linux/drivers/md/dm-writecache.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2018 Red Hat. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include <linux/device-mapper.h>
   9#include <linux/module.h>
  10#include <linux/init.h>
  11#include <linux/vmalloc.h>
  12#include <linux/kthread.h>
  13#include <linux/dm-io.h>
  14#include <linux/dm-kcopyd.h>
  15#include <linux/dax.h>
  16#include <linux/pfn_t.h>
  17#include <linux/libnvdimm.h>
  18
  19#define DM_MSG_PREFIX "writecache"
  20
  21#define HIGH_WATERMARK                  50
  22#define LOW_WATERMARK                   45
  23#define MAX_WRITEBACK_JOBS              0
  24#define ENDIO_LATENCY                   16
  25#define WRITEBACK_LATENCY               64
  26#define AUTOCOMMIT_BLOCKS_SSD           65536
  27#define AUTOCOMMIT_BLOCKS_PMEM          64
  28#define AUTOCOMMIT_MSEC                 1000
  29
  30#define BITMAP_GRANULARITY      65536
  31#if BITMAP_GRANULARITY < PAGE_SIZE
  32#undef BITMAP_GRANULARITY
  33#define BITMAP_GRANULARITY      PAGE_SIZE
  34#endif
  35
  36#if IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API) && IS_ENABLED(CONFIG_DAX_DRIVER)
  37#define DM_WRITECACHE_HAS_PMEM
  38#endif
  39
  40#ifdef DM_WRITECACHE_HAS_PMEM
  41#define pmem_assign(dest, src)                                  \
  42do {                                                            \
  43        typeof(dest) uniq = (src);                              \
  44        memcpy_flushcache(&(dest), &uniq, sizeof(dest));        \
  45} while (0)
  46#else
  47#define pmem_assign(dest, src)  ((dest) = (src))
  48#endif
  49
  50#if defined(__HAVE_ARCH_MEMCPY_MCSAFE) && defined(DM_WRITECACHE_HAS_PMEM)
  51#define DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
  52#endif
  53
  54#define MEMORY_SUPERBLOCK_MAGIC         0x23489321
  55#define MEMORY_SUPERBLOCK_VERSION       1
  56
  57struct wc_memory_entry {
  58        __le64 original_sector;
  59        __le64 seq_count;
  60};
  61
  62struct wc_memory_superblock {
  63        union {
  64                struct {
  65                        __le32 magic;
  66                        __le32 version;
  67                        __le32 block_size;
  68                        __le32 pad;
  69                        __le64 n_blocks;
  70                        __le64 seq_count;
  71                };
  72                __le64 padding[8];
  73        };
  74        struct wc_memory_entry entries[0];
  75};
  76
  77struct wc_entry {
  78        struct rb_node rb_node;
  79        struct list_head lru;
  80        unsigned short wc_list_contiguous;
  81        bool write_in_progress
  82#if BITS_PER_LONG == 64
  83                :1
  84#endif
  85        ;
  86        unsigned long index
  87#if BITS_PER_LONG == 64
  88                :47
  89#endif
  90        ;
  91#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
  92        uint64_t original_sector;
  93        uint64_t seq_count;
  94#endif
  95};
  96
  97#ifdef DM_WRITECACHE_HAS_PMEM
  98#define WC_MODE_PMEM(wc)                        ((wc)->pmem_mode)
  99#define WC_MODE_FUA(wc)                         ((wc)->writeback_fua)
 100#else
 101#define WC_MODE_PMEM(wc)                        false
 102#define WC_MODE_FUA(wc)                         false
 103#endif
 104#define WC_MODE_SORT_FREELIST(wc)               (!WC_MODE_PMEM(wc))
 105
 106struct dm_writecache {
 107        struct mutex lock;
 108        struct list_head lru;
 109        union {
 110                struct list_head freelist;
 111                struct {
 112                        struct rb_root freetree;
 113                        struct wc_entry *current_free;
 114                };
 115        };
 116        struct rb_root tree;
 117
 118        size_t freelist_size;
 119        size_t writeback_size;
 120        size_t freelist_high_watermark;
 121        size_t freelist_low_watermark;
 122
 123        unsigned uncommitted_blocks;
 124        unsigned autocommit_blocks;
 125        unsigned max_writeback_jobs;
 126
 127        int error;
 128
 129        unsigned long autocommit_jiffies;
 130        struct timer_list autocommit_timer;
 131        struct wait_queue_head freelist_wait;
 132
 133        atomic_t bio_in_progress[2];
 134        struct wait_queue_head bio_in_progress_wait[2];
 135
 136        struct dm_target *ti;
 137        struct dm_dev *dev;
 138        struct dm_dev *ssd_dev;
 139        sector_t start_sector;
 140        void *memory_map;
 141        uint64_t memory_map_size;
 142        size_t metadata_sectors;
 143        size_t n_blocks;
 144        uint64_t seq_count;
 145        void *block_start;
 146        struct wc_entry *entries;
 147        unsigned block_size;
 148        unsigned char block_size_bits;
 149
 150        bool pmem_mode:1;
 151        bool writeback_fua:1;
 152
 153        bool overwrote_committed:1;
 154        bool memory_vmapped:1;
 155
 156        bool high_wm_percent_set:1;
 157        bool low_wm_percent_set:1;
 158        bool max_writeback_jobs_set:1;
 159        bool autocommit_blocks_set:1;
 160        bool autocommit_time_set:1;
 161        bool writeback_fua_set:1;
 162        bool flush_on_suspend:1;
 163
 164        unsigned writeback_all;
 165        struct workqueue_struct *writeback_wq;
 166        struct work_struct writeback_work;
 167        struct work_struct flush_work;
 168
 169        struct dm_io_client *dm_io;
 170
 171        raw_spinlock_t endio_list_lock;
 172        struct list_head endio_list;
 173        struct task_struct *endio_thread;
 174
 175        struct task_struct *flush_thread;
 176        struct bio_list flush_list;
 177
 178        struct dm_kcopyd_client *dm_kcopyd;
 179        unsigned long *dirty_bitmap;
 180        unsigned dirty_bitmap_size;
 181
 182        struct bio_set bio_set;
 183        mempool_t copy_pool;
 184};
 185
 186#define WB_LIST_INLINE          16
 187
 188struct writeback_struct {
 189        struct list_head endio_entry;
 190        struct dm_writecache *wc;
 191        struct wc_entry **wc_list;
 192        unsigned wc_list_n;
 193        struct page *page;
 194        struct wc_entry *wc_list_inline[WB_LIST_INLINE];
 195        struct bio bio;
 196};
 197
 198struct copy_struct {
 199        struct list_head endio_entry;
 200        struct dm_writecache *wc;
 201        struct wc_entry *e;
 202        unsigned n_entries;
 203        int error;
 204};
 205
 206DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(dm_writecache_throttle,
 207                                            "A percentage of time allocated for data copying");
 208
 209static void wc_lock(struct dm_writecache *wc)
 210{
 211        mutex_lock(&wc->lock);
 212}
 213
 214static void wc_unlock(struct dm_writecache *wc)
 215{
 216        mutex_unlock(&wc->lock);
 217}
 218
 219#ifdef DM_WRITECACHE_HAS_PMEM
 220static int persistent_memory_claim(struct dm_writecache *wc)
 221{
 222        int r;
 223        loff_t s;
 224        long p, da;
 225        pfn_t pfn;
 226        int id;
 227        struct page **pages;
 228
 229        wc->memory_vmapped = false;
 230
 231        if (!wc->ssd_dev->dax_dev) {
 232                r = -EOPNOTSUPP;
 233                goto err1;
 234        }
 235        s = wc->memory_map_size;
 236        p = s >> PAGE_SHIFT;
 237        if (!p) {
 238                r = -EINVAL;
 239                goto err1;
 240        }
 241        if (p != s >> PAGE_SHIFT) {
 242                r = -EOVERFLOW;
 243                goto err1;
 244        }
 245
 246        id = dax_read_lock();
 247
 248        da = dax_direct_access(wc->ssd_dev->dax_dev, 0, p, &wc->memory_map, &pfn);
 249        if (da < 0) {
 250                wc->memory_map = NULL;
 251                r = da;
 252                goto err2;
 253        }
 254        if (!pfn_t_has_page(pfn)) {
 255                wc->memory_map = NULL;
 256                r = -EOPNOTSUPP;
 257                goto err2;
 258        }
 259        if (da != p) {
 260                long i;
 261                wc->memory_map = NULL;
 262                pages = kvmalloc_array(p, sizeof(struct page *), GFP_KERNEL);
 263                if (!pages) {
 264                        r = -ENOMEM;
 265                        goto err2;
 266                }
 267                i = 0;
 268                do {
 269                        long daa;
 270                        daa = dax_direct_access(wc->ssd_dev->dax_dev, i, p - i,
 271                                                NULL, &pfn);
 272                        if (daa <= 0) {
 273                                r = daa ? daa : -EINVAL;
 274                                goto err3;
 275                        }
 276                        if (!pfn_t_has_page(pfn)) {
 277                                r = -EOPNOTSUPP;
 278                                goto err3;
 279                        }
 280                        while (daa-- && i < p) {
 281                                pages[i++] = pfn_t_to_page(pfn);
 282                                pfn.val++;
 283                        }
 284                } while (i < p);
 285                wc->memory_map = vmap(pages, p, VM_MAP, PAGE_KERNEL);
 286                if (!wc->memory_map) {
 287                        r = -ENOMEM;
 288                        goto err3;
 289                }
 290                kvfree(pages);
 291                wc->memory_vmapped = true;
 292        }
 293
 294        dax_read_unlock(id);
 295
 296        wc->memory_map += (size_t)wc->start_sector << SECTOR_SHIFT;
 297        wc->memory_map_size -= (size_t)wc->start_sector << SECTOR_SHIFT;
 298
 299        return 0;
 300err3:
 301        kvfree(pages);
 302err2:
 303        dax_read_unlock(id);
 304err1:
 305        return r;
 306}
 307#else
 308static int persistent_memory_claim(struct dm_writecache *wc)
 309{
 310        BUG();
 311}
 312#endif
 313
 314static void persistent_memory_release(struct dm_writecache *wc)
 315{
 316        if (wc->memory_vmapped)
 317                vunmap(wc->memory_map - ((size_t)wc->start_sector << SECTOR_SHIFT));
 318}
 319
 320static struct page *persistent_memory_page(void *addr)
 321{
 322        if (is_vmalloc_addr(addr))
 323                return vmalloc_to_page(addr);
 324        else
 325                return virt_to_page(addr);
 326}
 327
 328static unsigned persistent_memory_page_offset(void *addr)
 329{
 330        return (unsigned long)addr & (PAGE_SIZE - 1);
 331}
 332
 333static void persistent_memory_flush_cache(void *ptr, size_t size)
 334{
 335        if (is_vmalloc_addr(ptr))
 336                flush_kernel_vmap_range(ptr, size);
 337}
 338
 339static void persistent_memory_invalidate_cache(void *ptr, size_t size)
 340{
 341        if (is_vmalloc_addr(ptr))
 342                invalidate_kernel_vmap_range(ptr, size);
 343}
 344
 345static struct wc_memory_superblock *sb(struct dm_writecache *wc)
 346{
 347        return wc->memory_map;
 348}
 349
 350static struct wc_memory_entry *memory_entry(struct dm_writecache *wc, struct wc_entry *e)
 351{
 352        return &sb(wc)->entries[e->index];
 353}
 354
 355static void *memory_data(struct dm_writecache *wc, struct wc_entry *e)
 356{
 357        return (char *)wc->block_start + (e->index << wc->block_size_bits);
 358}
 359
 360static sector_t cache_sector(struct dm_writecache *wc, struct wc_entry *e)
 361{
 362        return wc->start_sector + wc->metadata_sectors +
 363                ((sector_t)e->index << (wc->block_size_bits - SECTOR_SHIFT));
 364}
 365
 366static uint64_t read_original_sector(struct dm_writecache *wc, struct wc_entry *e)
 367{
 368#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
 369        return e->original_sector;
 370#else
 371        return le64_to_cpu(memory_entry(wc, e)->original_sector);
 372#endif
 373}
 374
 375static uint64_t read_seq_count(struct dm_writecache *wc, struct wc_entry *e)
 376{
 377#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
 378        return e->seq_count;
 379#else
 380        return le64_to_cpu(memory_entry(wc, e)->seq_count);
 381#endif
 382}
 383
 384static void clear_seq_count(struct dm_writecache *wc, struct wc_entry *e)
 385{
 386#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
 387        e->seq_count = -1;
 388#endif
 389        pmem_assign(memory_entry(wc, e)->seq_count, cpu_to_le64(-1));
 390}
 391
 392static void write_original_sector_seq_count(struct dm_writecache *wc, struct wc_entry *e,
 393                                            uint64_t original_sector, uint64_t seq_count)
 394{
 395        struct wc_memory_entry me;
 396#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
 397        e->original_sector = original_sector;
 398        e->seq_count = seq_count;
 399#endif
 400        me.original_sector = cpu_to_le64(original_sector);
 401        me.seq_count = cpu_to_le64(seq_count);
 402        pmem_assign(*memory_entry(wc, e), me);
 403}
 404
 405#define writecache_error(wc, err, msg, arg...)                          \
 406do {                                                                    \
 407        if (!cmpxchg(&(wc)->error, 0, err))                             \
 408                DMERR(msg, ##arg);                                      \
 409        wake_up(&(wc)->freelist_wait);                                  \
 410} while (0)
 411
 412#define writecache_has_error(wc)        (unlikely(READ_ONCE((wc)->error)))
 413
 414static void writecache_flush_all_metadata(struct dm_writecache *wc)
 415{
 416        if (!WC_MODE_PMEM(wc))
 417                memset(wc->dirty_bitmap, -1, wc->dirty_bitmap_size);
 418}
 419
 420static void writecache_flush_region(struct dm_writecache *wc, void *ptr, size_t size)
 421{
 422        if (!WC_MODE_PMEM(wc))
 423                __set_bit(((char *)ptr - (char *)wc->memory_map) / BITMAP_GRANULARITY,
 424                          wc->dirty_bitmap);
 425}
 426
 427static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev);
 428
 429struct io_notify {
 430        struct dm_writecache *wc;
 431        struct completion c;
 432        atomic_t count;
 433};
 434
 435static void writecache_notify_io(unsigned long error, void *context)
 436{
 437        struct io_notify *endio = context;
 438
 439        if (unlikely(error != 0))
 440                writecache_error(endio->wc, -EIO, "error writing metadata");
 441        BUG_ON(atomic_read(&endio->count) <= 0);
 442        if (atomic_dec_and_test(&endio->count))
 443                complete(&endio->c);
 444}
 445
 446static void ssd_commit_flushed(struct dm_writecache *wc)
 447{
 448        struct dm_io_region region;
 449        struct dm_io_request req;
 450        struct io_notify endio = {
 451                wc,
 452                COMPLETION_INITIALIZER_ONSTACK(endio.c),
 453                ATOMIC_INIT(1),
 454        };
 455        unsigned bitmap_bits = wc->dirty_bitmap_size * 8;
 456        unsigned i = 0;
 457
 458        while (1) {
 459                unsigned j;
 460                i = find_next_bit(wc->dirty_bitmap, bitmap_bits, i);
 461                if (unlikely(i == bitmap_bits))
 462                        break;
 463                j = find_next_zero_bit(wc->dirty_bitmap, bitmap_bits, i);
 464
 465                region.bdev = wc->ssd_dev->bdev;
 466                region.sector = (sector_t)i * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
 467                region.count = (sector_t)(j - i) * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
 468
 469                if (unlikely(region.sector >= wc->metadata_sectors))
 470                        break;
 471                if (unlikely(region.sector + region.count > wc->metadata_sectors))
 472                        region.count = wc->metadata_sectors - region.sector;
 473
 474                region.sector += wc->start_sector;
 475                atomic_inc(&endio.count);
 476                req.bi_op = REQ_OP_WRITE;
 477                req.bi_op_flags = REQ_SYNC;
 478                req.mem.type = DM_IO_VMA;
 479                req.mem.ptr.vma = (char *)wc->memory_map + (size_t)i * BITMAP_GRANULARITY;
 480                req.client = wc->dm_io;
 481                req.notify.fn = writecache_notify_io;
 482                req.notify.context = &endio;
 483
 484                /* writing via async dm-io (implied by notify.fn above) won't return an error */
 485                (void) dm_io(&req, 1, &region, NULL);
 486                i = j;
 487        }
 488
 489        writecache_notify_io(0, &endio);
 490        wait_for_completion_io(&endio.c);
 491
 492        writecache_disk_flush(wc, wc->ssd_dev);
 493
 494        memset(wc->dirty_bitmap, 0, wc->dirty_bitmap_size);
 495}
 496
 497static void writecache_commit_flushed(struct dm_writecache *wc)
 498{
 499        if (WC_MODE_PMEM(wc))
 500                wmb();
 501        else
 502                ssd_commit_flushed(wc);
 503}
 504
 505static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev)
 506{
 507        int r;
 508        struct dm_io_region region;
 509        struct dm_io_request req;
 510
 511        region.bdev = dev->bdev;
 512        region.sector = 0;
 513        region.count = 0;
 514        req.bi_op = REQ_OP_WRITE;
 515        req.bi_op_flags = REQ_PREFLUSH;
 516        req.mem.type = DM_IO_KMEM;
 517        req.mem.ptr.addr = NULL;
 518        req.client = wc->dm_io;
 519        req.notify.fn = NULL;
 520
 521        r = dm_io(&req, 1, &region, NULL);
 522        if (unlikely(r))
 523                writecache_error(wc, r, "error flushing metadata: %d", r);
 524}
 525
 526static void writecache_wait_for_ios(struct dm_writecache *wc, int direction)
 527{
 528        wait_event(wc->bio_in_progress_wait[direction],
 529                   !atomic_read(&wc->bio_in_progress[direction]));
 530}
 531
 532#define WFE_RETURN_FOLLOWING    1
 533#define WFE_LOWEST_SEQ          2
 534
 535static struct wc_entry *writecache_find_entry(struct dm_writecache *wc,
 536                                              uint64_t block, int flags)
 537{
 538        struct wc_entry *e;
 539        struct rb_node *node = wc->tree.rb_node;
 540
 541        if (unlikely(!node))
 542                return NULL;
 543
 544        while (1) {
 545                e = container_of(node, struct wc_entry, rb_node);
 546                if (read_original_sector(wc, e) == block)
 547                        break;
 548
 549                node = (read_original_sector(wc, e) >= block ?
 550                        e->rb_node.rb_left : e->rb_node.rb_right);
 551                if (unlikely(!node)) {
 552                        if (!(flags & WFE_RETURN_FOLLOWING))
 553                                return NULL;
 554                        if (read_original_sector(wc, e) >= block) {
 555                                return e;
 556                        } else {
 557                                node = rb_next(&e->rb_node);
 558                                if (unlikely(!node))
 559                                        return NULL;
 560                                e = container_of(node, struct wc_entry, rb_node);
 561                                return e;
 562                        }
 563                }
 564        }
 565
 566        while (1) {
 567                struct wc_entry *e2;
 568                if (flags & WFE_LOWEST_SEQ)
 569                        node = rb_prev(&e->rb_node);
 570                else
 571                        node = rb_next(&e->rb_node);
 572                if (unlikely(!node))
 573                        return e;
 574                e2 = container_of(node, struct wc_entry, rb_node);
 575                if (read_original_sector(wc, e2) != block)
 576                        return e;
 577                e = e2;
 578        }
 579}
 580
 581static void writecache_insert_entry(struct dm_writecache *wc, struct wc_entry *ins)
 582{
 583        struct wc_entry *e;
 584        struct rb_node **node = &wc->tree.rb_node, *parent = NULL;
 585
 586        while (*node) {
 587                e = container_of(*node, struct wc_entry, rb_node);
 588                parent = &e->rb_node;
 589                if (read_original_sector(wc, e) > read_original_sector(wc, ins))
 590                        node = &parent->rb_left;
 591                else
 592                        node = &parent->rb_right;
 593        }
 594        rb_link_node(&ins->rb_node, parent, node);
 595        rb_insert_color(&ins->rb_node, &wc->tree);
 596        list_add(&ins->lru, &wc->lru);
 597}
 598
 599static void writecache_unlink(struct dm_writecache *wc, struct wc_entry *e)
 600{
 601        list_del(&e->lru);
 602        rb_erase(&e->rb_node, &wc->tree);
 603}
 604
 605static void writecache_add_to_freelist(struct dm_writecache *wc, struct wc_entry *e)
 606{
 607        if (WC_MODE_SORT_FREELIST(wc)) {
 608                struct rb_node **node = &wc->freetree.rb_node, *parent = NULL;
 609                if (unlikely(!*node))
 610                        wc->current_free = e;
 611                while (*node) {
 612                        parent = *node;
 613                        if (&e->rb_node < *node)
 614                                node = &parent->rb_left;
 615                        else
 616                                node = &parent->rb_right;
 617                }
 618                rb_link_node(&e->rb_node, parent, node);
 619                rb_insert_color(&e->rb_node, &wc->freetree);
 620        } else {
 621                list_add_tail(&e->lru, &wc->freelist);
 622        }
 623        wc->freelist_size++;
 624}
 625
 626static struct wc_entry *writecache_pop_from_freelist(struct dm_writecache *wc)
 627{
 628        struct wc_entry *e;
 629
 630        if (WC_MODE_SORT_FREELIST(wc)) {
 631                struct rb_node *next;
 632                if (unlikely(!wc->current_free))
 633                        return NULL;
 634                e = wc->current_free;
 635                next = rb_next(&e->rb_node);
 636                rb_erase(&e->rb_node, &wc->freetree);
 637                if (unlikely(!next))
 638                        next = rb_first(&wc->freetree);
 639                wc->current_free = next ? container_of(next, struct wc_entry, rb_node) : NULL;
 640        } else {
 641                if (unlikely(list_empty(&wc->freelist)))
 642                        return NULL;
 643                e = container_of(wc->freelist.next, struct wc_entry, lru);
 644                list_del(&e->lru);
 645        }
 646        wc->freelist_size--;
 647        if (unlikely(wc->freelist_size + wc->writeback_size <= wc->freelist_high_watermark))
 648                queue_work(wc->writeback_wq, &wc->writeback_work);
 649
 650        return e;
 651}
 652
 653static void writecache_free_entry(struct dm_writecache *wc, struct wc_entry *e)
 654{
 655        writecache_unlink(wc, e);
 656        writecache_add_to_freelist(wc, e);
 657        clear_seq_count(wc, e);
 658        writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
 659        if (unlikely(waitqueue_active(&wc->freelist_wait)))
 660                wake_up(&wc->freelist_wait);
 661}
 662
 663static void writecache_wait_on_freelist(struct dm_writecache *wc)
 664{
 665        DEFINE_WAIT(wait);
 666
 667        prepare_to_wait(&wc->freelist_wait, &wait, TASK_UNINTERRUPTIBLE);
 668        wc_unlock(wc);
 669        io_schedule();
 670        finish_wait(&wc->freelist_wait, &wait);
 671        wc_lock(wc);
 672}
 673
 674static void writecache_poison_lists(struct dm_writecache *wc)
 675{
 676        /*
 677         * Catch incorrect access to these values while the device is suspended.
 678         */
 679        memset(&wc->tree, -1, sizeof wc->tree);
 680        wc->lru.next = LIST_POISON1;
 681        wc->lru.prev = LIST_POISON2;
 682        wc->freelist.next = LIST_POISON1;
 683        wc->freelist.prev = LIST_POISON2;
 684}
 685
 686static void writecache_flush_entry(struct dm_writecache *wc, struct wc_entry *e)
 687{
 688        writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
 689        if (WC_MODE_PMEM(wc))
 690                writecache_flush_region(wc, memory_data(wc, e), wc->block_size);
 691}
 692
 693static bool writecache_entry_is_committed(struct dm_writecache *wc, struct wc_entry *e)
 694{
 695        return read_seq_count(wc, e) < wc->seq_count;
 696}
 697
 698static void writecache_flush(struct dm_writecache *wc)
 699{
 700        struct wc_entry *e, *e2;
 701        bool need_flush_after_free;
 702
 703        wc->uncommitted_blocks = 0;
 704        del_timer(&wc->autocommit_timer);
 705
 706        if (list_empty(&wc->lru))
 707                return;
 708
 709        e = container_of(wc->lru.next, struct wc_entry, lru);
 710        if (writecache_entry_is_committed(wc, e)) {
 711                if (wc->overwrote_committed) {
 712                        writecache_wait_for_ios(wc, WRITE);
 713                        writecache_disk_flush(wc, wc->ssd_dev);
 714                        wc->overwrote_committed = false;
 715                }
 716                return;
 717        }
 718        while (1) {
 719                writecache_flush_entry(wc, e);
 720                if (unlikely(e->lru.next == &wc->lru))
 721                        break;
 722                e2 = container_of(e->lru.next, struct wc_entry, lru);
 723                if (writecache_entry_is_committed(wc, e2))
 724                        break;
 725                e = e2;
 726                cond_resched();
 727        }
 728        writecache_commit_flushed(wc);
 729
 730        writecache_wait_for_ios(wc, WRITE);
 731
 732        wc->seq_count++;
 733        pmem_assign(sb(wc)->seq_count, cpu_to_le64(wc->seq_count));
 734        writecache_flush_region(wc, &sb(wc)->seq_count, sizeof sb(wc)->seq_count);
 735        writecache_commit_flushed(wc);
 736
 737        wc->overwrote_committed = false;
 738
 739        need_flush_after_free = false;
 740        while (1) {
 741                /* Free another committed entry with lower seq-count */
 742                struct rb_node *rb_node = rb_prev(&e->rb_node);
 743
 744                if (rb_node) {
 745                        e2 = container_of(rb_node, struct wc_entry, rb_node);
 746                        if (read_original_sector(wc, e2) == read_original_sector(wc, e) &&
 747                            likely(!e2->write_in_progress)) {
 748                                writecache_free_entry(wc, e2);
 749                                need_flush_after_free = true;
 750                        }
 751                }
 752                if (unlikely(e->lru.prev == &wc->lru))
 753                        break;
 754                e = container_of(e->lru.prev, struct wc_entry, lru);
 755                cond_resched();
 756        }
 757
 758        if (need_flush_after_free)
 759                writecache_commit_flushed(wc);
 760}
 761
 762static void writecache_flush_work(struct work_struct *work)
 763{
 764        struct dm_writecache *wc = container_of(work, struct dm_writecache, flush_work);
 765
 766        wc_lock(wc);
 767        writecache_flush(wc);
 768        wc_unlock(wc);
 769}
 770
 771static void writecache_autocommit_timer(struct timer_list *t)
 772{
 773        struct dm_writecache *wc = from_timer(wc, t, autocommit_timer);
 774        if (!writecache_has_error(wc))
 775                queue_work(wc->writeback_wq, &wc->flush_work);
 776}
 777
 778static void writecache_schedule_autocommit(struct dm_writecache *wc)
 779{
 780        if (!timer_pending(&wc->autocommit_timer))
 781                mod_timer(&wc->autocommit_timer, jiffies + wc->autocommit_jiffies);
 782}
 783
 784static void writecache_discard(struct dm_writecache *wc, sector_t start, sector_t end)
 785{
 786        struct wc_entry *e;
 787        bool discarded_something = false;
 788
 789        e = writecache_find_entry(wc, start, WFE_RETURN_FOLLOWING | WFE_LOWEST_SEQ);
 790        if (unlikely(!e))
 791                return;
 792
 793        while (read_original_sector(wc, e) < end) {
 794                struct rb_node *node = rb_next(&e->rb_node);
 795
 796                if (likely(!e->write_in_progress)) {
 797                        if (!discarded_something) {
 798                                writecache_wait_for_ios(wc, READ);
 799                                writecache_wait_for_ios(wc, WRITE);
 800                                discarded_something = true;
 801                        }
 802                        writecache_free_entry(wc, e);
 803                }
 804
 805                if (unlikely(!node))
 806                        break;
 807
 808                e = container_of(node, struct wc_entry, rb_node);
 809        }
 810
 811        if (discarded_something)
 812                writecache_commit_flushed(wc);
 813}
 814
 815static bool writecache_wait_for_writeback(struct dm_writecache *wc)
 816{
 817        if (wc->writeback_size) {
 818                writecache_wait_on_freelist(wc);
 819                return true;
 820        }
 821        return false;
 822}
 823
 824static void writecache_suspend(struct dm_target *ti)
 825{
 826        struct dm_writecache *wc = ti->private;
 827        bool flush_on_suspend;
 828
 829        del_timer_sync(&wc->autocommit_timer);
 830
 831        wc_lock(wc);
 832        writecache_flush(wc);
 833        flush_on_suspend = wc->flush_on_suspend;
 834        if (flush_on_suspend) {
 835                wc->flush_on_suspend = false;
 836                wc->writeback_all++;
 837                queue_work(wc->writeback_wq, &wc->writeback_work);
 838        }
 839        wc_unlock(wc);
 840
 841        flush_workqueue(wc->writeback_wq);
 842
 843        wc_lock(wc);
 844        if (flush_on_suspend)
 845                wc->writeback_all--;
 846        while (writecache_wait_for_writeback(wc));
 847
 848        if (WC_MODE_PMEM(wc))
 849                persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
 850
 851        writecache_poison_lists(wc);
 852
 853        wc_unlock(wc);
 854}
 855
 856static int writecache_alloc_entries(struct dm_writecache *wc)
 857{
 858        size_t b;
 859
 860        if (wc->entries)
 861                return 0;
 862        wc->entries = vmalloc(array_size(sizeof(struct wc_entry), wc->n_blocks));
 863        if (!wc->entries)
 864                return -ENOMEM;
 865        for (b = 0; b < wc->n_blocks; b++) {
 866                struct wc_entry *e = &wc->entries[b];
 867                e->index = b;
 868                e->write_in_progress = false;
 869        }
 870
 871        return 0;
 872}
 873
 874static void writecache_resume(struct dm_target *ti)
 875{
 876        struct dm_writecache *wc = ti->private;
 877        size_t b;
 878        bool need_flush = false;
 879        __le64 sb_seq_count;
 880        int r;
 881
 882        wc_lock(wc);
 883
 884        if (WC_MODE_PMEM(wc))
 885                persistent_memory_invalidate_cache(wc->memory_map, wc->memory_map_size);
 886
 887        wc->tree = RB_ROOT;
 888        INIT_LIST_HEAD(&wc->lru);
 889        if (WC_MODE_SORT_FREELIST(wc)) {
 890                wc->freetree = RB_ROOT;
 891                wc->current_free = NULL;
 892        } else {
 893                INIT_LIST_HEAD(&wc->freelist);
 894        }
 895        wc->freelist_size = 0;
 896
 897        r = memcpy_mcsafe(&sb_seq_count, &sb(wc)->seq_count, sizeof(uint64_t));
 898        if (r) {
 899                writecache_error(wc, r, "hardware memory error when reading superblock: %d", r);
 900                sb_seq_count = cpu_to_le64(0);
 901        }
 902        wc->seq_count = le64_to_cpu(sb_seq_count);
 903
 904#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
 905        for (b = 0; b < wc->n_blocks; b++) {
 906                struct wc_entry *e = &wc->entries[b];
 907                struct wc_memory_entry wme;
 908                if (writecache_has_error(wc)) {
 909                        e->original_sector = -1;
 910                        e->seq_count = -1;
 911                        continue;
 912                }
 913                r = memcpy_mcsafe(&wme, memory_entry(wc, e), sizeof(struct wc_memory_entry));
 914                if (r) {
 915                        writecache_error(wc, r, "hardware memory error when reading metadata entry %lu: %d",
 916                                         (unsigned long)b, r);
 917                        e->original_sector = -1;
 918                        e->seq_count = -1;
 919                } else {
 920                        e->original_sector = le64_to_cpu(wme.original_sector);
 921                        e->seq_count = le64_to_cpu(wme.seq_count);
 922                }
 923        }
 924#endif
 925        for (b = 0; b < wc->n_blocks; b++) {
 926                struct wc_entry *e = &wc->entries[b];
 927                if (!writecache_entry_is_committed(wc, e)) {
 928                        if (read_seq_count(wc, e) != -1) {
 929erase_this:
 930                                clear_seq_count(wc, e);
 931                                need_flush = true;
 932                        }
 933                        writecache_add_to_freelist(wc, e);
 934                } else {
 935                        struct wc_entry *old;
 936
 937                        old = writecache_find_entry(wc, read_original_sector(wc, e), 0);
 938                        if (!old) {
 939                                writecache_insert_entry(wc, e);
 940                        } else {
 941                                if (read_seq_count(wc, old) == read_seq_count(wc, e)) {
 942                                        writecache_error(wc, -EINVAL,
 943                                                 "two identical entries, position %llu, sector %llu, sequence %llu",
 944                                                 (unsigned long long)b, (unsigned long long)read_original_sector(wc, e),
 945                                                 (unsigned long long)read_seq_count(wc, e));
 946                                }
 947                                if (read_seq_count(wc, old) > read_seq_count(wc, e)) {
 948                                        goto erase_this;
 949                                } else {
 950                                        writecache_free_entry(wc, old);
 951                                        writecache_insert_entry(wc, e);
 952                                        need_flush = true;
 953                                }
 954                        }
 955                }
 956                cond_resched();
 957        }
 958
 959        if (need_flush) {
 960                writecache_flush_all_metadata(wc);
 961                writecache_commit_flushed(wc);
 962        }
 963
 964        wc_unlock(wc);
 965}
 966
 967static int process_flush_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
 968{
 969        if (argc != 1)
 970                return -EINVAL;
 971
 972        wc_lock(wc);
 973        if (dm_suspended(wc->ti)) {
 974                wc_unlock(wc);
 975                return -EBUSY;
 976        }
 977        if (writecache_has_error(wc)) {
 978                wc_unlock(wc);
 979                return -EIO;
 980        }
 981
 982        writecache_flush(wc);
 983        wc->writeback_all++;
 984        queue_work(wc->writeback_wq, &wc->writeback_work);
 985        wc_unlock(wc);
 986
 987        flush_workqueue(wc->writeback_wq);
 988
 989        wc_lock(wc);
 990        wc->writeback_all--;
 991        if (writecache_has_error(wc)) {
 992                wc_unlock(wc);
 993                return -EIO;
 994        }
 995        wc_unlock(wc);
 996
 997        return 0;
 998}
 999
1000static int process_flush_on_suspend_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1001{
1002        if (argc != 1)
1003                return -EINVAL;
1004
1005        wc_lock(wc);
1006        wc->flush_on_suspend = true;
1007        wc_unlock(wc);
1008
1009        return 0;
1010}
1011
1012static int writecache_message(struct dm_target *ti, unsigned argc, char **argv,
1013                              char *result, unsigned maxlen)
1014{
1015        int r = -EINVAL;
1016        struct dm_writecache *wc = ti->private;
1017
1018        if (!strcasecmp(argv[0], "flush"))
1019                r = process_flush_mesg(argc, argv, wc);
1020        else if (!strcasecmp(argv[0], "flush_on_suspend"))
1021                r = process_flush_on_suspend_mesg(argc, argv, wc);
1022        else
1023                DMERR("unrecognised message received: %s", argv[0]);
1024
1025        return r;
1026}
1027
1028static void bio_copy_block(struct dm_writecache *wc, struct bio *bio, void *data)
1029{
1030        void *buf;
1031        unsigned long flags;
1032        unsigned size;
1033        int rw = bio_data_dir(bio);
1034        unsigned remaining_size = wc->block_size;
1035
1036        do {
1037                struct bio_vec bv = bio_iter_iovec(bio, bio->bi_iter);
1038                buf = bvec_kmap_irq(&bv, &flags);
1039                size = bv.bv_len;
1040                if (unlikely(size > remaining_size))
1041                        size = remaining_size;
1042
1043                if (rw == READ) {
1044                        int r;
1045                        r = memcpy_mcsafe(buf, data, size);
1046                        flush_dcache_page(bio_page(bio));
1047                        if (unlikely(r)) {
1048                                writecache_error(wc, r, "hardware memory error when reading data: %d", r);
1049                                bio->bi_status = BLK_STS_IOERR;
1050                        }
1051                } else {
1052                        flush_dcache_page(bio_page(bio));
1053                        memcpy_flushcache(data, buf, size);
1054                }
1055
1056                bvec_kunmap_irq(buf, &flags);
1057
1058                data = (char *)data + size;
1059                remaining_size -= size;
1060                bio_advance(bio, size);
1061        } while (unlikely(remaining_size));
1062}
1063
1064static int writecache_flush_thread(void *data)
1065{
1066        struct dm_writecache *wc = data;
1067
1068        while (1) {
1069                struct bio *bio;
1070
1071                wc_lock(wc);
1072                bio = bio_list_pop(&wc->flush_list);
1073                if (!bio) {
1074                        set_current_state(TASK_INTERRUPTIBLE);
1075                        wc_unlock(wc);
1076
1077                        if (unlikely(kthread_should_stop())) {
1078                                set_current_state(TASK_RUNNING);
1079                                break;
1080                        }
1081
1082                        schedule();
1083                        continue;
1084                }
1085
1086                if (bio_op(bio) == REQ_OP_DISCARD) {
1087                        writecache_discard(wc, bio->bi_iter.bi_sector,
1088                                           bio_end_sector(bio));
1089                        wc_unlock(wc);
1090                        bio_set_dev(bio, wc->dev->bdev);
1091                        generic_make_request(bio);
1092                } else {
1093                        writecache_flush(wc);
1094                        wc_unlock(wc);
1095                        if (writecache_has_error(wc))
1096                                bio->bi_status = BLK_STS_IOERR;
1097                        bio_endio(bio);
1098                }
1099        }
1100
1101        return 0;
1102}
1103
1104static void writecache_offload_bio(struct dm_writecache *wc, struct bio *bio)
1105{
1106        if (bio_list_empty(&wc->flush_list))
1107                wake_up_process(wc->flush_thread);
1108        bio_list_add(&wc->flush_list, bio);
1109}
1110
1111static int writecache_map(struct dm_target *ti, struct bio *bio)
1112{
1113        struct wc_entry *e;
1114        struct dm_writecache *wc = ti->private;
1115
1116        bio->bi_private = NULL;
1117
1118        wc_lock(wc);
1119
1120        if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1121                if (writecache_has_error(wc))
1122                        goto unlock_error;
1123                if (WC_MODE_PMEM(wc)) {
1124                        writecache_flush(wc);
1125                        if (writecache_has_error(wc))
1126                                goto unlock_error;
1127                        goto unlock_submit;
1128                } else {
1129                        writecache_offload_bio(wc, bio);
1130                        goto unlock_return;
1131                }
1132        }
1133
1134        bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1135
1136        if (unlikely((((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
1137                                (wc->block_size / 512 - 1)) != 0)) {
1138                DMERR("I/O is not aligned, sector %llu, size %u, block size %u",
1139                      (unsigned long long)bio->bi_iter.bi_sector,
1140                      bio->bi_iter.bi_size, wc->block_size);
1141                goto unlock_error;
1142        }
1143
1144        if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) {
1145                if (writecache_has_error(wc))
1146                        goto unlock_error;
1147                if (WC_MODE_PMEM(wc)) {
1148                        writecache_discard(wc, bio->bi_iter.bi_sector, bio_end_sector(bio));
1149                        goto unlock_remap_origin;
1150                } else {
1151                        writecache_offload_bio(wc, bio);
1152                        goto unlock_return;
1153                }
1154        }
1155
1156        if (bio_data_dir(bio) == READ) {
1157read_next_block:
1158                e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
1159                if (e && read_original_sector(wc, e) == bio->bi_iter.bi_sector) {
1160                        if (WC_MODE_PMEM(wc)) {
1161                                bio_copy_block(wc, bio, memory_data(wc, e));
1162                                if (bio->bi_iter.bi_size)
1163                                        goto read_next_block;
1164                                goto unlock_submit;
1165                        } else {
1166                                dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT);
1167                                bio_set_dev(bio, wc->ssd_dev->bdev);
1168                                bio->bi_iter.bi_sector = cache_sector(wc, e);
1169                                if (!writecache_entry_is_committed(wc, e))
1170                                        writecache_wait_for_ios(wc, WRITE);
1171                                goto unlock_remap;
1172                        }
1173                } else {
1174                        if (e) {
1175                                sector_t next_boundary =
1176                                        read_original_sector(wc, e) - bio->bi_iter.bi_sector;
1177                                if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT) {
1178                                        dm_accept_partial_bio(bio, next_boundary);
1179                                }
1180                        }
1181                        goto unlock_remap_origin;
1182                }
1183        } else {
1184                do {
1185                        if (writecache_has_error(wc))
1186                                goto unlock_error;
1187                        e = writecache_find_entry(wc, bio->bi_iter.bi_sector, 0);
1188                        if (e) {
1189                                if (!writecache_entry_is_committed(wc, e))
1190                                        goto bio_copy;
1191                                if (!WC_MODE_PMEM(wc) && !e->write_in_progress) {
1192                                        wc->overwrote_committed = true;
1193                                        goto bio_copy;
1194                                }
1195                        }
1196                        e = writecache_pop_from_freelist(wc);
1197                        if (unlikely(!e)) {
1198                                writecache_wait_on_freelist(wc);
1199                                continue;
1200                        }
1201                        write_original_sector_seq_count(wc, e, bio->bi_iter.bi_sector, wc->seq_count);
1202                        writecache_insert_entry(wc, e);
1203                        wc->uncommitted_blocks++;
1204bio_copy:
1205                        if (WC_MODE_PMEM(wc)) {
1206                                bio_copy_block(wc, bio, memory_data(wc, e));
1207                        } else {
1208                                dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT);
1209                                bio_set_dev(bio, wc->ssd_dev->bdev);
1210                                bio->bi_iter.bi_sector = cache_sector(wc, e);
1211                                if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks)) {
1212                                        wc->uncommitted_blocks = 0;
1213                                        queue_work(wc->writeback_wq, &wc->flush_work);
1214                                } else {
1215                                        writecache_schedule_autocommit(wc);
1216                                }
1217                                goto unlock_remap;
1218                        }
1219                } while (bio->bi_iter.bi_size);
1220
1221                if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks))
1222                        writecache_flush(wc);
1223                else
1224                        writecache_schedule_autocommit(wc);
1225                goto unlock_submit;
1226        }
1227
1228unlock_remap_origin:
1229        bio_set_dev(bio, wc->dev->bdev);
1230        wc_unlock(wc);
1231        return DM_MAPIO_REMAPPED;
1232
1233unlock_remap:
1234        /* make sure that writecache_end_io decrements bio_in_progress: */
1235        bio->bi_private = (void *)1;
1236        atomic_inc(&wc->bio_in_progress[bio_data_dir(bio)]);
1237        wc_unlock(wc);
1238        return DM_MAPIO_REMAPPED;
1239
1240unlock_submit:
1241        wc_unlock(wc);
1242        bio_endio(bio);
1243        return DM_MAPIO_SUBMITTED;
1244
1245unlock_return:
1246        wc_unlock(wc);
1247        return DM_MAPIO_SUBMITTED;
1248
1249unlock_error:
1250        wc_unlock(wc);
1251        bio_io_error(bio);
1252        return DM_MAPIO_SUBMITTED;
1253}
1254
1255static int writecache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status)
1256{
1257        struct dm_writecache *wc = ti->private;
1258
1259        if (bio->bi_private != NULL) {
1260                int dir = bio_data_dir(bio);
1261                if (atomic_dec_and_test(&wc->bio_in_progress[dir]))
1262                        if (unlikely(waitqueue_active(&wc->bio_in_progress_wait[dir])))
1263                                wake_up(&wc->bio_in_progress_wait[dir]);
1264        }
1265        return 0;
1266}
1267
1268static int writecache_iterate_devices(struct dm_target *ti,
1269                                      iterate_devices_callout_fn fn, void *data)
1270{
1271        struct dm_writecache *wc = ti->private;
1272
1273        return fn(ti, wc->dev, 0, ti->len, data);
1274}
1275
1276static void writecache_io_hints(struct dm_target *ti, struct queue_limits *limits)
1277{
1278        struct dm_writecache *wc = ti->private;
1279
1280        if (limits->logical_block_size < wc->block_size)
1281                limits->logical_block_size = wc->block_size;
1282
1283        if (limits->physical_block_size < wc->block_size)
1284                limits->physical_block_size = wc->block_size;
1285
1286        if (limits->io_min < wc->block_size)
1287                limits->io_min = wc->block_size;
1288}
1289
1290
1291static void writecache_writeback_endio(struct bio *bio)
1292{
1293        struct writeback_struct *wb = container_of(bio, struct writeback_struct, bio);
1294        struct dm_writecache *wc = wb->wc;
1295        unsigned long flags;
1296
1297        raw_spin_lock_irqsave(&wc->endio_list_lock, flags);
1298        if (unlikely(list_empty(&wc->endio_list)))
1299                wake_up_process(wc->endio_thread);
1300        list_add_tail(&wb->endio_entry, &wc->endio_list);
1301        raw_spin_unlock_irqrestore(&wc->endio_list_lock, flags);
1302}
1303
1304static void writecache_copy_endio(int read_err, unsigned long write_err, void *ptr)
1305{
1306        struct copy_struct *c = ptr;
1307        struct dm_writecache *wc = c->wc;
1308
1309        c->error = likely(!(read_err | write_err)) ? 0 : -EIO;
1310
1311        raw_spin_lock_irq(&wc->endio_list_lock);
1312        if (unlikely(list_empty(&wc->endio_list)))
1313                wake_up_process(wc->endio_thread);
1314        list_add_tail(&c->endio_entry, &wc->endio_list);
1315        raw_spin_unlock_irq(&wc->endio_list_lock);
1316}
1317
1318static void __writecache_endio_pmem(struct dm_writecache *wc, struct list_head *list)
1319{
1320        unsigned i;
1321        struct writeback_struct *wb;
1322        struct wc_entry *e;
1323        unsigned long n_walked = 0;
1324
1325        do {
1326                wb = list_entry(list->next, struct writeback_struct, endio_entry);
1327                list_del(&wb->endio_entry);
1328
1329                if (unlikely(wb->bio.bi_status != BLK_STS_OK))
1330                        writecache_error(wc, blk_status_to_errno(wb->bio.bi_status),
1331                                        "write error %d", wb->bio.bi_status);
1332                i = 0;
1333                do {
1334                        e = wb->wc_list[i];
1335                        BUG_ON(!e->write_in_progress);
1336                        e->write_in_progress = false;
1337                        INIT_LIST_HEAD(&e->lru);
1338                        if (!writecache_has_error(wc))
1339                                writecache_free_entry(wc, e);
1340                        BUG_ON(!wc->writeback_size);
1341                        wc->writeback_size--;
1342                        n_walked++;
1343                        if (unlikely(n_walked >= ENDIO_LATENCY)) {
1344                                writecache_commit_flushed(wc);
1345                                wc_unlock(wc);
1346                                wc_lock(wc);
1347                                n_walked = 0;
1348                        }
1349                } while (++i < wb->wc_list_n);
1350
1351                if (wb->wc_list != wb->wc_list_inline)
1352                        kfree(wb->wc_list);
1353                bio_put(&wb->bio);
1354        } while (!list_empty(list));
1355}
1356
1357static void __writecache_endio_ssd(struct dm_writecache *wc, struct list_head *list)
1358{
1359        struct copy_struct *c;
1360        struct wc_entry *e;
1361
1362        do {
1363                c = list_entry(list->next, struct copy_struct, endio_entry);
1364                list_del(&c->endio_entry);
1365
1366                if (unlikely(c->error))
1367                        writecache_error(wc, c->error, "copy error");
1368
1369                e = c->e;
1370                do {
1371                        BUG_ON(!e->write_in_progress);
1372                        e->write_in_progress = false;
1373                        INIT_LIST_HEAD(&e->lru);
1374                        if (!writecache_has_error(wc))
1375                                writecache_free_entry(wc, e);
1376
1377                        BUG_ON(!wc->writeback_size);
1378                        wc->writeback_size--;
1379                        e++;
1380                } while (--c->n_entries);
1381                mempool_free(c, &wc->copy_pool);
1382        } while (!list_empty(list));
1383}
1384
1385static int writecache_endio_thread(void *data)
1386{
1387        struct dm_writecache *wc = data;
1388
1389        while (1) {
1390                struct list_head list;
1391
1392                raw_spin_lock_irq(&wc->endio_list_lock);
1393                if (!list_empty(&wc->endio_list))
1394                        goto pop_from_list;
1395                set_current_state(TASK_INTERRUPTIBLE);
1396                raw_spin_unlock_irq(&wc->endio_list_lock);
1397
1398                if (unlikely(kthread_should_stop())) {
1399                        set_current_state(TASK_RUNNING);
1400                        break;
1401                }
1402
1403                schedule();
1404
1405                continue;
1406
1407pop_from_list:
1408                list = wc->endio_list;
1409                list.next->prev = list.prev->next = &list;
1410                INIT_LIST_HEAD(&wc->endio_list);
1411                raw_spin_unlock_irq(&wc->endio_list_lock);
1412
1413                if (!WC_MODE_FUA(wc))
1414                        writecache_disk_flush(wc, wc->dev);
1415
1416                wc_lock(wc);
1417
1418                if (WC_MODE_PMEM(wc)) {
1419                        __writecache_endio_pmem(wc, &list);
1420                } else {
1421                        __writecache_endio_ssd(wc, &list);
1422                        writecache_wait_for_ios(wc, READ);
1423                }
1424
1425                writecache_commit_flushed(wc);
1426
1427                wc_unlock(wc);
1428        }
1429
1430        return 0;
1431}
1432
1433static bool wc_add_block(struct writeback_struct *wb, struct wc_entry *e, gfp_t gfp)
1434{
1435        struct dm_writecache *wc = wb->wc;
1436        unsigned block_size = wc->block_size;
1437        void *address = memory_data(wc, e);
1438
1439        persistent_memory_flush_cache(address, block_size);
1440        return bio_add_page(&wb->bio, persistent_memory_page(address),
1441                            block_size, persistent_memory_page_offset(address)) != 0;
1442}
1443
1444struct writeback_list {
1445        struct list_head list;
1446        size_t size;
1447};
1448
1449static void __writeback_throttle(struct dm_writecache *wc, struct writeback_list *wbl)
1450{
1451        if (unlikely(wc->max_writeback_jobs)) {
1452                if (READ_ONCE(wc->writeback_size) - wbl->size >= wc->max_writeback_jobs) {
1453                        wc_lock(wc);
1454                        while (wc->writeback_size - wbl->size >= wc->max_writeback_jobs)
1455                                writecache_wait_on_freelist(wc);
1456                        wc_unlock(wc);
1457                }
1458        }
1459        cond_resched();
1460}
1461
1462static void __writecache_writeback_pmem(struct dm_writecache *wc, struct writeback_list *wbl)
1463{
1464        struct wc_entry *e, *f;
1465        struct bio *bio;
1466        struct writeback_struct *wb;
1467        unsigned max_pages;
1468
1469        while (wbl->size) {
1470                wbl->size--;
1471                e = container_of(wbl->list.prev, struct wc_entry, lru);
1472                list_del(&e->lru);
1473
1474                max_pages = e->wc_list_contiguous;
1475
1476                bio = bio_alloc_bioset(GFP_NOIO, max_pages, &wc->bio_set);
1477                wb = container_of(bio, struct writeback_struct, bio);
1478                wb->wc = wc;
1479                bio->bi_end_io = writecache_writeback_endio;
1480                bio_set_dev(bio, wc->dev->bdev);
1481                bio->bi_iter.bi_sector = read_original_sector(wc, e);
1482                if (max_pages <= WB_LIST_INLINE ||
1483                    unlikely(!(wb->wc_list = kmalloc_array(max_pages, sizeof(struct wc_entry *),
1484                                                           GFP_NOIO | __GFP_NORETRY |
1485                                                           __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
1486                        wb->wc_list = wb->wc_list_inline;
1487                        max_pages = WB_LIST_INLINE;
1488                }
1489
1490                BUG_ON(!wc_add_block(wb, e, GFP_NOIO));
1491
1492                wb->wc_list[0] = e;
1493                wb->wc_list_n = 1;
1494
1495                while (wbl->size && wb->wc_list_n < max_pages) {
1496                        f = container_of(wbl->list.prev, struct wc_entry, lru);
1497                        if (read_original_sector(wc, f) !=
1498                            read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT))
1499                                break;
1500                        if (!wc_add_block(wb, f, GFP_NOWAIT | __GFP_NOWARN))
1501                                break;
1502                        wbl->size--;
1503                        list_del(&f->lru);
1504                        wb->wc_list[wb->wc_list_n++] = f;
1505                        e = f;
1506                }
1507                bio_set_op_attrs(bio, REQ_OP_WRITE, WC_MODE_FUA(wc) * REQ_FUA);
1508                if (writecache_has_error(wc)) {
1509                        bio->bi_status = BLK_STS_IOERR;
1510                        bio_endio(bio);
1511                } else {
1512                        submit_bio(bio);
1513                }
1514
1515                __writeback_throttle(wc, wbl);
1516        }
1517}
1518
1519static void __writecache_writeback_ssd(struct dm_writecache *wc, struct writeback_list *wbl)
1520{
1521        struct wc_entry *e, *f;
1522        struct dm_io_region from, to;
1523        struct copy_struct *c;
1524
1525        while (wbl->size) {
1526                unsigned n_sectors;
1527
1528                wbl->size--;
1529                e = container_of(wbl->list.prev, struct wc_entry, lru);
1530                list_del(&e->lru);
1531
1532                n_sectors = e->wc_list_contiguous << (wc->block_size_bits - SECTOR_SHIFT);
1533
1534                from.bdev = wc->ssd_dev->bdev;
1535                from.sector = cache_sector(wc, e);
1536                from.count = n_sectors;
1537                to.bdev = wc->dev->bdev;
1538                to.sector = read_original_sector(wc, e);
1539                to.count = n_sectors;
1540
1541                c = mempool_alloc(&wc->copy_pool, GFP_NOIO);
1542                c->wc = wc;
1543                c->e = e;
1544                c->n_entries = e->wc_list_contiguous;
1545
1546                while ((n_sectors -= wc->block_size >> SECTOR_SHIFT)) {
1547                        wbl->size--;
1548                        f = container_of(wbl->list.prev, struct wc_entry, lru);
1549                        BUG_ON(f != e + 1);
1550                        list_del(&f->lru);
1551                        e = f;
1552                }
1553
1554                dm_kcopyd_copy(wc->dm_kcopyd, &from, 1, &to, 0, writecache_copy_endio, c);
1555
1556                __writeback_throttle(wc, wbl);
1557        }
1558}
1559
1560static void writecache_writeback(struct work_struct *work)
1561{
1562        struct dm_writecache *wc = container_of(work, struct dm_writecache, writeback_work);
1563        struct blk_plug plug;
1564        struct wc_entry *e, *f, *g;
1565        struct rb_node *node, *next_node;
1566        struct list_head skipped;
1567        struct writeback_list wbl;
1568        unsigned long n_walked;
1569
1570        wc_lock(wc);
1571restart:
1572        if (writecache_has_error(wc)) {
1573                wc_unlock(wc);
1574                return;
1575        }
1576
1577        if (unlikely(wc->writeback_all)) {
1578                if (writecache_wait_for_writeback(wc))
1579                        goto restart;
1580        }
1581
1582        if (wc->overwrote_committed) {
1583                writecache_wait_for_ios(wc, WRITE);
1584        }
1585
1586        n_walked = 0;
1587        INIT_LIST_HEAD(&skipped);
1588        INIT_LIST_HEAD(&wbl.list);
1589        wbl.size = 0;
1590        while (!list_empty(&wc->lru) &&
1591               (wc->writeback_all ||
1592                wc->freelist_size + wc->writeback_size <= wc->freelist_low_watermark)) {
1593
1594                n_walked++;
1595                if (unlikely(n_walked > WRITEBACK_LATENCY) &&
1596                    likely(!wc->writeback_all) && likely(!dm_suspended(wc->ti))) {
1597                        queue_work(wc->writeback_wq, &wc->writeback_work);
1598                        break;
1599                }
1600
1601                e = container_of(wc->lru.prev, struct wc_entry, lru);
1602                BUG_ON(e->write_in_progress);
1603                if (unlikely(!writecache_entry_is_committed(wc, e))) {
1604                        writecache_flush(wc);
1605                }
1606                node = rb_prev(&e->rb_node);
1607                if (node) {
1608                        f = container_of(node, struct wc_entry, rb_node);
1609                        if (unlikely(read_original_sector(wc, f) ==
1610                                     read_original_sector(wc, e))) {
1611                                BUG_ON(!f->write_in_progress);
1612                                list_del(&e->lru);
1613                                list_add(&e->lru, &skipped);
1614                                cond_resched();
1615                                continue;
1616                        }
1617                }
1618                wc->writeback_size++;
1619                list_del(&e->lru);
1620                list_add(&e->lru, &wbl.list);
1621                wbl.size++;
1622                e->write_in_progress = true;
1623                e->wc_list_contiguous = 1;
1624
1625                f = e;
1626
1627                while (1) {
1628                        next_node = rb_next(&f->rb_node);
1629                        if (unlikely(!next_node))
1630                                break;
1631                        g = container_of(next_node, struct wc_entry, rb_node);
1632                        if (read_original_sector(wc, g) ==
1633                            read_original_sector(wc, f)) {
1634                                f = g;
1635                                continue;
1636                        }
1637                        if (read_original_sector(wc, g) !=
1638                            read_original_sector(wc, f) + (wc->block_size >> SECTOR_SHIFT))
1639                                break;
1640                        if (unlikely(g->write_in_progress))
1641                                break;
1642                        if (unlikely(!writecache_entry_is_committed(wc, g)))
1643                                break;
1644
1645                        if (!WC_MODE_PMEM(wc)) {
1646                                if (g != f + 1)
1647                                        break;
1648                        }
1649
1650                        n_walked++;
1651                        //if (unlikely(n_walked > WRITEBACK_LATENCY) && likely(!wc->writeback_all))
1652                        //      break;
1653
1654                        wc->writeback_size++;
1655                        list_del(&g->lru);
1656                        list_add(&g->lru, &wbl.list);
1657                        wbl.size++;
1658                        g->write_in_progress = true;
1659                        g->wc_list_contiguous = BIO_MAX_PAGES;
1660                        f = g;
1661                        e->wc_list_contiguous++;
1662                        if (unlikely(e->wc_list_contiguous == BIO_MAX_PAGES))
1663                                break;
1664                }
1665                cond_resched();
1666        }
1667
1668        if (!list_empty(&skipped)) {
1669                list_splice_tail(&skipped, &wc->lru);
1670                /*
1671                 * If we didn't do any progress, we must wait until some
1672                 * writeback finishes to avoid burning CPU in a loop
1673                 */
1674                if (unlikely(!wbl.size))
1675                        writecache_wait_for_writeback(wc);
1676        }
1677
1678        wc_unlock(wc);
1679
1680        blk_start_plug(&plug);
1681
1682        if (WC_MODE_PMEM(wc))
1683                __writecache_writeback_pmem(wc, &wbl);
1684        else
1685                __writecache_writeback_ssd(wc, &wbl);
1686
1687        blk_finish_plug(&plug);
1688
1689        if (unlikely(wc->writeback_all)) {
1690                wc_lock(wc);
1691                while (writecache_wait_for_writeback(wc));
1692                wc_unlock(wc);
1693        }
1694}
1695
1696static int calculate_memory_size(uint64_t device_size, unsigned block_size,
1697                                 size_t *n_blocks_p, size_t *n_metadata_blocks_p)
1698{
1699        uint64_t n_blocks, offset;
1700        struct wc_entry e;
1701
1702        n_blocks = device_size;
1703        do_div(n_blocks, block_size + sizeof(struct wc_memory_entry));
1704
1705        while (1) {
1706                if (!n_blocks)
1707                        return -ENOSPC;
1708                /* Verify the following entries[n_blocks] won't overflow */
1709                if (n_blocks >= ((size_t)-sizeof(struct wc_memory_superblock) /
1710                                 sizeof(struct wc_memory_entry)))
1711                        return -EFBIG;
1712                offset = offsetof(struct wc_memory_superblock, entries[n_blocks]);
1713                offset = (offset + block_size - 1) & ~(uint64_t)(block_size - 1);
1714                if (offset + n_blocks * block_size <= device_size)
1715                        break;
1716                n_blocks--;
1717        }
1718
1719        /* check if the bit field overflows */
1720        e.index = n_blocks;
1721        if (e.index != n_blocks)
1722                return -EFBIG;
1723
1724        if (n_blocks_p)
1725                *n_blocks_p = n_blocks;
1726        if (n_metadata_blocks_p)
1727                *n_metadata_blocks_p = offset >> __ffs(block_size);
1728        return 0;
1729}
1730
1731static int init_memory(struct dm_writecache *wc)
1732{
1733        size_t b;
1734        int r;
1735
1736        r = calculate_memory_size(wc->memory_map_size, wc->block_size, &wc->n_blocks, NULL);
1737        if (r)
1738                return r;
1739
1740        r = writecache_alloc_entries(wc);
1741        if (r)
1742                return r;
1743
1744        for (b = 0; b < ARRAY_SIZE(sb(wc)->padding); b++)
1745                pmem_assign(sb(wc)->padding[b], cpu_to_le64(0));
1746        pmem_assign(sb(wc)->version, cpu_to_le32(MEMORY_SUPERBLOCK_VERSION));
1747        pmem_assign(sb(wc)->block_size, cpu_to_le32(wc->block_size));
1748        pmem_assign(sb(wc)->n_blocks, cpu_to_le64(wc->n_blocks));
1749        pmem_assign(sb(wc)->seq_count, cpu_to_le64(0));
1750
1751        for (b = 0; b < wc->n_blocks; b++)
1752                write_original_sector_seq_count(wc, &wc->entries[b], -1, -1);
1753
1754        writecache_flush_all_metadata(wc);
1755        writecache_commit_flushed(wc);
1756        pmem_assign(sb(wc)->magic, cpu_to_le32(MEMORY_SUPERBLOCK_MAGIC));
1757        writecache_flush_region(wc, &sb(wc)->magic, sizeof sb(wc)->magic);
1758        writecache_commit_flushed(wc);
1759
1760        return 0;
1761}
1762
1763static void writecache_dtr(struct dm_target *ti)
1764{
1765        struct dm_writecache *wc = ti->private;
1766
1767        if (!wc)
1768                return;
1769
1770        if (wc->endio_thread)
1771                kthread_stop(wc->endio_thread);
1772
1773        if (wc->flush_thread)
1774                kthread_stop(wc->flush_thread);
1775
1776        bioset_exit(&wc->bio_set);
1777
1778        mempool_exit(&wc->copy_pool);
1779
1780        if (wc->writeback_wq)
1781                destroy_workqueue(wc->writeback_wq);
1782
1783        if (wc->dev)
1784                dm_put_device(ti, wc->dev);
1785
1786        if (wc->ssd_dev)
1787                dm_put_device(ti, wc->ssd_dev);
1788
1789        if (wc->entries)
1790                vfree(wc->entries);
1791
1792        if (wc->memory_map) {
1793                if (WC_MODE_PMEM(wc))
1794                        persistent_memory_release(wc);
1795                else
1796                        vfree(wc->memory_map);
1797        }
1798
1799        if (wc->dm_kcopyd)
1800                dm_kcopyd_client_destroy(wc->dm_kcopyd);
1801
1802        if (wc->dm_io)
1803                dm_io_client_destroy(wc->dm_io);
1804
1805        if (wc->dirty_bitmap)
1806                vfree(wc->dirty_bitmap);
1807
1808        kfree(wc);
1809}
1810
1811static int writecache_ctr(struct dm_target *ti, unsigned argc, char **argv)
1812{
1813        struct dm_writecache *wc;
1814        struct dm_arg_set as;
1815        const char *string;
1816        unsigned opt_params;
1817        size_t offset, data_size;
1818        int i, r;
1819        char dummy;
1820        int high_wm_percent = HIGH_WATERMARK;
1821        int low_wm_percent = LOW_WATERMARK;
1822        uint64_t x;
1823        struct wc_memory_superblock s;
1824
1825        static struct dm_arg _args[] = {
1826                {0, 10, "Invalid number of feature args"},
1827        };
1828
1829        as.argc = argc;
1830        as.argv = argv;
1831
1832        wc = kzalloc(sizeof(struct dm_writecache), GFP_KERNEL);
1833        if (!wc) {
1834                ti->error = "Cannot allocate writecache structure";
1835                r = -ENOMEM;
1836                goto bad;
1837        }
1838        ti->private = wc;
1839        wc->ti = ti;
1840
1841        mutex_init(&wc->lock);
1842        writecache_poison_lists(wc);
1843        init_waitqueue_head(&wc->freelist_wait);
1844        timer_setup(&wc->autocommit_timer, writecache_autocommit_timer, 0);
1845
1846        for (i = 0; i < 2; i++) {
1847                atomic_set(&wc->bio_in_progress[i], 0);
1848                init_waitqueue_head(&wc->bio_in_progress_wait[i]);
1849        }
1850
1851        wc->dm_io = dm_io_client_create();
1852        if (IS_ERR(wc->dm_io)) {
1853                r = PTR_ERR(wc->dm_io);
1854                ti->error = "Unable to allocate dm-io client";
1855                wc->dm_io = NULL;
1856                goto bad;
1857        }
1858
1859        wc->writeback_wq = alloc_workqueue("writecache-writeback", WQ_MEM_RECLAIM, 1);
1860        if (!wc->writeback_wq) {
1861                r = -ENOMEM;
1862                ti->error = "Could not allocate writeback workqueue";
1863                goto bad;
1864        }
1865        INIT_WORK(&wc->writeback_work, writecache_writeback);
1866        INIT_WORK(&wc->flush_work, writecache_flush_work);
1867
1868        raw_spin_lock_init(&wc->endio_list_lock);
1869        INIT_LIST_HEAD(&wc->endio_list);
1870        wc->endio_thread = kthread_create(writecache_endio_thread, wc, "writecache_endio");
1871        if (IS_ERR(wc->endio_thread)) {
1872                r = PTR_ERR(wc->endio_thread);
1873                wc->endio_thread = NULL;
1874                ti->error = "Couldn't spawn endio thread";
1875                goto bad;
1876        }
1877        wake_up_process(wc->endio_thread);
1878
1879        /*
1880         * Parse the mode (pmem or ssd)
1881         */
1882        string = dm_shift_arg(&as);
1883        if (!string)
1884                goto bad_arguments;
1885
1886        if (!strcasecmp(string, "s")) {
1887                wc->pmem_mode = false;
1888        } else if (!strcasecmp(string, "p")) {
1889#ifdef DM_WRITECACHE_HAS_PMEM
1890                wc->pmem_mode = true;
1891                wc->writeback_fua = true;
1892#else
1893                /*
1894                 * If the architecture doesn't support persistent memory or
1895                 * the kernel doesn't support any DAX drivers, this driver can
1896                 * only be used in SSD-only mode.
1897                 */
1898                r = -EOPNOTSUPP;
1899                ti->error = "Persistent memory or DAX not supported on this system";
1900                goto bad;
1901#endif
1902        } else {
1903                goto bad_arguments;
1904        }
1905
1906        if (WC_MODE_PMEM(wc)) {
1907                r = bioset_init(&wc->bio_set, BIO_POOL_SIZE,
1908                                offsetof(struct writeback_struct, bio),
1909                                BIOSET_NEED_BVECS);
1910                if (r) {
1911                        ti->error = "Could not allocate bio set";
1912                        goto bad;
1913                }
1914        } else {
1915                r = mempool_init_kmalloc_pool(&wc->copy_pool, 1, sizeof(struct copy_struct));
1916                if (r) {
1917                        ti->error = "Could not allocate mempool";
1918                        goto bad;
1919                }
1920        }
1921
1922        /*
1923         * Parse the origin data device
1924         */
1925        string = dm_shift_arg(&as);
1926        if (!string)
1927                goto bad_arguments;
1928        r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->dev);
1929        if (r) {
1930                ti->error = "Origin data device lookup failed";
1931                goto bad;
1932        }
1933
1934        /*
1935         * Parse cache data device (be it pmem or ssd)
1936         */
1937        string = dm_shift_arg(&as);
1938        if (!string)
1939                goto bad_arguments;
1940
1941        r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->ssd_dev);
1942        if (r) {
1943                ti->error = "Cache data device lookup failed";
1944                goto bad;
1945        }
1946        wc->memory_map_size = i_size_read(wc->ssd_dev->bdev->bd_inode);
1947
1948        /*
1949         * Parse the cache block size
1950         */
1951        string = dm_shift_arg(&as);
1952        if (!string)
1953                goto bad_arguments;
1954        if (sscanf(string, "%u%c", &wc->block_size, &dummy) != 1 ||
1955            wc->block_size < 512 || wc->block_size > PAGE_SIZE ||
1956            (wc->block_size & (wc->block_size - 1))) {
1957                r = -EINVAL;
1958                ti->error = "Invalid block size";
1959                goto bad;
1960        }
1961        wc->block_size_bits = __ffs(wc->block_size);
1962
1963        wc->max_writeback_jobs = MAX_WRITEBACK_JOBS;
1964        wc->autocommit_blocks = !WC_MODE_PMEM(wc) ? AUTOCOMMIT_BLOCKS_SSD : AUTOCOMMIT_BLOCKS_PMEM;
1965        wc->autocommit_jiffies = msecs_to_jiffies(AUTOCOMMIT_MSEC);
1966
1967        /*
1968         * Parse optional arguments
1969         */
1970        r = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
1971        if (r)
1972                goto bad;
1973
1974        while (opt_params) {
1975                string = dm_shift_arg(&as), opt_params--;
1976                if (!strcasecmp(string, "start_sector") && opt_params >= 1) {
1977                        unsigned long long start_sector;
1978                        string = dm_shift_arg(&as), opt_params--;
1979                        if (sscanf(string, "%llu%c", &start_sector, &dummy) != 1)
1980                                goto invalid_optional;
1981                        wc->start_sector = start_sector;
1982                        if (wc->start_sector != start_sector ||
1983                            wc->start_sector >= wc->memory_map_size >> SECTOR_SHIFT)
1984                                goto invalid_optional;
1985                } else if (!strcasecmp(string, "high_watermark") && opt_params >= 1) {
1986                        string = dm_shift_arg(&as), opt_params--;
1987                        if (sscanf(string, "%d%c", &high_wm_percent, &dummy) != 1)
1988                                goto invalid_optional;
1989                        if (high_wm_percent < 0 || high_wm_percent > 100)
1990                                goto invalid_optional;
1991                        wc->high_wm_percent_set = true;
1992                } else if (!strcasecmp(string, "low_watermark") && opt_params >= 1) {
1993                        string = dm_shift_arg(&as), opt_params--;
1994                        if (sscanf(string, "%d%c", &low_wm_percent, &dummy) != 1)
1995                                goto invalid_optional;
1996                        if (low_wm_percent < 0 || low_wm_percent > 100)
1997                                goto invalid_optional;
1998                        wc->low_wm_percent_set = true;
1999                } else if (!strcasecmp(string, "writeback_jobs") && opt_params >= 1) {
2000                        string = dm_shift_arg(&as), opt_params--;
2001                        if (sscanf(string, "%u%c", &wc->max_writeback_jobs, &dummy) != 1)
2002                                goto invalid_optional;
2003                        wc->max_writeback_jobs_set = true;
2004                } else if (!strcasecmp(string, "autocommit_blocks") && opt_params >= 1) {
2005                        string = dm_shift_arg(&as), opt_params--;
2006                        if (sscanf(string, "%u%c", &wc->autocommit_blocks, &dummy) != 1)
2007                                goto invalid_optional;
2008                        wc->autocommit_blocks_set = true;
2009                } else if (!strcasecmp(string, "autocommit_time") && opt_params >= 1) {
2010                        unsigned autocommit_msecs;
2011                        string = dm_shift_arg(&as), opt_params--;
2012                        if (sscanf(string, "%u%c", &autocommit_msecs, &dummy) != 1)
2013                                goto invalid_optional;
2014                        if (autocommit_msecs > 3600000)
2015                                goto invalid_optional;
2016                        wc->autocommit_jiffies = msecs_to_jiffies(autocommit_msecs);
2017                        wc->autocommit_time_set = true;
2018                } else if (!strcasecmp(string, "fua")) {
2019                        if (WC_MODE_PMEM(wc)) {
2020                                wc->writeback_fua = true;
2021                                wc->writeback_fua_set = true;
2022                        } else goto invalid_optional;
2023                } else if (!strcasecmp(string, "nofua")) {
2024                        if (WC_MODE_PMEM(wc)) {
2025                                wc->writeback_fua = false;
2026                                wc->writeback_fua_set = true;
2027                        } else goto invalid_optional;
2028                } else {
2029invalid_optional:
2030                        r = -EINVAL;
2031                        ti->error = "Invalid optional argument";
2032                        goto bad;
2033                }
2034        }
2035
2036        if (high_wm_percent < low_wm_percent) {
2037                r = -EINVAL;
2038                ti->error = "High watermark must be greater than or equal to low watermark";
2039                goto bad;
2040        }
2041
2042        if (WC_MODE_PMEM(wc)) {
2043                r = persistent_memory_claim(wc);
2044                if (r) {
2045                        ti->error = "Unable to map persistent memory for cache";
2046                        goto bad;
2047                }
2048        } else {
2049                struct dm_io_region region;
2050                struct dm_io_request req;
2051                size_t n_blocks, n_metadata_blocks;
2052                uint64_t n_bitmap_bits;
2053
2054                wc->memory_map_size -= (uint64_t)wc->start_sector << SECTOR_SHIFT;
2055
2056                bio_list_init(&wc->flush_list);
2057                wc->flush_thread = kthread_create(writecache_flush_thread, wc, "dm_writecache_flush");
2058                if (IS_ERR(wc->flush_thread)) {
2059                        r = PTR_ERR(wc->flush_thread);
2060                        wc->flush_thread = NULL;
2061                        ti->error = "Couldn't spawn flush thread";
2062                        goto bad;
2063                }
2064                wake_up_process(wc->flush_thread);
2065
2066                r = calculate_memory_size(wc->memory_map_size, wc->block_size,
2067                                          &n_blocks, &n_metadata_blocks);
2068                if (r) {
2069                        ti->error = "Invalid device size";
2070                        goto bad;
2071                }
2072
2073                n_bitmap_bits = (((uint64_t)n_metadata_blocks << wc->block_size_bits) +
2074                                 BITMAP_GRANULARITY - 1) / BITMAP_GRANULARITY;
2075                /* this is limitation of test_bit functions */
2076                if (n_bitmap_bits > 1U << 31) {
2077                        r = -EFBIG;
2078                        ti->error = "Invalid device size";
2079                        goto bad;
2080                }
2081
2082                wc->memory_map = vmalloc(n_metadata_blocks << wc->block_size_bits);
2083                if (!wc->memory_map) {
2084                        r = -ENOMEM;
2085                        ti->error = "Unable to allocate memory for metadata";
2086                        goto bad;
2087                }
2088
2089                wc->dm_kcopyd = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2090                if (IS_ERR(wc->dm_kcopyd)) {
2091                        r = PTR_ERR(wc->dm_kcopyd);
2092                        ti->error = "Unable to allocate dm-kcopyd client";
2093                        wc->dm_kcopyd = NULL;
2094                        goto bad;
2095                }
2096
2097                wc->metadata_sectors = n_metadata_blocks << (wc->block_size_bits - SECTOR_SHIFT);
2098                wc->dirty_bitmap_size = (n_bitmap_bits + BITS_PER_LONG - 1) /
2099                        BITS_PER_LONG * sizeof(unsigned long);
2100                wc->dirty_bitmap = vzalloc(wc->dirty_bitmap_size);
2101                if (!wc->dirty_bitmap) {
2102                        r = -ENOMEM;
2103                        ti->error = "Unable to allocate dirty bitmap";
2104                        goto bad;
2105                }
2106
2107                region.bdev = wc->ssd_dev->bdev;
2108                region.sector = wc->start_sector;
2109                region.count = wc->metadata_sectors;
2110                req.bi_op = REQ_OP_READ;
2111                req.bi_op_flags = REQ_SYNC;
2112                req.mem.type = DM_IO_VMA;
2113                req.mem.ptr.vma = (char *)wc->memory_map;
2114                req.client = wc->dm_io;
2115                req.notify.fn = NULL;
2116
2117                r = dm_io(&req, 1, &region, NULL);
2118                if (r) {
2119                        ti->error = "Unable to read metadata";
2120                        goto bad;
2121                }
2122        }
2123
2124        r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock));
2125        if (r) {
2126                ti->error = "Hardware memory error when reading superblock";
2127                goto bad;
2128        }
2129        if (!le32_to_cpu(s.magic) && !le32_to_cpu(s.version)) {
2130                r = init_memory(wc);
2131                if (r) {
2132                        ti->error = "Unable to initialize device";
2133                        goto bad;
2134                }
2135                r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock));
2136                if (r) {
2137                        ti->error = "Hardware memory error when reading superblock";
2138                        goto bad;
2139                }
2140        }
2141
2142        if (le32_to_cpu(s.magic) != MEMORY_SUPERBLOCK_MAGIC) {
2143                ti->error = "Invalid magic in the superblock";
2144                r = -EINVAL;
2145                goto bad;
2146        }
2147
2148        if (le32_to_cpu(s.version) != MEMORY_SUPERBLOCK_VERSION) {
2149                ti->error = "Invalid version in the superblock";
2150                r = -EINVAL;
2151                goto bad;
2152        }
2153
2154        if (le32_to_cpu(s.block_size) != wc->block_size) {
2155                ti->error = "Block size does not match superblock";
2156                r = -EINVAL;
2157                goto bad;
2158        }
2159
2160        wc->n_blocks = le64_to_cpu(s.n_blocks);
2161
2162        offset = wc->n_blocks * sizeof(struct wc_memory_entry);
2163        if (offset / sizeof(struct wc_memory_entry) != le64_to_cpu(sb(wc)->n_blocks)) {
2164overflow:
2165                ti->error = "Overflow in size calculation";
2166                r = -EINVAL;
2167                goto bad;
2168        }
2169        offset += sizeof(struct wc_memory_superblock);
2170        if (offset < sizeof(struct wc_memory_superblock))
2171                goto overflow;
2172        offset = (offset + wc->block_size - 1) & ~(size_t)(wc->block_size - 1);
2173        data_size = wc->n_blocks * (size_t)wc->block_size;
2174        if (!offset || (data_size / wc->block_size != wc->n_blocks) ||
2175            (offset + data_size < offset))
2176                goto overflow;
2177        if (offset + data_size > wc->memory_map_size) {
2178                ti->error = "Memory area is too small";
2179                r = -EINVAL;
2180                goto bad;
2181        }
2182
2183        wc->metadata_sectors = offset >> SECTOR_SHIFT;
2184        wc->block_start = (char *)sb(wc) + offset;
2185
2186        x = (uint64_t)wc->n_blocks * (100 - high_wm_percent);
2187        x += 50;
2188        do_div(x, 100);
2189        wc->freelist_high_watermark = x;
2190        x = (uint64_t)wc->n_blocks * (100 - low_wm_percent);
2191        x += 50;
2192        do_div(x, 100);
2193        wc->freelist_low_watermark = x;
2194
2195        r = writecache_alloc_entries(wc);
2196        if (r) {
2197                ti->error = "Cannot allocate memory";
2198                goto bad;
2199        }
2200
2201        ti->num_flush_bios = 1;
2202        ti->flush_supported = true;
2203        ti->num_discard_bios = 1;
2204
2205        if (WC_MODE_PMEM(wc))
2206                persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
2207
2208        return 0;
2209
2210bad_arguments:
2211        r = -EINVAL;
2212        ti->error = "Bad arguments";
2213bad:
2214        writecache_dtr(ti);
2215        return r;
2216}
2217
2218static void writecache_status(struct dm_target *ti, status_type_t type,
2219                              unsigned status_flags, char *result, unsigned maxlen)
2220{
2221        struct dm_writecache *wc = ti->private;
2222        unsigned extra_args;
2223        unsigned sz = 0;
2224        uint64_t x;
2225
2226        switch (type) {
2227        case STATUSTYPE_INFO:
2228                DMEMIT("%ld %llu %llu %llu", writecache_has_error(wc),
2229                       (unsigned long long)wc->n_blocks, (unsigned long long)wc->freelist_size,
2230                       (unsigned long long)wc->writeback_size);
2231                break;
2232        case STATUSTYPE_TABLE:
2233                DMEMIT("%c %s %s %u ", WC_MODE_PMEM(wc) ? 'p' : 's',
2234                                wc->dev->name, wc->ssd_dev->name, wc->block_size);
2235                extra_args = 0;
2236                if (wc->start_sector)
2237                        extra_args += 2;
2238                if (wc->high_wm_percent_set)
2239                        extra_args += 2;
2240                if (wc->low_wm_percent_set)
2241                        extra_args += 2;
2242                if (wc->max_writeback_jobs_set)
2243                        extra_args += 2;
2244                if (wc->autocommit_blocks_set)
2245                        extra_args += 2;
2246                if (wc->autocommit_time_set)
2247                        extra_args += 2;
2248                if (wc->writeback_fua_set)
2249                        extra_args++;
2250
2251                DMEMIT("%u", extra_args);
2252                if (wc->start_sector)
2253                        DMEMIT(" start_sector %llu", (unsigned long long)wc->start_sector);
2254                if (wc->high_wm_percent_set) {
2255                        x = (uint64_t)wc->freelist_high_watermark * 100;
2256                        x += wc->n_blocks / 2;
2257                        do_div(x, (size_t)wc->n_blocks);
2258                        DMEMIT(" high_watermark %u", 100 - (unsigned)x);
2259                }
2260                if (wc->low_wm_percent_set) {
2261                        x = (uint64_t)wc->freelist_low_watermark * 100;
2262                        x += wc->n_blocks / 2;
2263                        do_div(x, (size_t)wc->n_blocks);
2264                        DMEMIT(" low_watermark %u", 100 - (unsigned)x);
2265                }
2266                if (wc->max_writeback_jobs_set)
2267                        DMEMIT(" writeback_jobs %u", wc->max_writeback_jobs);
2268                if (wc->autocommit_blocks_set)
2269                        DMEMIT(" autocommit_blocks %u", wc->autocommit_blocks);
2270                if (wc->autocommit_time_set)
2271                        DMEMIT(" autocommit_time %u", jiffies_to_msecs(wc->autocommit_jiffies));
2272                if (wc->writeback_fua_set)
2273                        DMEMIT(" %sfua", wc->writeback_fua ? "" : "no");
2274                break;
2275        }
2276}
2277
2278static struct target_type writecache_target = {
2279        .name                   = "writecache",
2280        .version                = {1, 1, 1},
2281        .module                 = THIS_MODULE,
2282        .ctr                    = writecache_ctr,
2283        .dtr                    = writecache_dtr,
2284        .status                 = writecache_status,
2285        .postsuspend            = writecache_suspend,
2286        .resume                 = writecache_resume,
2287        .message                = writecache_message,
2288        .map                    = writecache_map,
2289        .end_io                 = writecache_end_io,
2290        .iterate_devices        = writecache_iterate_devices,
2291        .io_hints               = writecache_io_hints,
2292};
2293
2294static int __init dm_writecache_init(void)
2295{
2296        int r;
2297
2298        r = dm_register_target(&writecache_target);
2299        if (r < 0) {
2300                DMERR("register failed %d", r);
2301                return r;
2302        }
2303
2304        return 0;
2305}
2306
2307static void __exit dm_writecache_exit(void)
2308{
2309        dm_unregister_target(&writecache_target);
2310}
2311
2312module_init(dm_writecache_init);
2313module_exit(dm_writecache_exit);
2314
2315MODULE_DESCRIPTION(DM_NAME " writecache target");
2316MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
2317MODULE_LICENSE("GPL");
2318