->digest_size);
 357        else
 358                *is_zero = false;
 359
 360        return r;
 361}
 362
 363/*
 364 * Calculates the digest for the given bio
 365 */
 366static int verity_for_io_block(struct dm_verity *v, struct dm_verity_io *io,
 367                               struct bvec_iter *iter, struct crypto_wait *wait)
 368{
 369        unsigned int todo = 1 << v->data_dev_block_bits;
 370        struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
 371        struct scatterlist sg;
 372        struct ahash_request *req = verity_io_hash_req(v, io);
 373
 374        do {
 375                int r;
 376                unsigned int len;
 377                struct bio_vec bv = bio_iter_iovec(bio, *iter);
 378
 379                sg_init_table(&sg, 1);
 380
 381                len = bv.bv_len;
 382
 383                if (likely(len >= todo))
 384                        len = todo;
 385                /*
 386                 * Operating on a single page at a time looks suboptimal
 387                 * until you consider the typical block size is 4,096B.
 388                 * Going through this loops twice should be very rare.
 389                 */
 390                sg_set_page(&sg, bv.bv_page, len, bv.bv_offset);
 391                ahash_request_set_crypt(req, &sg, NULL, len);
 392                r = crypto_wait_req(crypto_ahash_update(req), wait);
 393
 394                if (unlikely(r < 0)) {
 395                        DMERR("verity_for_io_block crypto op failed: %d", r);
 396                        return r;
 397                }
 398
 399                bio_advance_iter(bio, iter, len);
 400                todo -= len;
 401        } while (todo);
 402
 403        return 0;
 404}
 405
 406/*
 407 * Calls function process for 1 << v->data_dev_block_bits bytes in the bio_vec
 408 * starting from iter.
 409 */
 410int verity_for_bv_block(struct dm_verity *v, struct dm_verity_io *io,
 411                        struct bvec_iter *iter,
 412                        int (*process)(struct dm_verity *v,
 413                                       struct dm_verity_io *io, u8 *data,
 414                                       size_t len))
 415{
 416        unsigned todo = 1 << v->data_dev_block_bits;
 417        struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
 418
 419        do {
 420                int r;
 421                u8 *page;
 422                unsigned len;
 423                struct bio_vec bv = bio_iter_iovec(bio, *iter);
 424
 425                page = kmap_atomic(bv.bv_page);
 426                len = bv.bv_len;
 427
 428                if (likely(len >= todo))
 429                        len = todo;
 430
 431                r = process(v, io, page + bv.bv_offset, len);
 432                kunmap_atomic(page);
 433
 434                if (r < 0)
 435                        return r;
 436
 437                bio_advance_iter(bio, iter, len);
 438                todo -= len;
 439        } while (todo);
 440
 441        return 0;
 442}
 443
 444static int verity_bv_zero(struct dm_verity *v, struct dm_verity_io *io,
 445                          u8 *data, size_t len)
 446{
 447        memset(data, 0, len);
 448        return 0;
 449}
 450
 451/*
 452 * Moves the bio iter one data block forward.
 453 */
 454static inline void verity_bv_skip_block(struct dm_verity *v,
 455                                        struct dm_verity_io *io,
 456                                        struct bvec_iter *iter)
 457{
 458        struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
 459
 460        bio_advance_iter(bio, iter, 1 << v->data_dev_block_bits);
 461}
 462
 463/*
 464 * Verify one "dm_verity_io" structure.
 465 */
 466static int verity_verify_io(struct dm_verity_io *io)
 467{
 468        bool is_zero;
 469        struct dm_verity *v = io->v;
 470        struct bvec_iter start;
 471        unsigned b;
 472        struct crypto_wait wait;
 473
 474        for (b = 0; b < io->n_blocks; b++) {
 475                int r;
 476                sector_t cur_block = io->block + b;
 477                struct ahash_request *req = verity_io_hash_req(v, io);
 478
 479                if (v->validated_blocks &&
 480                    likely(test_bit(cur_block, v->validated_blocks))) {
 481                        verity_bv_skip_block(v, io, &io->iter);
 482                        continue;
 483                }
 484
 485                r = verity_hash_for_block(v, io, cur_block,
 486                                          verity_io_want_digest(v, io),
 487                                          &is_zero);
 488                if (unlikely(r < 0))
 489                        return r;
 490
 491                if (is_zero) {
 492                        /*
 493                         * If we expect a zero block, don't validate, just
 494                         * return zeros.
 495                         */
 496                        r = verity_for_bv_block(v, io, &io->iter,
 497                                                verity_bv_zero);
 498                        if (unlikely(r < 0))
 499                                return r;
 500
 501                        continue;
 502                }
 503
 504                r = verity_hash_init(v, req, &wait);
 505                if (unlikely(r < 0))
 506                        return r;
 507
 508                start = io->iter;
 509                r = verity_for_io_block(v, io, &io->iter, &wait);
 510                if (unlikely(r < 0))
 511                        return r;
 512
 513                r = verity_hash_final(v, req, verity_io_real_digest(v, io),
 514                                        &wait);
 515                if (unlikely(r < 0))
 516                        return r;
 517
 518                if (likely(memcmp(verity_io_real_digest(v, io),
 519                                  verity_io_want_digest(v, io), v->digest_size) == 0)) {
 520                        if (v->validated_blocks)
 521                                set_bit(cur_block, v->validated_blocks);
 522                        continue;
 523                }
 524                else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA,
 525                                           cur_block, NULL, &start) == 0)
 526                        continue;
 527                else if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA,
 528                                           cur_block))
 529                        return -EIO;
 530        }
 531
 532        return 0;
 533}
 534
 535/*
 536 * End one "io" structure with a given error.
 537 */
 538static void verity_finish_io(struct dm_verity_io *io, blk_status_t status)
 539{
 540        struct dm_verity *v = io->v;
 541        struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
 542
 543        bio->bi_end_io = io->orig_bi_end_io;
 544        bio->bi_status = status;
 545
 546        verity_fec_finish_io(io);
 547
 548        bio_endio(bio);
 549}
 550
 551static void verity_work(struct work_struct *w)
 552{
 553        struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
 554
 555        verity_finish_io(io, errno_to_blk_status(verity_verify_io(io)));
 556}
 557
 558static void verity_end_io(struct bio *bio)
 559{
 560        struct dm_verity_io *io = bio->bi_private;
 561
 562        if (bio->bi_status && !verity_fec_is_enabled(io->v)) {
 563                verity_finish_io(io, bio->bi_status);
 564                return;
 565        }
 566
 567        INIT_WORK(&io->work, verity_work);
 568        queue_work(io->v->verify_wq, &io->work);
 569}
 570
 571/*
 572 * Prefetch buffers for the specified io.
 573 * The root buffer is not prefetched, it is assumed that it will be cached
 574 * all the time.
 575 */
 576static void verity_prefetch_io(struct work_struct *work)
 577{
 578        struct dm_verity_prefetch_work *pw =
 579                container_of(work, struct dm_verity_prefetch_work, work);
 580        struct dm_verity *v = pw->v;
 581        int i;
 582
 583        for (i = v->levels - 2; i >= 0; i--) {
 584                sector_t hash_block_start;
 585                sector_t hash_block_end;
 586                verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL);
 587                verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL);
 588                if (!i) {
 589                        unsigned cluster = READ_ONCE(dm_verity_prefetch_cluster);
 590
 591                        cluster >>= v->data_dev_block_bits;
 592                        if (unlikely(!cluster))
 593                                goto no_prefetch_cluster;
 594
 595                        if (unlikely(cluster & (cluster - 1)))
 596                                cluster = 1 << __fls(cluster);
 597
 598                        hash_block_start &= ~(sector_t)(cluster - 1);
 599                        hash_block_end |= cluster - 1;
 600                        if (unlikely(hash_block_end >= v->hash_blocks))
 601                                hash_block_end = v->hash_blocks - 1;
 602                }
 603no_prefetch_cluster:
 604                dm_bufio_prefetch(v->bufio, hash_block_start,
 605                                  hash_block_end - hash_block_start + 1);
 606        }
 607
 608        kfree(pw);
 609}
 610
 611static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io)
 612{
 613        struct dm_verity_prefetch_work *pw;
 614
 615        pw = kmalloc(sizeof(struct dm_verity_prefetch_work),
 616                GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
 617
 618        if (!pw)
 619                return;
 620
 621        INIT_WORK(&pw->work, verity_prefetch_io);
 622        pw->v = v;
 623        pw->block = io->block;
 624        pw->n_blocks = io->n_blocks;
 625        queue_work(v->verify_wq, &pw->work);
 626}
 627
 628/*
 629 * Bio map function. It allocates dm_verity_io structure and bio vector and
 630 * fills them. Then it issues prefetches and the I/O.
 631 */
 632static int verity_map(struct dm_target *ti, struct bio *bio)
 633{
 634        struct dm_verity *v = ti->private;
 635        struct dm_verity_io *io;
 636
 637        bio_set_dev(bio, v->data_dev->bdev);
 638        bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector);
 639
 640        if (((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
 641            ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
 642                DMERR_LIMIT("unaligned io");
 643                return DM_MAPIO_KILL;
 644        }
 645
 646        if (bio_end_sector(bio) >>
 647            (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
 648                DMERR_LIMIT("io out of range");
 649                return DM_MAPIO_KILL;
 650        }
 651
 652        if (bio_data_dir(bio) == WRITE)
 653                return DM_MAPIO_KILL;
 654
 655        io = dm_per_bio_data(bio, ti->per_io_data_size);
 656        io->v = v;
 657        io->orig_bi_end_io = bio->bi_end_io;
 658        io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
 659        io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits;
 660
 661        bio->bi_end_io = verity_end_io;
 662        bio->bi_private = io;
 663        io->iter = bio->bi_iter;
 664
 665        verity_fec_init_io(io);
 666
 667        verity_submit_prefetch(v, io);
 668
 669        generic_make_request(bio);
 670
 671        return DM_MAPIO_SUBMITTED;
 672}
 673
 674/*
 675 * Status: V (valid) or C (corruption found)
 676 */
 677static void verity_status(struct dm_target *ti, status_type_t type,
 678                          unsigned status_flags, char *result, unsigned maxlen)
 679{
 680        struct dm_verity *v = ti->private;
 681        unsigned args = 0;
 682        unsigned sz = 0;
 683        unsigned x;
 684
 685        switch (type) {
 686        case STATUSTYPE_INFO:
 687                DMEMIT("%c", v->hash_failed ? 'C' : 'V');
 688                break;
 689        case STATUSTYPE_TABLE:
 690                DMEMIT("%u %s %s %u %u %llu %llu %s ",
 691                        v->version,
 692                        v->data_dev->name,
 693                        v->hash_dev->name,
 694                        1 << v->data_dev_block_bits,
 695                        1 << v->hash_dev_block_bits,
 696                        (unsigned long long)v->data_blocks,
 697                        (unsigned long long)v->hash_start,
 698                        v->alg_name
 699                        );
 700                for (x = 0; x < v->digest_size; x++)
 701                        DMEMIT("%02x", v->root_digest[x]);
 702                DMEMIT(" ");
 703                if (!v->salt_size)
 704                        DMEMIT("-");
 705                else
 706                        for (x = 0; x < v->salt_size; x++)
 707                                DMEMIT("%02x", v->salt[x]);
 708                if (v->mode != DM_VERITY_MODE_EIO)
 709                        args++;
 710                if (verity_fec_is_enabled(v))
 711                        args += DM_VERITY_OPTS_FEC;
 712                if (v->zero_digest)
 713                        args++;
 714                if (v->validated_blocks)
 715                        args++;
 716                if (!args)
 717                        return;
 718                DMEMIT(" %u", args);
 719                if (v->mode != DM_VERITY_MODE_EIO) {
 720                        DMEMIT(" ");
 721                        switch (v->mode) {
 722                        case DM_VERITY_MODE_LOGGING:
 723                                DMEMIT(DM_VERITY_OPT_LOGGING);
 724                                break;
 725                        case DM_VERITY_MODE_RESTART:
 726                                DMEMIT(DM_VERITY_OPT_RESTART);
 727                                break;
 728                        default:
 729                                BUG();
 730                        }
 731                }
 732                if (v->zero_digest)
 733                        DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES);
 734                if (v->validated_blocks)
 735                        DMEMIT(" " DM_VERITY_OPT_AT_MOST_ONCE);
 736                sz = verity_fec_status_table(v, sz, result, maxlen);
 737                break;
 738        }
 739}
 740
 741static int verity_prepare_ioctl(struct dm_target *ti, struct block_device **bdev)
 742{
 743        struct dm_verity *v = ti->private;
 744
 745        *bdev = v->data_dev->bdev;
 746
 747        if (v->data_start ||
 748            ti->len != i_size_read(v->data_dev->bdev->bd_inode) >> SECTOR_SHIFT)
 749                return 1;
 750        return 0;
 751}
 752
 753static int verity_iterate_devices(struct dm_target *ti,
 754                                  iterate_devices_callout_fn fn, void *data)
 755{
 756        struct dm_verity *v = ti->private;
 757
 758        return fn(ti, v->data_dev, v->data_start, ti->len, data);
 759}
 760
 761static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
 762{
 763        struct dm_verity *v = ti->private;
 764
 765        if (limits->logical_block_size < 1 << v->data_dev_block_bits)
 766                limits->logical_block_size = 1 << v->data_dev_block_bits;
 767
 768        if (limits->physical_block_size < 1 << v->data_dev_block_bits)
 769                limits->physical_block_size = 1 << v->data_dev_block_bits;
 770
 771        blk_limits_io_min(limits, limits->logical_block_size);
 772}
 773
 774static void verity_dtr(struct dm_target *ti)
 775{
 776        struct dm_verity *v = ti->private;
 777
 778        if (v->verify_wq)
 779                destroy_workqueue(v->verify_wq);
 780
 781        if (v->bufio)
 782                dm_bufio_client_destroy(v->bufio);
 783
 784        kvfree(v->validated_blocks);
 785        kfree(v->salt);
 786        kfree(v->root_digest);
 787        kfree(v->zero_digest);
 788
 789        if (v->tfm)
 790                crypto_free_ahash(v->tfm);
 791
 792        kfree(v->alg_name);
 793
 794        if (v->hash_dev)
 795                dm_put_device(ti, v->hash_dev);
 796
 797        if (v->data_dev)
 798                dm_put_device(ti, v->data_dev);
 799
 800        verity_fec_dtr(v);
 801
 802        kfree(v);
 803}
 804
 805static int verity_alloc_most_once(struct dm_verity *v)
 806{
 807        struct dm_target *ti = v->ti;
 808
 809        /* the bitset can only handle INT_MAX blocks */
 810        if (v->data_blocks > INT_MAX) {
 811                ti->error = "device too large to use check_at_most_once";
 812                return -E2BIG;
 813        }
 814
 815        v->validated_blocks = kvcalloc(BITS_TO_LONGS(v->data_blocks),
 816                                       sizeof(unsigned long),
 817                                       GFP_KERNEL);
 818        if (!v->validated_blocks) {
 819                ti->error = "failed to allocate bitset for check_at_most_once";
 820                return -ENOMEM;
 821        }
 822
 823        return 0;
 824}
 825
 826static int verity_alloc_zero_digest(struct dm_verity *v)
 827{
 828        int r = -ENOMEM;
 829        struct ahash_request *req;
 830        u8 *zero_data;
 831
 832        v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL);
 833
 834        if (!v->zero_digest)
 835                return r;
 836
 837        req = kmalloc(v->ahash_reqsize, GFP_KERNEL);
 838
 839        if (!req)
 840                return r; /* verity_dtr will free zero_digest */
 841
 842        zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL);
 843
 844        if (!zero_data)
 845                goto out;
 846
 847        r = verity_hash(v, req, zero_data, 1 << v->data_dev_block_bits,
 848                        v->zero_digest);
 849
 850out:
 851        kfree(req);
 852        kfree(zero_data);
 853
 854        return r;
 855}
 856
 857static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v)
 858{
 859        int r;
 860        unsigned argc;
 861        struct dm_target *ti = v->ti;
 862        const char *arg_name;
 863
 864        static const struct dm_arg _args[] = {
 865                {0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"},
 866        };
 867
 868        r = dm_read_arg_group(_args, as, &argc, &ti->error);
 869        if (r)
 870                return -EINVAL;
 871
 872        if (!argc)
 873                return 0;
 874
 875        do {
 876                arg_name = dm_shift_arg(as);
 877                argc--;
 878
 879                if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING)) {
 880                        v->mode = DM_VERITY_MODE_LOGGING;
 881                        continue;
 882
 883                } else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART)) {
 884                        v->mode = DM_VERITY_MODE_RESTART;
 885                        continue;
 886
 887                } else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) {
 888                        r = verity_alloc_zero_digest(v);
 889                        if (r) {
 890                                ti->error = "Cannot allocate zero digest";
 891                                return r;
 892                        }
 893                        continue;
 894
 895                } else if (!strcasecmp(arg_name, DM_VERITY_OPT_AT_MOST_ONCE)) {
 896                        r = verity_alloc_most_once(v);
 897                        if (r)
 898                                return r;
 899                        continue;
 900
 901                } else if (verity_is_fec_opt_arg(arg_name)) {
 902                        r = verity_fec_parse_opt_args(as, v, &argc, arg_name);
 903                        if (r)
 904                                return r;
 905                        continue;
 906                }
 907
 908                ti->error = "Unrecognized verity feature request";
 909                return -EINVAL;
 910        } while (argc && !r);
 911
 912        return r;
 913}
 914
 915/*
 916 * Target parameters:
 917 *      <version>       The current format is version 1.
 918 *                      Vsn 0 is compatible with original Chromium OS releases.
 919 *      <data device>
 920 *      <hash device>
 921 *      <data block size>
 922 *      <hash block size>
 923 *      <the number of data blocks>
 924 *      <hash start block>
 925 *      <algorithm>
 926 *      <digest>
 927 *      <salt>          Hex string or "-" if no salt.
 928 */
 929static int verity_ctr(struct dm_target *ti, unsigned argc, char **argv)
 930{
 931        struct dm_verity *v;
 932        struct dm_arg_set as;
 933        unsigned int num;
 934        unsigned long long num_ll;
 935        int r;
 936        int i;
 937        sector_t hash_position;
 938        char dummy;
 939
 940        v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
 941        if (!v) {
 942                ti->error = "Cannot allocate verity structure";
 943                return -ENOMEM;
 944        }
 945        ti->private = v;
 946        v->ti = ti;
 947
 948        r = verity_fec_ctr_alloc(v);
 949        if (r)
 950                goto bad;
 951
 952        if ((dm_table_get_mode(ti->table) & ~FMODE_READ)) {
 953                ti->error = "Device must be readonly";
 954                r = -EINVAL;
 955                goto bad;
 956        }
 957
 958        if (argc < 10) {
 959                ti->error = "Not enough arguments";
 960                r = -EINVAL;
 961                goto bad;
 962        }
 963
 964        if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 ||
 965            num > 1) {
 966                ti->error = "Invalid version";
 967                r = -EINVAL;
 968                goto bad;
 969        }
 970        v->version = num;
 971
 972        r = dm_get_device(ti, argv[1], FMODE_READ, &v->data_dev);
 973        if (r) {
 974                ti->error = "Data device lookup failed";
 975                goto bad;
 976        }
 977
 978        r = dm_get_device(ti, argv[2], FMODE_READ, &v->hash_dev);
 979        if (r) {
 980                ti->error = "Hash device lookup failed";
 981                goto bad;
 982        }
 983
 984        if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
 985            !num || (num & (num - 1)) ||
 986            num < bdev_logical_block_size(v->data_dev->bdev) ||
 987            num > PAGE_SIZE) {
 988                ti->error = "Invalid data device block size";
 989                r = -EINVAL;
 990                goto bad;
 991        }
 992        v->data_dev_block_bits = __ffs(num);
 993
 994        if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
 995            !num || (num & (num - 1)) ||
 996            num < bdev_logical_block_size(v->hash_dev->bdev) ||
 997            num > INT_MAX) {
 998                ti->error = "Invalid hash device block size";
 999                r = -EINVAL;
1000                goto bad;
1001        }
1002        v->hash_dev_block_bits = __ffs(num);
1003
1004        if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
1005            (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
1006            >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1007                ti->error = "Invalid data blocks";
1008                r = -EINVAL;
1009                goto bad;
1010        }
1011        v->data_blocks = num_ll;
1012
1013        if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
1014                ti->error = "Data device is too small";
1015                r = -EINVAL;
1016                goto bad;
1017        }
1018
1019        if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
1020            (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
1021            >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1022                ti->error = "Invalid hash start";
1023                r = -EINVAL;
1024                goto bad;
1025        }
1026        v->hash_start = num_ll;
1027
1028        v->alg_name = kstrdup(argv[7], GFP_KERNEL);
1029        if (!v->alg_name) {
1030                ti->error = "Cannot allocate algorithm name";
1031                r = -ENOMEM;
1032                goto bad;
1033        }
1034
1035        v->tfm = crypto_alloc_ahash(v->alg_name, 0, 0);
1036        if (IS_ERR(v->tfm)) {
1037                ti->error = "Cannot initialize hash function";
1038                r = PTR_ERR(v->tfm);
1039                v->tfm = NULL;
1040                goto bad;
1041        }
1042
1043        /*
1044         * dm-verity performance can vary greatly depending on which hash
1045         * algorithm implementation is used.  Help people debug performance
1046         * problems by logging the ->cra_driver_name.
1047         */
1048        DMINFO("%s using implementation \"%s\"", v->alg_name,
1049               crypto_hash_alg_common(v->tfm)->base.cra_driver_name);
1050
1051        v->digest_size = crypto_ahash_digestsize(v->tfm);
1052        if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
1053                ti->error = "Digest size too big";
1054                r = -EINVAL;
1055                goto bad;
1056        }
1057        v->ahash_reqsize = sizeof(struct ahash_request) +
1058                crypto_ahash_reqsize(v->tfm);
1059
1060        v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
1061        if (!v->root_digest) {
1062                ti->error = "Cannot allocate root digest";
1063                r = -ENOMEM;
1064                goto bad;
1065        }
1066        if (strlen(argv[8]) != v->digest_size * 2 ||
1067            hex2bin(v->root_digest, argv[8], v->digest_size)) {
1068                ti->error = "Invalid root digest";
1069                r = -EINVAL;
1070                goto bad;
1071        }
1072
1073        if (strcmp(argv[9], "-")) {
1074                v->salt_size = strlen(argv[9]) / 2;
1075                v->salt = kmalloc(v->salt_size, GFP_KERNEL);
1076                if (!v->salt) {
1077                        ti->error = "Cannot allocate salt";
1078                        r = -ENOMEM;
1079                        goto bad;
1080                }
1081                if (strlen(argv[9]) != v->salt_size * 2 ||
1082                    hex2bin(v->salt, argv[9], v->salt_size)) {
1083                        ti->error = "Invalid salt";
1084                        r = -EINVAL;
1085                        goto bad;
1086                }
1087        }
1088
1089        argv += 10;
1090        argc -= 10;
1091
1092        /* Optional parameters */
1093        if (argc) {
1094                as.argc = argc;
1095                as.argv = argv;
1096
1097                r = verity_parse_opt_args(&as, v);
1098                if (r < 0)
1099                        goto bad;
1100        }
1101
1102        v->hash_per_block_bits =
1103                __fls((1 << v->hash_dev_block_bits) / v->digest_size);
1104
1105        v->levels = 0;
1106        if (v->data_blocks)
1107                while (v->hash_per_block_bits * v->levels < 64 &&
1108                       (unsigned long long)(v->data_blocks - 1) >>
1109                       (v->hash_per_block_bits * v->levels))
1110                        v->levels++;
1111
1112        if (v->levels > DM_VERITY_MAX_LEVELS) {
1113                ti->error = "Too many tree levels";
1114                r = -E2BIG;
1115                goto bad;
1116        }
1117
1118        hash_position = v->hash_start;
1119        for (i = v->levels - 1; i >= 0; i--) {
1120                sector_t s;
1121                v->hash_level_block[i] = hash_position;
1122                s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1)
1123                                        >> ((i + 1) * v->hash_per_block_bits);
1124                if (hash_position + s < hash_position) {
1125                        ti->error = "Hash device offset overflow";
1126                        r = -E2BIG;
1127                        goto bad;
1128                }
1129                hash_position += s;
1130        }
1131        v->hash_blocks = hash_position;
1132
1133        v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
1134                1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
1135                dm_bufio_alloc_callback, NULL);
1136        if (IS_ERR(v->bufio)) {
1137                ti->error = "Cannot initialize dm-bufio";
1138                r = PTR_ERR(v->bufio);
1139                v->bufio = NULL;
1140                goto bad;
1141        }
1142
1143        if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
1144                ti->error = "Hash device is too small";
1145                r = -E2BIG;
1146                goto bad;
1147        }
1148
1149        /* WQ_UNBOUND greatly improves performance when running on ramdisk */
1150        v->verify_wq = alloc_workqueue("kverityd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND, num_online_cpus());
1151        if (!v->verify_wq) {
1152                ti->error = "Cannot allocate workqueue";
1153                r = -ENOMEM;
1154                goto bad;
1155        }
1156
1157        ti->per_io_data_size = sizeof(struct dm_verity_io) +
1158                                v->ahash_reqsize + v->digest_size * 2;
1159
1160        r = verity_fec_ctr(v);
1161        if (r)
1162                goto bad;
1163
1164        ti->per_io_data_size = roundup(ti->per_io_data_size,
1165                                       __alignof__(struct dm_verity_io));
1166
1167        return 0;
1168
1169bad:
1170        verity_dtr(ti);
1171
1172        return r;
1173}
1174
1175static struct target_type verity_target = {
1176        .name           = "verity",
1177        .version        = {1, 4, 0},
1178        .module         = THIS_MODULE,
1179        .ctr            = verity_ctr,
1180        .dtr            = verity_dtr,
1181        .map            = verity_map,
1182        .status         = verity_status,
1183        .prepare_ioctl  = verity_prepare_ioctl,
1184        .iterate_devices = verity_iterate_devices,
1185        .io_hints       = verity_io_hints,
1186};
1187
1188static int __init dm_verity_init(void)
1189{
1190        int r;
1191
1192        r = dm_register_target(&verity_target);
1193        if (r < 0)
1194                DMERR("register failed %d", r);
1195
1196        return r;
1197}
1198
1199static void __exit dm_verity_exit(void)
1200{
1201        dm_unregister_target(&verity_target);
1202}
1203
1204module_init(dm_verity_init);
1205module_exit(dm_verity_exit);
1206
1207MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
1208MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>");
1209MODULE_AUTHOR("Will Drewry <wad@chromium.org>");
1210MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
1211MODULE_LICENSE("GPL");
1212