linux/drivers/md/persistent-data/dm-btree.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2011 Red Hat, Inc.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm-btree-internal.h"
   8#include "dm-space-map.h"
   9#include "dm-transaction-manager.h"
  10
  11#include <linux/export.h>
  12#include <linux/device-mapper.h>
  13
  14#define DM_MSG_PREFIX "btree"
  15
  16/*----------------------------------------------------------------
  17 * Array manipulation
  18 *--------------------------------------------------------------*/
  19static void memcpy_disk(void *dest, const void *src, size_t len)
  20        __dm_written_to_disk(src)
  21{
  22        memcpy(dest, src, len);
  23        __dm_unbless_for_disk(src);
  24}
  25
  26static void array_insert(void *base, size_t elt_size, unsigned nr_elts,
  27                         unsigned index, void *elt)
  28        __dm_written_to_disk(elt)
  29{
  30        if (index < nr_elts)
  31                memmove(base + (elt_size * (index + 1)),
  32                        base + (elt_size * index),
  33                        (nr_elts - index) * elt_size);
  34
  35        memcpy_disk(base + (elt_size * index), elt, elt_size);
  36}
  37
  38/*----------------------------------------------------------------*/
  39
  40/* makes the assumption that no two keys are the same. */
  41static int bsearch(struct btree_node *n, uint64_t key, int want_hi)
  42{
  43        int lo = -1, hi = le32_to_cpu(n->header.nr_entries);
  44
  45        while (hi - lo > 1) {
  46                int mid = lo + ((hi - lo) / 2);
  47                uint64_t mid_key = le64_to_cpu(n->keys[mid]);
  48
  49                if (mid_key == key)
  50                        return mid;
  51
  52                if (mid_key < key)
  53                        lo = mid;
  54                else
  55                        hi = mid;
  56        }
  57
  58        return want_hi ? hi : lo;
  59}
  60
  61int lower_bound(struct btree_node *n, uint64_t key)
  62{
  63        return bsearch(n, key, 0);
  64}
  65
  66static int upper_bound(struct btree_node *n, uint64_t key)
  67{
  68        return bsearch(n, key, 1);
  69}
  70
  71void inc_children(struct dm_transaction_manager *tm, struct btree_node *n,
  72                  struct dm_btree_value_type *vt)
  73{
  74        unsigned i;
  75        uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
  76
  77        if (le32_to_cpu(n->header.flags) & INTERNAL_NODE)
  78                for (i = 0; i < nr_entries; i++)
  79                        dm_tm_inc(tm, value64(n, i));
  80        else if (vt->inc)
  81                for (i = 0; i < nr_entries; i++)
  82                        vt->inc(vt->context, value_ptr(n, i));
  83}
  84
  85static int insert_at(size_t value_size, struct btree_node *node, unsigned index,
  86                      uint64_t key, void *value)
  87                      __dm_written_to_disk(value)
  88{
  89        uint32_t nr_entries = le32_to_cpu(node->header.nr_entries);
  90        __le64 key_le = cpu_to_le64(key);
  91
  92        if (index > nr_entries ||
  93            index >= le32_to_cpu(node->header.max_entries)) {
  94                DMERR("too many entries in btree node for insert");
  95                __dm_unbless_for_disk(value);
  96                return -ENOMEM;
  97        }
  98
  99        __dm_bless_for_disk(&key_le);
 100
 101        array_insert(node->keys, sizeof(*node->keys), nr_entries, index, &key_le);
 102        array_insert(value_base(node), value_size, nr_entries, index, value);
 103        node->header.nr_entries = cpu_to_le32(nr_entries + 1);
 104
 105        return 0;
 106}
 107
 108/*----------------------------------------------------------------*/
 109
 110/*
 111 * We want 3n entries (for some n).  This works more nicely for repeated
 112 * insert remove loops than (2n + 1).
 113 */
 114static uint32_t calc_max_entries(size_t value_size, size_t block_size)
 115{
 116        uint32_t total, n;
 117        size_t elt_size = sizeof(uint64_t) + value_size; /* key + value */
 118
 119        block_size -= sizeof(struct node_header);
 120        total = block_size / elt_size;
 121        n = total / 3;          /* rounds down */
 122
 123        return 3 * n;
 124}
 125
 126int dm_btree_empty(struct dm_btree_info *info, dm_block_t *root)
 127{
 128        int r;
 129        struct dm_block *b;
 130        struct btree_node *n;
 131        size_t block_size;
 132        uint32_t max_entries;
 133
 134        r = new_block(info, &b);
 135        if (r < 0)
 136                return r;
 137
 138        block_size = dm_bm_block_size(dm_tm_get_bm(info->tm));
 139        max_entries = calc_max_entries(info->value_type.size, block_size);
 140
 141        n = dm_block_data(b);
 142        memset(n, 0, block_size);
 143        n->header.flags = cpu_to_le32(LEAF_NODE);
 144        n->header.nr_entries = cpu_to_le32(0);
 145        n->header.max_entries = cpu_to_le32(max_entries);
 146        n->header.value_size = cpu_to_le32(info->value_type.size);
 147
 148        *root = dm_block_location(b);
 149        unlock_block(info, b);
 150
 151        return 0;
 152}
 153EXPORT_SYMBOL_GPL(dm_btree_empty);
 154
 155/*----------------------------------------------------------------*/
 156
 157/*
 158 * Deletion uses a recursive algorithm, since we have limited stack space
 159 * we explicitly manage our own stack on the heap.
 160 */
 161#define MAX_SPINE_DEPTH 64
 162struct frame {
 163        struct dm_block *b;
 164        struct btree_node *n;
 165        unsigned level;
 166        unsigned nr_children;
 167        unsigned current_child;
 168};
 169
 170struct del_stack {
 171        struct dm_btree_info *info;
 172        struct dm_transaction_manager *tm;
 173        int top;
 174        struct frame spine[MAX_SPINE_DEPTH];
 175};
 176
 177static int top_frame(struct del_stack *s, struct frame **f)
 178{
 179        if (s->top < 0) {
 180                DMERR("btree deletion stack empty");
 181                return -EINVAL;
 182        }
 183
 184        *f = s->spine + s->top;
 185
 186        return 0;
 187}
 188
 189static int unprocessed_frames(struct del_stack *s)
 190{
 191        return s->top >= 0;
 192}
 193
 194static void prefetch_children(struct del_stack *s, struct frame *f)
 195{
 196        unsigned i;
 197        struct dm_block_manager *bm = dm_tm_get_bm(s->tm);
 198
 199        for (i = 0; i < f->nr_children; i++)
 200                dm_bm_prefetch(bm, value64(f->n, i));
 201}
 202
 203static bool is_internal_level(struct dm_btree_info *info, struct frame *f)
 204{
 205        return f->level < (info->levels - 1);
 206}
 207
 208static int push_frame(struct del_stack *s, dm_block_t b, unsigned level)
 209{
 210        int r;
 211        uint32_t ref_count;
 212
 213        if (s->top >= MAX_SPINE_DEPTH - 1) {
 214                DMERR("btree deletion stack out of memory");
 215                return -ENOMEM;
 216        }
 217
 218        r = dm_tm_ref(s->tm, b, &ref_count);
 219        if (r)
 220                return r;
 221
 222        if (ref_count > 1)
 223                /*
 224                 * This is a shared node, so we can just decrement it's
 225                 * reference counter and leave the children.
 226                 */
 227                dm_tm_dec(s->tm, b);
 228
 229        else {
 230                uint32_t flags;
 231                struct frame *f = s->spine + ++s->top;
 232
 233                r = dm_tm_read_lock(s->tm, b, &btree_node_validator, &f->b);
 234                if (r) {
 235                        s->top--;
 236                        return r;
 237                }
 238
 239                f->n = dm_block_data(f->b);
 240                f->level = level;
 241                f->nr_children = le32_to_cpu(f->n->header.nr_entries);
 242                f->current_child = 0;
 243
 244                flags = le32_to_cpu(f->n->header.flags);
 245                if (flags & INTERNAL_NODE || is_internal_level(s->info, f))
 246                        prefetch_children(s, f);
 247        }
 248
 249        return 0;
 250}
 251
 252static void pop_frame(struct del_stack *s)
 253{
 254        struct frame *f = s->spine + s->top--;
 255
 256        dm_tm_dec(s->tm, dm_block_location(f->b));
 257        dm_tm_unlock(s->tm, f->b);
 258}
 259
 260static void unlock_all_frames(struct del_stack *s)
 261{
 262        struct frame *f;
 263
 264        while (unprocessed_frames(s)) {
 265                f = s->spine + s->top--;
 266                dm_tm_unlock(s->tm, f->b);
 267        }
 268}
 269
 270int dm_btree_del(struct dm_btree_info *info, dm_block_t root)
 271{
 272        int r;
 273        struct del_stack *s;
 274
 275        /*
 276         * dm_btree_del() is called via an ioctl, as such should be
 277         * considered an FS op.  We can't recurse back into the FS, so we
 278         * allocate GFP_NOFS.
 279         */
 280        s = kmalloc(sizeof(*s), GFP_NOFS);
 281        if (!s)
 282                return -ENOMEM;
 283        s->info = info;
 284        s->tm = info->tm;
 285        s->top = -1;
 286
 287        r = push_frame(s, root, 0);
 288        if (r)
 289                goto out;
 290
 291        while (unprocessed_frames(s)) {
 292                uint32_t flags;
 293                struct frame *f;
 294                dm_block_t b;
 295
 296                r = top_frame(s, &f);
 297                if (r)
 298                        goto out;
 299
 300                if (f->current_child >= f->nr_children) {
 301                        pop_frame(s);
 302                        continue;
 303                }
 304
 305                flags = le32_to_cpu(f->n->header.flags);
 306                if (flags & INTERNAL_NODE) {
 307                        b = value64(f->n, f->current_child);
 308                        f->current_child++;
 309                        r = push_frame(s, b, f->level);
 310                        if (r)
 311                                goto out;
 312
 313                } else if (is_internal_level(info, f)) {
 314                        b = value64(f->n, f->current_child);
 315                        f->current_child++;
 316                        r = push_frame(s, b, f->level + 1);
 317                        if (r)
 318                                goto out;
 319
 320                } else {
 321                        if (info->value_type.dec) {
 322                                unsigned i;
 323
 324                                for (i = 0; i < f->nr_children; i++)
 325                                        info->value_type.dec(info->value_type.context,
 326                                                             value_ptr(f->n, i));
 327                        }
 328                        pop_frame(s);
 329                }
 330        }
 331out:
 332        if (r) {
 333                /* cleanup all frames of del_stack */
 334                unlock_all_frames(s);
 335        }
 336        kfree(s);
 337
 338        return r;
 339}
 340EXPORT_SYMBOL_GPL(dm_btree_del);
 341
 342/*----------------------------------------------------------------*/
 343
 344static int btree_lookup_raw(struct ro_spine *s, dm_block_t block, uint64_t key,
 345                            int (*search_fn)(struct btree_node *, uint64_t),
 346                            uint64_t *result_key, void *v, size_t value_size)
 347{
 348        int i, r;
 349        uint32_t flags, nr_entries;
 350
 351        do {
 352                r = ro_step(s, block);
 353                if (r < 0)
 354                        return r;
 355
 356                i = search_fn(ro_node(s), key);
 357
 358                flags = le32_to_cpu(ro_node(s)->header.flags);
 359                nr_entries = le32_to_cpu(ro_node(s)->header.nr_entries);
 360                if (i < 0 || i >= nr_entries)
 361                        return -ENODATA;
 362
 363                if (flags & INTERNAL_NODE)
 364                        block = value64(ro_node(s), i);
 365
 366        } while (!(flags & LEAF_NODE));
 367
 368        *result_key = le64_to_cpu(ro_node(s)->keys[i]);
 369        memcpy(v, value_ptr(ro_node(s), i), value_size);
 370
 371        return 0;
 372}
 373
 374int dm_btree_lookup(struct dm_btree_info *info, dm_block_t root,
 375                    uint64_t *keys, void *value_le)
 376{
 377        unsigned level, last_level = info->levels - 1;
 378        int r = -ENODATA;
 379        uint64_t rkey;
 380        __le64 internal_value_le;
 381        struct ro_spine spine;
 382
 383        init_ro_spine(&spine, info);
 384        for (level = 0; level < info->levels; level++) {
 385                size_t size;
 386                void *value_p;
 387
 388                if (level == last_level) {
 389                        value_p = value_le;
 390                        size = info->value_type.size;
 391
 392                } else {
 393                        value_p = &internal_value_le;
 394                        size = sizeof(uint64_t);
 395                }
 396
 397                r = btree_lookup_raw(&spine, root, keys[level],
 398                                     lower_bound, &rkey,
 399                                     value_p, size);
 400
 401                if (!r) {
 402                        if (rkey != keys[level]) {
 403                                exit_ro_spine(&spine);
 404                                return -ENODATA;
 405                        }
 406                } else {
 407                        exit_ro_spine(&spine);
 408                        return r;
 409                }
 410
 411                root = le64_to_cpu(internal_value_le);
 412        }
 413        exit_ro_spine(&spine);
 414
 415        return r;
 416}
 417EXPORT_SYMBOL_GPL(dm_btree_lookup);
 418
 419static int dm_btree_lookup_next_single(struct dm_btree_info *info, dm_block_t root,
 420                                       uint64_t key, uint64_t *rkey, void *value_le)
 421{
 422        int r, i;
 423        uint32_t flags, nr_entries;
 424        struct dm_block *node;
 425        struct btree_node *n;
 426
 427        r = bn_read_lock(info, root, &node);
 428        if (r)
 429                return r;
 430
 431        n = dm_block_data(node);
 432        flags = le32_to_cpu(n->header.flags);
 433        nr_entries = le32_to_cpu(n->header.nr_entries);
 434
 435        if (flags & INTERNAL_NODE) {
 436                i = lower_bound(n, key);
 437                if (i < 0) {
 438                        /*
 439                         * avoid early -ENODATA return when all entries are
 440                         * higher than the search @key.
 441                         */
 442                        i = 0;
 443                }
 444                if (i >= nr_entries) {
 445                        r = -ENODATA;
 446                        goto out;
 447                }
 448
 449                r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
 450                if (r == -ENODATA && i < (nr_entries - 1)) {
 451                        i++;
 452                        r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
 453                }
 454
 455        } else {
 456                i = upper_bound(n, key);
 457                if (i < 0 || i >= nr_entries) {
 458                        r = -ENODATA;
 459                        goto out;
 460                }
 461
 462                *rkey = le64_to_cpu(n->keys[i]);
 463                memcpy(value_le, value_ptr(n, i), info->value_type.size);
 464        }
 465out:
 466        dm_tm_unlock(info->tm, node);
 467        return r;
 468}
 469
 470int dm_btree_lookup_next(struct dm_btree_info *info, dm_block_t root,
 471                         uint64_t *keys, uint64_t *rkey, void *value_le)
 472{
 473        unsigned level;
 474        int r = -ENODATA;
 475        __le64 internal_value_le;
 476        struct ro_spine spine;
 477
 478        init_ro_spine(&spine, info);
 479        for (level = 0; level < info->levels - 1u; level++) {
 480                r = btree_lookup_raw(&spine, root, keys[level],
 481                                     lower_bound, rkey,
 482                                     &internal_value_le, sizeof(uint64_t));
 483                if (r)
 484                        goto out;
 485
 486                if (*rkey != keys[level]) {
 487                        r = -ENODATA;
 488                        goto out;
 489                }
 490
 491                root = le64_to_cpu(internal_value_le);
 492        }
 493
 494        r = dm_btree_lookup_next_single(info, root, keys[level], rkey, value_le);
 495out:
 496        exit_ro_spine(&spine);
 497        return r;
 498}
 499
 500EXPORT_SYMBOL_GPL(dm_btree_lookup_next);
 501
 502/*
 503 * Splits a node by creating a sibling node and shifting half the nodes
 504 * contents across.  Assumes there is a parent node, and it has room for
 505 * another child.
 506 *
 507 * Before:
 508 *        +--------+
 509 *        | Parent |
 510 *        +--------+
 511 *           |
 512 *           v
 513 *      +----------+
 514 *      | A ++++++ |
 515 *      +----------+
 516 *
 517 *
 518 * After:
 519 *              +--------+
 520 *              | Parent |
 521 *              +--------+
 522 *                |     |
 523 *                v     +------+
 524 *          +---------+        |
 525 *          | A* +++  |        v
 526 *          +---------+   +-------+
 527 *                        | B +++ |
 528 *                        +-------+
 529 *
 530 * Where A* is a shadow of A.
 531 */
 532static int btree_split_sibling(struct shadow_spine *s, unsigned parent_index,
 533                               uint64_t key)
 534{
 535        int r;
 536        size_t size;
 537        unsigned nr_left, nr_right;
 538        struct dm_block *left, *right, *parent;
 539        struct btree_node *ln, *rn, *pn;
 540        __le64 location;
 541
 542        left = shadow_current(s);
 543
 544        r = new_block(s->info, &right);
 545        if (r < 0)
 546                return r;
 547
 548        ln = dm_block_data(left);
 549        rn = dm_block_data(right);
 550
 551        nr_left = le32_to_cpu(ln->header.nr_entries) / 2;
 552        nr_right = le32_to_cpu(ln->header.nr_entries) - nr_left;
 553
 554        ln->header.nr_entries = cpu_to_le32(nr_left);
 555
 556        rn->header.flags = ln->header.flags;
 557        rn->header.nr_entries = cpu_to_le32(nr_right);
 558        rn->header.max_entries = ln->header.max_entries;
 559        rn->header.value_size = ln->header.value_size;
 560        memcpy(rn->keys, ln->keys + nr_left, nr_right * sizeof(rn->keys[0]));
 561
 562        size = le32_to_cpu(ln->header.flags) & INTERNAL_NODE ?
 563                sizeof(uint64_t) : s->info->value_type.size;
 564        memcpy(value_ptr(rn, 0), value_ptr(ln, nr_left),
 565               size * nr_right);
 566
 567        /*
 568         * Patch up the parent
 569         */
 570        parent = shadow_parent(s);
 571
 572        pn = dm_block_data(parent);
 573        location = cpu_to_le64(dm_block_location(left));
 574        __dm_bless_for_disk(&location);
 575        memcpy_disk(value_ptr(pn, parent_index),
 576                    &location, sizeof(__le64));
 577
 578        location = cpu_to_le64(dm_block_location(right));
 579        __dm_bless_for_disk(&location);
 580
 581        r = insert_at(sizeof(__le64), pn, parent_index + 1,
 582                      le64_to_cpu(rn->keys[0]), &location);
 583        if (r) {
 584                unlock_block(s->info, right);
 585                return r;
 586        }
 587
 588        if (key < le64_to_cpu(rn->keys[0])) {
 589                unlock_block(s->info, right);
 590                s->nodes[1] = left;
 591        } else {
 592                unlock_block(s->info, left);
 593                s->nodes[1] = right;
 594        }
 595
 596        return 0;
 597}
 598
 599/*
 600 * Splits a node by creating two new children beneath the given node.
 601 *
 602 * Before:
 603 *        +----------+
 604 *        | A ++++++ |
 605 *        +----------+
 606 *
 607 *
 608 * After:
 609 *      +------------+
 610 *      | A (shadow) |
 611 *      +------------+
 612 *          |   |
 613 *   +------+   +----+
 614 *   |               |
 615 *   v               v
 616 * +-------+     +-------+
 617 * | B +++ |     | C +++ |
 618 * +-------+     +-------+
 619 */
 620static int btree_split_beneath(struct shadow_spine *s, uint64_t key)
 621{
 622        int r;
 623        size_t size;
 624        unsigned nr_left, nr_right;
 625        struct dm_block *left, *right, *new_parent;
 626        struct btree_node *pn, *ln, *rn;
 627        __le64 val;
 628
 629        new_parent = shadow_current(s);
 630
 631        pn = dm_block_data(new_parent);
 632        size = le32_to_cpu(pn->header.flags) & INTERNAL_NODE ?
 633                sizeof(__le64) : s->info->value_type.size;
 634
 635        /* create & init the left block */
 636        r = new_block(s->info, &left);
 637        if (r < 0)
 638                return r;
 639
 640        ln = dm_block_data(left);
 641        nr_left = le32_to_cpu(pn->header.nr_entries) / 2;
 642
 643        ln->header.flags = pn->header.flags;
 644        ln->header.nr_entries = cpu_to_le32(nr_left);
 645        ln->header.max_entries = pn->header.max_entries;
 646        ln->header.value_size = pn->header.value_size;
 647        memcpy(ln->keys, pn->keys, nr_left * sizeof(pn->keys[0]));
 648        memcpy(value_ptr(ln, 0), value_ptr(pn, 0), nr_left * size);
 649
 650        /* create & init the right block */
 651        r = new_block(s->info, &right);
 652        if (r < 0) {
 653                unlock_block(s->info, left);
 654                return r;
 655        }
 656
 657        rn = dm_block_data(right);
 658        nr_right = le32_to_cpu(pn->header.nr_entries) - nr_left;
 659
 660        rn->header.flags = pn->header.flags;
 661        rn->header.nr_entries = cpu_to_le32(nr_right);
 662        rn->header.max_entries = pn->header.max_entries;
 663        rn->header.value_size = pn->header.value_size;
 664        memcpy(rn->keys, pn->keys + nr_left, nr_right * sizeof(pn->keys[0]));
 665        memcpy(value_ptr(rn, 0), value_ptr(pn, nr_left),
 666               nr_right * size);
 667
 668        /* new_parent should just point to l and r now */
 669        pn->header.flags = cpu_to_le32(INTERNAL_NODE);
 670        pn->header.nr_entries = cpu_to_le32(2);
 671        pn->header.max_entries = cpu_to_le32(
 672                calc_max_entries(sizeof(__le64),
 673                                 dm_bm_block_size(
 674                                         dm_tm_get_bm(s->info->tm))));
 675        pn->header.value_size = cpu_to_le32(sizeof(__le64));
 676
 677        val = cpu_to_le64(dm_block_location(left));
 678        __dm_bless_for_disk(&val);
 679        pn->keys[0] = ln->keys[0];
 680        memcpy_disk(value_ptr(pn, 0), &val, sizeof(__le64));
 681
 682        val = cpu_to_le64(dm_block_location(right));
 683        __dm_bless_for_disk(&val);
 684        pn->keys[1] = rn->keys[0];
 685        memcpy_disk(value_ptr(pn, 1), &val, sizeof(__le64));
 686
 687        unlock_block(s->info, left);
 688        unlock_block(s->info, right);
 689        return 0;
 690}
 691
 692static int btree_insert_raw(struct shadow_spine *s, dm_block_t root,
 693                            struct dm_btree_value_type *vt,
 694                            uint64_t key, unsigned *index)
 695{
 696        int r, i = *index, top = 1;
 697        struct btree_node *node;
 698
 699        for (;;) {
 700                r = shadow_step(s, root, vt);
 701                if (r < 0)
 702                        return r;
 703
 704                node = dm_block_data(shadow_current(s));
 705
 706                /*
 707                 * We have to patch up the parent node, ugly, but I don't
 708                 * see a way to do this automatically as part of the spine
 709                 * op.
 710                 */
 711                if (shadow_has_parent(s) && i >= 0) { /* FIXME: second clause unness. */
 712                        __le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
 713
 714                        __dm_bless_for_disk(&location);
 715                        memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i),
 716                                    &location, sizeof(__le64));
 717                }
 718
 719                node = dm_block_data(shadow_current(s));
 720
 721                if (node->header.nr_entries == node->header.max_entries) {
 722                        if (top)
 723                                r = btree_split_beneath(s, key);
 724                        else
 725                                r = btree_split_sibling(s, i, key);
 726
 727                        if (r < 0)
 728                                return r;
 729                }
 730
 731                node = dm_block_data(shadow_current(s));
 732
 733                i = lower_bound(node, key);
 734
 735                if (le32_to_cpu(node->header.flags) & LEAF_NODE)
 736                        break;
 737
 738                if (i < 0) {
 739                        /* change the bounds on the lowest key */
 740                        node->keys[0] = cpu_to_le64(key);
 741                        i = 0;
 742                }
 743
 744                root = value64(node, i);
 745                top = 0;
 746        }
 747
 748        if (i < 0 || le64_to_cpu(node->keys[i]) != key)
 749                i++;
 750
 751        *index = i;
 752        return 0;
 753}
 754
 755static bool need_insert(struct btree_node *node, uint64_t *keys,
 756                        unsigned level, unsigned index)
 757{
 758        return ((index >= le32_to_cpu(node->header.nr_entries)) ||
 759                (le64_to_cpu(node->keys[index]) != keys[level]));
 760}
 761
 762static int insert(struct dm_btree_info *info, dm_block_t root,
 763                  uint64_t *keys, void *value, dm_block_t *new_root,
 764                  int *inserted)
 765                  __dm_written_to_disk(value)
 766{
 767        int r;
 768        unsigned level, index = -1, last_level = info->levels - 1;
 769        dm_block_t block = root;
 770        struct shadow_spine spine;
 771        struct btree_node *n;
 772        struct dm_btree_value_type le64_type;
 773
 774        init_le64_type(info->tm, &le64_type);
 775        init_shadow_spine(&spine, info);
 776
 777        for (level = 0; level < (info->levels - 1); level++) {
 778                r = btree_insert_raw(&spine, block, &le64_type, keys[level], &index);
 779                if (r < 0)
 780                        goto bad;
 781
 782                n = dm_block_data(shadow_current(&spine));
 783
 784                if (need_insert(n, keys, level, index)) {
 785                        dm_block_t new_tree;
 786                        __le64 new_le;
 787
 788                        r = dm_btree_empty(info, &new_tree);
 789                        if (r < 0)
 790                                goto bad;
 791
 792                        new_le = cpu_to_le64(new_tree);
 793                        __dm_bless_for_disk(&new_le);
 794
 795                        r = insert_at(sizeof(uint64_t), n, index,
 796                                      keys[level], &new_le);
 797                        if (r)
 798                                goto bad;
 799                }
 800
 801                if (level < last_level)
 802                        block = value64(n, index);
 803        }
 804
 805        r = btree_insert_raw(&spine, block, &info->value_type,
 806                             keys[level], &index);
 807        if (r < 0)
 808                goto bad;
 809
 810        n = dm_block_data(shadow_current(&spine));
 811
 812        if (need_insert(n, keys, level, index)) {
 813                if (inserted)
 814                        *inserted = 1;
 815
 816                r = insert_at(info->value_type.size, n, index,
 817                              keys[level], value);
 818                if (r)
 819                        goto bad_unblessed;
 820        } else {
 821                if (inserted)
 822                        *inserted = 0;
 823
 824                if (info->value_type.dec &&
 825                    (!info->value_type.equal ||
 826                     !info->value_type.equal(
 827                             info->value_type.context,
 828                             value_ptr(n, index),
 829                             value))) {
 830                        info->value_type.dec(info->value_type.context,
 831                                             value_ptr(n, index));
 832                }
 833                memcpy_disk(value_ptr(n, index),
 834                            value, info->value_type.size);
 835        }
 836
 837        *new_root = shadow_root(&spine);
 838        exit_shadow_spine(&spine);
 839
 840        return 0;
 841
 842bad:
 843        __dm_unbless_for_disk(value);
 844bad_unblessed:
 845        exit_shadow_spine(&spine);
 846        return r;
 847}
 848
 849int dm_btree_insert(struct dm_btree_info *info, dm_block_t root,
 850                    uint64_t *keys, void *value, dm_block_t *new_root)
 851                    __dm_written_to_disk(value)
 852{
 853        return insert(info, root, keys, value, new_root, NULL);
 854}
 855EXPORT_SYMBOL_GPL(dm_btree_insert);
 856
 857int dm_btree_insert_notify(struct dm_btree_info *info, dm_block_t root,
 858                           uint64_t *keys, void *value, dm_block_t *new_root,
 859                           int *inserted)
 860                           __dm_written_to_disk(value)
 861{
 862        return insert(info, root, keys, value, new_root, inserted);
 863}
 864EXPORT_SYMBOL_GPL(dm_btree_insert_notify);
 865
 866/*----------------------------------------------------------------*/
 867
 868static int find_key(struct ro_spine *s, dm_block_t block, bool find_highest,
 869                    uint64_t *result_key, dm_block_t *next_block)
 870{
 871        int i, r;
 872        uint32_t flags;
 873
 874        do {
 875                r = ro_step(s, block);
 876                if (r < 0)
 877                        return r;
 878
 879                flags = le32_to_cpu(ro_node(s)->header.flags);
 880                i = le32_to_cpu(ro_node(s)->header.nr_entries);
 881                if (!i)
 882                        return -ENODATA;
 883                else
 884                        i--;
 885
 886                if (find_highest)
 887                        *result_key = le64_to_cpu(ro_node(s)->keys[i]);
 888                else
 889                        *result_key = le64_to_cpu(ro_node(s)->keys[0]);
 890
 891                if (next_block || flags & INTERNAL_NODE) {
 892                        if (find_highest)
 893                                block = value64(ro_node(s), i);
 894                        else
 895                                block = value64(ro_node(s), 0);
 896                }
 897
 898        } while (flags & INTERNAL_NODE);
 899
 900        if (next_block)
 901                *next_block = block;
 902        return 0;
 903}
 904
 905static int dm_btree_find_key(struct dm_btree_info *info, dm_block_t root,
 906                             bool find_highest, uint64_t *result_keys)
 907{
 908        int r = 0, count = 0, level;
 909        struct ro_spine spine;
 910
 911        init_ro_spine(&spine, info);
 912        for (level = 0; level < info->levels; level++) {
 913                r = find_key(&spine, root, find_highest, result_keys + level,
 914                             level == info->levels - 1 ? NULL : &root);
 915                if (r == -ENODATA) {
 916                        r = 0;
 917                        break;
 918
 919                } else if (r)
 920                        break;
 921
 922                count++;
 923        }
 924        exit_ro_spine(&spine);
 925
 926        return r ? r : count;
 927}
 928
 929int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root,
 930                              uint64_t *result_keys)
 931{
 932        return dm_btree_find_key(info, root, true, result_keys);
 933}
 934EXPORT_SYMBOL_GPL(dm_btree_find_highest_key);
 935
 936int dm_btree_find_lowest_key(struct dm_btree_info *info, dm_block_t root,
 937                             uint64_t *result_keys)
 938{
 939        return dm_btree_find_key(info, root, false, result_keys);
 940}
 941EXPORT_SYMBOL_GPL(dm_btree_find_lowest_key);
 942
 943/*----------------------------------------------------------------*/
 944
 945/*
 946 * FIXME: We shouldn't use a recursive algorithm when we have limited stack
 947 * space.  Also this only works for single level trees.
 948 */
 949static int walk_node(struct dm_btree_info *info, dm_block_t block,
 950                     int (*fn)(void *context, uint64_t *keys, void *leaf),
 951                     void *context)
 952{
 953        int r;
 954        unsigned i, nr;
 955        struct dm_block *node;
 956        struct btree_node *n;
 957        uint64_t keys;
 958
 959        r = bn_read_lock(info, block, &node);
 960        if (r)
 961                return r;
 962
 963        n = dm_block_data(node);
 964
 965        nr = le32_to_cpu(n->header.nr_entries);
 966        for (i = 0; i < nr; i++) {
 967                if (le32_to_cpu(n->header.flags) & INTERNAL_NODE) {
 968                        r = walk_node(info, value64(n, i), fn, context);
 969                        if (r)
 970                                goto out;
 971                } else {
 972                        keys = le64_to_cpu(*key_ptr(n, i));
 973                        r = fn(context, &keys, value_ptr(n, i));
 974                        if (r)
 975                                goto out;
 976                }
 977        }
 978
 979out:
 980        dm_tm_unlock(info->tm, node);
 981        return r;
 982}
 983
 984int dm_btree_walk(struct dm_btree_info *info, dm_block_t root,
 985                  int (*fn)(void *context, uint64_t *keys, void *leaf),
 986                  void *context)
 987{
 988        BUG_ON(info->levels > 1);
 989        return walk_node(info, root, fn, context);
 990}
 991EXPORT_SYMBOL_GPL(dm_btree_walk);
 992
 993/*----------------------------------------------------------------*/
 994
 995static void prefetch_values(struct dm_btree_cursor *c)
 996{
 997        unsigned i, nr;
 998        __le64 value_le;
 999        struct cursor_node *n = c->nodes + c->depth - 1;
1000        struct btree_node *bn = dm_block_data(n->b);
1001        struct dm_block_manager *bm = dm_tm_get_bm(c->info->tm);
1002
1003        BUG_ON(c->info->value_type.size != sizeof(value_le));
1004
1005        nr = le32_to_cpu(bn->header.nr_entries);
1006        for (i = 0; i < nr; i++) {
1007                memcpy(&value_le, value_ptr(bn, i), sizeof(value_le));
1008                dm_bm_prefetch(bm, le64_to_cpu(value_le));
1009        }
1010}
1011
1012static bool leaf_node(struct dm_btree_cursor *c)
1013{
1014        struct cursor_node *n = c->nodes + c->depth - 1;
1015        struct btree_node *bn = dm_block_data(n->b);
1016
1017        return le32_to_cpu(bn->header.flags) & LEAF_NODE;
1018}
1019
1020static int push_node(struct dm_btree_cursor *c, dm_block_t b)
1021{
1022        int r;
1023        struct cursor_node *n = c->nodes + c->depth;
1024
1025        if (c->depth >= DM_BTREE_CURSOR_MAX_DEPTH - 1) {
1026                DMERR("couldn't push cursor node, stack depth too high");
1027                return -EINVAL;
1028        }
1029
1030        r = bn_read_lock(c->info, b, &n->b);
1031        if (r)
1032                return r;
1033
1034        n->index = 0;
1035        c->depth++;
1036
1037        if (c->prefetch_leaves || !leaf_node(c))
1038                prefetch_values(c);
1039
1040        return 0;
1041}
1042
1043static void pop_node(struct dm_btree_cursor *c)
1044{
1045        c->depth--;
1046        unlock_block(c->info, c->nodes[c->depth].b);
1047}
1048
1049static int inc_or_backtrack(struct dm_btree_cursor *c)
1050{
1051        struct cursor_node *n;
1052        struct btree_node *bn;
1053
1054        for (;;) {
1055                if (!c->depth)
1056                        return -ENODATA;
1057
1058                n = c->nodes + c->depth - 1;
1059                bn = dm_block_data(n->b);
1060
1061                n->index++;
1062                if (n->index < le32_to_cpu(bn->header.nr_entries))
1063                        break;
1064
1065                pop_node(c);
1066        }
1067
1068        return 0;
1069}
1070
1071static int find_leaf(struct dm_btree_cursor *c)
1072{
1073        int r = 0;
1074        struct cursor_node *n;
1075        struct btree_node *bn;
1076        __le64 value_le;
1077
1078        for (;;) {
1079                n = c->nodes + c->depth - 1;
1080                bn = dm_block_data(n->b);
1081
1082                if (le32_to_cpu(bn->header.flags) & LEAF_NODE)
1083                        break;
1084
1085                memcpy(&value_le, value_ptr(bn, n->index), sizeof(value_le));
1086                r = push_node(c, le64_to_cpu(value_le));
1087                if (r) {
1088                        DMERR("push_node failed");
1089                        break;
1090                }
1091        }
1092
1093        if (!r && (le32_to_cpu(bn->header.nr_entries) == 0))
1094                return -ENODATA;
1095
1096        return r;
1097}
1098
1099int dm_btree_cursor_begin(struct dm_btree_info *info, dm_block_t root,
1100                          bool prefetch_leaves, struct dm_btree_cursor *c)
1101{
1102        int r;
1103
1104        c->info = info;
1105        c->root = root;
1106        c->depth = 0;
1107        c->prefetch_leaves = prefetch_leaves;
1108
1109        r = push_node(c, root);
1110        if (r)
1111                return r;
1112
1113        return find_leaf(c);
1114}
1115EXPORT_SYMBOL_GPL(dm_btree_cursor_begin);
1116
1117void dm_btree_cursor_end(struct dm_btree_cursor *c)
1118{
1119        while (c->depth)
1120                pop_node(c);
1121}
1122EXPORT_SYMBOL_GPL(dm_btree_cursor_end);
1123
1124int dm_btree_cursor_next(struct dm_btree_cursor *c)
1125{
1126        int r = inc_or_backtrack(c);
1127        if (!r) {
1128                r = find_leaf(c);
1129                if (r)
1130                        DMERR("find_leaf failed");
1131        }
1132
1133        return r;
1134}
1135EXPORT_SYMBOL_GPL(dm_btree_cursor_next);
1136
1137int dm_btree_cursor_skip(struct dm_btree_cursor *c, uint32_t count)
1138{
1139        int r = 0;
1140
1141        while (count-- && !r)
1142                r = dm_btree_cursor_next(c);
1143
1144        return r;
1145}
1146EXPORT_SYMBOL_GPL(dm_btree_cursor_skip);
1147
1148int dm_btree_cursor_get_value(struct dm_btree_cursor *c, uint64_t *key, void *value_le)
1149{
1150        if (c->depth) {
1151                struct cursor_node *n = c->nodes + c->depth - 1;
1152                struct btree_node *bn = dm_block_data(n->b);
1153
1154                if (le32_to_cpu(bn->header.flags) & INTERNAL_NODE)
1155                        return -EINVAL;
1156
1157                *key = le64_to_cpu(*key_ptr(bn, n->index));
1158                memcpy(value_le, value_ptr(bn, n->index), c->info->value_type.size);
1159                return 0;
1160
1161        } else
1162                return -ENODATA;
1163}
1164EXPORT_SYMBOL_GPL(dm_btree_cursor_get_value);
1165