linux/drivers/md/dm.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm-core.h"
   9#include "dm-rq.h"
  10#include "dm-uevent.h"
  11
  12#include <linux/init.h>
  13#include <linux/module.h>
  14#include <linux/mutex.h>
  15#include <linux/sched/signal.h>
  16#include <linux/blkpg.h>
  17#include <linux/bio.h>
  18#include <linux/mempool.h>
  19#include <linux/dax.h>
  20#include <linux/slab.h>
  21#include <linux/idr.h>
  22#include <linux/uio.h>
  23#include <linux/hdreg.h>
  24#include <linux/delay.h>
  25#include <linux/wait.h>
  26#include <linux/pr.h>
  27#include <linux/refcount.h>
  28
  29#define DM_MSG_PREFIX "core"
  30
  31/*
  32 * Cookies are numeric values sent with CHANGE and REMOVE
  33 * uevents while resuming, removing or renaming the device.
  34 */
  35#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  36#define DM_COOKIE_LENGTH 24
  37
  38static const char *_name = DM_NAME;
  39
  40static unsigned int major = 0;
  41static unsigned int _major = 0;
  42
  43static DEFINE_IDR(_minor_idr);
  44
  45static DEFINE_SPINLOCK(_minor_lock);
  46
  47static void do_deferred_remove(struct work_struct *w);
  48
  49static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
  50
  51static struct workqueue_struct *deferred_remove_workqueue;
  52
  53atomic_t dm_global_event_nr = ATOMIC_INIT(0);
  54DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
  55
  56void dm_issue_global_event(void)
  57{
  58        atomic_inc(&dm_global_event_nr);
  59        wake_up(&dm_global_eventq);
  60}
  61
  62/*
  63 * One of these is allocated (on-stack) per original bio.
  64 */
  65struct clone_info {
  66        struct dm_table *map;
  67        struct bio *bio;
  68        struct dm_io *io;
  69        sector_t sector;
  70        unsigned sector_count;
  71};
  72
  73/*
  74 * One of these is allocated per clone bio.
  75 */
  76#define DM_TIO_MAGIC 7282014
  77struct dm_target_io {
  78        unsigned magic;
  79        struct dm_io *io;
  80        struct dm_target *ti;
  81        unsigned target_bio_nr;
  82        unsigned *len_ptr;
  83        bool inside_dm_io;
  84        struct bio clone;
  85};
  86
  87/*
  88 * One of these is allocated per original bio.
  89 * It contains the first clone used for that original.
  90 */
  91#define DM_IO_MAGIC 5191977
  92struct dm_io {
  93        unsigned magic;
  94        struct mapped_device *md;
  95        blk_status_t status;
  96        atomic_t io_count;
  97        struct bio *orig_bio;
  98        unsigned long start_time;
  99        spinlock_t endio_lock;
 100        struct dm_stats_aux stats_aux;
 101        /* last member of dm_target_io is 'struct bio' */
 102        struct dm_target_io tio;
 103};
 104
 105void *dm_per_bio_data(struct bio *bio, size_t data_size)
 106{
 107        struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 108        if (!tio->inside_dm_io)
 109                return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
 110        return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
 111}
 112EXPORT_SYMBOL_GPL(dm_per_bio_data);
 113
 114struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
 115{
 116        struct dm_io *io = (struct dm_io *)((char *)data + data_size);
 117        if (io->magic == DM_IO_MAGIC)
 118                return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
 119        BUG_ON(io->magic != DM_TIO_MAGIC);
 120        return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
 121}
 122EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
 123
 124unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
 125{
 126        return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
 127}
 128EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
 129
 130#define MINOR_ALLOCED ((void *)-1)
 131
 132/*
 133 * Bits for the md->flags field.
 134 */
 135#define DMF_BLOCK_IO_FOR_SUSPEND 0
 136#define DMF_SUSPENDED 1
 137#define DMF_FROZEN 2
 138#define DMF_FREEING 3
 139#define DMF_DELETING 4
 140#define DMF_NOFLUSH_SUSPENDING 5
 141#define DMF_DEFERRED_REMOVE 6
 142#define DMF_SUSPENDED_INTERNALLY 7
 143
 144#define DM_NUMA_NODE NUMA_NO_NODE
 145static int dm_numa_node = DM_NUMA_NODE;
 146
 147/*
 148 * For mempools pre-allocation at the table loading time.
 149 */
 150struct dm_md_mempools {
 151        struct bio_set bs;
 152        struct bio_set io_bs;
 153};
 154
 155struct table_device {
 156        struct list_head list;
 157        refcount_t count;
 158        struct dm_dev dm_dev;
 159};
 160
 161/*
 162 * Bio-based DM's mempools' reserved IOs set by the user.
 163 */
 164#define RESERVED_BIO_BASED_IOS          16
 165static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
 166
 167static int __dm_get_module_param_int(int *module_param, int min, int max)
 168{
 169        int param = READ_ONCE(*module_param);
 170        int modified_param = 0;
 171        bool modified = true;
 172
 173        if (param < min)
 174                modified_param = min;
 175        else if (param > max)
 176                modified_param = max;
 177        else
 178                modified = false;
 179
 180        if (modified) {
 181                (void)cmpxchg(module_param, param, modified_param);
 182                param = modified_param;
 183        }
 184
 185        return param;
 186}
 187
 188unsigned __dm_get_module_param(unsigned *module_param,
 189                               unsigned def, unsigned max)
 190{
 191        unsigned param = READ_ONCE(*module_param);
 192        unsigned modified_param = 0;
 193
 194        if (!param)
 195                modified_param = def;
 196        else if (param > max)
 197                modified_param = max;
 198
 199        if (modified_param) {
 200                (void)cmpxchg(module_param, param, modified_param);
 201                param = modified_param;
 202        }
 203
 204        return param;
 205}
 206
 207unsigned dm_get_reserved_bio_based_ios(void)
 208{
 209        return __dm_get_module_param(&reserved_bio_based_ios,
 210                                     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
 211}
 212EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
 213
 214static unsigned dm_get_numa_node(void)
 215{
 216        return __dm_get_module_param_int(&dm_numa_node,
 217                                         DM_NUMA_NODE, num_online_nodes() - 1);
 218}
 219
 220static int __init local_init(void)
 221{
 222        int r;
 223
 224        r = dm_uevent_init();
 225        if (r)
 226                return r;
 227
 228        deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
 229        if (!deferred_remove_workqueue) {
 230                r = -ENOMEM;
 231                goto out_uevent_exit;
 232        }
 233
 234        _major = major;
 235        r = register_blkdev(_major, _name);
 236        if (r < 0)
 237                goto out_free_workqueue;
 238
 239        if (!_major)
 240                _major = r;
 241
 242        return 0;
 243
 244out_free_workqueue:
 245        destroy_workqueue(deferred_remove_workqueue);
 246out_uevent_exit:
 247        dm_uevent_exit();
 248
 249        return r;
 250}
 251
 252static void local_exit(void)
 253{
 254        flush_scheduled_work();
 255        destroy_workqueue(deferred_remove_workqueue);
 256
 257        unregister_blkdev(_major, _name);
 258        dm_uevent_exit();
 259
 260        _major = 0;
 261
 262        DMINFO("cleaned up");
 263}
 264
 265static int (*_inits[])(void) __initdata = {
 266        local_init,
 267        dm_target_init,
 268        dm_linear_init,
 269        dm_stripe_init,
 270        dm_io_init,
 271        dm_kcopyd_init,
 272        dm_interface_init,
 273        dm_statistics_init,
 274};
 275
 276static void (*_exits[])(void) = {
 277        local_exit,
 278        dm_target_exit,
 279        dm_linear_exit,
 280        dm_stripe_exit,
 281        dm_io_exit,
 282        dm_kcopyd_exit,
 283        dm_interface_exit,
 284        dm_statistics_exit,
 285};
 286
 287static int __init dm_init(void)
 288{
 289        const int count = ARRAY_SIZE(_inits);
 290
 291        int r, i;
 292
 293        for (i = 0; i < count; i++) {
 294                r = _inits[i]();
 295                if (r)
 296                        goto bad;
 297        }
 298
 299        return 0;
 300
 301      bad:
 302        while (i--)
 303                _exits[i]();
 304
 305        return r;
 306}
 307
 308static void __exit dm_exit(void)
 309{
 310        int i = ARRAY_SIZE(_exits);
 311
 312        while (i--)
 313                _exits[i]();
 314
 315        /*
 316         * Should be empty by this point.
 317         */
 318        idr_destroy(&_minor_idr);
 319}
 320
 321/*
 322 * Block device functions
 323 */
 324int dm_deleting_md(struct mapped_device *md)
 325{
 326        return test_bit(DMF_DELETING, &md->flags);
 327}
 328
 329static int dm_blk_open(struct block_device *bdev, fmode_t mode)
 330{
 331        struct mapped_device *md;
 332
 333        spin_lock(&_minor_lock);
 334
 335        md = bdev->bd_disk->private_data;
 336        if (!md)
 337                goto out;
 338
 339        if (test_bit(DMF_FREEING, &md->flags) ||
 340            dm_deleting_md(md)) {
 341                md = NULL;
 342                goto out;
 343        }
 344
 345        dm_get(md);
 346        atomic_inc(&md->open_count);
 347out:
 348        spin_unlock(&_minor_lock);
 349
 350        return md ? 0 : -ENXIO;
 351}
 352
 353static void dm_blk_close(struct gendisk *disk, fmode_t mode)
 354{
 355        struct mapped_device *md;
 356
 357        spin_lock(&_minor_lock);
 358
 359        md = disk->private_data;
 360        if (WARN_ON(!md))
 361                goto out;
 362
 363        if (atomic_dec_and_test(&md->open_count) &&
 364            (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
 365                queue_work(deferred_remove_workqueue, &deferred_remove_work);
 366
 367        dm_put(md);
 368out:
 369        spin_unlock(&_minor_lock);
 370}
 371
 372int dm_open_count(struct mapped_device *md)
 373{
 374        return atomic_read(&md->open_count);
 375}
 376
 377/*
 378 * Guarantees nothing is using the device before it's deleted.
 379 */
 380int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
 381{
 382        int r = 0;
 383
 384        spin_lock(&_minor_lock);
 385
 386        if (dm_open_count(md)) {
 387                r = -EBUSY;
 388                if (mark_deferred)
 389                        set_bit(DMF_DEFERRED_REMOVE, &md->flags);
 390        } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
 391                r = -EEXIST;
 392        else
 393                set_bit(DMF_DELETING, &md->flags);
 394
 395        spin_unlock(&_minor_lock);
 396
 397        return r;
 398}
 399
 400int dm_cancel_deferred_remove(struct mapped_device *md)
 401{
 402        int r = 0;
 403
 404        spin_lock(&_minor_lock);
 405
 406        if (test_bit(DMF_DELETING, &md->flags))
 407                r = -EBUSY;
 408        else
 409                clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
 410
 411        spin_unlock(&_minor_lock);
 412
 413        return r;
 414}
 415
 416static void do_deferred_remove(struct work_struct *w)
 417{
 418        dm_deferred_remove();
 419}
 420
 421sector_t dm_get_size(struct mapped_device *md)
 422{
 423        return get_capacity(md->disk);
 424}
 425
 426struct request_queue *dm_get_md_queue(struct mapped_device *md)
 427{
 428        return md->queue;
 429}
 430
 431struct dm_stats *dm_get_stats(struct mapped_device *md)
 432{
 433        return &md->stats;
 434}
 435
 436static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 437{
 438        struct mapped_device *md = bdev->bd_disk->private_data;
 439
 440        return dm_get_geometry(md, geo);
 441}
 442
 443static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
 444                               struct blk_zone *zones, unsigned int *nr_zones)
 445{
 446#ifdef CONFIG_BLK_DEV_ZONED
 447        struct mapped_device *md = disk->private_data;
 448        struct dm_target *tgt;
 449        struct dm_table *map;
 450        int srcu_idx, ret;
 451
 452        if (dm_suspended_md(md))
 453                return -EAGAIN;
 454
 455        map = dm_get_live_table(md, &srcu_idx);
 456        if (!map)
 457                return -EIO;
 458
 459        tgt = dm_table_find_target(map, sector);
 460        if (!dm_target_is_valid(tgt)) {
 461                ret = -EIO;
 462                goto out;
 463        }
 464
 465        /*
 466         * If we are executing this, we already know that the block device
 467         * is a zoned device and so each target should have support for that
 468         * type of drive. A missing report_zones method means that the target
 469         * driver has a problem.
 470         */
 471        if (WARN_ON(!tgt->type->report_zones)) {
 472                ret = -EIO;
 473                goto out;
 474        }
 475
 476        /*
 477         * blkdev_report_zones() will loop and call this again to cover all the
 478         * zones of the target, eventually moving on to the next target.
 479         * So there is no need to loop here trying to fill the entire array
 480         * of zones.
 481         */
 482        ret = tgt->type->report_zones(tgt, sector, zones, nr_zones);
 483
 484out:
 485        dm_put_live_table(md, srcu_idx);
 486        return ret;
 487#else
 488        return -ENOTSUPP;
 489#endif
 490}
 491
 492static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
 493                            struct block_device **bdev)
 494        __acquires(md->io_barrier)
 495{
 496        struct dm_target *tgt;
 497        struct dm_table *map;
 498        int r;
 499
 500retry:
 501        r = -ENOTTY;
 502        map = dm_get_live_table(md, srcu_idx);
 503        if (!map || !dm_table_get_size(map))
 504                return r;
 505
 506        /* We only support devices that have a single target */
 507        if (dm_table_get_num_targets(map) != 1)
 508                return r;
 509
 510        tgt = dm_table_get_target(map, 0);
 511        if (!tgt->type->prepare_ioctl)
 512                return r;
 513
 514        if (dm_suspended_md(md))
 515                return -EAGAIN;
 516
 517        r = tgt->type->prepare_ioctl(tgt, bdev);
 518        if (r == -ENOTCONN && !fatal_signal_pending(current)) {
 519                dm_put_live_table(md, *srcu_idx);
 520                msleep(10);
 521                goto retry;
 522        }
 523
 524        return r;
 525}
 526
 527static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
 528        __releases(md->io_barrier)
 529{
 530        dm_put_live_table(md, srcu_idx);
 531}
 532
 533static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
 534                        unsigned int cmd, unsigned long arg)
 535{
 536        struct mapped_device *md = bdev->bd_disk->private_data;
 537        int r, srcu_idx;
 538
 539        r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
 540        if (r < 0)
 541                goto out;
 542
 543        if (r > 0) {
 544                /*
 545                 * Target determined this ioctl is being issued against a
 546                 * subset of the parent bdev; require extra privileges.
 547                 */
 548                if (!capable(CAP_SYS_RAWIO)) {
 549                        DMWARN_LIMIT(
 550        "%s: sending ioctl %x to DM device without required privilege.",
 551                                current->comm, cmd);
 552                        r = -ENOIOCTLCMD;
 553                        goto out;
 554                }
 555        }
 556
 557        r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
 558out:
 559        dm_unprepare_ioctl(md, srcu_idx);
 560        return r;
 561}
 562
 563static void start_io_acct(struct dm_io *io);
 564
 565static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
 566{
 567        struct dm_io *io;
 568        struct dm_target_io *tio;
 569        struct bio *clone;
 570
 571        clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
 572        if (!clone)
 573                return NULL;
 574
 575        tio = container_of(clone, struct dm_target_io, clone);
 576        tio->inside_dm_io = true;
 577        tio->io = NULL;
 578
 579        io = container_of(tio, struct dm_io, tio);
 580        io->magic = DM_IO_MAGIC;
 581        io->status = 0;
 582        atomic_set(&io->io_count, 1);
 583        io->orig_bio = bio;
 584        io->md = md;
 585        spin_lock_init(&io->endio_lock);
 586
 587        start_io_acct(io);
 588
 589        return io;
 590}
 591
 592static void free_io(struct mapped_device *md, struct dm_io *io)
 593{
 594        bio_put(&io->tio.clone);
 595}
 596
 597static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
 598                                      unsigned target_bio_nr, gfp_t gfp_mask)
 599{
 600        struct dm_target_io *tio;
 601
 602        if (!ci->io->tio.io) {
 603                /* the dm_target_io embedded in ci->io is available */
 604                tio = &ci->io->tio;
 605        } else {
 606                struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
 607                if (!clone)
 608                        return NULL;
 609
 610                tio = container_of(clone, struct dm_target_io, clone);
 611                tio->inside_dm_io = false;
 612        }
 613
 614        tio->magic = DM_TIO_MAGIC;
 615        tio->io = ci->io;
 616        tio->ti = ti;
 617        tio->target_bio_nr = target_bio_nr;
 618
 619        return tio;
 620}
 621
 622static void free_tio(struct dm_target_io *tio)
 623{
 624        if (tio->inside_dm_io)
 625                return;
 626        bio_put(&tio->clone);
 627}
 628
 629static bool md_in_flight_bios(struct mapped_device *md)
 630{
 631        int cpu;
 632        struct hd_struct *part = &dm_disk(md)->part0;
 633        long sum = 0;
 634
 635        for_each_possible_cpu(cpu) {
 636                sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
 637                sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
 638        }
 639
 640        return sum != 0;
 641}
 642
 643static bool md_in_flight(struct mapped_device *md)
 644{
 645        if (queue_is_mq(md->queue))
 646                return blk_mq_queue_inflight(md->queue);
 647        else
 648                return md_in_flight_bios(md);
 649}
 650
 651static void start_io_acct(struct dm_io *io)
 652{
 653        struct mapped_device *md = io->md;
 654        struct bio *bio = io->orig_bio;
 655
 656        io->start_time = jiffies;
 657
 658        generic_start_io_acct(md->queue, bio_op(bio), bio_sectors(bio),
 659                              &dm_disk(md)->part0);
 660
 661        if (unlikely(dm_stats_used(&md->stats)))
 662                dm_stats_account_io(&md->stats, bio_data_dir(bio),
 663                                    bio->bi_iter.bi_sector, bio_sectors(bio),
 664                                    false, 0, &io->stats_aux);
 665}
 666
 667static void end_io_acct(struct dm_io *io)
 668{
 669        struct mapped_device *md = io->md;
 670        struct bio *bio = io->orig_bio;
 671        unsigned long duration = jiffies - io->start_time;
 672
 673        generic_end_io_acct(md->queue, bio_op(bio), &dm_disk(md)->part0,
 674                            io->start_time);
 675
 676        if (unlikely(dm_stats_used(&md->stats)))
 677                dm_stats_account_io(&md->stats, bio_data_dir(bio),
 678                                    bio->bi_iter.bi_sector, bio_sectors(bio),
 679                                    true, duration, &io->stats_aux);
 680
 681        /* nudge anyone waiting on suspend queue */
 682        if (unlikely(wq_has_sleeper(&md->wait)))
 683                wake_up(&md->wait);
 684}
 685
 686/*
 687 * Add the bio to the list of deferred io.
 688 */
 689static void queue_io(struct mapped_device *md, struct bio *bio)
 690{
 691        unsigned long flags;
 692
 693        spin_lock_irqsave(&md->deferred_lock, flags);
 694        bio_list_add(&md->deferred, bio);
 695        spin_unlock_irqrestore(&md->deferred_lock, flags);
 696        queue_work(md->wq, &md->work);
 697}
 698
 699/*
 700 * Everyone (including functions in this file), should use this
 701 * function to access the md->map field, and make sure they call
 702 * dm_put_live_table() when finished.
 703 */
 704struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
 705{
 706        *srcu_idx = srcu_read_lock(&md->io_barrier);
 707
 708        return srcu_dereference(md->map, &md->io_barrier);
 709}
 710
 711void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
 712{
 713        srcu_read_unlock(&md->io_barrier, srcu_idx);
 714}
 715
 716void dm_sync_table(struct mapped_device *md)
 717{
 718        synchronize_srcu(&md->io_barrier);
 719        synchronize_rcu_expedited();
 720}
 721
 722/*
 723 * A fast alternative to dm_get_live_table/dm_put_live_table.
 724 * The caller must not block between these two functions.
 725 */
 726static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
 727{
 728        rcu_read_lock();
 729        return rcu_dereference(md->map);
 730}
 731
 732static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
 733{
 734        rcu_read_unlock();
 735}
 736
 737static char *_dm_claim_ptr = "I belong to device-mapper";
 738
 739/*
 740 * Open a table device so we can use it as a map destination.
 741 */
 742static int open_table_device(struct table_device *td, dev_t dev,
 743                             struct mapped_device *md)
 744{
 745        struct block_device *bdev;
 746
 747        int r;
 748
 749        BUG_ON(td->dm_dev.bdev);
 750
 751        bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
 752        if (IS_ERR(bdev))
 753                return PTR_ERR(bdev);
 754
 755        r = bd_link_disk_holder(bdev, dm_disk(md));
 756        if (r) {
 757                blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
 758                return r;
 759        }
 760
 761        td->dm_dev.bdev = bdev;
 762        td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
 763        return 0;
 764}
 765
 766/*
 767 * Close a table device that we've been using.
 768 */
 769static void close_table_device(struct table_device *td, struct mapped_device *md)
 770{
 771        if (!td->dm_dev.bdev)
 772                return;
 773
 774        bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
 775        blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
 776        put_dax(td->dm_dev.dax_dev);
 777        td->dm_dev.bdev = NULL;
 778        td->dm_dev.dax_dev = NULL;
 779}
 780
 781static struct table_device *find_table_device(struct list_head *l, dev_t dev,
 782                                              fmode_t mode)
 783{
 784        struct table_device *td;
 785
 786        list_for_each_entry(td, l, list)
 787                if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
 788                        return td;
 789
 790        return NULL;
 791}
 792
 793int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
 794                        struct dm_dev **result)
 795{
 796        int r;
 797        struct table_device *td;
 798
 799        mutex_lock(&md->table_devices_lock);
 800        td = find_table_device(&md->table_devices, dev, mode);
 801        if (!td) {
 802                td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
 803                if (!td) {
 804                        mutex_unlock(&md->table_devices_lock);
 805                        return -ENOMEM;
 806                }
 807
 808                td->dm_dev.mode = mode;
 809                td->dm_dev.bdev = NULL;
 810
 811                if ((r = open_table_device(td, dev, md))) {
 812                        mutex_unlock(&md->table_devices_lock);
 813                        kfree(td);
 814                        return r;
 815                }
 816
 817                format_dev_t(td->dm_dev.name, dev);
 818
 819                refcount_set(&td->count, 1);
 820                list_add(&td->list, &md->table_devices);
 821        } else {
 822                refcount_inc(&td->count);
 823        }
 824        mutex_unlock(&md->table_devices_lock);
 825
 826        *result = &td->dm_dev;
 827        return 0;
 828}
 829EXPORT_SYMBOL_GPL(dm_get_table_device);
 830
 831void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
 832{
 833        struct table_device *td = container_of(d, struct table_device, dm_dev);
 834
 835        mutex_lock(&md->table_devices_lock);
 836        if (refcount_dec_and_test(&td->count)) {
 837                close_table_device(td, md);
 838                list_del(&td->list);
 839                kfree(td);
 840        }
 841        mutex_unlock(&md->table_devices_lock);
 842}
 843EXPORT_SYMBOL(dm_put_table_device);
 844
 845static void free_table_devices(struct list_head *devices)
 846{
 847        struct list_head *tmp, *next;
 848
 849        list_for_each_safe(tmp, next, devices) {
 850                struct table_device *td = list_entry(tmp, struct table_device, list);
 851
 852                DMWARN("dm_destroy: %s still exists with %d references",
 853                       td->dm_dev.name, refcount_read(&td->count));
 854                kfree(td);
 855        }
 856}
 857
 858/*
 859 * Get the geometry associated with a dm device
 860 */
 861int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 862{
 863        *geo = md->geometry;
 864
 865        return 0;
 866}
 867
 868/*
 869 * Set the geometry of a device.
 870 */
 871int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 872{
 873        sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 874
 875        if (geo->start > sz) {
 876                DMWARN("Start sector is beyond the geometry limits.");
 877                return -EINVAL;
 878        }
 879
 880        md->geometry = *geo;
 881
 882        return 0;
 883}
 884
 885static int __noflush_suspending(struct mapped_device *md)
 886{
 887        return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 888}
 889
 890/*
 891 * Decrements the number of outstanding ios that a bio has been
 892 * cloned into, completing the original io if necc.
 893 */
 894static void dec_pending(struct dm_io *io, blk_status_t error)
 895{
 896        unsigned long flags;
 897        blk_status_t io_error;
 898        struct bio *bio;
 899        struct mapped_device *md = io->md;
 900
 901        /* Push-back supersedes any I/O errors */
 902        if (unlikely(error)) {
 903                spin_lock_irqsave(&io->endio_lock, flags);
 904                if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
 905                        io->status = error;
 906                spin_unlock_irqrestore(&io->endio_lock, flags);
 907        }
 908
 909        if (atomic_dec_and_test(&io->io_count)) {
 910                if (io->status == BLK_STS_DM_REQUEUE) {
 911                        /*
 912                         * Target requested pushing back the I/O.
 913                         */
 914                        spin_lock_irqsave(&md->deferred_lock, flags);
 915                        if (__noflush_suspending(md))
 916                                /* NOTE early return due to BLK_STS_DM_REQUEUE below */
 917                                bio_list_add_head(&md->deferred, io->orig_bio);
 918                        else
 919                                /* noflush suspend was interrupted. */
 920                                io->status = BLK_STS_IOERR;
 921                        spin_unlock_irqrestore(&md->deferred_lock, flags);
 922                }
 923
 924                io_error = io->status;
 925                bio = io->orig_bio;
 926                end_io_acct(io);
 927                free_io(md, io);
 928
 929                if (io_error == BLK_STS_DM_REQUEUE)
 930                        return;
 931
 932                if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
 933                        /*
 934                         * Preflush done for flush with data, reissue
 935                         * without REQ_PREFLUSH.
 936                         */
 937                        bio->bi_opf &= ~REQ_PREFLUSH;
 938                        queue_io(md, bio);
 939                } else {
 940                        /* done with normal IO or empty flush */
 941                        if (io_error)
 942                                bio->bi_status = io_error;
 943                        bio_endio(bio);
 944                }
 945        }
 946}
 947
 948void disable_discard(struct mapped_device *md)
 949{
 950        struct queue_limits *limits = dm_get_queue_limits(md);
 951
 952        /* device doesn't really support DISCARD, disable it */
 953        limits->max_discard_sectors = 0;
 954        blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
 955}
 956
 957void disable_write_same(struct mapped_device *md)
 958{
 959        struct queue_limits *limits = dm_get_queue_limits(md);
 960
 961        /* device doesn't really support WRITE SAME, disable it */
 962        limits->max_write_same_sectors = 0;
 963}
 964
 965void disable_write_zeroes(struct mapped_device *md)
 966{
 967        struct queue_limits *limits = dm_get_queue_limits(md);
 968
 969        /* device doesn't really support WRITE ZEROES, disable it */
 970        limits->max_write_zeroes_sectors = 0;
 971}
 972
 973static void clone_endio(struct bio *bio)
 974{
 975        blk_status_t error = bio->bi_status;
 976        struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 977        struct dm_io *io = tio->io;
 978        struct mapped_device *md = tio->io->md;
 979        dm_endio_fn endio = tio->ti->type->end_io;
 980
 981        if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
 982                if (bio_op(bio) == REQ_OP_DISCARD &&
 983                    !bio->bi_disk->queue->limits.max_discard_sectors)
 984                        disable_discard(md);
 985                else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
 986                         !bio->bi_disk->queue->limits.max_write_same_sectors)
 987                        disable_write_same(md);
 988                else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
 989                         !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
 990                        disable_write_zeroes(md);
 991        }
 992
 993        if (endio) {
 994                int r = endio(tio->ti, bio, &error);
 995                switch (r) {
 996                case DM_ENDIO_REQUEUE:
 997                        error = BLK_STS_DM_REQUEUE;
 998                        /*FALLTHRU*/
 999                case DM_ENDIO_DONE:
1000                        break;
1001                case DM_ENDIO_INCOMPLETE:
1002                        /* The target will handle the io */
1003                        return;
1004                default:
1005                        DMWARN("unimplemented target endio return value: %d", r);
1006                        BUG();
1007                }
1008        }
1009
1010        free_tio(tio);
1011        dec_pending(io, error);
1012}
1013
1014/*
1015 * Return maximum size of I/O possible at the supplied sector up to the current
1016 * target boundary.
1017 */
1018static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1019{
1020        sector_t target_offset = dm_target_offset(ti, sector);
1021
1022        return ti->len - target_offset;
1023}
1024
1025static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1026{
1027        sector_t len = max_io_len_target_boundary(sector, ti);
1028        sector_t offset, max_len;
1029
1030        /*
1031         * Does the target need to split even further?
1032         */
1033        if (ti->max_io_len) {
1034                offset = dm_target_offset(ti, sector);
1035                if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1036                        max_len = sector_div(offset, ti->max_io_len);
1037                else
1038                        max_len = offset & (ti->max_io_len - 1);
1039                max_len = ti->max_io_len - max_len;
1040
1041                if (len > max_len)
1042                        len = max_len;
1043        }
1044
1045        return len;
1046}
1047
1048int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1049{
1050        if (len > UINT_MAX) {
1051                DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1052                      (unsigned long long)len, UINT_MAX);
1053                ti->error = "Maximum size of target IO is too large";
1054                return -EINVAL;
1055        }
1056
1057        ti->max_io_len = (uint32_t) len;
1058
1059        return 0;
1060}
1061EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1062
1063static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1064                                                sector_t sector, int *srcu_idx)
1065        __acquires(md->io_barrier)
1066{
1067        struct dm_table *map;
1068        struct dm_target *ti;
1069
1070        map = dm_get_live_table(md, srcu_idx);
1071        if (!map)
1072                return NULL;
1073
1074        ti = dm_table_find_target(map, sector);
1075        if (!dm_target_is_valid(ti))
1076                return NULL;
1077
1078        return ti;
1079}
1080
1081static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1082                                 long nr_pages, void **kaddr, pfn_t *pfn)
1083{
1084        struct mapped_device *md = dax_get_private(dax_dev);
1085        sector_t sector = pgoff * PAGE_SECTORS;
1086        struct dm_target *ti;
1087        long len, ret = -EIO;
1088        int srcu_idx;
1089
1090        ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1091
1092        if (!ti)
1093                goto out;
1094        if (!ti->type->direct_access)
1095                goto out;
1096        len = max_io_len(sector, ti) / PAGE_SECTORS;
1097        if (len < 1)
1098                goto out;
1099        nr_pages = min(len, nr_pages);
1100        ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1101
1102 out:
1103        dm_put_live_table(md, srcu_idx);
1104
1105        return ret;
1106}
1107
1108static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1109                int blocksize, sector_t start, sector_t len)
1110{
1111        struct mapped_device *md = dax_get_private(dax_dev);
1112        struct dm_table *map;
1113        int srcu_idx;
1114        bool ret;
1115
1116        map = dm_get_live_table(md, &srcu_idx);
1117        if (!map)
1118                return false;
1119
1120        ret = dm_table_supports_dax(map, device_supports_dax, &blocksize);
1121
1122        dm_put_live_table(md, srcu_idx);
1123
1124        return ret;
1125}
1126
1127static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1128                                    void *addr, size_t bytes, struct iov_iter *i)
1129{
1130        struct mapped_device *md = dax_get_private(dax_dev);
1131        sector_t sector = pgoff * PAGE_SECTORS;
1132        struct dm_target *ti;
1133        long ret = 0;
1134        int srcu_idx;
1135
1136        ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1137
1138        if (!ti)
1139                goto out;
1140        if (!ti->type->dax_copy_from_iter) {
1141                ret = copy_from_iter(addr, bytes, i);
1142                goto out;
1143        }
1144        ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1145 out:
1146        dm_put_live_table(md, srcu_idx);
1147
1148        return ret;
1149}
1150
1151static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1152                void *addr, size_t bytes, struct iov_iter *i)
1153{
1154        struct mapped_device *md = dax_get_private(dax_dev);
1155        sector_t sector = pgoff * PAGE_SECTORS;
1156        struct dm_target *ti;
1157        long ret = 0;
1158        int srcu_idx;
1159
1160        ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1161
1162        if (!ti)
1163                goto out;
1164        if (!ti->type->dax_copy_to_iter) {
1165                ret = copy_to_iter(addr, bytes, i);
1166                goto out;
1167        }
1168        ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1169 out:
1170        dm_put_live_table(md, srcu_idx);
1171
1172        return ret;
1173}
1174
1175/*
1176 * A target may call dm_accept_partial_bio only from the map routine.  It is
1177 * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET.
1178 *
1179 * dm_accept_partial_bio informs the dm that the target only wants to process
1180 * additional n_sectors sectors of the bio and the rest of the data should be
1181 * sent in a next bio.
1182 *
1183 * A diagram that explains the arithmetics:
1184 * +--------------------+---------------+-------+
1185 * |         1          |       2       |   3   |
1186 * +--------------------+---------------+-------+
1187 *
1188 * <-------------- *tio->len_ptr --------------->
1189 *                      <------- bi_size ------->
1190 *                      <-- n_sectors -->
1191 *
1192 * Region 1 was already iterated over with bio_advance or similar function.
1193 *      (it may be empty if the target doesn't use bio_advance)
1194 * Region 2 is the remaining bio size that the target wants to process.
1195 *      (it may be empty if region 1 is non-empty, although there is no reason
1196 *       to make it empty)
1197 * The target requires that region 3 is to be sent in the next bio.
1198 *
1199 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1200 * the partially processed part (the sum of regions 1+2) must be the same for all
1201 * copies of the bio.
1202 */
1203void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1204{
1205        struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1206        unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1207        BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1208        BUG_ON(bi_size > *tio->len_ptr);
1209        BUG_ON(n_sectors > bi_size);
1210        *tio->len_ptr -= bi_size - n_sectors;
1211        bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1212}
1213EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1214
1215/*
1216 * The zone descriptors obtained with a zone report indicate
1217 * zone positions within the underlying device of the target. The zone
1218 * descriptors must be remapped to match their position within the dm device.
1219 * The caller target should obtain the zones information using
1220 * blkdev_report_zones() to ensure that remapping for partition offset is
1221 * already handled.
1222 */
1223void dm_remap_zone_report(struct dm_target *ti, sector_t start,
1224                          struct blk_zone *zones, unsigned int *nr_zones)
1225{
1226#ifdef CONFIG_BLK_DEV_ZONED
1227        struct blk_zone *zone;
1228        unsigned int nrz = *nr_zones;
1229        int i;
1230
1231        /*
1232         * Remap the start sector and write pointer position of the zones in
1233         * the array. Since we may have obtained from the target underlying
1234         * device more zones that the target size, also adjust the number
1235         * of zones.
1236         */
1237        for (i = 0; i < nrz; i++) {
1238                zone = zones + i;
1239                if (zone->start >= start + ti->len) {
1240                        memset(zone, 0, sizeof(struct blk_zone) * (nrz - i));
1241                        break;
1242                }
1243
1244                zone->start = zone->start + ti->begin - start;
1245                if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL)
1246                        continue;
1247
1248                if (zone->cond == BLK_ZONE_COND_FULL)
1249                        zone->wp = zone->start + zone->len;
1250                else if (zone->cond == BLK_ZONE_COND_EMPTY)
1251                        zone->wp = zone->start;
1252                else
1253                        zone->wp = zone->wp + ti->begin - start;
1254        }
1255
1256        *nr_zones = i;
1257#else /* !CONFIG_BLK_DEV_ZONED */
1258        *nr_zones = 0;
1259#endif
1260}
1261EXPORT_SYMBOL_GPL(dm_remap_zone_report);
1262
1263static blk_qc_t __map_bio(struct dm_target_io *tio)
1264{
1265        int r;
1266        sector_t sector;
1267        struct bio *clone = &tio->clone;
1268        struct dm_io *io = tio->io;
1269        struct mapped_device *md = io->md;
1270        struct dm_target *ti = tio->ti;
1271        blk_qc_t ret = BLK_QC_T_NONE;
1272
1273        clone->bi_end_io = clone_endio;
1274
1275        /*
1276         * Map the clone.  If r == 0 we don't need to do
1277         * anything, the target has assumed ownership of
1278         * this io.
1279         */
1280        atomic_inc(&io->io_count);
1281        sector = clone->bi_iter.bi_sector;
1282
1283        r = ti->type->map(ti, clone);
1284        switch (r) {
1285        case DM_MAPIO_SUBMITTED:
1286                break;
1287        case DM_MAPIO_REMAPPED:
1288                /* the bio has been remapped so dispatch it */
1289                trace_block_bio_remap(clone->bi_disk->queue, clone,
1290                                      bio_dev(io->orig_bio), sector);
1291                if (md->type == DM_TYPE_NVME_BIO_BASED)
1292                        ret = direct_make_request(clone);
1293                else
1294                        ret = generic_make_request(clone);
1295                break;
1296        case DM_MAPIO_KILL:
1297                free_tio(tio);
1298                dec_pending(io, BLK_STS_IOERR);
1299                break;
1300        case DM_MAPIO_REQUEUE:
1301                free_tio(tio);
1302                dec_pending(io, BLK_STS_DM_REQUEUE);
1303                break;
1304        default:
1305                DMWARN("unimplemented target map return value: %d", r);
1306                BUG();
1307        }
1308
1309        return ret;
1310}
1311
1312static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1313{
1314        bio->bi_iter.bi_sector = sector;
1315        bio->bi_iter.bi_size = to_bytes(len);
1316}
1317
1318/*
1319 * Creates a bio that consists of range of complete bvecs.
1320 */
1321static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1322                     sector_t sector, unsigned len)
1323{
1324        struct bio *clone = &tio->clone;
1325
1326        __bio_clone_fast(clone, bio);
1327
1328        if (bio_integrity(bio)) {
1329                int r;
1330
1331                if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1332                             !dm_target_passes_integrity(tio->ti->type))) {
1333                        DMWARN("%s: the target %s doesn't support integrity data.",
1334                                dm_device_name(tio->io->md),
1335                                tio->ti->type->name);
1336                        return -EIO;
1337                }
1338
1339                r = bio_integrity_clone(clone, bio, GFP_NOIO);
1340                if (r < 0)
1341                        return r;
1342        }
1343
1344        bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1345        clone->bi_iter.bi_size = to_bytes(len);
1346
1347        if (bio_integrity(bio))
1348                bio_integrity_trim(clone);
1349
1350        return 0;
1351}
1352
1353static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1354                                struct dm_target *ti, unsigned num_bios)
1355{
1356        struct dm_target_io *tio;
1357        int try;
1358
1359        if (!num_bios)
1360                return;
1361
1362        if (num_bios == 1) {
1363                tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1364                bio_list_add(blist, &tio->clone);
1365                return;
1366        }
1367
1368        for (try = 0; try < 2; try++) {
1369                int bio_nr;
1370                struct bio *bio;
1371
1372                if (try)
1373                        mutex_lock(&ci->io->md->table_devices_lock);
1374                for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1375                        tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1376                        if (!tio)
1377                                break;
1378
1379                        bio_list_add(blist, &tio->clone);
1380                }
1381                if (try)
1382                        mutex_unlock(&ci->io->md->table_devices_lock);
1383                if (bio_nr == num_bios)
1384                        return;
1385
1386                while ((bio = bio_list_pop(blist))) {
1387                        tio = container_of(bio, struct dm_target_io, clone);
1388                        free_tio(tio);
1389                }
1390        }
1391}
1392
1393static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1394                                           struct dm_target_io *tio, unsigned *len)
1395{
1396        struct bio *clone = &tio->clone;
1397
1398        tio->len_ptr = len;
1399
1400        __bio_clone_fast(clone, ci->bio);
1401        if (len)
1402                bio_setup_sector(clone, ci->sector, *len);
1403
1404        return __map_bio(tio);
1405}
1406
1407static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1408                                  unsigned num_bios, unsigned *len)
1409{
1410        struct bio_list blist = BIO_EMPTY_LIST;
1411        struct bio *bio;
1412        struct dm_target_io *tio;
1413
1414        alloc_multiple_bios(&blist, ci, ti, num_bios);
1415
1416        while ((bio = bio_list_pop(&blist))) {
1417                tio = container_of(bio, struct dm_target_io, clone);
1418                (void) __clone_and_map_simple_bio(ci, tio, len);
1419        }
1420}
1421
1422static int __send_empty_flush(struct clone_info *ci)
1423{
1424        unsigned target_nr = 0;
1425        struct dm_target *ti;
1426
1427        /*
1428         * Empty flush uses a statically initialized bio, as the base for
1429         * cloning.  However, blkg association requires that a bdev is
1430         * associated with a gendisk, which doesn't happen until the bdev is
1431         * opened.  So, blkg association is done at issue time of the flush
1432         * rather than when the device is created in alloc_dev().
1433         */
1434        bio_set_dev(ci->bio, ci->io->md->bdev);
1435
1436        BUG_ON(bio_has_data(ci->bio));
1437        while ((ti = dm_table_get_target(ci->map, target_nr++)))
1438                __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1439
1440        bio_disassociate_blkg(ci->bio);
1441
1442        return 0;
1443}
1444
1445static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1446                                    sector_t sector, unsigned *len)
1447{
1448        struct bio *bio = ci->bio;
1449        struct dm_target_io *tio;
1450        int r;
1451
1452        tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1453        tio->len_ptr = len;
1454        r = clone_bio(tio, bio, sector, *len);
1455        if (r < 0) {
1456                free_tio(tio);
1457                return r;
1458        }
1459        (void) __map_bio(tio);
1460
1461        return 0;
1462}
1463
1464typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1465
1466static unsigned get_num_discard_bios(struct dm_target *ti)
1467{
1468        return ti->num_discard_bios;
1469}
1470
1471static unsigned get_num_secure_erase_bios(struct dm_target *ti)
1472{
1473        return ti->num_secure_erase_bios;
1474}
1475
1476static unsigned get_num_write_same_bios(struct dm_target *ti)
1477{
1478        return ti->num_write_same_bios;
1479}
1480
1481static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1482{
1483        return ti->num_write_zeroes_bios;
1484}
1485
1486static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1487                                       unsigned num_bios)
1488{
1489        unsigned len;
1490
1491        /*
1492         * Even though the device advertised support for this type of
1493         * request, that does not mean every target supports it, and
1494         * reconfiguration might also have changed that since the
1495         * check was performed.
1496         */
1497        if (!num_bios)
1498                return -EOPNOTSUPP;
1499
1500        len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1501
1502        __send_duplicate_bios(ci, ti, num_bios, &len);
1503
1504        ci->sector += len;
1505        ci->sector_count -= len;
1506
1507        return 0;
1508}
1509
1510static int __send_discard(struct clone_info *ci, struct dm_target *ti)
1511{
1512        return __send_changing_extent_only(ci, ti, get_num_discard_bios(ti));
1513}
1514
1515static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti)
1516{
1517        return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios(ti));
1518}
1519
1520static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1521{
1522        return __send_changing_extent_only(ci, ti, get_num_write_same_bios(ti));
1523}
1524
1525static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1526{
1527        return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios(ti));
1528}
1529
1530static bool is_abnormal_io(struct bio *bio)
1531{
1532        bool r = false;
1533
1534        switch (bio_op(bio)) {
1535        case REQ_OP_DISCARD:
1536        case REQ_OP_SECURE_ERASE:
1537        case REQ_OP_WRITE_SAME:
1538        case REQ_OP_WRITE_ZEROES:
1539                r = true;
1540                break;
1541        }
1542
1543        return r;
1544}
1545
1546static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1547                                  int *result)
1548{
1549        struct bio *bio = ci->bio;
1550
1551        if (bio_op(bio) == REQ_OP_DISCARD)
1552                *result = __send_discard(ci, ti);
1553        else if (bio_op(bio) == REQ_OP_SECURE_ERASE)
1554                *result = __send_secure_erase(ci, ti);
1555        else if (bio_op(bio) == REQ_OP_WRITE_SAME)
1556                *result = __send_write_same(ci, ti);
1557        else if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
1558                *result = __send_write_zeroes(ci, ti);
1559        else
1560                return false;
1561
1562        return true;
1563}
1564
1565/*
1566 * Select the correct strategy for processing a non-flush bio.
1567 */
1568static int __split_and_process_non_flush(struct clone_info *ci)
1569{
1570        struct dm_target *ti;
1571        unsigned len;
1572        int r;
1573
1574        ti = dm_table_find_target(ci->map, ci->sector);
1575        if (!dm_target_is_valid(ti))
1576                return -EIO;
1577
1578        if (__process_abnormal_io(ci, ti, &r))
1579                return r;
1580
1581        len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1582
1583        r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1584        if (r < 0)
1585                return r;
1586
1587        ci->sector += len;
1588        ci->sector_count -= len;
1589
1590        return 0;
1591}
1592
1593static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1594                            struct dm_table *map, struct bio *bio)
1595{
1596        ci->map = map;
1597        ci->io = alloc_io(md, bio);
1598        ci->sector = bio->bi_iter.bi_sector;
1599}
1600
1601#define __dm_part_stat_sub(part, field, subnd)  \
1602        (part_stat_get(part, field) -= (subnd))
1603
1604/*
1605 * Entry point to split a bio into clones and submit them to the targets.
1606 */
1607static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1608                                        struct dm_table *map, struct bio *bio)
1609{
1610        struct clone_info ci;
1611        blk_qc_t ret = BLK_QC_T_NONE;
1612        int error = 0;
1613
1614        init_clone_info(&ci, md, map, bio);
1615
1616        if (bio->bi_opf & REQ_PREFLUSH) {
1617                struct bio flush_bio;
1618
1619                /*
1620                 * Use an on-stack bio for this, it's safe since we don't
1621                 * need to reference it after submit. It's just used as
1622                 * the basis for the clone(s).
1623                 */
1624                bio_init(&flush_bio, NULL, 0);
1625                flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1626                ci.bio = &flush_bio;
1627                ci.sector_count = 0;
1628                error = __send_empty_flush(&ci);
1629                /* dec_pending submits any data associated with flush */
1630        } else if (bio_op(bio) == REQ_OP_ZONE_RESET) {
1631                ci.bio = bio;
1632                ci.sector_count = 0;
1633                error = __split_and_process_non_flush(&ci);
1634        } else {
1635                ci.bio = bio;
1636                ci.sector_count = bio_sectors(bio);
1637                while (ci.sector_count && !error) {
1638                        error = __split_and_process_non_flush(&ci);
1639                        if (current->bio_list && ci.sector_count && !error) {
1640                                /*
1641                                 * Remainder must be passed to generic_make_request()
1642                                 * so that it gets handled *after* bios already submitted
1643                                 * have been completely processed.
1644                                 * We take a clone of the original to store in
1645                                 * ci.io->orig_bio to be used by end_io_acct() and
1646                                 * for dec_pending to use for completion handling.
1647                                 */
1648                                struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1649                                                          GFP_NOIO, &md->queue->bio_split);
1650                                ci.io->orig_bio = b;
1651
1652                                /*
1653                                 * Adjust IO stats for each split, otherwise upon queue
1654                                 * reentry there will be redundant IO accounting.
1655                                 * NOTE: this is a stop-gap fix, a proper fix involves
1656                                 * significant refactoring of DM core's bio splitting
1657                                 * (by eliminating DM's splitting and just using bio_split)
1658                                 */
1659                                part_stat_lock();
1660                                __dm_part_stat_sub(&dm_disk(md)->part0,
1661                                                   sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1662                                part_stat_unlock();
1663
1664                                bio_chain(b, bio);
1665                                trace_block_split(md->queue, b, bio->bi_iter.bi_sector);
1666                                ret = generic_make_request(bio);
1667                                break;
1668                        }
1669                }
1670        }
1671
1672        /* drop the extra reference count */
1673        dec_pending(ci.io, errno_to_blk_status(error));
1674        return ret;
1675}
1676
1677/*
1678 * Optimized variant of __split_and_process_bio that leverages the
1679 * fact that targets that use it do _not_ have a need to split bios.
1680 */
1681static blk_qc_t __process_bio(struct mapped_device *md, struct dm_table *map,
1682                              struct bio *bio, struct dm_target *ti)
1683{
1684        struct clone_info ci;
1685        blk_qc_t ret = BLK_QC_T_NONE;
1686        int error = 0;
1687
1688        init_clone_info(&ci, md, map, bio);
1689
1690        if (bio->bi_opf & REQ_PREFLUSH) {
1691                struct bio flush_bio;
1692
1693                /*
1694                 * Use an on-stack bio for this, it's safe since we don't
1695                 * need to reference it after submit. It's just used as
1696                 * the basis for the clone(s).
1697                 */
1698                bio_init(&flush_bio, NULL, 0);
1699                flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1700                ci.bio = &flush_bio;
1701                ci.sector_count = 0;
1702                error = __send_empty_flush(&ci);
1703                /* dec_pending submits any data associated with flush */
1704        } else {
1705                struct dm_target_io *tio;
1706
1707                ci.bio = bio;
1708                ci.sector_count = bio_sectors(bio);
1709                if (__process_abnormal_io(&ci, ti, &error))
1710                        goto out;
1711
1712                tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1713                ret = __clone_and_map_simple_bio(&ci, tio, NULL);
1714        }
1715out:
1716        /* drop the extra reference count */
1717        dec_pending(ci.io, errno_to_blk_status(error));
1718        return ret;
1719}
1720
1721static void dm_queue_split(struct mapped_device *md, struct dm_target *ti, struct bio **bio)
1722{
1723        unsigned len, sector_count;
1724
1725        sector_count = bio_sectors(*bio);
1726        len = min_t(sector_t, max_io_len((*bio)->bi_iter.bi_sector, ti), sector_count);
1727
1728        if (sector_count > len) {
1729                struct bio *split = bio_split(*bio, len, GFP_NOIO, &md->queue->bio_split);
1730
1731                bio_chain(split, *bio);
1732                trace_block_split(md->queue, split, (*bio)->bi_iter.bi_sector);
1733                generic_make_request(*bio);
1734                *bio = split;
1735        }
1736}
1737
1738static blk_qc_t dm_process_bio(struct mapped_device *md,
1739                               struct dm_table *map, struct bio *bio)
1740{
1741        blk_qc_t ret = BLK_QC_T_NONE;
1742        struct dm_target *ti = md->immutable_target;
1743
1744        if (unlikely(!map)) {
1745                bio_io_error(bio);
1746                return ret;
1747        }
1748
1749        if (!ti) {
1750                ti = dm_table_find_target(map, bio->bi_iter.bi_sector);
1751                if (unlikely(!ti || !dm_target_is_valid(ti))) {
1752                        bio_io_error(bio);
1753                        return ret;
1754                }
1755        }
1756
1757        /*
1758         * If in ->make_request_fn we need to use blk_queue_split(), otherwise
1759         * queue_limits for abnormal requests (e.g. discard, writesame, etc)
1760         * won't be imposed.
1761         */
1762        if (current->bio_list) {
1763                blk_queue_split(md->queue, &bio);
1764                if (!is_abnormal_io(bio))
1765                        dm_queue_split(md, ti, &bio);
1766        }
1767
1768        if (dm_get_md_type(md) == DM_TYPE_NVME_BIO_BASED)
1769                return __process_bio(md, map, bio, ti);
1770        else
1771                return __split_and_process_bio(md, map, bio);
1772}
1773
1774static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1775{
1776        struct mapped_device *md = q->queuedata;
1777        blk_qc_t ret = BLK_QC_T_NONE;
1778        int srcu_idx;
1779        struct dm_table *map;
1780
1781        map = dm_get_live_table(md, &srcu_idx);
1782
1783        /* if we're suspended, we have to queue this io for later */
1784        if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1785                dm_put_live_table(md, srcu_idx);
1786
1787                if (!(bio->bi_opf & REQ_RAHEAD))
1788                        queue_io(md, bio);
1789                else
1790                        bio_io_error(bio);
1791                return ret;
1792        }
1793
1794        ret = dm_process_bio(md, map, bio);
1795
1796        dm_put_live_table(md, srcu_idx);
1797        return ret;
1798}
1799
1800static int dm_any_congested(void *congested_data, int bdi_bits)
1801{
1802        int r = bdi_bits;
1803        struct mapped_device *md = congested_data;
1804        struct dm_table *map;
1805
1806        if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1807                if (dm_request_based(md)) {
1808                        /*
1809                         * With request-based DM we only need to check the
1810                         * top-level queue for congestion.
1811                         */
1812                        r = md->queue->backing_dev_info->wb.state & bdi_bits;
1813                } else {
1814                        map = dm_get_live_table_fast(md);
1815                        if (map)
1816                                r = dm_table_any_congested(map, bdi_bits);
1817                        dm_put_live_table_fast(md);
1818                }
1819        }
1820
1821        return r;
1822}
1823
1824/*-----------------------------------------------------------------
1825 * An IDR is used to keep track of allocated minor numbers.
1826 *---------------------------------------------------------------*/
1827static void free_minor(int minor)
1828{
1829        spin_lock(&_minor_lock);
1830        idr_remove(&_minor_idr, minor);
1831        spin_unlock(&_minor_lock);
1832}
1833
1834/*
1835 * See if the device with a specific minor # is free.
1836 */
1837static int specific_minor(int minor)
1838{
1839        int r;
1840
1841        if (minor >= (1 << MINORBITS))
1842                return -EINVAL;
1843
1844        idr_preload(GFP_KERNEL);
1845        spin_lock(&_minor_lock);
1846
1847        r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1848
1849        spin_unlock(&_minor_lock);
1850        idr_preload_end();
1851        if (r < 0)
1852                return r == -ENOSPC ? -EBUSY : r;
1853        return 0;
1854}
1855
1856static int next_free_minor(int *minor)
1857{
1858        int r;
1859
1860        idr_preload(GFP_KERNEL);
1861        spin_lock(&_minor_lock);
1862
1863        r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1864
1865        spin_unlock(&_minor_lock);
1866        idr_preload_end();
1867        if (r < 0)
1868                return r;
1869        *minor = r;
1870        return 0;
1871}
1872
1873static const struct block_device_operations dm_blk_dops;
1874static const struct dax_operations dm_dax_ops;
1875
1876static void dm_wq_work(struct work_struct *work);
1877
1878static void dm_init_normal_md_queue(struct mapped_device *md)
1879{
1880        /*
1881         * Initialize aspects of queue that aren't relevant for blk-mq
1882         */
1883        md->queue->backing_dev_info->congested_fn = dm_any_congested;
1884}
1885
1886static void cleanup_mapped_device(struct mapped_device *md)
1887{
1888        if (md->wq)
1889                destroy_workqueue(md->wq);
1890        bioset_exit(&md->bs);
1891        bioset_exit(&md->io_bs);
1892
1893        if (md->dax_dev) {
1894                kill_dax(md->dax_dev);
1895                put_dax(md->dax_dev);
1896                md->dax_dev = NULL;
1897        }
1898
1899        if (md->disk) {
1900                spin_lock(&_minor_lock);
1901                md->disk->private_data = NULL;
1902                spin_unlock(&_minor_lock);
1903                del_gendisk(md->disk);
1904                put_disk(md->disk);
1905        }
1906
1907        if (md->queue)
1908                blk_cleanup_queue(md->queue);
1909
1910        cleanup_srcu_struct(&md->io_barrier);
1911
1912        if (md->bdev) {
1913                bdput(md->bdev);
1914                md->bdev = NULL;
1915        }
1916
1917        mutex_destroy(&md->suspend_lock);
1918        mutex_destroy(&md->type_lock);
1919        mutex_destroy(&md->table_devices_lock);
1920
1921        dm_mq_cleanup_mapped_device(md);
1922}
1923
1924/*
1925 * Allocate and initialise a blank device with a given minor.
1926 */
1927static struct mapped_device *alloc_dev(int minor)
1928{
1929        int r, numa_node_id = dm_get_numa_node();
1930        struct mapped_device *md;
1931        void *old_md;
1932
1933        md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1934        if (!md) {
1935                DMWARN("unable to allocate device, out of memory.");
1936                return NULL;
1937        }
1938
1939        if (!try_module_get(THIS_MODULE))
1940                goto bad_module_get;
1941
1942        /* get a minor number for the dev */
1943        if (minor == DM_ANY_MINOR)
1944                r = next_free_minor(&minor);
1945        else
1946                r = specific_minor(minor);
1947        if (r < 0)
1948                goto bad_minor;
1949
1950        r = init_srcu_struct(&md->io_barrier);
1951        if (r < 0)
1952                goto bad_io_barrier;
1953
1954        md->numa_node_id = numa_node_id;
1955        md->init_tio_pdu = false;
1956        md->type = DM_TYPE_NONE;
1957        mutex_init(&md->suspend_lock);
1958        mutex_init(&md->type_lock);
1959        mutex_init(&md->table_devices_lock);
1960        spin_lock_init(&md->deferred_lock);
1961        atomic_set(&md->holders, 1);
1962        atomic_set(&md->open_count, 0);
1963        atomic_set(&md->event_nr, 0);
1964        atomic_set(&md->uevent_seq, 0);
1965        INIT_LIST_HEAD(&md->uevent_list);
1966        INIT_LIST_HEAD(&md->table_devices);
1967        spin_lock_init(&md->uevent_lock);
1968
1969        md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1970        if (!md->queue)
1971                goto bad;
1972        md->queue->queuedata = md;
1973        md->queue->backing_dev_info->congested_data = md;
1974
1975        md->disk = alloc_disk_node(1, md->numa_node_id);
1976        if (!md->disk)
1977                goto bad;
1978
1979        init_waitqueue_head(&md->wait);
1980        INIT_WORK(&md->work, dm_wq_work);
1981        init_waitqueue_head(&md->eventq);
1982        init_completion(&md->kobj_holder.completion);
1983
1984        md->disk->major = _major;
1985        md->disk->first_minor = minor;
1986        md->disk->fops = &dm_blk_dops;
1987        md->disk->queue = md->queue;
1988        md->disk->private_data = md;
1989        sprintf(md->disk->disk_name, "dm-%d", minor);
1990
1991        if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1992                md->dax_dev = alloc_dax(md, md->disk->disk_name,
1993                                        &dm_dax_ops, 0);
1994                if (!md->dax_dev)
1995                        goto bad;
1996        }
1997
1998        add_disk_no_queue_reg(md->disk);
1999        format_dev_t(md->name, MKDEV(_major, minor));
2000
2001        md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2002        if (!md->wq)
2003                goto bad;
2004
2005        md->bdev = bdget_disk(md->disk, 0);
2006        if (!md->bdev)
2007                goto bad;
2008
2009        dm_stats_init(&md->stats);
2010
2011        /* Populate the mapping, nobody knows we exist yet */
2012        spin_lock(&_minor_lock);
2013        old_md = idr_replace(&_minor_idr, md, minor);
2014        spin_unlock(&_minor_lock);
2015
2016        BUG_ON(old_md != MINOR_ALLOCED);
2017
2018        return md;
2019
2020bad:
2021        cleanup_mapped_device(md);
2022bad_io_barrier:
2023        free_minor(minor);
2024bad_minor:
2025        module_put(THIS_MODULE);
2026bad_module_get:
2027        kvfree(md);
2028        return NULL;
2029}
2030
2031static void unlock_fs(struct mapped_device *md);
2032
2033static void free_dev(struct mapped_device *md)
2034{
2035        int minor = MINOR(disk_devt(md->disk));
2036
2037        unlock_fs(md);
2038
2039        cleanup_mapped_device(md);
2040
2041        free_table_devices(&md->table_devices);
2042        dm_stats_cleanup(&md->stats);
2043        free_minor(minor);
2044
2045        module_put(THIS_MODULE);
2046        kvfree(md);
2047}
2048
2049static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
2050{
2051        struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2052        int ret = 0;
2053
2054        if (dm_table_bio_based(t)) {
2055                /*
2056                 * The md may already have mempools that need changing.
2057                 * If so, reload bioset because front_pad may have changed
2058                 * because a different table was loaded.
2059                 */
2060                bioset_exit(&md->bs);
2061                bioset_exit(&md->io_bs);
2062
2063        } else if (bioset_initialized(&md->bs)) {
2064                /*
2065                 * There's no need to reload with request-based dm
2066                 * because the size of front_pad doesn't change.
2067                 * Note for future: If you are to reload bioset,
2068                 * prep-ed requests in the queue may refer
2069                 * to bio from the old bioset, so you must walk
2070                 * through the queue to unprep.
2071                 */
2072                goto out;
2073        }
2074
2075        BUG_ON(!p ||
2076               bioset_initialized(&md->bs) ||
2077               bioset_initialized(&md->io_bs));
2078
2079        ret = bioset_init_from_src(&md->bs, &p->bs);
2080        if (ret)
2081                goto out;
2082        ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
2083        if (ret)
2084                bioset_exit(&md->bs);
2085out:
2086        /* mempool bind completed, no longer need any mempools in the table */
2087        dm_table_free_md_mempools(t);
2088        return ret;
2089}
2090
2091/*
2092 * Bind a table to the device.
2093 */
2094static void event_callback(void *context)
2095{
2096        unsigned long flags;
2097        LIST_HEAD(uevents);
2098        struct mapped_device *md = (struct mapped_device *) context;
2099
2100        spin_lock_irqsave(&md->uevent_lock, flags);
2101        list_splice_init(&md->uevent_list, &uevents);
2102        spin_unlock_irqrestore(&md->uevent_lock, flags);
2103
2104        dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2105
2106        atomic_inc(&md->event_nr);
2107        wake_up(&md->eventq);
2108        dm_issue_global_event();
2109}
2110
2111/*
2112 * Protected by md->suspend_lock obtained by dm_swap_table().
2113 */
2114static void __set_size(struct mapped_device *md, sector_t size)
2115{
2116        lockdep_assert_held(&md->suspend_lock);
2117
2118        set_capacity(md->disk, size);
2119
2120        i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2121}
2122
2123/*
2124 * Returns old map, which caller must destroy.
2125 */
2126static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2127                               struct queue_limits *limits)
2128{
2129        struct dm_table *old_map;
2130        struct request_queue *q = md->queue;
2131        bool request_based = dm_table_request_based(t);
2132        sector_t size;
2133        int ret;
2134
2135        lockdep_assert_held(&md->suspend_lock);
2136
2137        size = dm_table_get_size(t);
2138
2139        /*
2140         * Wipe any geometry if the size of the table changed.
2141         */
2142        if (size != dm_get_size(md))
2143                memset(&md->geometry, 0, sizeof(md->geometry));
2144
2145        __set_size(md, size);
2146
2147        dm_table_event_callback(t, event_callback, md);
2148
2149        /*
2150         * The queue hasn't been stopped yet, if the old table type wasn't
2151         * for request-based during suspension.  So stop it to prevent
2152         * I/O mapping before resume.
2153         * This must be done before setting the queue restrictions,
2154         * because request-based dm may be run just after the setting.
2155         */
2156        if (request_based)
2157                dm_stop_queue(q);
2158
2159        if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2160                /*
2161                 * Leverage the fact that request-based DM targets and
2162                 * NVMe bio based targets are immutable singletons
2163                 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2164                 *   and __process_bio.
2165                 */
2166                md->immutable_target = dm_table_get_immutable_target(t);
2167        }
2168
2169        ret = __bind_mempools(md, t);
2170        if (ret) {
2171                old_map = ERR_PTR(ret);
2172                goto out;
2173        }
2174
2175        old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2176        rcu_assign_pointer(md->map, (void *)t);
2177        md->immutable_target_type = dm_table_get_immutable_target_type(t);
2178
2179        dm_table_set_restrictions(t, q, limits);
2180        if (old_map)
2181                dm_sync_table(md);
2182
2183out:
2184        return old_map;
2185}
2186
2187/*
2188 * Returns unbound table for the caller to free.
2189 */
2190static struct dm_table *__unbind(struct mapped_device *md)
2191{
2192        struct dm_table *map = rcu_dereference_protected(md->map, 1);
2193
2194        if (!map)
2195                return NULL;
2196
2197        dm_table_event_callback(map, NULL, NULL);
2198        RCU_INIT_POINTER(md->map, NULL);
2199        dm_sync_table(md);
2200
2201        return map;
2202}
2203
2204/*
2205 * Constructor for a new device.
2206 */
2207int dm_create(int minor, struct mapped_device **result)
2208{
2209        int r;
2210        struct mapped_device *md;
2211
2212        md = alloc_dev(minor);
2213        if (!md)
2214                return -ENXIO;
2215
2216        r = dm_sysfs_init(md);
2217        if (r) {
2218                free_dev(md);
2219                return r;
2220        }
2221
2222        *result = md;
2223        return 0;
2224}
2225
2226/*
2227 * Functions to manage md->type.
2228 * All are required to hold md->type_lock.
2229 */
2230void dm_lock_md_type(struct mapped_device *md)
2231{
2232        mutex_lock(&md->type_lock);
2233}
2234
2235void dm_unlock_md_type(struct mapped_device *md)
2236{
2237        mutex_unlock(&md->type_lock);
2238}
2239
2240void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2241{
2242        BUG_ON(!mutex_is_locked(&md->type_lock));
2243        md->type = type;
2244}
2245
2246enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2247{
2248        return md->type;
2249}
2250
2251struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2252{
2253        return md->immutable_target_type;
2254}
2255
2256/*
2257 * The queue_limits are only valid as long as you have a reference
2258 * count on 'md'.
2259 */
2260struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2261{
2262        BUG_ON(!atomic_read(&md->holders));
2263        return &md->queue->limits;
2264}
2265EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2266
2267/*
2268 * Setup the DM device's queue based on md's type
2269 */
2270int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2271{
2272        int r;
2273        struct queue_limits limits;
2274        enum dm_queue_mode type = dm_get_md_type(md);
2275
2276        switch (type) {
2277        case DM_TYPE_REQUEST_BASED:
2278                r = dm_mq_init_request_queue(md, t);
2279                if (r) {
2280                        DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2281                        return r;
2282                }
2283                break;
2284        case DM_TYPE_BIO_BASED:
2285        case DM_TYPE_DAX_BIO_BASED:
2286        case DM_TYPE_NVME_BIO_BASED:
2287                dm_init_normal_md_queue(md);
2288                blk_queue_make_request(md->queue, dm_make_request);
2289                break;
2290        case DM_TYPE_NONE:
2291                WARN_ON_ONCE(true);
2292                break;
2293        }
2294
2295        r = dm_calculate_queue_limits(t, &limits);
2296        if (r) {
2297                DMERR("Cannot calculate initial queue limits");
2298                return r;
2299        }
2300        dm_table_set_restrictions(t, md->queue, &limits);
2301        blk_register_queue(md->disk);
2302
2303        return 0;
2304}
2305
2306struct mapped_device *dm_get_md(dev_t dev)
2307{
2308        struct mapped_device *md;
2309        unsigned minor = MINOR(dev);
2310
2311        if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2312                return NULL;
2313
2314        spin_lock(&_minor_lock);
2315
2316        md = idr_find(&_minor_idr, minor);
2317        if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2318            test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2319                md = NULL;
2320                goto out;
2321        }
2322        dm_get(md);
2323out:
2324        spin_unlock(&_minor_lock);
2325
2326        return md;
2327}
2328EXPORT_SYMBOL_GPL(dm_get_md);
2329
2330void *dm_get_mdptr(struct mapped_device *md)
2331{
2332        return md->interface_ptr;
2333}
2334
2335void dm_set_mdptr(struct mapped_device *md, void *ptr)
2336{
2337        md->interface_ptr = ptr;
2338}
2339
2340void dm_get(struct mapped_device *md)
2341{
2342        atomic_inc(&md->holders);
2343        BUG_ON(test_bit(DMF_FREEING, &md->flags));
2344}
2345
2346int dm_hold(struct mapped_device *md)
2347{
2348        spin_lock(&_minor_lock);
2349        if (test_bit(DMF_FREEING, &md->flags)) {
2350                spin_unlock(&_minor_lock);
2351                return -EBUSY;
2352        }
2353        dm_get(md);
2354        spin_unlock(&_minor_lock);
2355        return 0;
2356}
2357EXPORT_SYMBOL_GPL(dm_hold);
2358
2359const char *dm_device_name(struct mapped_device *md)
2360{
2361        return md->name;
2362}
2363EXPORT_SYMBOL_GPL(dm_device_name);
2364
2365static void __dm_destroy(struct mapped_device *md, bool wait)
2366{
2367        struct dm_table *map;
2368        int srcu_idx;
2369
2370        might_sleep();
2371
2372        spin_lock(&_minor_lock);
2373        idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2374        set_bit(DMF_FREEING, &md->flags);
2375        spin_unlock(&_minor_lock);
2376
2377        blk_set_queue_dying(md->queue);
2378
2379        /*
2380         * Take suspend_lock so that presuspend and postsuspend methods
2381         * do not race with internal suspend.
2382         */
2383        mutex_lock(&md->suspend_lock);
2384        map = dm_get_live_table(md, &srcu_idx);
2385        if (!dm_suspended_md(md)) {
2386                dm_table_presuspend_targets(map);
2387                dm_table_postsuspend_targets(map);
2388        }
2389        /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2390        dm_put_live_table(md, srcu_idx);
2391        mutex_unlock(&md->suspend_lock);
2392
2393        /*
2394         * Rare, but there may be I/O requests still going to complete,
2395         * for example.  Wait for all references to disappear.
2396         * No one should increment the reference count of the mapped_device,
2397         * after the mapped_device state becomes DMF_FREEING.
2398         */
2399        if (wait)
2400                while (atomic_read(&md->holders))
2401                        msleep(1);
2402        else if (atomic_read(&md->holders))
2403                DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2404                       dm_device_name(md), atomic_read(&md->holders));
2405
2406        dm_sysfs_exit(md);
2407        dm_table_destroy(__unbind(md));
2408        free_dev(md);
2409}
2410
2411void dm_destroy(struct mapped_device *md)
2412{
2413        __dm_destroy(md, true);
2414}
2415
2416void dm_destroy_immediate(struct mapped_device *md)
2417{
2418        __dm_destroy(md, false);
2419}
2420
2421void dm_put(struct mapped_device *md)
2422{
2423        atomic_dec(&md->holders);
2424}
2425EXPORT_SYMBOL_GPL(dm_put);
2426
2427static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2428{
2429        int r = 0;
2430        DEFINE_WAIT(wait);
2431
2432        while (1) {
2433                prepare_to_wait(&md->wait, &wait, task_state);
2434
2435                if (!md_in_flight(md))
2436                        break;
2437
2438                if (signal_pending_state(task_state, current)) {
2439                        r = -EINTR;
2440                        break;
2441                }
2442
2443                io_schedule();
2444        }
2445        finish_wait(&md->wait, &wait);
2446
2447        return r;
2448}
2449
2450/*
2451 * Process the deferred bios
2452 */
2453static void dm_wq_work(struct work_struct *work)
2454{
2455        struct mapped_device *md = container_of(work, struct mapped_device,
2456                                                work);
2457        struct bio *c;
2458        int srcu_idx;
2459        struct dm_table *map;
2460
2461        map = dm_get_live_table(md, &srcu_idx);
2462
2463        while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2464                spin_lock_irq(&md->deferred_lock);
2465                c = bio_list_pop(&md->deferred);
2466                spin_unlock_irq(&md->deferred_lock);
2467
2468                if (!c)
2469                        break;
2470
2471                if (dm_request_based(md))
2472                        (void) generic_make_request(c);
2473                else
2474                        (void) dm_process_bio(md, map, c);
2475        }
2476
2477        dm_put_live_table(md, srcu_idx);
2478}
2479
2480static void dm_queue_flush(struct mapped_device *md)
2481{
2482        clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2483        smp_mb__after_atomic();
2484        queue_work(md->wq, &md->work);
2485}
2486
2487/*
2488 * Swap in a new table, returning the old one for the caller to destroy.
2489 */
2490struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2491{
2492        struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2493        struct queue_limits limits;
2494        int r;
2495
2496        mutex_lock(&md->suspend_lock);
2497
2498        /* device must be suspended */
2499        if (!dm_suspended_md(md))
2500                goto out;
2501
2502        /*
2503         * If the new table has no data devices, retain the existing limits.
2504         * This helps multipath with queue_if_no_path if all paths disappear,
2505         * then new I/O is queued based on these limits, and then some paths
2506         * reappear.
2507         */
2508        if (dm_table_has_no_data_devices(table)) {
2509                live_map = dm_get_live_table_fast(md);
2510                if (live_map)
2511                        limits = md->queue->limits;
2512                dm_put_live_table_fast(md);
2513        }
2514
2515        if (!live_map) {
2516                r = dm_calculate_queue_limits(table, &limits);
2517                if (r) {
2518                        map = ERR_PTR(r);
2519                        goto out;
2520                }
2521        }
2522
2523        map = __bind(md, table, &limits);
2524        dm_issue_global_event();
2525
2526out:
2527        mutex_unlock(&md->suspend_lock);
2528        return map;
2529}
2530
2531/*
2532 * Functions to lock and unlock any filesystem running on the
2533 * device.
2534 */
2535static int lock_fs(struct mapped_device *md)
2536{
2537        int r;
2538
2539        WARN_ON(md->frozen_sb);
2540
2541        md->frozen_sb = freeze_bdev(md->bdev);
2542        if (IS_ERR(md->frozen_sb)) {
2543                r = PTR_ERR(md->frozen_sb);
2544                md->frozen_sb = NULL;
2545                return r;
2546        }
2547
2548        set_bit(DMF_FROZEN, &md->flags);
2549
2550        return 0;
2551}
2552
2553static void unlock_fs(struct mapped_device *md)
2554{
2555        if (!test_bit(DMF_FROZEN, &md->flags))
2556                return;
2557
2558        thaw_bdev(md->bdev, md->frozen_sb);
2559        md->frozen_sb = NULL;
2560        clear_bit(DMF_FROZEN, &md->flags);
2561}
2562
2563/*
2564 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2565 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2566 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2567 *
2568 * If __dm_suspend returns 0, the device is completely quiescent
2569 * now. There is no request-processing activity. All new requests
2570 * are being added to md->deferred list.
2571 */
2572static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2573                        unsigned suspend_flags, long task_state,
2574                        int dmf_suspended_flag)
2575{
2576        bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2577        bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2578        int r;
2579
2580        lockdep_assert_held(&md->suspend_lock);
2581
2582        /*
2583         * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2584         * This flag is cleared before dm_suspend returns.
2585         */
2586        if (noflush)
2587                set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2588        else
2589                pr_debug("%s: suspending with flush\n", dm_device_name(md));
2590
2591        /*
2592         * This gets reverted if there's an error later and the targets
2593         * provide the .presuspend_undo hook.
2594         */
2595        dm_table_presuspend_targets(map);
2596
2597        /*
2598         * Flush I/O to the device.
2599         * Any I/O submitted after lock_fs() may not be flushed.
2600         * noflush takes precedence over do_lockfs.
2601         * (lock_fs() flushes I/Os and waits for them to complete.)
2602         */
2603        if (!noflush && do_lockfs) {
2604                r = lock_fs(md);
2605                if (r) {
2606                        dm_table_presuspend_undo_targets(map);
2607                        return r;
2608                }
2609        }
2610
2611        /*
2612         * Here we must make sure that no processes are submitting requests
2613         * to target drivers i.e. no one may be executing
2614         * __split_and_process_bio. This is called from dm_request and
2615         * dm_wq_work.
2616         *
2617         * To get all processes out of __split_and_process_bio in dm_request,
2618         * we take the write lock. To prevent any process from reentering
2619         * __split_and_process_bio from dm_request and quiesce the thread
2620         * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2621         * flush_workqueue(md->wq).
2622         */
2623        set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2624        if (map)
2625                synchronize_srcu(&md->io_barrier);
2626
2627        /*
2628         * Stop md->queue before flushing md->wq in case request-based
2629         * dm defers requests to md->wq from md->queue.
2630         */
2631        if (dm_request_based(md))
2632                dm_stop_queue(md->queue);
2633
2634        flush_workqueue(md->wq);
2635
2636        /*
2637         * At this point no more requests are entering target request routines.
2638         * We call dm_wait_for_completion to wait for all existing requests
2639         * to finish.
2640         */
2641        r = dm_wait_for_completion(md, task_state);
2642        if (!r)
2643                set_bit(dmf_suspended_flag, &md->flags);
2644
2645        if (noflush)
2646                clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2647        if (map)
2648                synchronize_srcu(&md->io_barrier);
2649
2650        /* were we interrupted ? */
2651        if (r < 0) {
2652                dm_queue_flush(md);
2653
2654                if (dm_request_based(md))
2655                        dm_start_queue(md->queue);
2656
2657                unlock_fs(md);
2658                dm_table_presuspend_undo_targets(map);
2659                /* pushback list is already flushed, so skip flush */
2660        }
2661
2662        return r;
2663}
2664
2665/*
2666 * We need to be able to change a mapping table under a mounted
2667 * filesystem.  For example we might want to move some data in
2668 * the background.  Before the table can be swapped with
2669 * dm_bind_table, dm_suspend must be called to flush any in
2670 * flight bios and ensure that any further io gets deferred.
2671 */
2672/*
2673 * Suspend mechanism in request-based dm.
2674 *
2675 * 1. Flush all I/Os by lock_fs() if needed.
2676 * 2. Stop dispatching any I/O by stopping the request_queue.
2677 * 3. Wait for all in-flight I/Os to be completed or requeued.
2678 *
2679 * To abort suspend, start the request_queue.
2680 */
2681int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2682{
2683        struct dm_table *map = NULL;
2684        int r = 0;
2685
2686retry:
2687        mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2688
2689        if (dm_suspended_md(md)) {
2690                r = -EINVAL;
2691                goto out_unlock;
2692        }
2693
2694        if (dm_suspended_internally_md(md)) {
2695                /* already internally suspended, wait for internal resume */
2696                mutex_unlock(&md->suspend_lock);
2697                r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2698                if (r)
2699                        return r;
2700                goto retry;
2701        }
2702
2703        map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2704
2705        r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2706        if (r)
2707                goto out_unlock;
2708
2709        dm_table_postsuspend_targets(map);
2710
2711out_unlock:
2712        mutex_unlock(&md->suspend_lock);
2713        return r;
2714}
2715
2716static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2717{
2718        if (map) {
2719                int r = dm_table_resume_targets(map);
2720                if (r)
2721                        return r;
2722        }
2723
2724        dm_queue_flush(md);
2725
2726        /*
2727         * Flushing deferred I/Os must be done after targets are resumed
2728         * so that mapping of targets can work correctly.
2729         * Request-based dm is queueing the deferred I/Os in its request_queue.
2730         */
2731        if (dm_request_based(md))
2732                dm_start_queue(md->queue);
2733
2734        unlock_fs(md);
2735
2736        return 0;
2737}
2738
2739int dm_resume(struct mapped_device *md)
2740{
2741        int r;
2742        struct dm_table *map = NULL;
2743
2744retry:
2745        r = -EINVAL;
2746        mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2747
2748        if (!dm_suspended_md(md))
2749                goto out;
2750
2751        if (dm_suspended_internally_md(md)) {
2752                /* already internally suspended, wait for internal resume */
2753                mutex_unlock(&md->suspend_lock);
2754                r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2755                if (r)
2756                        return r;
2757                goto retry;
2758        }
2759
2760        map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2761        if (!map || !dm_table_get_size(map))
2762                goto out;
2763
2764        r = __dm_resume(md, map);
2765        if (r)
2766                goto out;
2767
2768        clear_bit(DMF_SUSPENDED, &md->flags);
2769out:
2770        mutex_unlock(&md->suspend_lock);
2771
2772        return r;
2773}
2774
2775/*
2776 * Internal suspend/resume works like userspace-driven suspend. It waits
2777 * until all bios finish and prevents issuing new bios to the target drivers.
2778 * It may be used only from the kernel.
2779 */
2780
2781static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2782{
2783        struct dm_table *map = NULL;
2784
2785        lockdep_assert_held(&md->suspend_lock);
2786
2787        if (md->internal_suspend_count++)
2788                return; /* nested internal suspend */
2789
2790        if (dm_suspended_md(md)) {
2791                set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2792                return; /* nest suspend */
2793        }
2794
2795        map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2796
2797        /*
2798         * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2799         * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2800         * would require changing .presuspend to return an error -- avoid this
2801         * until there is a need for more elaborate variants of internal suspend.
2802         */
2803        (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2804                            DMF_SUSPENDED_INTERNALLY);
2805
2806        dm_table_postsuspend_targets(map);
2807}
2808
2809static void __dm_internal_resume(struct mapped_device *md)
2810{
2811        BUG_ON(!md->internal_suspend_count);
2812
2813        if (--md->internal_suspend_count)
2814                return; /* resume from nested internal suspend */
2815
2816        if (dm_suspended_md(md))
2817                goto done; /* resume from nested suspend */
2818
2819        /*
2820         * NOTE: existing callers don't need to call dm_table_resume_targets
2821         * (which may fail -- so best to avoid it for now by passing NULL map)
2822         */
2823        (void) __dm_resume(md, NULL);
2824
2825done:
2826        clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2827        smp_mb__after_atomic();
2828        wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2829}
2830
2831void dm_internal_suspend_noflush(struct mapped_device *md)
2832{
2833        mutex_lock(&md->suspend_lock);
2834        __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2835        mutex_unlock(&md->suspend_lock);
2836}
2837EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2838
2839void dm_internal_resume(struct mapped_device *md)
2840{
2841        mutex_lock(&md->suspend_lock);
2842        __dm_internal_resume(md);
2843        mutex_unlock(&md->suspend_lock);
2844}
2845EXPORT_SYMBOL_GPL(dm_internal_resume);
2846
2847/*
2848 * Fast variants of internal suspend/resume hold md->suspend_lock,
2849 * which prevents interaction with userspace-driven suspend.
2850 */
2851
2852void dm_internal_suspend_fast(struct mapped_device *md)
2853{
2854        mutex_lock(&md->suspend_lock);
2855        if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2856                return;
2857
2858        set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2859        synchronize_srcu(&md->io_barrier);
2860        flush_workqueue(md->wq);
2861        dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2862}
2863EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2864
2865void dm_internal_resume_fast(struct mapped_device *md)
2866{
2867        if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2868                goto done;
2869
2870        dm_queue_flush(md);
2871
2872done:
2873        mutex_unlock(&md->suspend_lock);
2874}
2875EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2876
2877/*-----------------------------------------------------------------
2878 * Event notification.
2879 *---------------------------------------------------------------*/
2880int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2881                       unsigned cookie)
2882{
2883        char udev_cookie[DM_COOKIE_LENGTH];
2884        char *envp[] = { udev_cookie, NULL };
2885
2886        if (!cookie)
2887                return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2888        else {
2889                snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2890                         DM_COOKIE_ENV_VAR_NAME, cookie);
2891                return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2892                                          action, envp);
2893        }
2894}
2895
2896uint32_t dm_next_uevent_seq(struct mapped_device *md)
2897{
2898        return atomic_add_return(1, &md->uevent_seq);
2899}
2900
2901uint32_t dm_get_event_nr(struct mapped_device *md)
2902{
2903        return atomic_read(&md->event_nr);
2904}
2905
2906int dm_wait_event(struct mapped_device *md, int event_nr)
2907{
2908        return wait_event_interruptible(md->eventq,
2909                        (event_nr != atomic_read(&md->event_nr)));
2910}
2911
2912void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2913{
2914        unsigned long flags;
2915
2916        spin_lock_irqsave(&md->uevent_lock, flags);
2917        list_add(elist, &md->uevent_list);
2918        spin_unlock_irqrestore(&md->uevent_lock, flags);
2919}
2920
2921/*
2922 * The gendisk is only valid as long as you have a reference
2923 * count on 'md'.
2924 */
2925struct gendisk *dm_disk(struct mapped_device *md)
2926{
2927        return md->disk;
2928}
2929EXPORT_SYMBOL_GPL(dm_disk);
2930
2931struct kobject *dm_kobject(struct mapped_device *md)
2932{
2933        return &md->kobj_holder.kobj;
2934}
2935
2936struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2937{
2938        struct mapped_device *md;
2939
2940        md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2941
2942        spin_lock(&_minor_lock);
2943        if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2944                md = NULL;
2945                goto out;
2946        }
2947        dm_get(md);
2948out:
2949        spin_unlock(&_minor_lock);
2950
2951        return md;
2952}
2953
2954int dm_suspended_md(struct mapped_device *md)
2955{
2956        return test_bit(DMF_SUSPENDED, &md->flags);
2957}
2958
2959int dm_suspended_internally_md(struct mapped_device *md)
2960{
2961        return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2962}
2963
2964int dm_test_deferred_remove_flag(struct mapped_device *md)
2965{
2966        return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2967}
2968
2969int dm_suspended(struct dm_target *ti)
2970{
2971        return dm_suspended_md(dm_table_get_md(ti->table));
2972}
2973EXPORT_SYMBOL_GPL(dm_suspended);
2974
2975int dm_noflush_suspending(struct dm_target *ti)
2976{
2977        return __noflush_suspending(dm_table_get_md(ti->table));
2978}
2979EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2980
2981struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2982                                            unsigned integrity, unsigned per_io_data_size,
2983                                            unsigned min_pool_size)
2984{
2985        struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2986        unsigned int pool_size = 0;
2987        unsigned int front_pad, io_front_pad;
2988        int ret;
2989
2990        if (!pools)
2991                return NULL;
2992
2993        switch (type) {
2994        case DM_TYPE_BIO_BASED:
2995        case DM_TYPE_DAX_BIO_BASED:
2996        case DM_TYPE_NVME_BIO_BASED:
2997                pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2998                front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2999                io_front_pad = roundup(front_pad,  __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
3000                ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
3001                if (ret)
3002                        goto out;
3003                if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
3004                        goto out;
3005                break;
3006        case DM_TYPE_REQUEST_BASED:
3007                pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
3008                front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3009                /* per_io_data_size is used for blk-mq pdu at queue allocation */
3010                break;
3011        default:
3012                BUG();
3013        }
3014
3015        ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
3016        if (ret)
3017                goto out;
3018
3019        if (integrity && bioset_integrity_create(&pools->bs, pool_size))
3020                goto out;
3021
3022        return pools;
3023
3024out:
3025        dm_free_md_mempools(pools);
3026
3027        return NULL;
3028}
3029
3030void dm_free_md_mempools(struct dm_md_mempools *pools)
3031{
3032        if (!pools)
3033                return;
3034
3035        bioset_exit(&pools->bs);
3036        bioset_exit(&pools->io_bs);
3037
3038        kfree(pools);
3039}
3040
3041struct dm_pr {
3042        u64     old_key;
3043        u64     new_key;
3044        u32     flags;
3045        bool    fail_early;
3046};
3047
3048static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3049                      void *data)
3050{
3051        struct mapped_device *md = bdev->bd_disk->private_data;
3052        struct dm_table *table;
3053        struct dm_target *ti;
3054        int ret = -ENOTTY, srcu_idx;
3055
3056        table = dm_get_live_table(md, &srcu_idx);
3057        if (!table || !dm_table_get_size(table))
3058                goto out;
3059
3060        /* We only support devices that have a single target */
3061        if (dm_table_get_num_targets(table) != 1)
3062                goto out;
3063        ti = dm_table_get_target(table, 0);
3064
3065        ret = -EINVAL;
3066        if (!ti->type->iterate_devices)
3067                goto out;
3068
3069        ret = ti->type->iterate_devices(ti, fn, data);
3070out:
3071        dm_put_live_table(md, srcu_idx);
3072        return ret;
3073}
3074
3075/*
3076 * For register / unregister we need to manually call out to every path.
3077 */
3078static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3079                            sector_t start, sector_t len, void *data)
3080{
3081        struct dm_pr *pr = data;
3082        const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3083
3084        if (!ops || !ops->pr_register)
3085                return -EOPNOTSUPP;
3086        return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3087}
3088
3089static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3090                          u32 flags)
3091{
3092        struct dm_pr pr = {
3093                .old_key        = old_key,
3094                .new_key        = new_key,
3095                .flags          = flags,
3096                .fail_early     = true,
3097        };
3098        int ret;
3099
3100        ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3101        if (ret && new_key) {
3102                /* unregister all paths if we failed to register any path */
3103                pr.old_key = new_key;
3104                pr.new_key = 0;
3105                pr.flags = 0;
3106                pr.fail_early = false;
3107                dm_call_pr(bdev, __dm_pr_register, &pr);
3108        }
3109
3110        return ret;
3111}
3112
3113static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3114                         u32 flags)
3115{
3116        struct mapped_device *md = bdev->bd_disk->private_data;
3117        const struct pr_ops *ops;
3118        int r, srcu_idx;
3119
3120        r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3121        if (r < 0)
3122                goto out;
3123
3124        ops = bdev->bd_disk->fops->pr_ops;
3125        if (ops && ops->pr_reserve)
3126                r = ops->pr_reserve(bdev, key, type, flags);
3127        else
3128                r = -EOPNOTSUPP;
3129out:
3130        dm_unprepare_ioctl(md, srcu_idx);
3131        return r;
3132}
3133
3134static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3135{
3136        struct mapped_device *md = bdev->bd_disk->private_data;
3137        const struct pr_ops *ops;
3138        int r, srcu_idx;
3139
3140        r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3141        if (r < 0)
3142                goto out;
3143
3144        ops = bdev->bd_disk->fops->pr_ops;
3145        if (ops && ops->pr_release)
3146                r = ops->pr_release(bdev, key, type);
3147        else
3148                r = -EOPNOTSUPP;
3149out:
3150        dm_unprepare_ioctl(md, srcu_idx);
3151        return r;
3152}
3153
3154static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3155                         enum pr_type type, bool abort)
3156{
3157        struct mapped_device *md = bdev->bd_disk->private_data;
3158        const struct pr_ops *ops;
3159        int r, srcu_idx;
3160
3161        r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3162        if (r < 0)
3163                goto out;
3164
3165        ops = bdev->bd_disk->fops->pr_ops;
3166        if (ops && ops->pr_preempt)
3167                r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3168        else
3169                r = -EOPNOTSUPP;
3170out:
3171        dm_unprepare_ioctl(md, srcu_idx);
3172        return r;
3173}
3174
3175static int dm_pr_clear(struct block_device *bdev, u64 key)
3176{
3177        struct mapped_device *md = bdev->bd_disk->private_data;
3178        const struct pr_ops *ops;
3179        int r, srcu_idx;
3180
3181        r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3182        if (r < 0)
3183                goto out;
3184
3185        ops = bdev->bd_disk->fops->pr_ops;
3186        if (ops && ops->pr_clear)
3187                r = ops->pr_clear(bdev, key);
3188        else
3189                r = -EOPNOTSUPP;
3190out:
3191        dm_unprepare_ioctl(md, srcu_idx);
3192        return r;
3193}
3194
3195static const struct pr_ops dm_pr_ops = {
3196        .pr_register    = dm_pr_register,
3197        .pr_reserve     = dm_pr_reserve,
3198        .pr_release     = dm_pr_release,
3199        .pr_preempt     = dm_pr_preempt,
3200        .pr_clear       = dm_pr_clear,
3201};
3202
3203static const struct block_device_operations dm_blk_dops = {
3204        .open = dm_blk_open,
3205        .release = dm_blk_close,
3206        .ioctl = dm_blk_ioctl,
3207        .getgeo = dm_blk_getgeo,
3208        .report_zones = dm_blk_report_zones,
3209        .pr_ops = &dm_pr_ops,
3210        .owner = THIS_MODULE
3211};
3212
3213static const struct dax_operations dm_dax_ops = {
3214        .direct_access = dm_dax_direct_access,
3215        .dax_supported = dm_dax_supported,
3216        .copy_from_iter = dm_dax_copy_from_iter,
3217        .copy_to_iter = dm_dax_copy_to_iter,
3218};
3219
3220/*
3221 * module hooks
3222 */
3223module_init(dm_init);
3224module_exit(dm_exit);
3225
3226module_param(major, uint, 0);
3227MODULE_PARM_DESC(major, "The major number of the device mapper");
3228
3229module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3230MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3231
3232module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3233MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3234
3235MODULE_DESCRIPTION(DM_NAME " driver");
3236MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3237MODULE_LICENSE("GPL");
3238