linux/drivers/md/raid1.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * raid1.c : Multiple Devices driver for Linux
   4 *
   5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
   6 *
   7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
   8 *
   9 * RAID-1 management functions.
  10 *
  11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
  12 *
  13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
  14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
  15 *
  16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
  17 * bitmapped intelligence in resync:
  18 *
  19 *      - bitmap marked during normal i/o
  20 *      - bitmap used to skip nondirty blocks during sync
  21 *
  22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
  23 * - persistent bitmap code
  24 */
  25
  26#include <linux/slab.h>
  27#include <linux/delay.h>
  28#include <linux/blkdev.h>
  29#include <linux/module.h>
  30#include <linux/seq_file.h>
  31#include <linux/ratelimit.h>
  32
  33#include <trace/events/block.h>
  34
  35#include "md.h"
  36#include "raid1.h"
  37#include "md-bitmap.h"
  38
  39#define UNSUPPORTED_MDDEV_FLAGS         \
  40        ((1L << MD_HAS_JOURNAL) |       \
  41         (1L << MD_JOURNAL_CLEAN) |     \
  42         (1L << MD_HAS_PPL) |           \
  43         (1L << MD_HAS_MULTIPLE_PPLS))
  44
  45static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
  46static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
  47
  48#define raid1_log(md, fmt, args...)                             \
  49        do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
  50
  51#include "raid1-10.c"
  52
  53static int check_and_add_wb(struct md_rdev *rdev, sector_t lo, sector_t hi)
  54{
  55        struct wb_info *wi, *temp_wi;
  56        unsigned long flags;
  57        int ret = 0;
  58        struct mddev *mddev = rdev->mddev;
  59
  60        wi = mempool_alloc(mddev->wb_info_pool, GFP_NOIO);
  61
  62        spin_lock_irqsave(&rdev->wb_list_lock, flags);
  63        list_for_each_entry(temp_wi, &rdev->wb_list, list) {
  64                /* collision happened */
  65                if (hi > temp_wi->lo && lo < temp_wi->hi) {
  66                        ret = -EBUSY;
  67                        break;
  68                }
  69        }
  70
  71        if (!ret) {
  72                wi->lo = lo;
  73                wi->hi = hi;
  74                list_add(&wi->list, &rdev->wb_list);
  75        } else
  76                mempool_free(wi, mddev->wb_info_pool);
  77        spin_unlock_irqrestore(&rdev->wb_list_lock, flags);
  78
  79        return ret;
  80}
  81
  82static void remove_wb(struct md_rdev *rdev, sector_t lo, sector_t hi)
  83{
  84        struct wb_info *wi;
  85        unsigned long flags;
  86        int found = 0;
  87        struct mddev *mddev = rdev->mddev;
  88
  89        spin_lock_irqsave(&rdev->wb_list_lock, flags);
  90        list_for_each_entry(wi, &rdev->wb_list, list)
  91                if (hi == wi->hi && lo == wi->lo) {
  92                        list_del(&wi->list);
  93                        mempool_free(wi, mddev->wb_info_pool);
  94                        found = 1;
  95                        break;
  96                }
  97
  98        if (!found)
  99                WARN(1, "The write behind IO is not recorded\n");
 100        spin_unlock_irqrestore(&rdev->wb_list_lock, flags);
 101        wake_up(&rdev->wb_io_wait);
 102}
 103
 104/*
 105 * for resync bio, r1bio pointer can be retrieved from the per-bio
 106 * 'struct resync_pages'.
 107 */
 108static inline struct r1bio *get_resync_r1bio(struct bio *bio)
 109{
 110        return get_resync_pages(bio)->raid_bio;
 111}
 112
 113static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
 114{
 115        struct pool_info *pi = data;
 116        int size = offsetof(struct r1bio, bios[pi->raid_disks]);
 117
 118        /* allocate a r1bio with room for raid_disks entries in the bios array */
 119        return kzalloc(size, gfp_flags);
 120}
 121
 122#define RESYNC_DEPTH 32
 123#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
 124#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
 125#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
 126#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
 127#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
 128
 129static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
 130{
 131        struct pool_info *pi = data;
 132        struct r1bio *r1_bio;
 133        struct bio *bio;
 134        int need_pages;
 135        int j;
 136        struct resync_pages *rps;
 137
 138        r1_bio = r1bio_pool_alloc(gfp_flags, pi);
 139        if (!r1_bio)
 140                return NULL;
 141
 142        rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
 143                            gfp_flags);
 144        if (!rps)
 145                goto out_free_r1bio;
 146
 147        /*
 148         * Allocate bios : 1 for reading, n-1 for writing
 149         */
 150        for (j = pi->raid_disks ; j-- ; ) {
 151                bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 152                if (!bio)
 153                        goto out_free_bio;
 154                r1_bio->bios[j] = bio;
 155        }
 156        /*
 157         * Allocate RESYNC_PAGES data pages and attach them to
 158         * the first bio.
 159         * If this is a user-requested check/repair, allocate
 160         * RESYNC_PAGES for each bio.
 161         */
 162        if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
 163                need_pages = pi->raid_disks;
 164        else
 165                need_pages = 1;
 166        for (j = 0; j < pi->raid_disks; j++) {
 167                struct resync_pages *rp = &rps[j];
 168
 169                bio = r1_bio->bios[j];
 170
 171                if (j < need_pages) {
 172                        if (resync_alloc_pages(rp, gfp_flags))
 173                                goto out_free_pages;
 174                } else {
 175                        memcpy(rp, &rps[0], sizeof(*rp));
 176                        resync_get_all_pages(rp);
 177                }
 178
 179                rp->raid_bio = r1_bio;
 180                bio->bi_private = rp;
 181        }
 182
 183        r1_bio->master_bio = NULL;
 184
 185        return r1_bio;
 186
 187out_free_pages:
 188        while (--j >= 0)
 189                resync_free_pages(&rps[j]);
 190
 191out_free_bio:
 192        while (++j < pi->raid_disks)
 193                bio_put(r1_bio->bios[j]);
 194        kfree(rps);
 195
 196out_free_r1bio:
 197        rbio_pool_free(r1_bio, data);
 198        return NULL;
 199}
 200
 201static void r1buf_pool_free(void *__r1_bio, void *data)
 202{
 203        struct pool_info *pi = data;
 204        int i;
 205        struct r1bio *r1bio = __r1_bio;
 206        struct resync_pages *rp = NULL;
 207
 208        for (i = pi->raid_disks; i--; ) {
 209                rp = get_resync_pages(r1bio->bios[i]);
 210                resync_free_pages(rp);
 211                bio_put(r1bio->bios[i]);
 212        }
 213
 214        /* resync pages array stored in the 1st bio's .bi_private */
 215        kfree(rp);
 216
 217        rbio_pool_free(r1bio, data);
 218}
 219
 220static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
 221{
 222        int i;
 223
 224        for (i = 0; i < conf->raid_disks * 2; i++) {
 225                struct bio **bio = r1_bio->bios + i;
 226                if (!BIO_SPECIAL(*bio))
 227                        bio_put(*bio);
 228                *bio = NULL;
 229        }
 230}
 231
 232static void free_r1bio(struct r1bio *r1_bio)
 233{
 234        struct r1conf *conf = r1_bio->mddev->private;
 235
 236        put_all_bios(conf, r1_bio);
 237        mempool_free(r1_bio, &conf->r1bio_pool);
 238}
 239
 240static void put_buf(struct r1bio *r1_bio)
 241{
 242        struct r1conf *conf = r1_bio->mddev->private;
 243        sector_t sect = r1_bio->sector;
 244        int i;
 245
 246        for (i = 0; i < conf->raid_disks * 2; i++) {
 247                struct bio *bio = r1_bio->bios[i];
 248                if (bio->bi_end_io)
 249                        rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
 250        }
 251
 252        mempool_free(r1_bio, &conf->r1buf_pool);
 253
 254        lower_barrier(conf, sect);
 255}
 256
 257static void reschedule_retry(struct r1bio *r1_bio)
 258{
 259        unsigned long flags;
 260        struct mddev *mddev = r1_bio->mddev;
 261        struct r1conf *conf = mddev->private;
 262        int idx;
 263
 264        idx = sector_to_idx(r1_bio->sector);
 265        spin_lock_irqsave(&conf->device_lock, flags);
 266        list_add(&r1_bio->retry_list, &conf->retry_list);
 267        atomic_inc(&conf->nr_queued[idx]);
 268        spin_unlock_irqrestore(&conf->device_lock, flags);
 269
 270        wake_up(&conf->wait_barrier);
 271        md_wakeup_thread(mddev->thread);
 272}
 273
 274/*
 275 * raid_end_bio_io() is called when we have finished servicing a mirrored
 276 * operation and are ready to return a success/failure code to the buffer
 277 * cache layer.
 278 */
 279static void call_bio_endio(struct r1bio *r1_bio)
 280{
 281        struct bio *bio = r1_bio->master_bio;
 282        struct r1conf *conf = r1_bio->mddev->private;
 283
 284        if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
 285                bio->bi_status = BLK_STS_IOERR;
 286
 287        bio_endio(bio);
 288        /*
 289         * Wake up any possible resync thread that waits for the device
 290         * to go idle.
 291         */
 292        allow_barrier(conf, r1_bio->sector);
 293}
 294
 295static void raid_end_bio_io(struct r1bio *r1_bio)
 296{
 297        struct bio *bio = r1_bio->master_bio;
 298
 299        /* if nobody has done the final endio yet, do it now */
 300        if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 301                pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
 302                         (bio_data_dir(bio) == WRITE) ? "write" : "read",
 303                         (unsigned long long) bio->bi_iter.bi_sector,
 304                         (unsigned long long) bio_end_sector(bio) - 1);
 305
 306                call_bio_endio(r1_bio);
 307        }
 308        free_r1bio(r1_bio);
 309}
 310
 311/*
 312 * Update disk head position estimator based on IRQ completion info.
 313 */
 314static inline void update_head_pos(int disk, struct r1bio *r1_bio)
 315{
 316        struct r1conf *conf = r1_bio->mddev->private;
 317
 318        conf->mirrors[disk].head_position =
 319                r1_bio->sector + (r1_bio->sectors);
 320}
 321
 322/*
 323 * Find the disk number which triggered given bio
 324 */
 325static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
 326{
 327        int mirror;
 328        struct r1conf *conf = r1_bio->mddev->private;
 329        int raid_disks = conf->raid_disks;
 330
 331        for (mirror = 0; mirror < raid_disks * 2; mirror++)
 332                if (r1_bio->bios[mirror] == bio)
 333                        break;
 334
 335        BUG_ON(mirror == raid_disks * 2);
 336        update_head_pos(mirror, r1_bio);
 337
 338        return mirror;
 339}
 340
 341static void raid1_end_read_request(struct bio *bio)
 342{
 343        int uptodate = !bio->bi_status;
 344        struct r1bio *r1_bio = bio->bi_private;
 345        struct r1conf *conf = r1_bio->mddev->private;
 346        struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
 347
 348        /*
 349         * this branch is our 'one mirror IO has finished' event handler:
 350         */
 351        update_head_pos(r1_bio->read_disk, r1_bio);
 352
 353        if (uptodate)
 354                set_bit(R1BIO_Uptodate, &r1_bio->state);
 355        else if (test_bit(FailFast, &rdev->flags) &&
 356                 test_bit(R1BIO_FailFast, &r1_bio->state))
 357                /* This was a fail-fast read so we definitely
 358                 * want to retry */
 359                ;
 360        else {
 361                /* If all other devices have failed, we want to return
 362                 * the error upwards rather than fail the last device.
 363                 * Here we redefine "uptodate" to mean "Don't want to retry"
 364                 */
 365                unsigned long flags;
 366                spin_lock_irqsave(&conf->device_lock, flags);
 367                if (r1_bio->mddev->degraded == conf->raid_disks ||
 368                    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
 369                     test_bit(In_sync, &rdev->flags)))
 370                        uptodate = 1;
 371                spin_unlock_irqrestore(&conf->device_lock, flags);
 372        }
 373
 374        if (uptodate) {
 375                raid_end_bio_io(r1_bio);
 376                rdev_dec_pending(rdev, conf->mddev);
 377        } else {
 378                /*
 379                 * oops, read error:
 380                 */
 381                char b[BDEVNAME_SIZE];
 382                pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
 383                                   mdname(conf->mddev),
 384                                   bdevname(rdev->bdev, b),
 385                                   (unsigned long long)r1_bio->sector);
 386                set_bit(R1BIO_ReadError, &r1_bio->state);
 387                reschedule_retry(r1_bio);
 388                /* don't drop the reference on read_disk yet */
 389        }
 390}
 391
 392static void close_write(struct r1bio *r1_bio)
 393{
 394        /* it really is the end of this request */
 395        if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
 396                bio_free_pages(r1_bio->behind_master_bio);
 397                bio_put(r1_bio->behind_master_bio);
 398                r1_bio->behind_master_bio = NULL;
 399        }
 400        /* clear the bitmap if all writes complete successfully */
 401        md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
 402                           r1_bio->sectors,
 403                           !test_bit(R1BIO_Degraded, &r1_bio->state),
 404                           test_bit(R1BIO_BehindIO, &r1_bio->state));
 405        md_write_end(r1_bio->mddev);
 406}
 407
 408static void r1_bio_write_done(struct r1bio *r1_bio)
 409{
 410        if (!atomic_dec_and_test(&r1_bio->remaining))
 411                return;
 412
 413        if (test_bit(R1BIO_WriteError, &r1_bio->state))
 414                reschedule_retry(r1_bio);
 415        else {
 416                close_write(r1_bio);
 417                if (test_bit(R1BIO_MadeGood, &r1_bio->state))
 418                        reschedule_retry(r1_bio);
 419                else
 420                        raid_end_bio_io(r1_bio);
 421        }
 422}
 423
 424static void raid1_end_write_request(struct bio *bio)
 425{
 426        struct r1bio *r1_bio = bio->bi_private;
 427        int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
 428        struct r1conf *conf = r1_bio->mddev->private;
 429        struct bio *to_put = NULL;
 430        int mirror = find_bio_disk(r1_bio, bio);
 431        struct md_rdev *rdev = conf->mirrors[mirror].rdev;
 432        bool discard_error;
 433
 434        discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
 435
 436        /*
 437         * 'one mirror IO has finished' event handler:
 438         */
 439        if (bio->bi_status && !discard_error) {
 440                set_bit(WriteErrorSeen, &rdev->flags);
 441                if (!test_and_set_bit(WantReplacement, &rdev->flags))
 442                        set_bit(MD_RECOVERY_NEEDED, &
 443                                conf->mddev->recovery);
 444
 445                if (test_bit(FailFast, &rdev->flags) &&
 446                    (bio->bi_opf & MD_FAILFAST) &&
 447                    /* We never try FailFast to WriteMostly devices */
 448                    !test_bit(WriteMostly, &rdev->flags)) {
 449                        md_error(r1_bio->mddev, rdev);
 450                        if (!test_bit(Faulty, &rdev->flags))
 451                                /* This is the only remaining device,
 452                                 * We need to retry the write without
 453                                 * FailFast
 454                                 */
 455                                set_bit(R1BIO_WriteError, &r1_bio->state);
 456                        else {
 457                                /* Finished with this branch */
 458                                r1_bio->bios[mirror] = NULL;
 459                                to_put = bio;
 460                        }
 461                } else
 462                        set_bit(R1BIO_WriteError, &r1_bio->state);
 463        } else {
 464                /*
 465                 * Set R1BIO_Uptodate in our master bio, so that we
 466                 * will return a good error code for to the higher
 467                 * levels even if IO on some other mirrored buffer
 468                 * fails.
 469                 *
 470                 * The 'master' represents the composite IO operation
 471                 * to user-side. So if something waits for IO, then it
 472                 * will wait for the 'master' bio.
 473                 */
 474                sector_t first_bad;
 475                int bad_sectors;
 476
 477                r1_bio->bios[mirror] = NULL;
 478                to_put = bio;
 479                /*
 480                 * Do not set R1BIO_Uptodate if the current device is
 481                 * rebuilding or Faulty. This is because we cannot use
 482                 * such device for properly reading the data back (we could
 483                 * potentially use it, if the current write would have felt
 484                 * before rdev->recovery_offset, but for simplicity we don't
 485                 * check this here.
 486                 */
 487                if (test_bit(In_sync, &rdev->flags) &&
 488                    !test_bit(Faulty, &rdev->flags))
 489                        set_bit(R1BIO_Uptodate, &r1_bio->state);
 490
 491                /* Maybe we can clear some bad blocks. */
 492                if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
 493                                &first_bad, &bad_sectors) && !discard_error) {
 494                        r1_bio->bios[mirror] = IO_MADE_GOOD;
 495                        set_bit(R1BIO_MadeGood, &r1_bio->state);
 496                }
 497        }
 498
 499        if (behind) {
 500                if (test_bit(WBCollisionCheck, &rdev->flags)) {
 501                        sector_t lo = r1_bio->sector;
 502                        sector_t hi = r1_bio->sector + r1_bio->sectors;
 503
 504                        remove_wb(rdev, lo, hi);
 505                }
 506                if (test_bit(WriteMostly, &rdev->flags))
 507                        atomic_dec(&r1_bio->behind_remaining);
 508
 509                /*
 510                 * In behind mode, we ACK the master bio once the I/O
 511                 * has safely reached all non-writemostly
 512                 * disks. Setting the Returned bit ensures that this
 513                 * gets done only once -- we don't ever want to return
 514                 * -EIO here, instead we'll wait
 515                 */
 516                if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
 517                    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
 518                        /* Maybe we can return now */
 519                        if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 520                                struct bio *mbio = r1_bio->master_bio;
 521                                pr_debug("raid1: behind end write sectors"
 522                                         " %llu-%llu\n",
 523                                         (unsigned long long) mbio->bi_iter.bi_sector,
 524                                         (unsigned long long) bio_end_sector(mbio) - 1);
 525                                call_bio_endio(r1_bio);
 526                        }
 527                }
 528        }
 529        if (r1_bio->bios[mirror] == NULL)
 530                rdev_dec_pending(rdev, conf->mddev);
 531
 532        /*
 533         * Let's see if all mirrored write operations have finished
 534         * already.
 535         */
 536        r1_bio_write_done(r1_bio);
 537
 538        if (to_put)
 539                bio_put(to_put);
 540}
 541
 542static sector_t align_to_barrier_unit_end(sector_t start_sector,
 543                                          sector_t sectors)
 544{
 545        sector_t len;
 546
 547        WARN_ON(sectors == 0);
 548        /*
 549         * len is the number of sectors from start_sector to end of the
 550         * barrier unit which start_sector belongs to.
 551         */
 552        len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
 553              start_sector;
 554
 555        if (len > sectors)
 556                len = sectors;
 557
 558        return len;
 559}
 560
 561/*
 562 * This routine returns the disk from which the requested read should
 563 * be done. There is a per-array 'next expected sequential IO' sector
 564 * number - if this matches on the next IO then we use the last disk.
 565 * There is also a per-disk 'last know head position' sector that is
 566 * maintained from IRQ contexts, both the normal and the resync IO
 567 * completion handlers update this position correctly. If there is no
 568 * perfect sequential match then we pick the disk whose head is closest.
 569 *
 570 * If there are 2 mirrors in the same 2 devices, performance degrades
 571 * because position is mirror, not device based.
 572 *
 573 * The rdev for the device selected will have nr_pending incremented.
 574 */
 575static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
 576{
 577        const sector_t this_sector = r1_bio->sector;
 578        int sectors;
 579        int best_good_sectors;
 580        int best_disk, best_dist_disk, best_pending_disk;
 581        int has_nonrot_disk;
 582        int disk;
 583        sector_t best_dist;
 584        unsigned int min_pending;
 585        struct md_rdev *rdev;
 586        int choose_first;
 587        int choose_next_idle;
 588
 589        rcu_read_lock();
 590        /*
 591         * Check if we can balance. We can balance on the whole
 592         * device if no resync is going on, or below the resync window.
 593         * We take the first readable disk when above the resync window.
 594         */
 595 retry:
 596        sectors = r1_bio->sectors;
 597        best_disk = -1;
 598        best_dist_disk = -1;
 599        best_dist = MaxSector;
 600        best_pending_disk = -1;
 601        min_pending = UINT_MAX;
 602        best_good_sectors = 0;
 603        has_nonrot_disk = 0;
 604        choose_next_idle = 0;
 605        clear_bit(R1BIO_FailFast, &r1_bio->state);
 606
 607        if ((conf->mddev->recovery_cp < this_sector + sectors) ||
 608            (mddev_is_clustered(conf->mddev) &&
 609            md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
 610                    this_sector + sectors)))
 611                choose_first = 1;
 612        else
 613                choose_first = 0;
 614
 615        for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
 616                sector_t dist;
 617                sector_t first_bad;
 618                int bad_sectors;
 619                unsigned int pending;
 620                bool nonrot;
 621
 622                rdev = rcu_dereference(conf->mirrors[disk].rdev);
 623                if (r1_bio->bios[disk] == IO_BLOCKED
 624                    || rdev == NULL
 625                    || test_bit(Faulty, &rdev->flags))
 626                        continue;
 627                if (!test_bit(In_sync, &rdev->flags) &&
 628                    rdev->recovery_offset < this_sector + sectors)
 629                        continue;
 630                if (test_bit(WriteMostly, &rdev->flags)) {
 631                        /* Don't balance among write-mostly, just
 632                         * use the first as a last resort */
 633                        if (best_dist_disk < 0) {
 634                                if (is_badblock(rdev, this_sector, sectors,
 635                                                &first_bad, &bad_sectors)) {
 636                                        if (first_bad <= this_sector)
 637                                                /* Cannot use this */
 638                                                continue;
 639                                        best_good_sectors = first_bad - this_sector;
 640                                } else
 641                                        best_good_sectors = sectors;
 642                                best_dist_disk = disk;
 643                                best_pending_disk = disk;
 644                        }
 645                        continue;
 646                }
 647                /* This is a reasonable device to use.  It might
 648                 * even be best.
 649                 */
 650                if (is_badblock(rdev, this_sector, sectors,
 651                                &first_bad, &bad_sectors)) {
 652                        if (best_dist < MaxSector)
 653                                /* already have a better device */
 654                                continue;
 655                        if (first_bad <= this_sector) {
 656                                /* cannot read here. If this is the 'primary'
 657                                 * device, then we must not read beyond
 658                                 * bad_sectors from another device..
 659                                 */
 660                                bad_sectors -= (this_sector - first_bad);
 661                                if (choose_first && sectors > bad_sectors)
 662                                        sectors = bad_sectors;
 663                                if (best_good_sectors > sectors)
 664                                        best_good_sectors = sectors;
 665
 666                        } else {
 667                                sector_t good_sectors = first_bad - this_sector;
 668                                if (good_sectors > best_good_sectors) {
 669                                        best_good_sectors = good_sectors;
 670                                        best_disk = disk;
 671                                }
 672                                if (choose_first)
 673                                        break;
 674                        }
 675                        continue;
 676                } else {
 677                        if ((sectors > best_good_sectors) && (best_disk >= 0))
 678                                best_disk = -1;
 679                        best_good_sectors = sectors;
 680                }
 681
 682                if (best_disk >= 0)
 683                        /* At least two disks to choose from so failfast is OK */
 684                        set_bit(R1BIO_FailFast, &r1_bio->state);
 685
 686                nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
 687                has_nonrot_disk |= nonrot;
 688                pending = atomic_read(&rdev->nr_pending);
 689                dist = abs(this_sector - conf->mirrors[disk].head_position);
 690                if (choose_first) {
 691                        best_disk = disk;
 692                        break;
 693                }
 694                /* Don't change to another disk for sequential reads */
 695                if (conf->mirrors[disk].next_seq_sect == this_sector
 696                    || dist == 0) {
 697                        int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
 698                        struct raid1_info *mirror = &conf->mirrors[disk];
 699
 700                        best_disk = disk;
 701                        /*
 702                         * If buffered sequential IO size exceeds optimal
 703                         * iosize, check if there is idle disk. If yes, choose
 704                         * the idle disk. read_balance could already choose an
 705                         * idle disk before noticing it's a sequential IO in
 706                         * this disk. This doesn't matter because this disk
 707                         * will idle, next time it will be utilized after the
 708                         * first disk has IO size exceeds optimal iosize. In
 709                         * this way, iosize of the first disk will be optimal
 710                         * iosize at least. iosize of the second disk might be
 711                         * small, but not a big deal since when the second disk
 712                         * starts IO, the first disk is likely still busy.
 713                         */
 714                        if (nonrot && opt_iosize > 0 &&
 715                            mirror->seq_start != MaxSector &&
 716                            mirror->next_seq_sect > opt_iosize &&
 717                            mirror->next_seq_sect - opt_iosize >=
 718                            mirror->seq_start) {
 719                                choose_next_idle = 1;
 720                                continue;
 721                        }
 722                        break;
 723                }
 724
 725                if (choose_next_idle)
 726                        continue;
 727
 728                if (min_pending > pending) {
 729                        min_pending = pending;
 730                        best_pending_disk = disk;
 731                }
 732
 733                if (dist < best_dist) {
 734                        best_dist = dist;
 735                        best_dist_disk = disk;
 736                }
 737        }
 738
 739        /*
 740         * If all disks are rotational, choose the closest disk. If any disk is
 741         * non-rotational, choose the disk with less pending request even the
 742         * disk is rotational, which might/might not be optimal for raids with
 743         * mixed ratation/non-rotational disks depending on workload.
 744         */
 745        if (best_disk == -1) {
 746                if (has_nonrot_disk || min_pending == 0)
 747                        best_disk = best_pending_disk;
 748                else
 749                        best_disk = best_dist_disk;
 750        }
 751
 752        if (best_disk >= 0) {
 753                rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
 754                if (!rdev)
 755                        goto retry;
 756                atomic_inc(&rdev->nr_pending);
 757                sectors = best_good_sectors;
 758
 759                if (conf->mirrors[best_disk].next_seq_sect != this_sector)
 760                        conf->mirrors[best_disk].seq_start = this_sector;
 761
 762                conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
 763        }
 764        rcu_read_unlock();
 765        *max_sectors = sectors;
 766
 767        return best_disk;
 768}
 769
 770static int raid1_congested(struct mddev *mddev, int bits)
 771{
 772        struct r1conf *conf = mddev->private;
 773        int i, ret = 0;
 774
 775        if ((bits & (1 << WB_async_congested)) &&
 776            conf->pending_count >= max_queued_requests)
 777                return 1;
 778
 779        rcu_read_lock();
 780        for (i = 0; i < conf->raid_disks * 2; i++) {
 781                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 782                if (rdev && !test_bit(Faulty, &rdev->flags)) {
 783                        struct request_queue *q = bdev_get_queue(rdev->bdev);
 784
 785                        BUG_ON(!q);
 786
 787                        /* Note the '|| 1' - when read_balance prefers
 788                         * non-congested targets, it can be removed
 789                         */
 790                        if ((bits & (1 << WB_async_congested)) || 1)
 791                                ret |= bdi_congested(q->backing_dev_info, bits);
 792                        else
 793                                ret &= bdi_congested(q->backing_dev_info, bits);
 794                }
 795        }
 796        rcu_read_unlock();
 797        return ret;
 798}
 799
 800static void flush_bio_list(struct r1conf *conf, struct bio *bio)
 801{
 802        /* flush any pending bitmap writes to disk before proceeding w/ I/O */
 803        md_bitmap_unplug(conf->mddev->bitmap);
 804        wake_up(&conf->wait_barrier);
 805
 806        while (bio) { /* submit pending writes */
 807                struct bio *next = bio->bi_next;
 808                struct md_rdev *rdev = (void *)bio->bi_disk;
 809                bio->bi_next = NULL;
 810                bio_set_dev(bio, rdev->bdev);
 811                if (test_bit(Faulty, &rdev->flags)) {
 812                        bio_io_error(bio);
 813                } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
 814                                    !blk_queue_discard(bio->bi_disk->queue)))
 815                        /* Just ignore it */
 816                        bio_endio(bio);
 817                else
 818                        generic_make_request(bio);
 819                bio = next;
 820        }
 821}
 822
 823static void flush_pending_writes(struct r1conf *conf)
 824{
 825        /* Any writes that have been queued but are awaiting
 826         * bitmap updates get flushed here.
 827         */
 828        spin_lock_irq(&conf->device_lock);
 829
 830        if (conf->pending_bio_list.head) {
 831                struct blk_plug plug;
 832                struct bio *bio;
 833
 834                bio = bio_list_get(&conf->pending_bio_list);
 835                conf->pending_count = 0;
 836                spin_unlock_irq(&conf->device_lock);
 837
 838                /*
 839                 * As this is called in a wait_event() loop (see freeze_array),
 840                 * current->state might be TASK_UNINTERRUPTIBLE which will
 841                 * cause a warning when we prepare to wait again.  As it is
 842                 * rare that this path is taken, it is perfectly safe to force
 843                 * us to go around the wait_event() loop again, so the warning
 844                 * is a false-positive.  Silence the warning by resetting
 845                 * thread state
 846                 */
 847                __set_current_state(TASK_RUNNING);
 848                blk_start_plug(&plug);
 849                flush_bio_list(conf, bio);
 850                blk_finish_plug(&plug);
 851        } else
 852                spin_unlock_irq(&conf->device_lock);
 853}
 854
 855/* Barriers....
 856 * Sometimes we need to suspend IO while we do something else,
 857 * either some resync/recovery, or reconfigure the array.
 858 * To do this we raise a 'barrier'.
 859 * The 'barrier' is a counter that can be raised multiple times
 860 * to count how many activities are happening which preclude
 861 * normal IO.
 862 * We can only raise the barrier if there is no pending IO.
 863 * i.e. if nr_pending == 0.
 864 * We choose only to raise the barrier if no-one is waiting for the
 865 * barrier to go down.  This means that as soon as an IO request
 866 * is ready, no other operations which require a barrier will start
 867 * until the IO request has had a chance.
 868 *
 869 * So: regular IO calls 'wait_barrier'.  When that returns there
 870 *    is no backgroup IO happening,  It must arrange to call
 871 *    allow_barrier when it has finished its IO.
 872 * backgroup IO calls must call raise_barrier.  Once that returns
 873 *    there is no normal IO happeing.  It must arrange to call
 874 *    lower_barrier when the particular background IO completes.
 875 */
 876static sector_t raise_barrier(struct r1conf *conf, sector_t sector_nr)
 877{
 878        int idx = sector_to_idx(sector_nr);
 879
 880        spin_lock_irq(&conf->resync_lock);
 881
 882        /* Wait until no block IO is waiting */
 883        wait_event_lock_irq(conf->wait_barrier,
 884                            !atomic_read(&conf->nr_waiting[idx]),
 885                            conf->resync_lock);
 886
 887        /* block any new IO from starting */
 888        atomic_inc(&conf->barrier[idx]);
 889        /*
 890         * In raise_barrier() we firstly increase conf->barrier[idx] then
 891         * check conf->nr_pending[idx]. In _wait_barrier() we firstly
 892         * increase conf->nr_pending[idx] then check conf->barrier[idx].
 893         * A memory barrier here to make sure conf->nr_pending[idx] won't
 894         * be fetched before conf->barrier[idx] is increased. Otherwise
 895         * there will be a race between raise_barrier() and _wait_barrier().
 896         */
 897        smp_mb__after_atomic();
 898
 899        /* For these conditions we must wait:
 900         * A: while the array is in frozen state
 901         * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
 902         *    existing in corresponding I/O barrier bucket.
 903         * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
 904         *    max resync count which allowed on current I/O barrier bucket.
 905         */
 906        wait_event_lock_irq(conf->wait_barrier,
 907                            (!conf->array_frozen &&
 908                             !atomic_read(&conf->nr_pending[idx]) &&
 909                             atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
 910                                test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
 911                            conf->resync_lock);
 912
 913        if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
 914                atomic_dec(&conf->barrier[idx]);
 915                spin_unlock_irq(&conf->resync_lock);
 916                wake_up(&conf->wait_barrier);
 917                return -EINTR;
 918        }
 919
 920        atomic_inc(&conf->nr_sync_pending);
 921        spin_unlock_irq(&conf->resync_lock);
 922
 923        return 0;
 924}
 925
 926static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
 927{
 928        int idx = sector_to_idx(sector_nr);
 929
 930        BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
 931
 932        atomic_dec(&conf->barrier[idx]);
 933        atomic_dec(&conf->nr_sync_pending);
 934        wake_up(&conf->wait_barrier);
 935}
 936
 937static void _wait_barrier(struct r1conf *conf, int idx)
 938{
 939        /*
 940         * We need to increase conf->nr_pending[idx] very early here,
 941         * then raise_barrier() can be blocked when it waits for
 942         * conf->nr_pending[idx] to be 0. Then we can avoid holding
 943         * conf->resync_lock when there is no barrier raised in same
 944         * barrier unit bucket. Also if the array is frozen, I/O
 945         * should be blocked until array is unfrozen.
 946         */
 947        atomic_inc(&conf->nr_pending[idx]);
 948        /*
 949         * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
 950         * check conf->barrier[idx]. In raise_barrier() we firstly increase
 951         * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
 952         * barrier is necessary here to make sure conf->barrier[idx] won't be
 953         * fetched before conf->nr_pending[idx] is increased. Otherwise there
 954         * will be a race between _wait_barrier() and raise_barrier().
 955         */
 956        smp_mb__after_atomic();
 957
 958        /*
 959         * Don't worry about checking two atomic_t variables at same time
 960         * here. If during we check conf->barrier[idx], the array is
 961         * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
 962         * 0, it is safe to return and make the I/O continue. Because the
 963         * array is frozen, all I/O returned here will eventually complete
 964         * or be queued, no race will happen. See code comment in
 965         * frozen_array().
 966         */
 967        if (!READ_ONCE(conf->array_frozen) &&
 968            !atomic_read(&conf->barrier[idx]))
 969                return;
 970
 971        /*
 972         * After holding conf->resync_lock, conf->nr_pending[idx]
 973         * should be decreased before waiting for barrier to drop.
 974         * Otherwise, we may encounter a race condition because
 975         * raise_barrer() might be waiting for conf->nr_pending[idx]
 976         * to be 0 at same time.
 977         */
 978        spin_lock_irq(&conf->resync_lock);
 979        atomic_inc(&conf->nr_waiting[idx]);
 980        atomic_dec(&conf->nr_pending[idx]);
 981        /*
 982         * In case freeze_array() is waiting for
 983         * get_unqueued_pending() == extra
 984         */
 985        wake_up(&conf->wait_barrier);
 986        /* Wait for the barrier in same barrier unit bucket to drop. */
 987        wait_event_lock_irq(conf->wait_barrier,
 988                            !conf->array_frozen &&
 989                             !atomic_read(&conf->barrier[idx]),
 990                            conf->resync_lock);
 991        atomic_inc(&conf->nr_pending[idx]);
 992        atomic_dec(&conf->nr_waiting[idx]);
 993        spin_unlock_irq(&conf->resync_lock);
 994}
 995
 996static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
 997{
 998        int idx = sector_to_idx(sector_nr);
 999
1000        /*
1001         * Very similar to _wait_barrier(). The difference is, for read
1002         * I/O we don't need wait for sync I/O, but if the whole array
1003         * is frozen, the read I/O still has to wait until the array is
1004         * unfrozen. Since there is no ordering requirement with
1005         * conf->barrier[idx] here, memory barrier is unnecessary as well.
1006         */
1007        atomic_inc(&conf->nr_pending[idx]);
1008
1009        if (!READ_ONCE(conf->array_frozen))
1010                return;
1011
1012        spin_lock_irq(&conf->resync_lock);
1013        atomic_inc(&conf->nr_waiting[idx]);
1014        atomic_dec(&conf->nr_pending[idx]);
1015        /*
1016         * In case freeze_array() is waiting for
1017         * get_unqueued_pending() == extra
1018         */
1019        wake_up(&conf->wait_barrier);
1020        /* Wait for array to be unfrozen */
1021        wait_event_lock_irq(conf->wait_barrier,
1022                            !conf->array_frozen,
1023                            conf->resync_lock);
1024        atomic_inc(&conf->nr_pending[idx]);
1025        atomic_dec(&conf->nr_waiting[idx]);
1026        spin_unlock_irq(&conf->resync_lock);
1027}
1028
1029static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
1030{
1031        int idx = sector_to_idx(sector_nr);
1032
1033        _wait_barrier(conf, idx);
1034}
1035
1036static void _allow_barrier(struct r1conf *conf, int idx)
1037{
1038        atomic_dec(&conf->nr_pending[idx]);
1039        wake_up(&conf->wait_barrier);
1040}
1041
1042static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1043{
1044        int idx = sector_to_idx(sector_nr);
1045
1046        _allow_barrier(conf, idx);
1047}
1048
1049/* conf->resync_lock should be held */
1050static int get_unqueued_pending(struct r1conf *conf)
1051{
1052        int idx, ret;
1053
1054        ret = atomic_read(&conf->nr_sync_pending);
1055        for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1056                ret += atomic_read(&conf->nr_pending[idx]) -
1057                        atomic_read(&conf->nr_queued[idx]);
1058
1059        return ret;
1060}
1061
1062static void freeze_array(struct r1conf *conf, int extra)
1063{
1064        /* Stop sync I/O and normal I/O and wait for everything to
1065         * go quiet.
1066         * This is called in two situations:
1067         * 1) management command handlers (reshape, remove disk, quiesce).
1068         * 2) one normal I/O request failed.
1069
1070         * After array_frozen is set to 1, new sync IO will be blocked at
1071         * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1072         * or wait_read_barrier(). The flying I/Os will either complete or be
1073         * queued. When everything goes quite, there are only queued I/Os left.
1074
1075         * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1076         * barrier bucket index which this I/O request hits. When all sync and
1077         * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1078         * of all conf->nr_queued[]. But normal I/O failure is an exception,
1079         * in handle_read_error(), we may call freeze_array() before trying to
1080         * fix the read error. In this case, the error read I/O is not queued,
1081         * so get_unqueued_pending() == 1.
1082         *
1083         * Therefore before this function returns, we need to wait until
1084         * get_unqueued_pendings(conf) gets equal to extra. For
1085         * normal I/O context, extra is 1, in rested situations extra is 0.
1086         */
1087        spin_lock_irq(&conf->resync_lock);
1088        conf->array_frozen = 1;
1089        raid1_log(conf->mddev, "wait freeze");
1090        wait_event_lock_irq_cmd(
1091                conf->wait_barrier,
1092                get_unqueued_pending(conf) == extra,
1093                conf->resync_lock,
1094                flush_pending_writes(conf));
1095        spin_unlock_irq(&conf->resync_lock);
1096}
1097static void unfreeze_array(struct r1conf *conf)
1098{
1099        /* reverse the effect of the freeze */
1100        spin_lock_irq(&conf->resync_lock);
1101        conf->array_frozen = 0;
1102        spin_unlock_irq(&conf->resync_lock);
1103        wake_up(&conf->wait_barrier);
1104}
1105
1106static void alloc_behind_master_bio(struct r1bio *r1_bio,
1107                                           struct bio *bio)
1108{
1109        int size = bio->bi_iter.bi_size;
1110        unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1111        int i = 0;
1112        struct bio *behind_bio = NULL;
1113
1114        behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1115        if (!behind_bio)
1116                return;
1117
1118        /* discard op, we don't support writezero/writesame yet */
1119        if (!bio_has_data(bio)) {
1120                behind_bio->bi_iter.bi_size = size;
1121                goto skip_copy;
1122        }
1123
1124        behind_bio->bi_write_hint = bio->bi_write_hint;
1125
1126        while (i < vcnt && size) {
1127                struct page *page;
1128                int len = min_t(int, PAGE_SIZE, size);
1129
1130                page = alloc_page(GFP_NOIO);
1131                if (unlikely(!page))
1132                        goto free_pages;
1133
1134                bio_add_page(behind_bio, page, len, 0);
1135
1136                size -= len;
1137                i++;
1138        }
1139
1140        bio_copy_data(behind_bio, bio);
1141skip_copy:
1142        r1_bio->behind_master_bio = behind_bio;
1143        set_bit(R1BIO_BehindIO, &r1_bio->state);
1144
1145        return;
1146
1147free_pages:
1148        pr_debug("%dB behind alloc failed, doing sync I/O\n",
1149                 bio->bi_iter.bi_size);
1150        bio_free_pages(behind_bio);
1151        bio_put(behind_bio);
1152}
1153
1154struct raid1_plug_cb {
1155        struct blk_plug_cb      cb;
1156        struct bio_list         pending;
1157        int                     pending_cnt;
1158};
1159
1160static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1161{
1162        struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1163                                                  cb);
1164        struct mddev *mddev = plug->cb.data;
1165        struct r1conf *conf = mddev->private;
1166        struct bio *bio;
1167
1168        if (from_schedule || current->bio_list) {
1169                spin_lock_irq(&conf->device_lock);
1170                bio_list_merge(&conf->pending_bio_list, &plug->pending);
1171                conf->pending_count += plug->pending_cnt;
1172                spin_unlock_irq(&conf->device_lock);
1173                wake_up(&conf->wait_barrier);
1174                md_wakeup_thread(mddev->thread);
1175                kfree(plug);
1176                return;
1177        }
1178
1179        /* we aren't scheduling, so we can do the write-out directly. */
1180        bio = bio_list_get(&plug->pending);
1181        flush_bio_list(conf, bio);
1182        kfree(plug);
1183}
1184
1185static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1186{
1187        r1_bio->master_bio = bio;
1188        r1_bio->sectors = bio_sectors(bio);
1189        r1_bio->state = 0;
1190        r1_bio->mddev = mddev;
1191        r1_bio->sector = bio->bi_iter.bi_sector;
1192}
1193
1194static inline struct r1bio *
1195alloc_r1bio(struct mddev *mddev, struct bio *bio)
1196{
1197        struct r1conf *conf = mddev->private;
1198        struct r1bio *r1_bio;
1199
1200        r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1201        /* Ensure no bio records IO_BLOCKED */
1202        memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1203        init_r1bio(r1_bio, mddev, bio);
1204        return r1_bio;
1205}
1206
1207static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1208                               int max_read_sectors, struct r1bio *r1_bio)
1209{
1210        struct r1conf *conf = mddev->private;
1211        struct raid1_info *mirror;
1212        struct bio *read_bio;
1213        struct bitmap *bitmap = mddev->bitmap;
1214        const int op = bio_op(bio);
1215        const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1216        int max_sectors;
1217        int rdisk;
1218        bool print_msg = !!r1_bio;
1219        char b[BDEVNAME_SIZE];
1220
1221        /*
1222         * If r1_bio is set, we are blocking the raid1d thread
1223         * so there is a tiny risk of deadlock.  So ask for
1224         * emergency memory if needed.
1225         */
1226        gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1227
1228        if (print_msg) {
1229                /* Need to get the block device name carefully */
1230                struct md_rdev *rdev;
1231                rcu_read_lock();
1232                rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1233                if (rdev)
1234                        bdevname(rdev->bdev, b);
1235                else
1236                        strcpy(b, "???");
1237                rcu_read_unlock();
1238        }
1239
1240        /*
1241         * Still need barrier for READ in case that whole
1242         * array is frozen.
1243         */
1244        wait_read_barrier(conf, bio->bi_iter.bi_sector);
1245
1246        if (!r1_bio)
1247                r1_bio = alloc_r1bio(mddev, bio);
1248        else
1249                init_r1bio(r1_bio, mddev, bio);
1250        r1_bio->sectors = max_read_sectors;
1251
1252        /*
1253         * make_request() can abort the operation when read-ahead is being
1254         * used and no empty request is available.
1255         */
1256        rdisk = read_balance(conf, r1_bio, &max_sectors);
1257
1258        if (rdisk < 0) {
1259                /* couldn't find anywhere to read from */
1260                if (print_msg) {
1261                        pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1262                                            mdname(mddev),
1263                                            b,
1264                                            (unsigned long long)r1_bio->sector);
1265                }
1266                raid_end_bio_io(r1_bio);
1267                return;
1268        }
1269        mirror = conf->mirrors + rdisk;
1270
1271        if (print_msg)
1272                pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1273                                    mdname(mddev),
1274                                    (unsigned long long)r1_bio->sector,
1275                                    bdevname(mirror->rdev->bdev, b));
1276
1277        if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1278            bitmap) {
1279                /*
1280                 * Reading from a write-mostly device must take care not to
1281                 * over-take any writes that are 'behind'
1282                 */
1283                raid1_log(mddev, "wait behind writes");
1284                wait_event(bitmap->behind_wait,
1285                           atomic_read(&bitmap->behind_writes) == 0);
1286        }
1287
1288        if (max_sectors < bio_sectors(bio)) {
1289                struct bio *split = bio_split(bio, max_sectors,
1290                                              gfp, &conf->bio_split);
1291                bio_chain(split, bio);
1292                generic_make_request(bio);
1293                bio = split;
1294                r1_bio->master_bio = bio;
1295                r1_bio->sectors = max_sectors;
1296        }
1297
1298        r1_bio->read_disk = rdisk;
1299
1300        read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1301
1302        r1_bio->bios[rdisk] = read_bio;
1303
1304        read_bio->bi_iter.bi_sector = r1_bio->sector +
1305                mirror->rdev->data_offset;
1306        bio_set_dev(read_bio, mirror->rdev->bdev);
1307        read_bio->bi_end_io = raid1_end_read_request;
1308        bio_set_op_attrs(read_bio, op, do_sync);
1309        if (test_bit(FailFast, &mirror->rdev->flags) &&
1310            test_bit(R1BIO_FailFast, &r1_bio->state))
1311                read_bio->bi_opf |= MD_FAILFAST;
1312        read_bio->bi_private = r1_bio;
1313
1314        if (mddev->gendisk)
1315                trace_block_bio_remap(read_bio->bi_disk->queue, read_bio,
1316                                disk_devt(mddev->gendisk), r1_bio->sector);
1317
1318        generic_make_request(read_bio);
1319}
1320
1321static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1322                                int max_write_sectors)
1323{
1324        struct r1conf *conf = mddev->private;
1325        struct r1bio *r1_bio;
1326        int i, disks;
1327        struct bitmap *bitmap = mddev->bitmap;
1328        unsigned long flags;
1329        struct md_rdev *blocked_rdev;
1330        struct blk_plug_cb *cb;
1331        struct raid1_plug_cb *plug = NULL;
1332        int first_clone;
1333        int max_sectors;
1334
1335        if (mddev_is_clustered(mddev) &&
1336             md_cluster_ops->area_resyncing(mddev, WRITE,
1337                     bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1338
1339                DEFINE_WAIT(w);
1340                for (;;) {
1341                        prepare_to_wait(&conf->wait_barrier,
1342                                        &w, TASK_IDLE);
1343                        if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1344                                                        bio->bi_iter.bi_sector,
1345                                                        bio_end_sector(bio)))
1346                                break;
1347                        schedule();
1348                }
1349                finish_wait(&conf->wait_barrier, &w);
1350        }
1351
1352        /*
1353         * Register the new request and wait if the reconstruction
1354         * thread has put up a bar for new requests.
1355         * Continue immediately if no resync is active currently.
1356         */
1357        wait_barrier(conf, bio->bi_iter.bi_sector);
1358
1359        r1_bio = alloc_r1bio(mddev, bio);
1360        r1_bio->sectors = max_write_sectors;
1361
1362        if (conf->pending_count >= max_queued_requests) {
1363                md_wakeup_thread(mddev->thread);
1364                raid1_log(mddev, "wait queued");
1365                wait_event(conf->wait_barrier,
1366                           conf->pending_count < max_queued_requests);
1367        }
1368        /* first select target devices under rcu_lock and
1369         * inc refcount on their rdev.  Record them by setting
1370         * bios[x] to bio
1371         * If there are known/acknowledged bad blocks on any device on
1372         * which we have seen a write error, we want to avoid writing those
1373         * blocks.
1374         * This potentially requires several writes to write around
1375         * the bad blocks.  Each set of writes gets it's own r1bio
1376         * with a set of bios attached.
1377         */
1378
1379        disks = conf->raid_disks * 2;
1380 retry_write:
1381        blocked_rdev = NULL;
1382        rcu_read_lock();
1383        max_sectors = r1_bio->sectors;
1384        for (i = 0;  i < disks; i++) {
1385                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1386                if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1387                        atomic_inc(&rdev->nr_pending);
1388                        blocked_rdev = rdev;
1389                        break;
1390                }
1391                r1_bio->bios[i] = NULL;
1392                if (!rdev || test_bit(Faulty, &rdev->flags)) {
1393                        if (i < conf->raid_disks)
1394                                set_bit(R1BIO_Degraded, &r1_bio->state);
1395                        continue;
1396                }
1397
1398                atomic_inc(&rdev->nr_pending);
1399                if (test_bit(WriteErrorSeen, &rdev->flags)) {
1400                        sector_t first_bad;
1401                        int bad_sectors;
1402                        int is_bad;
1403
1404                        is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1405                                             &first_bad, &bad_sectors);
1406                        if (is_bad < 0) {
1407                                /* mustn't write here until the bad block is
1408                                 * acknowledged*/
1409                                set_bit(BlockedBadBlocks, &rdev->flags);
1410                                blocked_rdev = rdev;
1411                                break;
1412                        }
1413                        if (is_bad && first_bad <= r1_bio->sector) {
1414                                /* Cannot write here at all */
1415                                bad_sectors -= (r1_bio->sector - first_bad);
1416                                if (bad_sectors < max_sectors)
1417                                        /* mustn't write more than bad_sectors
1418                                         * to other devices yet
1419                                         */
1420                                        max_sectors = bad_sectors;
1421                                rdev_dec_pending(rdev, mddev);
1422                                /* We don't set R1BIO_Degraded as that
1423                                 * only applies if the disk is
1424                                 * missing, so it might be re-added,
1425                                 * and we want to know to recover this
1426                                 * chunk.
1427                                 * In this case the device is here,
1428                                 * and the fact that this chunk is not
1429                                 * in-sync is recorded in the bad
1430                                 * block log
1431                                 */
1432                                continue;
1433                        }
1434                        if (is_bad) {
1435                                int good_sectors = first_bad - r1_bio->sector;
1436                                if (good_sectors < max_sectors)
1437                                        max_sectors = good_sectors;
1438                        }
1439                }
1440                r1_bio->bios[i] = bio;
1441        }
1442        rcu_read_unlock();
1443
1444        if (unlikely(blocked_rdev)) {
1445                /* Wait for this device to become unblocked */
1446                int j;
1447
1448                for (j = 0; j < i; j++)
1449                        if (r1_bio->bios[j])
1450                                rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1451                r1_bio->state = 0;
1452                allow_barrier(conf, bio->bi_iter.bi_sector);
1453                raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1454                md_wait_for_blocked_rdev(blocked_rdev, mddev);
1455                wait_barrier(conf, bio->bi_iter.bi_sector);
1456                goto retry_write;
1457        }
1458
1459        if (max_sectors < bio_sectors(bio)) {
1460                struct bio *split = bio_split(bio, max_sectors,
1461                                              GFP_NOIO, &conf->bio_split);
1462                bio_chain(split, bio);
1463                generic_make_request(bio);
1464                bio = split;
1465                r1_bio->master_bio = bio;
1466                r1_bio->sectors = max_sectors;
1467        }
1468
1469        atomic_set(&r1_bio->remaining, 1);
1470        atomic_set(&r1_bio->behind_remaining, 0);
1471
1472        first_clone = 1;
1473
1474        for (i = 0; i < disks; i++) {
1475                struct bio *mbio = NULL;
1476                if (!r1_bio->bios[i])
1477                        continue;
1478
1479                if (first_clone) {
1480                        /* do behind I/O ?
1481                         * Not if there are too many, or cannot
1482                         * allocate memory, or a reader on WriteMostly
1483                         * is waiting for behind writes to flush */
1484                        if (bitmap &&
1485                            (atomic_read(&bitmap->behind_writes)
1486                             < mddev->bitmap_info.max_write_behind) &&
1487                            !waitqueue_active(&bitmap->behind_wait)) {
1488                                alloc_behind_master_bio(r1_bio, bio);
1489                        }
1490
1491                        md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1492                                             test_bit(R1BIO_BehindIO, &r1_bio->state));
1493                        first_clone = 0;
1494                }
1495
1496                if (r1_bio->behind_master_bio)
1497                        mbio = bio_clone_fast(r1_bio->behind_master_bio,
1498                                              GFP_NOIO, &mddev->bio_set);
1499                else
1500                        mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1501
1502                if (r1_bio->behind_master_bio) {
1503                        struct md_rdev *rdev = conf->mirrors[i].rdev;
1504
1505                        if (test_bit(WBCollisionCheck, &rdev->flags)) {
1506                                sector_t lo = r1_bio->sector;
1507                                sector_t hi = r1_bio->sector + r1_bio->sectors;
1508
1509                                wait_event(rdev->wb_io_wait,
1510                                           check_and_add_wb(rdev, lo, hi) == 0);
1511                        }
1512                        if (test_bit(WriteMostly, &rdev->flags))
1513                                atomic_inc(&r1_bio->behind_remaining);
1514                }
1515
1516                r1_bio->bios[i] = mbio;
1517
1518                mbio->bi_iter.bi_sector = (r1_bio->sector +
1519                                   conf->mirrors[i].rdev->data_offset);
1520                bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
1521                mbio->bi_end_io = raid1_end_write_request;
1522                mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1523                if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1524                    !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1525                    conf->raid_disks - mddev->degraded > 1)
1526                        mbio->bi_opf |= MD_FAILFAST;
1527                mbio->bi_private = r1_bio;
1528
1529                atomic_inc(&r1_bio->remaining);
1530
1531                if (mddev->gendisk)
1532                        trace_block_bio_remap(mbio->bi_disk->queue,
1533                                              mbio, disk_devt(mddev->gendisk),
1534                                              r1_bio->sector);
1535                /* flush_pending_writes() needs access to the rdev so...*/
1536                mbio->bi_disk = (void *)conf->mirrors[i].rdev;
1537
1538                cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1539                if (cb)
1540                        plug = container_of(cb, struct raid1_plug_cb, cb);
1541                else
1542                        plug = NULL;
1543                if (plug) {
1544                        bio_list_add(&plug->pending, mbio);
1545                        plug->pending_cnt++;
1546                } else {
1547                        spin_lock_irqsave(&conf->device_lock, flags);
1548                        bio_list_add(&conf->pending_bio_list, mbio);
1549                        conf->pending_count++;
1550                        spin_unlock_irqrestore(&conf->device_lock, flags);
1551                        md_wakeup_thread(mddev->thread);
1552                }
1553        }
1554
1555        r1_bio_write_done(r1_bio);
1556
1557        /* In case raid1d snuck in to freeze_array */
1558        wake_up(&conf->wait_barrier);
1559}
1560
1561static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1562{
1563        sector_t sectors;
1564
1565        if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1566                md_flush_request(mddev, bio);
1567                return true;
1568        }
1569
1570        /*
1571         * There is a limit to the maximum size, but
1572         * the read/write handler might find a lower limit
1573         * due to bad blocks.  To avoid multiple splits,
1574         * we pass the maximum number of sectors down
1575         * and let the lower level perform the split.
1576         */
1577        sectors = align_to_barrier_unit_end(
1578                bio->bi_iter.bi_sector, bio_sectors(bio));
1579
1580        if (bio_data_dir(bio) == READ)
1581                raid1_read_request(mddev, bio, sectors, NULL);
1582        else {
1583                if (!md_write_start(mddev,bio))
1584                        return false;
1585                raid1_write_request(mddev, bio, sectors);
1586        }
1587        return true;
1588}
1589
1590static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1591{
1592        struct r1conf *conf = mddev->private;
1593        int i;
1594
1595        seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1596                   conf->raid_disks - mddev->degraded);
1597        rcu_read_lock();
1598        for (i = 0; i < conf->raid_disks; i++) {
1599                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1600                seq_printf(seq, "%s",
1601                           rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1602        }
1603        rcu_read_unlock();
1604        seq_printf(seq, "]");
1605}
1606
1607static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1608{
1609        char b[BDEVNAME_SIZE];
1610        struct r1conf *conf = mddev->private;
1611        unsigned long flags;
1612
1613        /*
1614         * If it is not operational, then we have already marked it as dead
1615         * else if it is the last working disks, ignore the error, let the
1616         * next level up know.
1617         * else mark the drive as failed
1618         */
1619        spin_lock_irqsave(&conf->device_lock, flags);
1620        if (test_bit(In_sync, &rdev->flags)
1621            && (conf->raid_disks - mddev->degraded) == 1) {
1622                /*
1623                 * Don't fail the drive, act as though we were just a
1624                 * normal single drive.
1625                 * However don't try a recovery from this drive as
1626                 * it is very likely to fail.
1627                 */
1628                conf->recovery_disabled = mddev->recovery_disabled;
1629                spin_unlock_irqrestore(&conf->device_lock, flags);
1630                return;
1631        }
1632        set_bit(Blocked, &rdev->flags);
1633        if (test_and_clear_bit(In_sync, &rdev->flags))
1634                mddev->degraded++;
1635        set_bit(Faulty, &rdev->flags);
1636        spin_unlock_irqrestore(&conf->device_lock, flags);
1637        /*
1638         * if recovery is running, make sure it aborts.
1639         */
1640        set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1641        set_mask_bits(&mddev->sb_flags, 0,
1642                      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1643        pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1644                "md/raid1:%s: Operation continuing on %d devices.\n",
1645                mdname(mddev), bdevname(rdev->bdev, b),
1646                mdname(mddev), conf->raid_disks - mddev->degraded);
1647}
1648
1649static void print_conf(struct r1conf *conf)
1650{
1651        int i;
1652
1653        pr_debug("RAID1 conf printout:\n");
1654        if (!conf) {
1655                pr_debug("(!conf)\n");
1656                return;
1657        }
1658        pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1659                 conf->raid_disks);
1660
1661        rcu_read_lock();
1662        for (i = 0; i < conf->raid_disks; i++) {
1663                char b[BDEVNAME_SIZE];
1664                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1665                if (rdev)
1666                        pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1667                                 i, !test_bit(In_sync, &rdev->flags),
1668                                 !test_bit(Faulty, &rdev->flags),
1669                                 bdevname(rdev->bdev,b));
1670        }
1671        rcu_read_unlock();
1672}
1673
1674static void close_sync(struct r1conf *conf)
1675{
1676        int idx;
1677
1678        for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1679                _wait_barrier(conf, idx);
1680                _allow_barrier(conf, idx);
1681        }
1682
1683        mempool_exit(&conf->r1buf_pool);
1684}
1685
1686static int raid1_spare_active(struct mddev *mddev)
1687{
1688        int i;
1689        struct r1conf *conf = mddev->private;
1690        int count = 0;
1691        unsigned long flags;
1692
1693        /*
1694         * Find all failed disks within the RAID1 configuration
1695         * and mark them readable.
1696         * Called under mddev lock, so rcu protection not needed.
1697         * device_lock used to avoid races with raid1_end_read_request
1698         * which expects 'In_sync' flags and ->degraded to be consistent.
1699         */
1700        spin_lock_irqsave(&conf->device_lock, flags);
1701        for (i = 0; i < conf->raid_disks; i++) {
1702                struct md_rdev *rdev = conf->mirrors[i].rdev;
1703                struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1704                if (repl
1705                    && !test_bit(Candidate, &repl->flags)
1706                    && repl->recovery_offset == MaxSector
1707                    && !test_bit(Faulty, &repl->flags)
1708                    && !test_and_set_bit(In_sync, &repl->flags)) {
1709                        /* replacement has just become active */
1710                        if (!rdev ||
1711                            !test_and_clear_bit(In_sync, &rdev->flags))
1712                                count++;
1713                        if (rdev) {
1714                                /* Replaced device not technically
1715                                 * faulty, but we need to be sure
1716                                 * it gets removed and never re-added
1717                                 */
1718                                set_bit(Faulty, &rdev->flags);
1719                                sysfs_notify_dirent_safe(
1720                                        rdev->sysfs_state);
1721                        }
1722                }
1723                if (rdev
1724                    && rdev->recovery_offset == MaxSector
1725                    && !test_bit(Faulty, &rdev->flags)
1726                    && !test_and_set_bit(In_sync, &rdev->flags)) {
1727                        count++;
1728                        sysfs_notify_dirent_safe(rdev->sysfs_state);
1729                }
1730        }
1731        mddev->degraded -= count;
1732        spin_unlock_irqrestore(&conf->device_lock, flags);
1733
1734        print_conf(conf);
1735        return count;
1736}
1737
1738static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1739{
1740        struct r1conf *conf = mddev->private;
1741        int err = -EEXIST;
1742        int mirror = 0;
1743        struct raid1_info *p;
1744        int first = 0;
1745        int last = conf->raid_disks - 1;
1746
1747        if (mddev->recovery_disabled == conf->recovery_disabled)
1748                return -EBUSY;
1749
1750        if (md_integrity_add_rdev(rdev, mddev))
1751                return -ENXIO;
1752
1753        if (rdev->raid_disk >= 0)
1754                first = last = rdev->raid_disk;
1755
1756        /*
1757         * find the disk ... but prefer rdev->saved_raid_disk
1758         * if possible.
1759         */
1760        if (rdev->saved_raid_disk >= 0 &&
1761            rdev->saved_raid_disk >= first &&
1762            rdev->saved_raid_disk < conf->raid_disks &&
1763            conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1764                first = last = rdev->saved_raid_disk;
1765
1766        for (mirror = first; mirror <= last; mirror++) {
1767                p = conf->mirrors + mirror;
1768                if (!p->rdev) {
1769                        if (mddev->gendisk)
1770                                disk_stack_limits(mddev->gendisk, rdev->bdev,
1771                                                  rdev->data_offset << 9);
1772
1773                        p->head_position = 0;
1774                        rdev->raid_disk = mirror;
1775                        err = 0;
1776                        /* As all devices are equivalent, we don't need a full recovery
1777                         * if this was recently any drive of the array
1778                         */
1779                        if (rdev->saved_raid_disk < 0)
1780                                conf->fullsync = 1;
1781                        rcu_assign_pointer(p->rdev, rdev);
1782                        break;
1783                }
1784                if (test_bit(WantReplacement, &p->rdev->flags) &&
1785                    p[conf->raid_disks].rdev == NULL) {
1786                        /* Add this device as a replacement */
1787                        clear_bit(In_sync, &rdev->flags);
1788                        set_bit(Replacement, &rdev->flags);
1789                        rdev->raid_disk = mirror;
1790                        err = 0;
1791                        conf->fullsync = 1;
1792                        rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1793                        break;
1794                }
1795        }
1796        if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1797                blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1798        print_conf(conf);
1799        return err;
1800}
1801
1802static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1803{
1804        struct r1conf *conf = mddev->private;
1805        int err = 0;
1806        int number = rdev->raid_disk;
1807        struct raid1_info *p = conf->mirrors + number;
1808
1809        if (rdev != p->rdev)
1810                p = conf->mirrors + conf->raid_disks + number;
1811
1812        print_conf(conf);
1813        if (rdev == p->rdev) {
1814                if (test_bit(In_sync, &rdev->flags) ||
1815                    atomic_read(&rdev->nr_pending)) {
1816                        err = -EBUSY;
1817                        goto abort;
1818                }
1819                /* Only remove non-faulty devices if recovery
1820                 * is not possible.
1821                 */
1822                if (!test_bit(Faulty, &rdev->flags) &&
1823                    mddev->recovery_disabled != conf->recovery_disabled &&
1824                    mddev->degraded < conf->raid_disks) {
1825                        err = -EBUSY;
1826                        goto abort;
1827                }
1828                p->rdev = NULL;
1829                if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1830                        synchronize_rcu();
1831                        if (atomic_read(&rdev->nr_pending)) {
1832                                /* lost the race, try later */
1833                                err = -EBUSY;
1834                                p->rdev = rdev;
1835                                goto abort;
1836                        }
1837                }
1838                if (conf->mirrors[conf->raid_disks + number].rdev) {
1839                        /* We just removed a device that is being replaced.
1840                         * Move down the replacement.  We drain all IO before
1841                         * doing this to avoid confusion.
1842                         */
1843                        struct md_rdev *repl =
1844                                conf->mirrors[conf->raid_disks + number].rdev;
1845                        freeze_array(conf, 0);
1846                        if (atomic_read(&repl->nr_pending)) {
1847                                /* It means that some queued IO of retry_list
1848                                 * hold repl. Thus, we cannot set replacement
1849                                 * as NULL, avoiding rdev NULL pointer
1850                                 * dereference in sync_request_write and
1851                                 * handle_write_finished.
1852                                 */
1853                                err = -EBUSY;
1854                                unfreeze_array(conf);
1855                                goto abort;
1856                        }
1857                        clear_bit(Replacement, &repl->flags);
1858                        p->rdev = repl;
1859                        conf->mirrors[conf->raid_disks + number].rdev = NULL;
1860                        unfreeze_array(conf);
1861                }
1862
1863                clear_bit(WantReplacement, &rdev->flags);
1864                err = md_integrity_register(mddev);
1865        }
1866abort:
1867
1868        print_conf(conf);
1869        return err;
1870}
1871
1872static void end_sync_read(struct bio *bio)
1873{
1874        struct r1bio *r1_bio = get_resync_r1bio(bio);
1875
1876        update_head_pos(r1_bio->read_disk, r1_bio);
1877
1878        /*
1879         * we have read a block, now it needs to be re-written,
1880         * or re-read if the read failed.
1881         * We don't do much here, just schedule handling by raid1d
1882         */
1883        if (!bio->bi_status)
1884                set_bit(R1BIO_Uptodate, &r1_bio->state);
1885
1886        if (atomic_dec_and_test(&r1_bio->remaining))
1887                reschedule_retry(r1_bio);
1888}
1889
1890static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1891{
1892        sector_t sync_blocks = 0;
1893        sector_t s = r1_bio->sector;
1894        long sectors_to_go = r1_bio->sectors;
1895
1896        /* make sure these bits don't get cleared. */
1897        do {
1898                md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1899                s += sync_blocks;
1900                sectors_to_go -= sync_blocks;
1901        } while (sectors_to_go > 0);
1902}
1903
1904static void end_sync_write(struct bio *bio)
1905{
1906        int uptodate = !bio->bi_status;
1907        struct r1bio *r1_bio = get_resync_r1bio(bio);
1908        struct mddev *mddev = r1_bio->mddev;
1909        struct r1conf *conf = mddev->private;
1910        sector_t first_bad;
1911        int bad_sectors;
1912        struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1913
1914        if (!uptodate) {
1915                abort_sync_write(mddev, r1_bio);
1916                set_bit(WriteErrorSeen, &rdev->flags);
1917                if (!test_and_set_bit(WantReplacement, &rdev->flags))
1918                        set_bit(MD_RECOVERY_NEEDED, &
1919                                mddev->recovery);
1920                set_bit(R1BIO_WriteError, &r1_bio->state);
1921        } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1922                               &first_bad, &bad_sectors) &&
1923                   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1924                                r1_bio->sector,
1925                                r1_bio->sectors,
1926                                &first_bad, &bad_sectors)
1927                )
1928                set_bit(R1BIO_MadeGood, &r1_bio->state);
1929
1930        if (atomic_dec_and_test(&r1_bio->remaining)) {
1931                int s = r1_bio->sectors;
1932                if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1933                    test_bit(R1BIO_WriteError, &r1_bio->state))
1934                        reschedule_retry(r1_bio);
1935                else {
1936                        put_buf(r1_bio);
1937                        md_done_sync(mddev, s, uptodate);
1938                }
1939        }
1940}
1941
1942static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1943                            int sectors, struct page *page, int rw)
1944{
1945        if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1946                /* success */
1947                return 1;
1948        if (rw == WRITE) {
1949                set_bit(WriteErrorSeen, &rdev->flags);
1950                if (!test_and_set_bit(WantReplacement,
1951                                      &rdev->flags))
1952                        set_bit(MD_RECOVERY_NEEDED, &
1953                                rdev->mddev->recovery);
1954        }
1955        /* need to record an error - either for the block or the device */
1956        if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1957                md_error(rdev->mddev, rdev);
1958        return 0;
1959}
1960
1961static int fix_sync_read_error(struct r1bio *r1_bio)
1962{
1963        /* Try some synchronous reads of other devices to get
1964         * good data, much like with normal read errors.  Only
1965         * read into the pages we already have so we don't
1966         * need to re-issue the read request.
1967         * We don't need to freeze the array, because being in an
1968         * active sync request, there is no normal IO, and
1969         * no overlapping syncs.
1970         * We don't need to check is_badblock() again as we
1971         * made sure that anything with a bad block in range
1972         * will have bi_end_io clear.
1973         */
1974        struct mddev *mddev = r1_bio->mddev;
1975        struct r1conf *conf = mddev->private;
1976        struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1977        struct page **pages = get_resync_pages(bio)->pages;
1978        sector_t sect = r1_bio->sector;
1979        int sectors = r1_bio->sectors;
1980        int idx = 0;
1981        struct md_rdev *rdev;
1982
1983        rdev = conf->mirrors[r1_bio->read_disk].rdev;
1984        if (test_bit(FailFast, &rdev->flags)) {
1985                /* Don't try recovering from here - just fail it
1986                 * ... unless it is the last working device of course */
1987                md_error(mddev, rdev);
1988                if (test_bit(Faulty, &rdev->flags))
1989                        /* Don't try to read from here, but make sure
1990                         * put_buf does it's thing
1991                         */
1992                        bio->bi_end_io = end_sync_write;
1993        }
1994
1995        while(sectors) {
1996                int s = sectors;
1997                int d = r1_bio->read_disk;
1998                int success = 0;
1999                int start;
2000
2001                if (s > (PAGE_SIZE>>9))
2002                        s = PAGE_SIZE >> 9;
2003                do {
2004                        if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2005                                /* No rcu protection needed here devices
2006                                 * can only be removed when no resync is
2007                                 * active, and resync is currently active
2008                                 */
2009                                rdev = conf->mirrors[d].rdev;
2010                                if (sync_page_io(rdev, sect, s<<9,
2011                                                 pages[idx],
2012                                                 REQ_OP_READ, 0, false)) {
2013                                        success = 1;
2014                                        break;
2015                                }
2016                        }
2017                        d++;
2018                        if (d == conf->raid_disks * 2)
2019                                d = 0;
2020                } while (!success && d != r1_bio->read_disk);
2021
2022                if (!success) {
2023                        char b[BDEVNAME_SIZE];
2024                        int abort = 0;
2025                        /* Cannot read from anywhere, this block is lost.
2026                         * Record a bad block on each device.  If that doesn't
2027                         * work just disable and interrupt the recovery.
2028                         * Don't fail devices as that won't really help.
2029                         */
2030                        pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2031                                            mdname(mddev), bio_devname(bio, b),
2032                                            (unsigned long long)r1_bio->sector);
2033                        for (d = 0; d < conf->raid_disks * 2; d++) {
2034                                rdev = conf->mirrors[d].rdev;
2035                                if (!rdev || test_bit(Faulty, &rdev->flags))
2036                                        continue;
2037                                if (!rdev_set_badblocks(rdev, sect, s, 0))
2038                                        abort = 1;
2039                        }
2040                        if (abort) {
2041                                conf->recovery_disabled =
2042                                        mddev->recovery_disabled;
2043                                set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2044                                md_done_sync(mddev, r1_bio->sectors, 0);
2045                                put_buf(r1_bio);
2046                                return 0;
2047                        }
2048                        /* Try next page */
2049                        sectors -= s;
2050                        sect += s;
2051                        idx++;
2052                        continue;
2053                }
2054
2055                start = d;
2056                /* write it back and re-read */
2057                while (d != r1_bio->read_disk) {
2058                        if (d == 0)
2059                                d = conf->raid_disks * 2;
2060                        d--;
2061                        if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2062                                continue;
2063                        rdev = conf->mirrors[d].rdev;
2064                        if (r1_sync_page_io(rdev, sect, s,
2065                                            pages[idx],
2066                                            WRITE) == 0) {
2067                                r1_bio->bios[d]->bi_end_io = NULL;
2068                                rdev_dec_pending(rdev, mddev);
2069                        }
2070                }
2071                d = start;
2072                while (d != r1_bio->read_disk) {
2073                        if (d == 0)
2074                                d = conf->raid_disks * 2;
2075                        d--;
2076                        if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2077                                continue;
2078                        rdev = conf->mirrors[d].rdev;
2079                        if (r1_sync_page_io(rdev, sect, s,
2080                                            pages[idx],
2081                                            READ) != 0)
2082                                atomic_add(s, &rdev->corrected_errors);
2083                }
2084                sectors -= s;
2085                sect += s;
2086                idx ++;
2087        }
2088        set_bit(R1BIO_Uptodate, &r1_bio->state);
2089        bio->bi_status = 0;
2090        return 1;
2091}
2092
2093static void process_checks(struct r1bio *r1_bio)
2094{
2095        /* We have read all readable devices.  If we haven't
2096         * got the block, then there is no hope left.
2097         * If we have, then we want to do a comparison
2098         * and skip the write if everything is the same.
2099         * If any blocks failed to read, then we need to
2100         * attempt an over-write
2101         */
2102        struct mddev *mddev = r1_bio->mddev;
2103        struct r1conf *conf = mddev->private;
2104        int primary;
2105        int i;
2106        int vcnt;
2107
2108        /* Fix variable parts of all bios */
2109        vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2110        for (i = 0; i < conf->raid_disks * 2; i++) {
2111                blk_status_t status;
2112                struct bio *b = r1_bio->bios[i];
2113                struct resync_pages *rp = get_resync_pages(b);
2114                if (b->bi_end_io != end_sync_read)
2115                        continue;
2116                /* fixup the bio for reuse, but preserve errno */
2117                status = b->bi_status;
2118                bio_reset(b);
2119                b->bi_status = status;
2120                b->bi_iter.bi_sector = r1_bio->sector +
2121                        conf->mirrors[i].rdev->data_offset;
2122                bio_set_dev(b, conf->mirrors[i].rdev->bdev);
2123                b->bi_end_io = end_sync_read;
2124                rp->raid_bio = r1_bio;
2125                b->bi_private = rp;
2126
2127                /* initialize bvec table again */
2128                md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2129        }
2130        for (primary = 0; primary < conf->raid_disks * 2; primary++)
2131                if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2132                    !r1_bio->bios[primary]->bi_status) {
2133                        r1_bio->bios[primary]->bi_end_io = NULL;
2134                        rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2135                        break;
2136                }
2137        r1_bio->read_disk = primary;
2138        for (i = 0; i < conf->raid_disks * 2; i++) {
2139                int j = 0;
2140                struct bio *pbio = r1_bio->bios[primary];
2141                struct bio *sbio = r1_bio->bios[i];
2142                blk_status_t status = sbio->bi_status;
2143                struct page **ppages = get_resync_pages(pbio)->pages;
2144                struct page **spages = get_resync_pages(sbio)->pages;
2145                struct bio_vec *bi;
2146                int page_len[RESYNC_PAGES] = { 0 };
2147                struct bvec_iter_all iter_all;
2148
2149                if (sbio->bi_end_io != end_sync_read)
2150                        continue;
2151                /* Now we can 'fixup' the error value */
2152                sbio->bi_status = 0;
2153
2154                bio_for_each_segment_all(bi, sbio, iter_all)
2155                        page_len[j++] = bi->bv_len;
2156
2157                if (!status) {
2158                        for (j = vcnt; j-- ; ) {
2159                                if (memcmp(page_address(ppages[j]),
2160                                           page_address(spages[j]),
2161                                           page_len[j]))
2162                                        break;
2163                        }
2164                } else
2165                        j = 0;
2166                if (j >= 0)
2167                        atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2168                if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2169                              && !status)) {
2170                        /* No need to write to this device. */
2171                        sbio->bi_end_io = NULL;
2172                        rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2173                        continue;
2174                }
2175
2176                bio_copy_data(sbio, pbio);
2177        }
2178}
2179
2180static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2181{
2182        struct r1conf *conf = mddev->private;
2183        int i;
2184        int disks = conf->raid_disks * 2;
2185        struct bio *wbio;
2186
2187        if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2188                /* ouch - failed to read all of that. */
2189                if (!fix_sync_read_error(r1_bio))
2190                        return;
2191
2192        if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2193                process_checks(r1_bio);
2194
2195        /*
2196         * schedule writes
2197         */
2198        atomic_set(&r1_bio->remaining, 1);
2199        for (i = 0; i < disks ; i++) {
2200                wbio = r1_bio->bios[i];
2201                if (wbio->bi_end_io == NULL ||
2202                    (wbio->bi_end_io == end_sync_read &&
2203                     (i == r1_bio->read_disk ||
2204                      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2205                        continue;
2206                if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2207                        abort_sync_write(mddev, r1_bio);
2208                        continue;
2209                }
2210
2211                bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2212                if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2213                        wbio->bi_opf |= MD_FAILFAST;
2214
2215                wbio->bi_end_io = end_sync_write;
2216                atomic_inc(&r1_bio->remaining);
2217                md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2218
2219                generic_make_request(wbio);
2220        }
2221
2222        if (atomic_dec_and_test(&r1_bio->remaining)) {
2223                /* if we're here, all write(s) have completed, so clean up */
2224                int s = r1_bio->sectors;
2225                if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2226                    test_bit(R1BIO_WriteError, &r1_bio->state))
2227                        reschedule_retry(r1_bio);
2228                else {
2229                        put_buf(r1_bio);
2230                        md_done_sync(mddev, s, 1);
2231                }
2232        }
2233}
2234
2235/*
2236 * This is a kernel thread which:
2237 *
2238 *      1.      Retries failed read operations on working mirrors.
2239 *      2.      Updates the raid superblock when problems encounter.
2240 *      3.      Performs writes following reads for array synchronising.
2241 */
2242
2243static void fix_read_error(struct r1conf *conf, int read_disk,
2244                           sector_t sect, int sectors)
2245{
2246        struct mddev *mddev = conf->mddev;
2247        while(sectors) {
2248                int s = sectors;
2249                int d = read_disk;
2250                int success = 0;
2251                int start;
2252                struct md_rdev *rdev;
2253
2254                if (s > (PAGE_SIZE>>9))
2255                        s = PAGE_SIZE >> 9;
2256
2257                do {
2258                        sector_t first_bad;
2259                        int bad_sectors;
2260
2261                        rcu_read_lock();
2262                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2263                        if (rdev &&
2264                            (test_bit(In_sync, &rdev->flags) ||
2265                             (!test_bit(Faulty, &rdev->flags) &&
2266                              rdev->recovery_offset >= sect + s)) &&
2267                            is_badblock(rdev, sect, s,
2268                                        &first_bad, &bad_sectors) == 0) {
2269                                atomic_inc(&rdev->nr_pending);
2270                                rcu_read_unlock();
2271                                if (sync_page_io(rdev, sect, s<<9,
2272                                         conf->tmppage, REQ_OP_READ, 0, false))
2273                                        success = 1;
2274                                rdev_dec_pending(rdev, mddev);
2275                                if (success)
2276                                        break;
2277                        } else
2278                                rcu_read_unlock();
2279                        d++;
2280                        if (d == conf->raid_disks * 2)
2281                                d = 0;
2282                } while (!success && d != read_disk);
2283
2284                if (!success) {
2285                        /* Cannot read from anywhere - mark it bad */
2286                        struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2287                        if (!rdev_set_badblocks(rdev, sect, s, 0))
2288                                md_error(mddev, rdev);
2289                        break;
2290                }
2291                /* write it back and re-read */
2292                start = d;
2293                while (d != read_disk) {
2294                        if (d==0)
2295                                d = conf->raid_disks * 2;
2296                        d--;
2297                        rcu_read_lock();
2298                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2299                        if (rdev &&
2300                            !test_bit(Faulty, &rdev->flags)) {
2301                                atomic_inc(&rdev->nr_pending);
2302                                rcu_read_unlock();
2303                                r1_sync_page_io(rdev, sect, s,
2304                                                conf->tmppage, WRITE);
2305                                rdev_dec_pending(rdev, mddev);
2306                        } else
2307                                rcu_read_unlock();
2308                }
2309                d = start;
2310                while (d != read_disk) {
2311                        char b[BDEVNAME_SIZE];
2312                        if (d==0)
2313                                d = conf->raid_disks * 2;
2314                        d--;
2315                        rcu_read_lock();
2316                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2317                        if (rdev &&
2318                            !test_bit(Faulty, &rdev->flags)) {
2319                                atomic_inc(&rdev->nr_pending);
2320                                rcu_read_unlock();
2321                                if (r1_sync_page_io(rdev, sect, s,
2322                                                    conf->tmppage, READ)) {
2323                                        atomic_add(s, &rdev->corrected_errors);
2324                                        pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2325                                                mdname(mddev), s,
2326                                                (unsigned long long)(sect +
2327                                                                     rdev->data_offset),
2328                                                bdevname(rdev->bdev, b));
2329                                }
2330                                rdev_dec_pending(rdev, mddev);
2331                        } else
2332                                rcu_read_unlock();
2333                }
2334                sectors -= s;
2335                sect += s;
2336        }
2337}
2338
2339static int narrow_write_error(struct r1bio *r1_bio, int i)
2340{
2341        struct mddev *mddev = r1_bio->mddev;
2342        struct r1conf *conf = mddev->private;
2343        struct md_rdev *rdev = conf->mirrors[i].rdev;
2344
2345        /* bio has the data to be written to device 'i' where
2346         * we just recently had a write error.
2347         * We repeatedly clone the bio and trim down to one block,
2348         * then try the write.  Where the write fails we record
2349         * a bad block.
2350         * It is conceivable that the bio doesn't exactly align with
2351         * blocks.  We must handle this somehow.
2352         *
2353         * We currently own a reference on the rdev.
2354         */
2355
2356        int block_sectors;
2357        sector_t sector;
2358        int sectors;
2359        int sect_to_write = r1_bio->sectors;
2360        int ok = 1;
2361
2362        if (rdev->badblocks.shift < 0)
2363                return 0;
2364
2365        block_sectors = roundup(1 << rdev->badblocks.shift,
2366                                bdev_logical_block_size(rdev->bdev) >> 9);
2367        sector = r1_bio->sector;
2368        sectors = ((sector + block_sectors)
2369                   & ~(sector_t)(block_sectors - 1))
2370                - sector;
2371
2372        while (sect_to_write) {
2373                struct bio *wbio;
2374                if (sectors > sect_to_write)
2375                        sectors = sect_to_write;
2376                /* Write at 'sector' for 'sectors'*/
2377
2378                if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2379                        wbio = bio_clone_fast(r1_bio->behind_master_bio,
2380                                              GFP_NOIO,
2381                                              &mddev->bio_set);
2382                } else {
2383                        wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2384                                              &mddev->bio_set);
2385                }
2386
2387                bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2388                wbio->bi_iter.bi_sector = r1_bio->sector;
2389                wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2390
2391                bio_trim(wbio, sector - r1_bio->sector, sectors);
2392                wbio->bi_iter.bi_sector += rdev->data_offset;
2393                bio_set_dev(wbio, rdev->bdev);
2394
2395                if (submit_bio_wait(wbio) < 0)
2396                        /* failure! */
2397                        ok = rdev_set_badblocks(rdev, sector,
2398                                                sectors, 0)
2399                                && ok;
2400
2401                bio_put(wbio);
2402                sect_to_write -= sectors;
2403                sector += sectors;
2404                sectors = block_sectors;
2405        }
2406        return ok;
2407}
2408
2409static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2410{
2411        int m;
2412        int s = r1_bio->sectors;
2413        for (m = 0; m < conf->raid_disks * 2 ; m++) {
2414                struct md_rdev *rdev = conf->mirrors[m].rdev;
2415                struct bio *bio = r1_bio->bios[m];
2416                if (bio->bi_end_io == NULL)
2417                        continue;
2418                if (!bio->bi_status &&
2419                    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2420                        rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2421                }
2422                if (bio->bi_status &&
2423                    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2424                        if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2425                                md_error(conf->mddev, rdev);
2426                }
2427        }
2428        put_buf(r1_bio);
2429        md_done_sync(conf->mddev, s, 1);
2430}
2431
2432static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2433{
2434        int m, idx;
2435        bool fail = false;
2436
2437        for (m = 0; m < conf->raid_disks * 2 ; m++)
2438                if (r1_bio->bios[m] == IO_MADE_GOOD) {
2439                        struct md_rdev *rdev = conf->mirrors[m].rdev;
2440                        rdev_clear_badblocks(rdev,
2441                                             r1_bio->sector,
2442                                             r1_bio->sectors, 0);
2443                        rdev_dec_pending(rdev, conf->mddev);
2444                } else if (r1_bio->bios[m] != NULL) {
2445                        /* This drive got a write error.  We need to
2446                         * narrow down and record precise write
2447                         * errors.
2448                         */
2449                        fail = true;
2450                        if (!narrow_write_error(r1_bio, m)) {
2451                                md_error(conf->mddev,
2452                                         conf->mirrors[m].rdev);
2453                                /* an I/O failed, we can't clear the bitmap */
2454                                set_bit(R1BIO_Degraded, &r1_bio->state);
2455                        }
2456                        rdev_dec_pending(conf->mirrors[m].rdev,
2457                                         conf->mddev);
2458                }
2459        if (fail) {
2460                spin_lock_irq(&conf->device_lock);
2461                list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2462                idx = sector_to_idx(r1_bio->sector);
2463                atomic_inc(&conf->nr_queued[idx]);
2464                spin_unlock_irq(&conf->device_lock);
2465                /*
2466                 * In case freeze_array() is waiting for condition
2467                 * get_unqueued_pending() == extra to be true.
2468                 */
2469                wake_up(&conf->wait_barrier);
2470                md_wakeup_thread(conf->mddev->thread);
2471        } else {
2472                if (test_bit(R1BIO_WriteError, &r1_bio->state))
2473                        close_write(r1_bio);
2474                raid_end_bio_io(r1_bio);
2475        }
2476}
2477
2478static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2479{
2480        struct mddev *mddev = conf->mddev;
2481        struct bio *bio;
2482        struct md_rdev *rdev;
2483
2484        clear_bit(R1BIO_ReadError, &r1_bio->state);
2485        /* we got a read error. Maybe the drive is bad.  Maybe just
2486         * the block and we can fix it.
2487         * We freeze all other IO, and try reading the block from
2488         * other devices.  When we find one, we re-write
2489         * and check it that fixes the read error.
2490         * This is all done synchronously while the array is
2491         * frozen
2492         */
2493
2494        bio = r1_bio->bios[r1_bio->read_disk];
2495        bio_put(bio);
2496        r1_bio->bios[r1_bio->read_disk] = NULL;
2497
2498        rdev = conf->mirrors[r1_bio->read_disk].rdev;
2499        if (mddev->ro == 0
2500            && !test_bit(FailFast, &rdev->flags)) {
2501                freeze_array(conf, 1);
2502                fix_read_error(conf, r1_bio->read_disk,
2503                               r1_bio->sector, r1_bio->sectors);
2504                unfreeze_array(conf);
2505        } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2506                md_error(mddev, rdev);
2507        } else {
2508                r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2509        }
2510
2511        rdev_dec_pending(rdev, conf->mddev);
2512        allow_barrier(conf, r1_bio->sector);
2513        bio = r1_bio->master_bio;
2514
2515        /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2516        r1_bio->state = 0;
2517        raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2518}
2519
2520static void raid1d(struct md_thread *thread)
2521{
2522        struct mddev *mddev = thread->mddev;
2523        struct r1bio *r1_bio;
2524        unsigned long flags;
2525        struct r1conf *conf = mddev->private;
2526        struct list_head *head = &conf->retry_list;
2527        struct blk_plug plug;
2528        int idx;
2529
2530        md_check_recovery(mddev);
2531
2532        if (!list_empty_careful(&conf->bio_end_io_list) &&
2533            !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2534                LIST_HEAD(tmp);
2535                spin_lock_irqsave(&conf->device_lock, flags);
2536                if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2537                        list_splice_init(&conf->bio_end_io_list, &tmp);
2538                spin_unlock_irqrestore(&conf->device_lock, flags);
2539                while (!list_empty(&tmp)) {
2540                        r1_bio = list_first_entry(&tmp, struct r1bio,
2541                                                  retry_list);
2542                        list_del(&r1_bio->retry_list);
2543                        idx = sector_to_idx(r1_bio->sector);
2544                        atomic_dec(&conf->nr_queued[idx]);
2545                        if (mddev->degraded)
2546                                set_bit(R1BIO_Degraded, &r1_bio->state);
2547                        if (test_bit(R1BIO_WriteError, &r1_bio->state))
2548                                close_write(r1_bio);
2549                        raid_end_bio_io(r1_bio);
2550                }
2551        }
2552
2553        blk_start_plug(&plug);
2554        for (;;) {
2555
2556                flush_pending_writes(conf);
2557
2558                spin_lock_irqsave(&conf->device_lock, flags);
2559                if (list_empty(head)) {
2560                        spin_unlock_irqrestore(&conf->device_lock, flags);
2561                        break;
2562                }
2563                r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2564                list_del(head->prev);
2565                idx = sector_to_idx(r1_bio->sector);
2566                atomic_dec(&conf->nr_queued[idx]);
2567                spin_unlock_irqrestore(&conf->device_lock, flags);
2568
2569                mddev = r1_bio->mddev;
2570                conf = mddev->private;
2571                if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2572                        if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2573                            test_bit(R1BIO_WriteError, &r1_bio->state))
2574                                handle_sync_write_finished(conf, r1_bio);
2575                        else
2576                                sync_request_write(mddev, r1_bio);
2577                } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2578                           test_bit(R1BIO_WriteError, &r1_bio->state))
2579                        handle_write_finished(conf, r1_bio);
2580                else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2581                        handle_read_error(conf, r1_bio);
2582                else
2583                        WARN_ON_ONCE(1);
2584
2585                cond_resched();
2586                if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2587                        md_check_recovery(mddev);
2588        }
2589        blk_finish_plug(&plug);
2590}
2591
2592static int init_resync(struct r1conf *conf)
2593{
2594        int buffs;
2595
2596        buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2597        BUG_ON(mempool_initialized(&conf->r1buf_pool));
2598
2599        return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2600                            r1buf_pool_free, conf->poolinfo);
2601}
2602
2603static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2604{
2605        struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2606        struct resync_pages *rps;
2607        struct bio *bio;
2608        int i;
2609
2610        for (i = conf->poolinfo->raid_disks; i--; ) {
2611                bio = r1bio->bios[i];
2612                rps = bio->bi_private;
2613                bio_reset(bio);
2614                bio->bi_private = rps;
2615        }
2616        r1bio->master_bio = NULL;
2617        return r1bio;
2618}
2619
2620/*
2621 * perform a "sync" on one "block"
2622 *
2623 * We need to make sure that no normal I/O request - particularly write
2624 * requests - conflict with active sync requests.
2625 *
2626 * This is achieved by tracking pending requests and a 'barrier' concept
2627 * that can be installed to exclude normal IO requests.
2628 */
2629
2630static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2631                                   int *skipped)
2632{
2633        struct r1conf *conf = mddev->private;
2634        struct r1bio *r1_bio;
2635        struct bio *bio;
2636        sector_t max_sector, nr_sectors;
2637        int disk = -1;
2638        int i;
2639        int wonly = -1;
2640        int write_targets = 0, read_targets = 0;
2641        sector_t sync_blocks;
2642        int still_degraded = 0;
2643        int good_sectors = RESYNC_SECTORS;
2644        int min_bad = 0; /* number of sectors that are bad in all devices */
2645        int idx = sector_to_idx(sector_nr);
2646        int page_idx = 0;
2647
2648        if (!mempool_initialized(&conf->r1buf_pool))
2649                if (init_resync(conf))
2650                        return 0;
2651
2652        max_sector = mddev->dev_sectors;
2653        if (sector_nr >= max_sector) {
2654                /* If we aborted, we need to abort the
2655                 * sync on the 'current' bitmap chunk (there will
2656                 * only be one in raid1 resync.
2657                 * We can find the current addess in mddev->curr_resync
2658                 */
2659                if (mddev->curr_resync < max_sector) /* aborted */
2660                        md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2661                                           &sync_blocks, 1);
2662                else /* completed sync */
2663                        conf->fullsync = 0;
2664
2665                md_bitmap_close_sync(mddev->bitmap);
2666                close_sync(conf);
2667
2668                if (mddev_is_clustered(mddev)) {
2669                        conf->cluster_sync_low = 0;
2670                        conf->cluster_sync_high = 0;
2671                }
2672                return 0;
2673        }
2674
2675        if (mddev->bitmap == NULL &&
2676            mddev->recovery_cp == MaxSector &&
2677            !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2678            conf->fullsync == 0) {
2679                *skipped = 1;
2680                return max_sector - sector_nr;
2681        }
2682        /* before building a request, check if we can skip these blocks..
2683         * This call the bitmap_start_sync doesn't actually record anything
2684         */
2685        if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2686            !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2687                /* We can skip this block, and probably several more */
2688                *skipped = 1;
2689                return sync_blocks;
2690        }
2691
2692        /*
2693         * If there is non-resync activity waiting for a turn, then let it
2694         * though before starting on this new sync request.
2695         */
2696        if (atomic_read(&conf->nr_waiting[idx]))
2697                schedule_timeout_uninterruptible(1);
2698
2699        /* we are incrementing sector_nr below. To be safe, we check against
2700         * sector_nr + two times RESYNC_SECTORS
2701         */
2702
2703        md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2704                mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2705
2706
2707        if (raise_barrier(conf, sector_nr))
2708                return 0;
2709
2710        r1_bio = raid1_alloc_init_r1buf(conf);
2711
2712        rcu_read_lock();
2713        /*
2714         * If we get a correctably read error during resync or recovery,
2715         * we might want to read from a different device.  So we
2716         * flag all drives that could conceivably be read from for READ,
2717         * and any others (which will be non-In_sync devices) for WRITE.
2718         * If a read fails, we try reading from something else for which READ
2719         * is OK.
2720         */
2721
2722        r1_bio->mddev = mddev;
2723        r1_bio->sector = sector_nr;
2724        r1_bio->state = 0;
2725        set_bit(R1BIO_IsSync, &r1_bio->state);
2726        /* make sure good_sectors won't go across barrier unit boundary */
2727        good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2728
2729        for (i = 0; i < conf->raid_disks * 2; i++) {
2730                struct md_rdev *rdev;
2731                bio = r1_bio->bios[i];
2732
2733                rdev = rcu_dereference(conf->mirrors[i].rdev);
2734                if (rdev == NULL ||
2735                    test_bit(Faulty, &rdev->flags)) {
2736                        if (i < conf->raid_disks)
2737                                still_degraded = 1;
2738                } else if (!test_bit(In_sync, &rdev->flags)) {
2739                        bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2740                        bio->bi_end_io = end_sync_write;
2741                        write_targets ++;
2742                } else {
2743                        /* may need to read from here */
2744                        sector_t first_bad = MaxSector;
2745                        int bad_sectors;
2746
2747                        if (is_badblock(rdev, sector_nr, good_sectors,
2748                                        &first_bad, &bad_sectors)) {
2749                                if (first_bad > sector_nr)
2750                                        good_sectors = first_bad - sector_nr;
2751                                else {
2752                                        bad_sectors -= (sector_nr - first_bad);
2753                                        if (min_bad == 0 ||
2754                                            min_bad > bad_sectors)
2755                                                min_bad = bad_sectors;
2756                                }
2757                        }
2758                        if (sector_nr < first_bad) {
2759                                if (test_bit(WriteMostly, &rdev->flags)) {
2760                                        if (wonly < 0)
2761                                                wonly = i;
2762                                } else {
2763                                        if (disk < 0)
2764                                                disk = i;
2765                                }
2766                                bio_set_op_attrs(bio, REQ_OP_READ, 0);
2767                                bio->bi_end_io = end_sync_read;
2768                                read_targets++;
2769                        } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2770                                test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2771                                !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2772                                /*
2773                                 * The device is suitable for reading (InSync),
2774                                 * but has bad block(s) here. Let's try to correct them,
2775                                 * if we are doing resync or repair. Otherwise, leave
2776                                 * this device alone for this sync request.
2777                                 */
2778                                bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2779                                bio->bi_end_io = end_sync_write;
2780                                write_targets++;
2781                        }
2782                }
2783                if (bio->bi_end_io) {
2784                        atomic_inc(&rdev->nr_pending);
2785                        bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2786                        bio_set_dev(bio, rdev->bdev);
2787                        if (test_bit(FailFast, &rdev->flags))
2788                                bio->bi_opf |= MD_FAILFAST;
2789                }
2790        }
2791        rcu_read_unlock();
2792        if (disk < 0)
2793                disk = wonly;
2794        r1_bio->read_disk = disk;
2795
2796        if (read_targets == 0 && min_bad > 0) {
2797                /* These sectors are bad on all InSync devices, so we
2798                 * need to mark them bad on all write targets
2799                 */
2800                int ok = 1;
2801                for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2802                        if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2803                                struct md_rdev *rdev = conf->mirrors[i].rdev;
2804                                ok = rdev_set_badblocks(rdev, sector_nr,
2805                                                        min_bad, 0
2806                                        ) && ok;
2807                        }
2808                set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2809                *skipped = 1;
2810                put_buf(r1_bio);
2811
2812                if (!ok) {
2813                        /* Cannot record the badblocks, so need to
2814                         * abort the resync.
2815                         * If there are multiple read targets, could just
2816                         * fail the really bad ones ???
2817                         */
2818                        conf->recovery_disabled = mddev->recovery_disabled;
2819                        set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2820                        return 0;
2821                } else
2822                        return min_bad;
2823
2824        }
2825        if (min_bad > 0 && min_bad < good_sectors) {
2826                /* only resync enough to reach the next bad->good
2827                 * transition */
2828                good_sectors = min_bad;
2829        }
2830
2831        if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2832                /* extra read targets are also write targets */
2833                write_targets += read_targets-1;
2834
2835        if (write_targets == 0 || read_targets == 0) {
2836                /* There is nowhere to write, so all non-sync
2837                 * drives must be failed - so we are finished
2838                 */
2839                sector_t rv;
2840                if (min_bad > 0)
2841                        max_sector = sector_nr + min_bad;
2842                rv = max_sector - sector_nr;
2843                *skipped = 1;
2844                put_buf(r1_bio);
2845                return rv;
2846        }
2847
2848        if (max_sector > mddev->resync_max)
2849                max_sector = mddev->resync_max; /* Don't do IO beyond here */
2850        if (max_sector > sector_nr + good_sectors)
2851                max_sector = sector_nr + good_sectors;
2852        nr_sectors = 0;
2853        sync_blocks = 0;
2854        do {
2855                struct page *page;
2856                int len = PAGE_SIZE;
2857                if (sector_nr + (len>>9) > max_sector)
2858                        len = (max_sector - sector_nr) << 9;
2859                if (len == 0)
2860                        break;
2861                if (sync_blocks == 0) {
2862                        if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2863                                                  &sync_blocks, still_degraded) &&
2864                            !conf->fullsync &&
2865                            !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2866                                break;
2867                        if ((len >> 9) > sync_blocks)
2868                                len = sync_blocks<<9;
2869                }
2870
2871                for (i = 0 ; i < conf->raid_disks * 2; i++) {
2872                        struct resync_pages *rp;
2873
2874                        bio = r1_bio->bios[i];
2875                        rp = get_resync_pages(bio);
2876                        if (bio->bi_end_io) {
2877                                page = resync_fetch_page(rp, page_idx);
2878
2879                                /*
2880                                 * won't fail because the vec table is big
2881                                 * enough to hold all these pages
2882                                 */
2883                                bio_add_page(bio, page, len, 0);
2884                        }
2885                }
2886                nr_sectors += len>>9;
2887                sector_nr += len>>9;
2888                sync_blocks -= (len>>9);
2889        } while (++page_idx < RESYNC_PAGES);
2890
2891        r1_bio->sectors = nr_sectors;
2892
2893        if (mddev_is_clustered(mddev) &&
2894                        conf->cluster_sync_high < sector_nr + nr_sectors) {
2895                conf->cluster_sync_low = mddev->curr_resync_completed;
2896                conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2897                /* Send resync message */
2898                md_cluster_ops->resync_info_update(mddev,
2899                                conf->cluster_sync_low,
2900                                conf->cluster_sync_high);
2901        }
2902
2903        /* For a user-requested sync, we read all readable devices and do a
2904         * compare
2905         */
2906        if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2907                atomic_set(&r1_bio->remaining, read_targets);
2908                for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2909                        bio = r1_bio->bios[i];
2910                        if (bio->bi_end_io == end_sync_read) {
2911                                read_targets--;
2912                                md_sync_acct_bio(bio, nr_sectors);
2913                                if (read_targets == 1)
2914                                        bio->bi_opf &= ~MD_FAILFAST;
2915                                generic_make_request(bio);
2916                        }
2917                }
2918        } else {
2919                atomic_set(&r1_bio->remaining, 1);
2920                bio = r1_bio->bios[r1_bio->read_disk];
2921                md_sync_acct_bio(bio, nr_sectors);
2922                if (read_targets == 1)
2923                        bio->bi_opf &= ~MD_FAILFAST;
2924                generic_make_request(bio);
2925        }
2926        return nr_sectors;
2927}
2928
2929static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2930{
2931        if (sectors)
2932                return sectors;
2933
2934        return mddev->dev_sectors;
2935}
2936
2937static struct r1conf *setup_conf(struct mddev *mddev)
2938{
2939        struct r1conf *conf;
2940        int i;
2941        struct raid1_info *disk;
2942        struct md_rdev *rdev;
2943        int err = -ENOMEM;
2944
2945        conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2946        if (!conf)
2947                goto abort;
2948
2949        conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2950                                   sizeof(atomic_t), GFP_KERNEL);
2951        if (!conf->nr_pending)
2952                goto abort;
2953
2954        conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2955                                   sizeof(atomic_t), GFP_KERNEL);
2956        if (!conf->nr_waiting)
2957                goto abort;
2958
2959        conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2960                                  sizeof(atomic_t), GFP_KERNEL);
2961        if (!conf->nr_queued)
2962                goto abort;
2963
2964        conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2965                                sizeof(atomic_t), GFP_KERNEL);
2966        if (!conf->barrier)
2967                goto abort;
2968
2969        conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
2970                                            mddev->raid_disks, 2),
2971                                GFP_KERNEL);
2972        if (!conf->mirrors)
2973                goto abort;
2974
2975        conf->tmppage = alloc_page(GFP_KERNEL);
2976        if (!conf->tmppage)
2977                goto abort;
2978
2979        conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2980        if (!conf->poolinfo)
2981                goto abort;
2982        conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2983        err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
2984                           rbio_pool_free, conf->poolinfo);
2985        if (err)
2986                goto abort;
2987
2988        err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
2989        if (err)
2990                goto abort;
2991
2992        conf->poolinfo->mddev = mddev;
2993
2994        err = -EINVAL;
2995        spin_lock_init(&conf->device_lock);
2996        rdev_for_each(rdev, mddev) {
2997                int disk_idx = rdev->raid_disk;
2998                if (disk_idx >= mddev->raid_disks
2999                    || disk_idx < 0)
3000                        continue;
3001                if (test_bit(Replacement, &rdev->flags))
3002                        disk = conf->mirrors + mddev->raid_disks + disk_idx;
3003                else
3004                        disk = conf->mirrors + disk_idx;
3005
3006                if (disk->rdev)
3007                        goto abort;
3008                disk->rdev = rdev;
3009                disk->head_position = 0;
3010                disk->seq_start = MaxSector;
3011        }
3012        conf->raid_disks = mddev->raid_disks;
3013        conf->mddev = mddev;
3014        INIT_LIST_HEAD(&conf->retry_list);
3015        INIT_LIST_HEAD(&conf->bio_end_io_list);
3016
3017        spin_lock_init(&conf->resync_lock);
3018        init_waitqueue_head(&conf->wait_barrier);
3019
3020        bio_list_init(&conf->pending_bio_list);
3021        conf->pending_count = 0;
3022        conf->recovery_disabled = mddev->recovery_disabled - 1;
3023
3024        err = -EIO;
3025        for (i = 0; i < conf->raid_disks * 2; i++) {
3026
3027                disk = conf->mirrors + i;
3028
3029                if (i < conf->raid_disks &&
3030                    disk[conf->raid_disks].rdev) {
3031                        /* This slot has a replacement. */
3032                        if (!disk->rdev) {
3033                                /* No original, just make the replacement
3034                                 * a recovering spare
3035                                 */
3036                                disk->rdev =
3037                                        disk[conf->raid_disks].rdev;
3038                                disk[conf->raid_disks].rdev = NULL;
3039                        } else if (!test_bit(In_sync, &disk->rdev->flags))
3040                                /* Original is not in_sync - bad */
3041                                goto abort;
3042                }
3043
3044                if (!disk->rdev ||
3045                    !test_bit(In_sync, &disk->rdev->flags)) {
3046                        disk->head_position = 0;
3047                        if (disk->rdev &&
3048                            (disk->rdev->saved_raid_disk < 0))
3049                                conf->fullsync = 1;
3050                }
3051        }
3052
3053        err = -ENOMEM;
3054        conf->thread = md_register_thread(raid1d, mddev, "raid1");
3055        if (!conf->thread)
3056                goto abort;
3057
3058        return conf;
3059
3060 abort:
3061        if (conf) {
3062                mempool_exit(&conf->r1bio_pool);
3063                kfree(conf->mirrors);
3064                safe_put_page(conf->tmppage);
3065                kfree(conf->poolinfo);
3066                kfree(conf->nr_pending);
3067                kfree(conf->nr_waiting);
3068                kfree(conf->nr_queued);
3069                kfree(conf->barrier);
3070                bioset_exit(&conf->bio_split);
3071                kfree(conf);
3072        }
3073        return ERR_PTR(err);
3074}
3075
3076static void raid1_free(struct mddev *mddev, void *priv);
3077static int raid1_run(struct mddev *mddev)
3078{
3079        struct r1conf *conf;
3080        int i;
3081        struct md_rdev *rdev;
3082        int ret;
3083        bool discard_supported = false;
3084
3085        if (mddev->level != 1) {
3086                pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3087                        mdname(mddev), mddev->level);
3088                return -EIO;
3089        }
3090        if (mddev->reshape_position != MaxSector) {
3091                pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3092                        mdname(mddev));
3093                return -EIO;
3094        }
3095        if (mddev_init_writes_pending(mddev) < 0)
3096                return -ENOMEM;
3097        /*
3098         * copy the already verified devices into our private RAID1
3099         * bookkeeping area. [whatever we allocate in run(),
3100         * should be freed in raid1_free()]
3101         */
3102        if (mddev->private == NULL)
3103                conf = setup_conf(mddev);
3104        else
3105                conf = mddev->private;
3106
3107        if (IS_ERR(conf))
3108                return PTR_ERR(conf);
3109
3110        if (mddev->queue) {
3111                blk_queue_max_write_same_sectors(mddev->queue, 0);
3112                blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3113        }
3114
3115        rdev_for_each(rdev, mddev) {
3116                if (!mddev->gendisk)
3117                        continue;
3118                disk_stack_limits(mddev->gendisk, rdev->bdev,
3119                                  rdev->data_offset << 9);
3120                if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3121                        discard_supported = true;
3122        }
3123
3124        mddev->degraded = 0;
3125        for (i = 0; i < conf->raid_disks; i++)
3126                if (conf->mirrors[i].rdev == NULL ||
3127                    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3128                    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3129                        mddev->degraded++;
3130
3131        if (conf->raid_disks - mddev->degraded == 1)
3132                mddev->recovery_cp = MaxSector;
3133
3134        if (mddev->recovery_cp != MaxSector)
3135                pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3136                        mdname(mddev));
3137        pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3138                mdname(mddev), mddev->raid_disks - mddev->degraded,
3139                mddev->raid_disks);
3140
3141        /*
3142         * Ok, everything is just fine now
3143         */
3144        mddev->thread = conf->thread;
3145        conf->thread = NULL;
3146        mddev->private = conf;
3147        set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3148
3149        md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3150
3151        if (mddev->queue) {
3152                if (discard_supported)
3153                        blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3154                                                mddev->queue);
3155                else
3156                        blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3157                                                  mddev->queue);
3158        }
3159
3160        ret = md_integrity_register(mddev);
3161        if (ret) {
3162                md_unregister_thread(&mddev->thread);
3163                raid1_free(mddev, conf);
3164        }
3165        return ret;
3166}
3167
3168static void raid1_free(struct mddev *mddev, void *priv)
3169{
3170        struct r1conf *conf = priv;
3171
3172        mempool_exit(&conf->r1bio_pool);
3173        kfree(conf->mirrors);
3174        safe_put_page(conf->tmppage);
3175        kfree(conf->poolinfo);
3176        kfree(conf->nr_pending);
3177        kfree(conf->nr_waiting);
3178        kfree(conf->nr_queued);
3179        kfree(conf->barrier);
3180        bioset_exit(&conf->bio_split);
3181        kfree(conf);
3182}
3183
3184static int raid1_resize(struct mddev *mddev, sector_t sectors)
3185{
3186        /* no resync is happening, and there is enough space
3187         * on all devices, so we can resize.
3188         * We need to make sure resync covers any new space.
3189         * If the array is shrinking we should possibly wait until
3190         * any io in the removed space completes, but it hardly seems
3191         * worth it.
3192         */
3193        sector_t newsize = raid1_size(mddev, sectors, 0);
3194        if (mddev->external_size &&
3195            mddev->array_sectors > newsize)
3196                return -EINVAL;
3197        if (mddev->bitmap) {
3198                int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3199                if (ret)
3200                        return ret;
3201        }
3202        md_set_array_sectors(mddev, newsize);
3203        if (sectors > mddev->dev_sectors &&
3204            mddev->recovery_cp > mddev->dev_sectors) {
3205                mddev->recovery_cp = mddev->dev_sectors;
3206                set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3207        }
3208        mddev->dev_sectors = sectors;
3209        mddev->resync_max_sectors = sectors;
3210        return 0;
3211}
3212
3213static int raid1_reshape(struct mddev *mddev)
3214{
3215        /* We need to:
3216         * 1/ resize the r1bio_pool
3217         * 2/ resize conf->mirrors
3218         *
3219         * We allocate a new r1bio_pool if we can.
3220         * Then raise a device barrier and wait until all IO stops.
3221         * Then resize conf->mirrors and swap in the new r1bio pool.
3222         *
3223         * At the same time, we "pack" the devices so that all the missing
3224         * devices have the higher raid_disk numbers.
3225         */
3226        mempool_t newpool, oldpool;
3227        struct pool_info *newpoolinfo;
3228        struct raid1_info *newmirrors;
3229        struct r1conf *conf = mddev->private;
3230        int cnt, raid_disks;
3231        unsigned long flags;
3232        int d, d2;
3233        int ret;
3234
3235        memset(&newpool, 0, sizeof(newpool));
3236        memset(&oldpool, 0, sizeof(oldpool));
3237
3238        /* Cannot change chunk_size, layout, or level */
3239        if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3240            mddev->layout != mddev->new_layout ||
3241            mddev->level != mddev->new_level) {
3242                mddev->new_chunk_sectors = mddev->chunk_sectors;
3243                mddev->new_layout = mddev->layout;
3244                mddev->new_level = mddev->level;
3245                return -EINVAL;
3246        }
3247
3248        if (!mddev_is_clustered(mddev))
3249                md_allow_write(mddev);
3250
3251        raid_disks = mddev->raid_disks + mddev->delta_disks;
3252
3253        if (raid_disks < conf->raid_disks) {
3254                cnt=0;
3255                for (d= 0; d < conf->raid_disks; d++)
3256                        if (conf->mirrors[d].rdev)
3257                                cnt++;
3258                if (cnt > raid_disks)
3259                        return -EBUSY;
3260        }
3261
3262        newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3263        if (!newpoolinfo)
3264                return -ENOMEM;
3265        newpoolinfo->mddev = mddev;
3266        newpoolinfo->raid_disks = raid_disks * 2;
3267
3268        ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3269                           rbio_pool_free, newpoolinfo);
3270        if (ret) {
3271                kfree(newpoolinfo);
3272                return ret;
3273        }
3274        newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3275                                         raid_disks, 2),
3276                             GFP_KERNEL);
3277        if (!newmirrors) {
3278                kfree(newpoolinfo);
3279                mempool_exit(&newpool);
3280                return -ENOMEM;
3281        }
3282
3283        freeze_array(conf, 0);
3284
3285        /* ok, everything is stopped */
3286        oldpool = conf->r1bio_pool;
3287        conf->r1bio_pool = newpool;
3288
3289        for (d = d2 = 0; d < conf->raid_disks; d++) {
3290                struct md_rdev *rdev = conf->mirrors[d].rdev;
3291                if (rdev && rdev->raid_disk != d2) {
3292                        sysfs_unlink_rdev(mddev, rdev);
3293                        rdev->raid_disk = d2;
3294                        sysfs_unlink_rdev(mddev, rdev);
3295                        if (sysfs_link_rdev(mddev, rdev))
3296                                pr_warn("md/raid1:%s: cannot register rd%d\n",
3297                                        mdname(mddev), rdev->raid_disk);
3298                }
3299                if (rdev)
3300                        newmirrors[d2++].rdev = rdev;
3301        }
3302        kfree(conf->mirrors);
3303        conf->mirrors = newmirrors;
3304        kfree(conf->poolinfo);
3305        conf->poolinfo = newpoolinfo;
3306
3307        spin_lock_irqsave(&conf->device_lock, flags);
3308        mddev->degraded += (raid_disks - conf->raid_disks);
3309        spin_unlock_irqrestore(&conf->device_lock, flags);
3310        conf->raid_disks = mddev->raid_disks = raid_disks;
3311        mddev->delta_disks = 0;
3312
3313        unfreeze_array(conf);
3314
3315        set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3316        set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3317        md_wakeup_thread(mddev->thread);
3318
3319        mempool_exit(&oldpool);
3320        return 0;
3321}
3322
3323static void raid1_quiesce(struct mddev *mddev, int quiesce)
3324{
3325        struct r1conf *conf = mddev->private;
3326
3327        if (quiesce)
3328                freeze_array(conf, 0);
3329        else
3330                unfreeze_array(conf);
3331}
3332
3333static void *raid1_takeover(struct mddev *mddev)
3334{
3335        /* raid1 can take over:
3336         *  raid5 with 2 devices, any layout or chunk size
3337         */
3338        if (mddev->level == 5 && mddev->raid_disks == 2) {
3339                struct r1conf *conf;
3340                mddev->new_level = 1;
3341                mddev->new_layout = 0;
3342                mddev->new_chunk_sectors = 0;
3343                conf = setup_conf(mddev);
3344                if (!IS_ERR(conf)) {
3345                        /* Array must appear to be quiesced */
3346                        conf->array_frozen = 1;
3347                        mddev_clear_unsupported_flags(mddev,
3348                                UNSUPPORTED_MDDEV_FLAGS);
3349                }
3350                return conf;
3351        }
3352        return ERR_PTR(-EINVAL);
3353}
3354
3355static struct md_personality raid1_personality =
3356{
3357        .name           = "raid1",
3358        .level          = 1,
3359        .owner          = THIS_MODULE,
3360        .make_request   = raid1_make_request,
3361        .run            = raid1_run,
3362        .free           = raid1_free,
3363        .status         = raid1_status,
3364        .error_handler  = raid1_error,
3365        .hot_add_disk   = raid1_add_disk,
3366        .hot_remove_disk= raid1_remove_disk,
3367        .spare_active   = raid1_spare_active,
3368        .sync_request   = raid1_sync_request,
3369        .resize         = raid1_resize,
3370        .size           = raid1_size,
3371        .check_reshape  = raid1_reshape,
3372        .quiesce        = raid1_quiesce,
3373        .takeover       = raid1_takeover,
3374        .congested      = raid1_congested,
3375};
3376
3377static int __init raid_init(void)
3378{
3379        return register_md_personality(&raid1_personality);
3380}
3381
3382static void raid_exit(void)
3383{
3384        unregister_md_personality(&raid1_personality);
3385}
3386
3387module_init(raid_init);
3388module_exit(raid_exit);
3389MODULE_LICENSE("GPL");
3390MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3391MODULE_ALIAS("md-personality-3"); /* RAID1 */
3392MODULE_ALIAS("md-raid1");
3393MODULE_ALIAS("md-level-1");
3394
3395module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3396