linux/drivers/md/raid10.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * raid10.c : Multiple Devices driver for Linux
   4 *
   5 * Copyright (C) 2000-2004 Neil Brown
   6 *
   7 * RAID-10 support for md.
   8 *
   9 * Base on code in raid1.c.  See raid1.c for further copyright information.
  10 */
  11
  12#include <linux/slab.h>
  13#include <linux/delay.h>
  14#include <linux/blkdev.h>
  15#include <linux/module.h>
  16#include <linux/seq_file.h>
  17#include <linux/ratelimit.h>
  18#include <linux/kthread.h>
  19#include <linux/raid/md_p.h>
  20#include <trace/events/block.h>
  21#include "md.h"
  22#include "raid10.h"
  23#include "raid0.h"
  24#include "md-bitmap.h"
  25
  26/*
  27 * RAID10 provides a combination of RAID0 and RAID1 functionality.
  28 * The layout of data is defined by
  29 *    chunk_size
  30 *    raid_disks
  31 *    near_copies (stored in low byte of layout)
  32 *    far_copies (stored in second byte of layout)
  33 *    far_offset (stored in bit 16 of layout )
  34 *    use_far_sets (stored in bit 17 of layout )
  35 *    use_far_sets_bugfixed (stored in bit 18 of layout )
  36 *
  37 * The data to be stored is divided into chunks using chunksize.  Each device
  38 * is divided into far_copies sections.   In each section, chunks are laid out
  39 * in a style similar to raid0, but near_copies copies of each chunk is stored
  40 * (each on a different drive).  The starting device for each section is offset
  41 * near_copies from the starting device of the previous section.  Thus there
  42 * are (near_copies * far_copies) of each chunk, and each is on a different
  43 * drive.  near_copies and far_copies must be at least one, and their product
  44 * is at most raid_disks.
  45 *
  46 * If far_offset is true, then the far_copies are handled a bit differently.
  47 * The copies are still in different stripes, but instead of being very far
  48 * apart on disk, there are adjacent stripes.
  49 *
  50 * The far and offset algorithms are handled slightly differently if
  51 * 'use_far_sets' is true.  In this case, the array's devices are grouped into
  52 * sets that are (near_copies * far_copies) in size.  The far copied stripes
  53 * are still shifted by 'near_copies' devices, but this shifting stays confined
  54 * to the set rather than the entire array.  This is done to improve the number
  55 * of device combinations that can fail without causing the array to fail.
  56 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
  57 * on a device):
  58 *    A B C D    A B C D E
  59 *      ...         ...
  60 *    D A B C    E A B C D
  61 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
  62 *    [A B] [C D]    [A B] [C D E]
  63 *    |...| |...|    |...| | ... |
  64 *    [B A] [D C]    [B A] [E C D]
  65 */
  66
  67static void allow_barrier(struct r10conf *conf);
  68static void lower_barrier(struct r10conf *conf);
  69static int _enough(struct r10conf *conf, int previous, int ignore);
  70static int enough(struct r10conf *conf, int ignore);
  71static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
  72                                int *skipped);
  73static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
  74static void end_reshape_write(struct bio *bio);
  75static void end_reshape(struct r10conf *conf);
  76
  77#define raid10_log(md, fmt, args...)                            \
  78        do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
  79
  80#include "raid1-10.c"
  81
  82/*
  83 * for resync bio, r10bio pointer can be retrieved from the per-bio
  84 * 'struct resync_pages'.
  85 */
  86static inline struct r10bio *get_resync_r10bio(struct bio *bio)
  87{
  88        return get_resync_pages(bio)->raid_bio;
  89}
  90
  91static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
  92{
  93        struct r10conf *conf = data;
  94        int size = offsetof(struct r10bio, devs[conf->copies]);
  95
  96        /* allocate a r10bio with room for raid_disks entries in the
  97         * bios array */
  98        return kzalloc(size, gfp_flags);
  99}
 100
 101#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
 102/* amount of memory to reserve for resync requests */
 103#define RESYNC_WINDOW (1024*1024)
 104/* maximum number of concurrent requests, memory permitting */
 105#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
 106#define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
 107#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
 108
 109/*
 110 * When performing a resync, we need to read and compare, so
 111 * we need as many pages are there are copies.
 112 * When performing a recovery, we need 2 bios, one for read,
 113 * one for write (we recover only one drive per r10buf)
 114 *
 115 */
 116static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
 117{
 118        struct r10conf *conf = data;
 119        struct r10bio *r10_bio;
 120        struct bio *bio;
 121        int j;
 122        int nalloc, nalloc_rp;
 123        struct resync_pages *rps;
 124
 125        r10_bio = r10bio_pool_alloc(gfp_flags, conf);
 126        if (!r10_bio)
 127                return NULL;
 128
 129        if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
 130            test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
 131                nalloc = conf->copies; /* resync */
 132        else
 133                nalloc = 2; /* recovery */
 134
 135        /* allocate once for all bios */
 136        if (!conf->have_replacement)
 137                nalloc_rp = nalloc;
 138        else
 139                nalloc_rp = nalloc * 2;
 140        rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
 141        if (!rps)
 142                goto out_free_r10bio;
 143
 144        /*
 145         * Allocate bios.
 146         */
 147        for (j = nalloc ; j-- ; ) {
 148                bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 149                if (!bio)
 150                        goto out_free_bio;
 151                r10_bio->devs[j].bio = bio;
 152                if (!conf->have_replacement)
 153                        continue;
 154                bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 155                if (!bio)
 156                        goto out_free_bio;
 157                r10_bio->devs[j].repl_bio = bio;
 158        }
 159        /*
 160         * Allocate RESYNC_PAGES data pages and attach them
 161         * where needed.
 162         */
 163        for (j = 0; j < nalloc; j++) {
 164                struct bio *rbio = r10_bio->devs[j].repl_bio;
 165                struct resync_pages *rp, *rp_repl;
 166
 167                rp = &rps[j];
 168                if (rbio)
 169                        rp_repl = &rps[nalloc + j];
 170
 171                bio = r10_bio->devs[j].bio;
 172
 173                if (!j || test_bit(MD_RECOVERY_SYNC,
 174                                   &conf->mddev->recovery)) {
 175                        if (resync_alloc_pages(rp, gfp_flags))
 176                                goto out_free_pages;
 177                } else {
 178                        memcpy(rp, &rps[0], sizeof(*rp));
 179                        resync_get_all_pages(rp);
 180                }
 181
 182                rp->raid_bio = r10_bio;
 183                bio->bi_private = rp;
 184                if (rbio) {
 185                        memcpy(rp_repl, rp, sizeof(*rp));
 186                        rbio->bi_private = rp_repl;
 187                }
 188        }
 189
 190        return r10_bio;
 191
 192out_free_pages:
 193        while (--j >= 0)
 194                resync_free_pages(&rps[j * 2]);
 195
 196        j = 0;
 197out_free_bio:
 198        for ( ; j < nalloc; j++) {
 199                if (r10_bio->devs[j].bio)
 200                        bio_put(r10_bio->devs[j].bio);
 201                if (r10_bio->devs[j].repl_bio)
 202                        bio_put(r10_bio->devs[j].repl_bio);
 203        }
 204        kfree(rps);
 205out_free_r10bio:
 206        rbio_pool_free(r10_bio, conf);
 207        return NULL;
 208}
 209
 210static void r10buf_pool_free(void *__r10_bio, void *data)
 211{
 212        struct r10conf *conf = data;
 213        struct r10bio *r10bio = __r10_bio;
 214        int j;
 215        struct resync_pages *rp = NULL;
 216
 217        for (j = conf->copies; j--; ) {
 218                struct bio *bio = r10bio->devs[j].bio;
 219
 220                if (bio) {
 221                        rp = get_resync_pages(bio);
 222                        resync_free_pages(rp);
 223                        bio_put(bio);
 224                }
 225
 226                bio = r10bio->devs[j].repl_bio;
 227                if (bio)
 228                        bio_put(bio);
 229        }
 230
 231        /* resync pages array stored in the 1st bio's .bi_private */
 232        kfree(rp);
 233
 234        rbio_pool_free(r10bio, conf);
 235}
 236
 237static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
 238{
 239        int i;
 240
 241        for (i = 0; i < conf->copies; i++) {
 242                struct bio **bio = & r10_bio->devs[i].bio;
 243                if (!BIO_SPECIAL(*bio))
 244                        bio_put(*bio);
 245                *bio = NULL;
 246                bio = &r10_bio->devs[i].repl_bio;
 247                if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
 248                        bio_put(*bio);
 249                *bio = NULL;
 250        }
 251}
 252
 253static void free_r10bio(struct r10bio *r10_bio)
 254{
 255        struct r10conf *conf = r10_bio->mddev->private;
 256
 257        put_all_bios(conf, r10_bio);
 258        mempool_free(r10_bio, &conf->r10bio_pool);
 259}
 260
 261static void put_buf(struct r10bio *r10_bio)
 262{
 263        struct r10conf *conf = r10_bio->mddev->private;
 264
 265        mempool_free(r10_bio, &conf->r10buf_pool);
 266
 267        lower_barrier(conf);
 268}
 269
 270static void reschedule_retry(struct r10bio *r10_bio)
 271{
 272        unsigned long flags;
 273        struct mddev *mddev = r10_bio->mddev;
 274        struct r10conf *conf = mddev->private;
 275
 276        spin_lock_irqsave(&conf->device_lock, flags);
 277        list_add(&r10_bio->retry_list, &conf->retry_list);
 278        conf->nr_queued ++;
 279        spin_unlock_irqrestore(&conf->device_lock, flags);
 280
 281        /* wake up frozen array... */
 282        wake_up(&conf->wait_barrier);
 283
 284        md_wakeup_thread(mddev->thread);
 285}
 286
 287/*
 288 * raid_end_bio_io() is called when we have finished servicing a mirrored
 289 * operation and are ready to return a success/failure code to the buffer
 290 * cache layer.
 291 */
 292static void raid_end_bio_io(struct r10bio *r10_bio)
 293{
 294        struct bio *bio = r10_bio->master_bio;
 295        struct r10conf *conf = r10_bio->mddev->private;
 296
 297        if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
 298                bio->bi_status = BLK_STS_IOERR;
 299
 300        bio_endio(bio);
 301        /*
 302         * Wake up any possible resync thread that waits for the device
 303         * to go idle.
 304         */
 305        allow_barrier(conf);
 306
 307        free_r10bio(r10_bio);
 308}
 309
 310/*
 311 * Update disk head position estimator based on IRQ completion info.
 312 */
 313static inline void update_head_pos(int slot, struct r10bio *r10_bio)
 314{
 315        struct r10conf *conf = r10_bio->mddev->private;
 316
 317        conf->mirrors[r10_bio->devs[slot].devnum].head_position =
 318                r10_bio->devs[slot].addr + (r10_bio->sectors);
 319}
 320
 321/*
 322 * Find the disk number which triggered given bio
 323 */
 324static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
 325                         struct bio *bio, int *slotp, int *replp)
 326{
 327        int slot;
 328        int repl = 0;
 329
 330        for (slot = 0; slot < conf->copies; slot++) {
 331                if (r10_bio->devs[slot].bio == bio)
 332                        break;
 333                if (r10_bio->devs[slot].repl_bio == bio) {
 334                        repl = 1;
 335                        break;
 336                }
 337        }
 338
 339        BUG_ON(slot == conf->copies);
 340        update_head_pos(slot, r10_bio);
 341
 342        if (slotp)
 343                *slotp = slot;
 344        if (replp)
 345                *replp = repl;
 346        return r10_bio->devs[slot].devnum;
 347}
 348
 349static void raid10_end_read_request(struct bio *bio)
 350{
 351        int uptodate = !bio->bi_status;
 352        struct r10bio *r10_bio = bio->bi_private;
 353        int slot;
 354        struct md_rdev *rdev;
 355        struct r10conf *conf = r10_bio->mddev->private;
 356
 357        slot = r10_bio->read_slot;
 358        rdev = r10_bio->devs[slot].rdev;
 359        /*
 360         * this branch is our 'one mirror IO has finished' event handler:
 361         */
 362        update_head_pos(slot, r10_bio);
 363
 364        if (uptodate) {
 365                /*
 366                 * Set R10BIO_Uptodate in our master bio, so that
 367                 * we will return a good error code to the higher
 368                 * levels even if IO on some other mirrored buffer fails.
 369                 *
 370                 * The 'master' represents the composite IO operation to
 371                 * user-side. So if something waits for IO, then it will
 372                 * wait for the 'master' bio.
 373                 */
 374                set_bit(R10BIO_Uptodate, &r10_bio->state);
 375        } else {
 376                /* If all other devices that store this block have
 377                 * failed, we want to return the error upwards rather
 378                 * than fail the last device.  Here we redefine
 379                 * "uptodate" to mean "Don't want to retry"
 380                 */
 381                if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
 382                             rdev->raid_disk))
 383                        uptodate = 1;
 384        }
 385        if (uptodate) {
 386                raid_end_bio_io(r10_bio);
 387                rdev_dec_pending(rdev, conf->mddev);
 388        } else {
 389                /*
 390                 * oops, read error - keep the refcount on the rdev
 391                 */
 392                char b[BDEVNAME_SIZE];
 393                pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
 394                                   mdname(conf->mddev),
 395                                   bdevname(rdev->bdev, b),
 396                                   (unsigned long long)r10_bio->sector);
 397                set_bit(R10BIO_ReadError, &r10_bio->state);
 398                reschedule_retry(r10_bio);
 399        }
 400}
 401
 402static void close_write(struct r10bio *r10_bio)
 403{
 404        /* clear the bitmap if all writes complete successfully */
 405        md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
 406                           r10_bio->sectors,
 407                           !test_bit(R10BIO_Degraded, &r10_bio->state),
 408                           0);
 409        md_write_end(r10_bio->mddev);
 410}
 411
 412static void one_write_done(struct r10bio *r10_bio)
 413{
 414        if (atomic_dec_and_test(&r10_bio->remaining)) {
 415                if (test_bit(R10BIO_WriteError, &r10_bio->state))
 416                        reschedule_retry(r10_bio);
 417                else {
 418                        close_write(r10_bio);
 419                        if (test_bit(R10BIO_MadeGood, &r10_bio->state))
 420                                reschedule_retry(r10_bio);
 421                        else
 422                                raid_end_bio_io(r10_bio);
 423                }
 424        }
 425}
 426
 427static void raid10_end_write_request(struct bio *bio)
 428{
 429        struct r10bio *r10_bio = bio->bi_private;
 430        int dev;
 431        int dec_rdev = 1;
 432        struct r10conf *conf = r10_bio->mddev->private;
 433        int slot, repl;
 434        struct md_rdev *rdev = NULL;
 435        struct bio *to_put = NULL;
 436        bool discard_error;
 437
 438        discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
 439
 440        dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
 441
 442        if (repl)
 443                rdev = conf->mirrors[dev].replacement;
 444        if (!rdev) {
 445                smp_rmb();
 446                repl = 0;
 447                rdev = conf->mirrors[dev].rdev;
 448        }
 449        /*
 450         * this branch is our 'one mirror IO has finished' event handler:
 451         */
 452        if (bio->bi_status && !discard_error) {
 453                if (repl)
 454                        /* Never record new bad blocks to replacement,
 455                         * just fail it.
 456                         */
 457                        md_error(rdev->mddev, rdev);
 458                else {
 459                        set_bit(WriteErrorSeen, &rdev->flags);
 460                        if (!test_and_set_bit(WantReplacement, &rdev->flags))
 461                                set_bit(MD_RECOVERY_NEEDED,
 462                                        &rdev->mddev->recovery);
 463
 464                        dec_rdev = 0;
 465                        if (test_bit(FailFast, &rdev->flags) &&
 466                            (bio->bi_opf & MD_FAILFAST)) {
 467                                md_error(rdev->mddev, rdev);
 468                                if (!test_bit(Faulty, &rdev->flags))
 469                                        /* This is the only remaining device,
 470                                         * We need to retry the write without
 471                                         * FailFast
 472                                         */
 473                                        set_bit(R10BIO_WriteError, &r10_bio->state);
 474                                else {
 475                                        r10_bio->devs[slot].bio = NULL;
 476                                        to_put = bio;
 477                                        dec_rdev = 1;
 478                                }
 479                        } else
 480                                set_bit(R10BIO_WriteError, &r10_bio->state);
 481                }
 482        } else {
 483                /*
 484                 * Set R10BIO_Uptodate in our master bio, so that
 485                 * we will return a good error code for to the higher
 486                 * levels even if IO on some other mirrored buffer fails.
 487                 *
 488                 * The 'master' represents the composite IO operation to
 489                 * user-side. So if something waits for IO, then it will
 490                 * wait for the 'master' bio.
 491                 */
 492                sector_t first_bad;
 493                int bad_sectors;
 494
 495                /*
 496                 * Do not set R10BIO_Uptodate if the current device is
 497                 * rebuilding or Faulty. This is because we cannot use
 498                 * such device for properly reading the data back (we could
 499                 * potentially use it, if the current write would have felt
 500                 * before rdev->recovery_offset, but for simplicity we don't
 501                 * check this here.
 502                 */
 503                if (test_bit(In_sync, &rdev->flags) &&
 504                    !test_bit(Faulty, &rdev->flags))
 505                        set_bit(R10BIO_Uptodate, &r10_bio->state);
 506
 507                /* Maybe we can clear some bad blocks. */
 508                if (is_badblock(rdev,
 509                                r10_bio->devs[slot].addr,
 510                                r10_bio->sectors,
 511                                &first_bad, &bad_sectors) && !discard_error) {
 512                        bio_put(bio);
 513                        if (repl)
 514                                r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
 515                        else
 516                                r10_bio->devs[slot].bio = IO_MADE_GOOD;
 517                        dec_rdev = 0;
 518                        set_bit(R10BIO_MadeGood, &r10_bio->state);
 519                }
 520        }
 521
 522        /*
 523         *
 524         * Let's see if all mirrored write operations have finished
 525         * already.
 526         */
 527        one_write_done(r10_bio);
 528        if (dec_rdev)
 529                rdev_dec_pending(rdev, conf->mddev);
 530        if (to_put)
 531                bio_put(to_put);
 532}
 533
 534/*
 535 * RAID10 layout manager
 536 * As well as the chunksize and raid_disks count, there are two
 537 * parameters: near_copies and far_copies.
 538 * near_copies * far_copies must be <= raid_disks.
 539 * Normally one of these will be 1.
 540 * If both are 1, we get raid0.
 541 * If near_copies == raid_disks, we get raid1.
 542 *
 543 * Chunks are laid out in raid0 style with near_copies copies of the
 544 * first chunk, followed by near_copies copies of the next chunk and
 545 * so on.
 546 * If far_copies > 1, then after 1/far_copies of the array has been assigned
 547 * as described above, we start again with a device offset of near_copies.
 548 * So we effectively have another copy of the whole array further down all
 549 * the drives, but with blocks on different drives.
 550 * With this layout, and block is never stored twice on the one device.
 551 *
 552 * raid10_find_phys finds the sector offset of a given virtual sector
 553 * on each device that it is on.
 554 *
 555 * raid10_find_virt does the reverse mapping, from a device and a
 556 * sector offset to a virtual address
 557 */
 558
 559static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
 560{
 561        int n,f;
 562        sector_t sector;
 563        sector_t chunk;
 564        sector_t stripe;
 565        int dev;
 566        int slot = 0;
 567        int last_far_set_start, last_far_set_size;
 568
 569        last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
 570        last_far_set_start *= geo->far_set_size;
 571
 572        last_far_set_size = geo->far_set_size;
 573        last_far_set_size += (geo->raid_disks % geo->far_set_size);
 574
 575        /* now calculate first sector/dev */
 576        chunk = r10bio->sector >> geo->chunk_shift;
 577        sector = r10bio->sector & geo->chunk_mask;
 578
 579        chunk *= geo->near_copies;
 580        stripe = chunk;
 581        dev = sector_div(stripe, geo->raid_disks);
 582        if (geo->far_offset)
 583                stripe *= geo->far_copies;
 584
 585        sector += stripe << geo->chunk_shift;
 586
 587        /* and calculate all the others */
 588        for (n = 0; n < geo->near_copies; n++) {
 589                int d = dev;
 590                int set;
 591                sector_t s = sector;
 592                r10bio->devs[slot].devnum = d;
 593                r10bio->devs[slot].addr = s;
 594                slot++;
 595
 596                for (f = 1; f < geo->far_copies; f++) {
 597                        set = d / geo->far_set_size;
 598                        d += geo->near_copies;
 599
 600                        if ((geo->raid_disks % geo->far_set_size) &&
 601                            (d > last_far_set_start)) {
 602                                d -= last_far_set_start;
 603                                d %= last_far_set_size;
 604                                d += last_far_set_start;
 605                        } else {
 606                                d %= geo->far_set_size;
 607                                d += geo->far_set_size * set;
 608                        }
 609                        s += geo->stride;
 610                        r10bio->devs[slot].devnum = d;
 611                        r10bio->devs[slot].addr = s;
 612                        slot++;
 613                }
 614                dev++;
 615                if (dev >= geo->raid_disks) {
 616                        dev = 0;
 617                        sector += (geo->chunk_mask + 1);
 618                }
 619        }
 620}
 621
 622static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
 623{
 624        struct geom *geo = &conf->geo;
 625
 626        if (conf->reshape_progress != MaxSector &&
 627            ((r10bio->sector >= conf->reshape_progress) !=
 628             conf->mddev->reshape_backwards)) {
 629                set_bit(R10BIO_Previous, &r10bio->state);
 630                geo = &conf->prev;
 631        } else
 632                clear_bit(R10BIO_Previous, &r10bio->state);
 633
 634        __raid10_find_phys(geo, r10bio);
 635}
 636
 637static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
 638{
 639        sector_t offset, chunk, vchunk;
 640        /* Never use conf->prev as this is only called during resync
 641         * or recovery, so reshape isn't happening
 642         */
 643        struct geom *geo = &conf->geo;
 644        int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
 645        int far_set_size = geo->far_set_size;
 646        int last_far_set_start;
 647
 648        if (geo->raid_disks % geo->far_set_size) {
 649                last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
 650                last_far_set_start *= geo->far_set_size;
 651
 652                if (dev >= last_far_set_start) {
 653                        far_set_size = geo->far_set_size;
 654                        far_set_size += (geo->raid_disks % geo->far_set_size);
 655                        far_set_start = last_far_set_start;
 656                }
 657        }
 658
 659        offset = sector & geo->chunk_mask;
 660        if (geo->far_offset) {
 661                int fc;
 662                chunk = sector >> geo->chunk_shift;
 663                fc = sector_div(chunk, geo->far_copies);
 664                dev -= fc * geo->near_copies;
 665                if (dev < far_set_start)
 666                        dev += far_set_size;
 667        } else {
 668                while (sector >= geo->stride) {
 669                        sector -= geo->stride;
 670                        if (dev < (geo->near_copies + far_set_start))
 671                                dev += far_set_size - geo->near_copies;
 672                        else
 673                                dev -= geo->near_copies;
 674                }
 675                chunk = sector >> geo->chunk_shift;
 676        }
 677        vchunk = chunk * geo->raid_disks + dev;
 678        sector_div(vchunk, geo->near_copies);
 679        return (vchunk << geo->chunk_shift) + offset;
 680}
 681
 682/*
 683 * This routine returns the disk from which the requested read should
 684 * be done. There is a per-array 'next expected sequential IO' sector
 685 * number - if this matches on the next IO then we use the last disk.
 686 * There is also a per-disk 'last know head position' sector that is
 687 * maintained from IRQ contexts, both the normal and the resync IO
 688 * completion handlers update this position correctly. If there is no
 689 * perfect sequential match then we pick the disk whose head is closest.
 690 *
 691 * If there are 2 mirrors in the same 2 devices, performance degrades
 692 * because position is mirror, not device based.
 693 *
 694 * The rdev for the device selected will have nr_pending incremented.
 695 */
 696
 697/*
 698 * FIXME: possibly should rethink readbalancing and do it differently
 699 * depending on near_copies / far_copies geometry.
 700 */
 701static struct md_rdev *read_balance(struct r10conf *conf,
 702                                    struct r10bio *r10_bio,
 703                                    int *max_sectors)
 704{
 705        const sector_t this_sector = r10_bio->sector;
 706        int disk, slot;
 707        int sectors = r10_bio->sectors;
 708        int best_good_sectors;
 709        sector_t new_distance, best_dist;
 710        struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
 711        int do_balance;
 712        int best_dist_slot, best_pending_slot;
 713        bool has_nonrot_disk = false;
 714        unsigned int min_pending;
 715        struct geom *geo = &conf->geo;
 716
 717        raid10_find_phys(conf, r10_bio);
 718        rcu_read_lock();
 719        best_dist_slot = -1;
 720        min_pending = UINT_MAX;
 721        best_dist_rdev = NULL;
 722        best_pending_rdev = NULL;
 723        best_dist = MaxSector;
 724        best_good_sectors = 0;
 725        do_balance = 1;
 726        clear_bit(R10BIO_FailFast, &r10_bio->state);
 727        /*
 728         * Check if we can balance. We can balance on the whole
 729         * device if no resync is going on (recovery is ok), or below
 730         * the resync window. We take the first readable disk when
 731         * above the resync window.
 732         */
 733        if ((conf->mddev->recovery_cp < MaxSector
 734             && (this_sector + sectors >= conf->next_resync)) ||
 735            (mddev_is_clustered(conf->mddev) &&
 736             md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
 737                                            this_sector + sectors)))
 738                do_balance = 0;
 739
 740        for (slot = 0; slot < conf->copies ; slot++) {
 741                sector_t first_bad;
 742                int bad_sectors;
 743                sector_t dev_sector;
 744                unsigned int pending;
 745                bool nonrot;
 746
 747                if (r10_bio->devs[slot].bio == IO_BLOCKED)
 748                        continue;
 749                disk = r10_bio->devs[slot].devnum;
 750                rdev = rcu_dereference(conf->mirrors[disk].replacement);
 751                if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
 752                    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
 753                        rdev = rcu_dereference(conf->mirrors[disk].rdev);
 754                if (rdev == NULL ||
 755                    test_bit(Faulty, &rdev->flags))
 756                        continue;
 757                if (!test_bit(In_sync, &rdev->flags) &&
 758                    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
 759                        continue;
 760
 761                dev_sector = r10_bio->devs[slot].addr;
 762                if (is_badblock(rdev, dev_sector, sectors,
 763                                &first_bad, &bad_sectors)) {
 764                        if (best_dist < MaxSector)
 765                                /* Already have a better slot */
 766                                continue;
 767                        if (first_bad <= dev_sector) {
 768                                /* Cannot read here.  If this is the
 769                                 * 'primary' device, then we must not read
 770                                 * beyond 'bad_sectors' from another device.
 771                                 */
 772                                bad_sectors -= (dev_sector - first_bad);
 773                                if (!do_balance && sectors > bad_sectors)
 774                                        sectors = bad_sectors;
 775                                if (best_good_sectors > sectors)
 776                                        best_good_sectors = sectors;
 777                        } else {
 778                                sector_t good_sectors =
 779                                        first_bad - dev_sector;
 780                                if (good_sectors > best_good_sectors) {
 781                                        best_good_sectors = good_sectors;
 782                                        best_dist_slot = slot;
 783                                        best_dist_rdev = rdev;
 784                                }
 785                                if (!do_balance)
 786                                        /* Must read from here */
 787                                        break;
 788                        }
 789                        continue;
 790                } else
 791                        best_good_sectors = sectors;
 792
 793                if (!do_balance)
 794                        break;
 795
 796                nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
 797                has_nonrot_disk |= nonrot;
 798                pending = atomic_read(&rdev->nr_pending);
 799                if (min_pending > pending && nonrot) {
 800                        min_pending = pending;
 801                        best_pending_slot = slot;
 802                        best_pending_rdev = rdev;
 803                }
 804
 805                if (best_dist_slot >= 0)
 806                        /* At least 2 disks to choose from so failfast is OK */
 807                        set_bit(R10BIO_FailFast, &r10_bio->state);
 808                /* This optimisation is debatable, and completely destroys
 809                 * sequential read speed for 'far copies' arrays.  So only
 810                 * keep it for 'near' arrays, and review those later.
 811                 */
 812                if (geo->near_copies > 1 && !pending)
 813                        new_distance = 0;
 814
 815                /* for far > 1 always use the lowest address */
 816                else if (geo->far_copies > 1)
 817                        new_distance = r10_bio->devs[slot].addr;
 818                else
 819                        new_distance = abs(r10_bio->devs[slot].addr -
 820                                           conf->mirrors[disk].head_position);
 821
 822                if (new_distance < best_dist) {
 823                        best_dist = new_distance;
 824                        best_dist_slot = slot;
 825                        best_dist_rdev = rdev;
 826                }
 827        }
 828        if (slot >= conf->copies) {
 829                if (has_nonrot_disk) {
 830                        slot = best_pending_slot;
 831                        rdev = best_pending_rdev;
 832                } else {
 833                        slot = best_dist_slot;
 834                        rdev = best_dist_rdev;
 835                }
 836        }
 837
 838        if (slot >= 0) {
 839                atomic_inc(&rdev->nr_pending);
 840                r10_bio->read_slot = slot;
 841        } else
 842                rdev = NULL;
 843        rcu_read_unlock();
 844        *max_sectors = best_good_sectors;
 845
 846        return rdev;
 847}
 848
 849static int raid10_congested(struct mddev *mddev, int bits)
 850{
 851        struct r10conf *conf = mddev->private;
 852        int i, ret = 0;
 853
 854        if ((bits & (1 << WB_async_congested)) &&
 855            conf->pending_count >= max_queued_requests)
 856                return 1;
 857
 858        rcu_read_lock();
 859        for (i = 0;
 860             (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
 861                     && ret == 0;
 862             i++) {
 863                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 864                if (rdev && !test_bit(Faulty, &rdev->flags)) {
 865                        struct request_queue *q = bdev_get_queue(rdev->bdev);
 866
 867                        ret |= bdi_congested(q->backing_dev_info, bits);
 868                }
 869        }
 870        rcu_read_unlock();
 871        return ret;
 872}
 873
 874static void flush_pending_writes(struct r10conf *conf)
 875{
 876        /* Any writes that have been queued but are awaiting
 877         * bitmap updates get flushed here.
 878         */
 879        spin_lock_irq(&conf->device_lock);
 880
 881        if (conf->pending_bio_list.head) {
 882                struct blk_plug plug;
 883                struct bio *bio;
 884
 885                bio = bio_list_get(&conf->pending_bio_list);
 886                conf->pending_count = 0;
 887                spin_unlock_irq(&conf->device_lock);
 888
 889                /*
 890                 * As this is called in a wait_event() loop (see freeze_array),
 891                 * current->state might be TASK_UNINTERRUPTIBLE which will
 892                 * cause a warning when we prepare to wait again.  As it is
 893                 * rare that this path is taken, it is perfectly safe to force
 894                 * us to go around the wait_event() loop again, so the warning
 895                 * is a false-positive. Silence the warning by resetting
 896                 * thread state
 897                 */
 898                __set_current_state(TASK_RUNNING);
 899
 900                blk_start_plug(&plug);
 901                /* flush any pending bitmap writes to disk
 902                 * before proceeding w/ I/O */
 903                md_bitmap_unplug(conf->mddev->bitmap);
 904                wake_up(&conf->wait_barrier);
 905
 906                while (bio) { /* submit pending writes */
 907                        struct bio *next = bio->bi_next;
 908                        struct md_rdev *rdev = (void*)bio->bi_disk;
 909                        bio->bi_next = NULL;
 910                        bio_set_dev(bio, rdev->bdev);
 911                        if (test_bit(Faulty, &rdev->flags)) {
 912                                bio_io_error(bio);
 913                        } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
 914                                            !blk_queue_discard(bio->bi_disk->queue)))
 915                                /* Just ignore it */
 916                                bio_endio(bio);
 917                        else
 918                                generic_make_request(bio);
 919                        bio = next;
 920                }
 921                blk_finish_plug(&plug);
 922        } else
 923                spin_unlock_irq(&conf->device_lock);
 924}
 925
 926/* Barriers....
 927 * Sometimes we need to suspend IO while we do something else,
 928 * either some resync/recovery, or reconfigure the array.
 929 * To do this we raise a 'barrier'.
 930 * The 'barrier' is a counter that can be raised multiple times
 931 * to count how many activities are happening which preclude
 932 * normal IO.
 933 * We can only raise the barrier if there is no pending IO.
 934 * i.e. if nr_pending == 0.
 935 * We choose only to raise the barrier if no-one is waiting for the
 936 * barrier to go down.  This means that as soon as an IO request
 937 * is ready, no other operations which require a barrier will start
 938 * until the IO request has had a chance.
 939 *
 940 * So: regular IO calls 'wait_barrier'.  When that returns there
 941 *    is no backgroup IO happening,  It must arrange to call
 942 *    allow_barrier when it has finished its IO.
 943 * backgroup IO calls must call raise_barrier.  Once that returns
 944 *    there is no normal IO happeing.  It must arrange to call
 945 *    lower_barrier when the particular background IO completes.
 946 */
 947
 948static void raise_barrier(struct r10conf *conf, int force)
 949{
 950        BUG_ON(force && !conf->barrier);
 951        spin_lock_irq(&conf->resync_lock);
 952
 953        /* Wait until no block IO is waiting (unless 'force') */
 954        wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
 955                            conf->resync_lock);
 956
 957        /* block any new IO from starting */
 958        conf->barrier++;
 959
 960        /* Now wait for all pending IO to complete */
 961        wait_event_lock_irq(conf->wait_barrier,
 962                            !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
 963                            conf->resync_lock);
 964
 965        spin_unlock_irq(&conf->resync_lock);
 966}
 967
 968static void lower_barrier(struct r10conf *conf)
 969{
 970        unsigned long flags;
 971        spin_lock_irqsave(&conf->resync_lock, flags);
 972        conf->barrier--;
 973        spin_unlock_irqrestore(&conf->resync_lock, flags);
 974        wake_up(&conf->wait_barrier);
 975}
 976
 977static void wait_barrier(struct r10conf *conf)
 978{
 979        spin_lock_irq(&conf->resync_lock);
 980        if (conf->barrier) {
 981                conf->nr_waiting++;
 982                /* Wait for the barrier to drop.
 983                 * However if there are already pending
 984                 * requests (preventing the barrier from
 985                 * rising completely), and the
 986                 * pre-process bio queue isn't empty,
 987                 * then don't wait, as we need to empty
 988                 * that queue to get the nr_pending
 989                 * count down.
 990                 */
 991                raid10_log(conf->mddev, "wait barrier");
 992                wait_event_lock_irq(conf->wait_barrier,
 993                                    !conf->barrier ||
 994                                    (atomic_read(&conf->nr_pending) &&
 995                                     current->bio_list &&
 996                                     (!bio_list_empty(&current->bio_list[0]) ||
 997                                      !bio_list_empty(&current->bio_list[1]))),
 998                                    conf->resync_lock);
 999                conf->nr_waiting--;
1000                if (!conf->nr_waiting)
1001                        wake_up(&conf->wait_barrier);
1002        }
1003        atomic_inc(&conf->nr_pending);
1004        spin_unlock_irq(&conf->resync_lock);
1005}
1006
1007static void allow_barrier(struct r10conf *conf)
1008{
1009        if ((atomic_dec_and_test(&conf->nr_pending)) ||
1010                        (conf->array_freeze_pending))
1011                wake_up(&conf->wait_barrier);
1012}
1013
1014static void freeze_array(struct r10conf *conf, int extra)
1015{
1016        /* stop syncio and normal IO and wait for everything to
1017         * go quiet.
1018         * We increment barrier and nr_waiting, and then
1019         * wait until nr_pending match nr_queued+extra
1020         * This is called in the context of one normal IO request
1021         * that has failed. Thus any sync request that might be pending
1022         * will be blocked by nr_pending, and we need to wait for
1023         * pending IO requests to complete or be queued for re-try.
1024         * Thus the number queued (nr_queued) plus this request (extra)
1025         * must match the number of pending IOs (nr_pending) before
1026         * we continue.
1027         */
1028        spin_lock_irq(&conf->resync_lock);
1029        conf->array_freeze_pending++;
1030        conf->barrier++;
1031        conf->nr_waiting++;
1032        wait_event_lock_irq_cmd(conf->wait_barrier,
1033                                atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1034                                conf->resync_lock,
1035                                flush_pending_writes(conf));
1036
1037        conf->array_freeze_pending--;
1038        spin_unlock_irq(&conf->resync_lock);
1039}
1040
1041static void unfreeze_array(struct r10conf *conf)
1042{
1043        /* reverse the effect of the freeze */
1044        spin_lock_irq(&conf->resync_lock);
1045        conf->barrier--;
1046        conf->nr_waiting--;
1047        wake_up(&conf->wait_barrier);
1048        spin_unlock_irq(&conf->resync_lock);
1049}
1050
1051static sector_t choose_data_offset(struct r10bio *r10_bio,
1052                                   struct md_rdev *rdev)
1053{
1054        if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1055            test_bit(R10BIO_Previous, &r10_bio->state))
1056                return rdev->data_offset;
1057        else
1058                return rdev->new_data_offset;
1059}
1060
1061struct raid10_plug_cb {
1062        struct blk_plug_cb      cb;
1063        struct bio_list         pending;
1064        int                     pending_cnt;
1065};
1066
1067static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1068{
1069        struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1070                                                   cb);
1071        struct mddev *mddev = plug->cb.data;
1072        struct r10conf *conf = mddev->private;
1073        struct bio *bio;
1074
1075        if (from_schedule || current->bio_list) {
1076                spin_lock_irq(&conf->device_lock);
1077                bio_list_merge(&conf->pending_bio_list, &plug->pending);
1078                conf->pending_count += plug->pending_cnt;
1079                spin_unlock_irq(&conf->device_lock);
1080                wake_up(&conf->wait_barrier);
1081                md_wakeup_thread(mddev->thread);
1082                kfree(plug);
1083                return;
1084        }
1085
1086        /* we aren't scheduling, so we can do the write-out directly. */
1087        bio = bio_list_get(&plug->pending);
1088        md_bitmap_unplug(mddev->bitmap);
1089        wake_up(&conf->wait_barrier);
1090
1091        while (bio) { /* submit pending writes */
1092                struct bio *next = bio->bi_next;
1093                struct md_rdev *rdev = (void*)bio->bi_disk;
1094                bio->bi_next = NULL;
1095                bio_set_dev(bio, rdev->bdev);
1096                if (test_bit(Faulty, &rdev->flags)) {
1097                        bio_io_error(bio);
1098                } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1099                                    !blk_queue_discard(bio->bi_disk->queue)))
1100                        /* Just ignore it */
1101                        bio_endio(bio);
1102                else
1103                        generic_make_request(bio);
1104                bio = next;
1105        }
1106        kfree(plug);
1107}
1108
1109/*
1110 * 1. Register the new request and wait if the reconstruction thread has put
1111 * up a bar for new requests. Continue immediately if no resync is active
1112 * currently.
1113 * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1114 */
1115static void regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1116                                 struct bio *bio, sector_t sectors)
1117{
1118        wait_barrier(conf);
1119        while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1120            bio->bi_iter.bi_sector < conf->reshape_progress &&
1121            bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1122                raid10_log(conf->mddev, "wait reshape");
1123                allow_barrier(conf);
1124                wait_event(conf->wait_barrier,
1125                           conf->reshape_progress <= bio->bi_iter.bi_sector ||
1126                           conf->reshape_progress >= bio->bi_iter.bi_sector +
1127                           sectors);
1128                wait_barrier(conf);
1129        }
1130}
1131
1132static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1133                                struct r10bio *r10_bio)
1134{
1135        struct r10conf *conf = mddev->private;
1136        struct bio *read_bio;
1137        const int op = bio_op(bio);
1138        const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1139        int max_sectors;
1140        struct md_rdev *rdev;
1141        char b[BDEVNAME_SIZE];
1142        int slot = r10_bio->read_slot;
1143        struct md_rdev *err_rdev = NULL;
1144        gfp_t gfp = GFP_NOIO;
1145
1146        if (r10_bio->devs[slot].rdev) {
1147                /*
1148                 * This is an error retry, but we cannot
1149                 * safely dereference the rdev in the r10_bio,
1150                 * we must use the one in conf.
1151                 * If it has already been disconnected (unlikely)
1152                 * we lose the device name in error messages.
1153                 */
1154                int disk;
1155                /*
1156                 * As we are blocking raid10, it is a little safer to
1157                 * use __GFP_HIGH.
1158                 */
1159                gfp = GFP_NOIO | __GFP_HIGH;
1160
1161                rcu_read_lock();
1162                disk = r10_bio->devs[slot].devnum;
1163                err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1164                if (err_rdev)
1165                        bdevname(err_rdev->bdev, b);
1166                else {
1167                        strcpy(b, "???");
1168                        /* This never gets dereferenced */
1169                        err_rdev = r10_bio->devs[slot].rdev;
1170                }
1171                rcu_read_unlock();
1172        }
1173
1174        regular_request_wait(mddev, conf, bio, r10_bio->sectors);
1175        rdev = read_balance(conf, r10_bio, &max_sectors);
1176        if (!rdev) {
1177                if (err_rdev) {
1178                        pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1179                                            mdname(mddev), b,
1180                                            (unsigned long long)r10_bio->sector);
1181                }
1182                raid_end_bio_io(r10_bio);
1183                return;
1184        }
1185        if (err_rdev)
1186                pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1187                                   mdname(mddev),
1188                                   bdevname(rdev->bdev, b),
1189                                   (unsigned long long)r10_bio->sector);
1190        if (max_sectors < bio_sectors(bio)) {
1191                struct bio *split = bio_split(bio, max_sectors,
1192                                              gfp, &conf->bio_split);
1193                bio_chain(split, bio);
1194                allow_barrier(conf);
1195                generic_make_request(bio);
1196                wait_barrier(conf);
1197                bio = split;
1198                r10_bio->master_bio = bio;
1199                r10_bio->sectors = max_sectors;
1200        }
1201        slot = r10_bio->read_slot;
1202
1203        read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1204
1205        r10_bio->devs[slot].bio = read_bio;
1206        r10_bio->devs[slot].rdev = rdev;
1207
1208        read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1209                choose_data_offset(r10_bio, rdev);
1210        bio_set_dev(read_bio, rdev->bdev);
1211        read_bio->bi_end_io = raid10_end_read_request;
1212        bio_set_op_attrs(read_bio, op, do_sync);
1213        if (test_bit(FailFast, &rdev->flags) &&
1214            test_bit(R10BIO_FailFast, &r10_bio->state))
1215                read_bio->bi_opf |= MD_FAILFAST;
1216        read_bio->bi_private = r10_bio;
1217
1218        if (mddev->gendisk)
1219                trace_block_bio_remap(read_bio->bi_disk->queue,
1220                                      read_bio, disk_devt(mddev->gendisk),
1221                                      r10_bio->sector);
1222        generic_make_request(read_bio);
1223        return;
1224}
1225
1226static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1227                                  struct bio *bio, bool replacement,
1228                                  int n_copy)
1229{
1230        const int op = bio_op(bio);
1231        const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1232        const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1233        unsigned long flags;
1234        struct blk_plug_cb *cb;
1235        struct raid10_plug_cb *plug = NULL;
1236        struct r10conf *conf = mddev->private;
1237        struct md_rdev *rdev;
1238        int devnum = r10_bio->devs[n_copy].devnum;
1239        struct bio *mbio;
1240
1241        if (replacement) {
1242                rdev = conf->mirrors[devnum].replacement;
1243                if (rdev == NULL) {
1244                        /* Replacement just got moved to main 'rdev' */
1245                        smp_mb();
1246                        rdev = conf->mirrors[devnum].rdev;
1247                }
1248        } else
1249                rdev = conf->mirrors[devnum].rdev;
1250
1251        mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1252        if (replacement)
1253                r10_bio->devs[n_copy].repl_bio = mbio;
1254        else
1255                r10_bio->devs[n_copy].bio = mbio;
1256
1257        mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1258                                   choose_data_offset(r10_bio, rdev));
1259        bio_set_dev(mbio, rdev->bdev);
1260        mbio->bi_end_io = raid10_end_write_request;
1261        bio_set_op_attrs(mbio, op, do_sync | do_fua);
1262        if (!replacement && test_bit(FailFast,
1263                                     &conf->mirrors[devnum].rdev->flags)
1264                         && enough(conf, devnum))
1265                mbio->bi_opf |= MD_FAILFAST;
1266        mbio->bi_private = r10_bio;
1267
1268        if (conf->mddev->gendisk)
1269                trace_block_bio_remap(mbio->bi_disk->queue,
1270                                      mbio, disk_devt(conf->mddev->gendisk),
1271                                      r10_bio->sector);
1272        /* flush_pending_writes() needs access to the rdev so...*/
1273        mbio->bi_disk = (void *)rdev;
1274
1275        atomic_inc(&r10_bio->remaining);
1276
1277        cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1278        if (cb)
1279                plug = container_of(cb, struct raid10_plug_cb, cb);
1280        else
1281                plug = NULL;
1282        if (plug) {
1283                bio_list_add(&plug->pending, mbio);
1284                plug->pending_cnt++;
1285        } else {
1286                spin_lock_irqsave(&conf->device_lock, flags);
1287                bio_list_add(&conf->pending_bio_list, mbio);
1288                conf->pending_count++;
1289                spin_unlock_irqrestore(&conf->device_lock, flags);
1290                md_wakeup_thread(mddev->thread);
1291        }
1292}
1293
1294static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1295                                 struct r10bio *r10_bio)
1296{
1297        struct r10conf *conf = mddev->private;
1298        int i;
1299        struct md_rdev *blocked_rdev;
1300        sector_t sectors;
1301        int max_sectors;
1302
1303        if ((mddev_is_clustered(mddev) &&
1304             md_cluster_ops->area_resyncing(mddev, WRITE,
1305                                            bio->bi_iter.bi_sector,
1306                                            bio_end_sector(bio)))) {
1307                DEFINE_WAIT(w);
1308                for (;;) {
1309                        prepare_to_wait(&conf->wait_barrier,
1310                                        &w, TASK_IDLE);
1311                        if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1312                                 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1313                                break;
1314                        schedule();
1315                }
1316                finish_wait(&conf->wait_barrier, &w);
1317        }
1318
1319        sectors = r10_bio->sectors;
1320        regular_request_wait(mddev, conf, bio, sectors);
1321        if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1322            (mddev->reshape_backwards
1323             ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1324                bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1325             : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1326                bio->bi_iter.bi_sector < conf->reshape_progress))) {
1327                /* Need to update reshape_position in metadata */
1328                mddev->reshape_position = conf->reshape_progress;
1329                set_mask_bits(&mddev->sb_flags, 0,
1330                              BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1331                md_wakeup_thread(mddev->thread);
1332                raid10_log(conf->mddev, "wait reshape metadata");
1333                wait_event(mddev->sb_wait,
1334                           !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1335
1336                conf->reshape_safe = mddev->reshape_position;
1337        }
1338
1339        if (conf->pending_count >= max_queued_requests) {
1340                md_wakeup_thread(mddev->thread);
1341                raid10_log(mddev, "wait queued");
1342                wait_event(conf->wait_barrier,
1343                           conf->pending_count < max_queued_requests);
1344        }
1345        /* first select target devices under rcu_lock and
1346         * inc refcount on their rdev.  Record them by setting
1347         * bios[x] to bio
1348         * If there are known/acknowledged bad blocks on any device
1349         * on which we have seen a write error, we want to avoid
1350         * writing to those blocks.  This potentially requires several
1351         * writes to write around the bad blocks.  Each set of writes
1352         * gets its own r10_bio with a set of bios attached.
1353         */
1354
1355        r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1356        raid10_find_phys(conf, r10_bio);
1357retry_write:
1358        blocked_rdev = NULL;
1359        rcu_read_lock();
1360        max_sectors = r10_bio->sectors;
1361
1362        for (i = 0;  i < conf->copies; i++) {
1363                int d = r10_bio->devs[i].devnum;
1364                struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1365                struct md_rdev *rrdev = rcu_dereference(
1366                        conf->mirrors[d].replacement);
1367                if (rdev == rrdev)
1368                        rrdev = NULL;
1369                if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1370                        atomic_inc(&rdev->nr_pending);
1371                        blocked_rdev = rdev;
1372                        break;
1373                }
1374                if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1375                        atomic_inc(&rrdev->nr_pending);
1376                        blocked_rdev = rrdev;
1377                        break;
1378                }
1379                if (rdev && (test_bit(Faulty, &rdev->flags)))
1380                        rdev = NULL;
1381                if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1382                        rrdev = NULL;
1383
1384                r10_bio->devs[i].bio = NULL;
1385                r10_bio->devs[i].repl_bio = NULL;
1386
1387                if (!rdev && !rrdev) {
1388                        set_bit(R10BIO_Degraded, &r10_bio->state);
1389                        continue;
1390                }
1391                if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1392                        sector_t first_bad;
1393                        sector_t dev_sector = r10_bio->devs[i].addr;
1394                        int bad_sectors;
1395                        int is_bad;
1396
1397                        is_bad = is_badblock(rdev, dev_sector, max_sectors,
1398                                             &first_bad, &bad_sectors);
1399                        if (is_bad < 0) {
1400                                /* Mustn't write here until the bad block
1401                                 * is acknowledged
1402                                 */
1403                                atomic_inc(&rdev->nr_pending);
1404                                set_bit(BlockedBadBlocks, &rdev->flags);
1405                                blocked_rdev = rdev;
1406                                break;
1407                        }
1408                        if (is_bad && first_bad <= dev_sector) {
1409                                /* Cannot write here at all */
1410                                bad_sectors -= (dev_sector - first_bad);
1411                                if (bad_sectors < max_sectors)
1412                                        /* Mustn't write more than bad_sectors
1413                                         * to other devices yet
1414                                         */
1415                                        max_sectors = bad_sectors;
1416                                /* We don't set R10BIO_Degraded as that
1417                                 * only applies if the disk is missing,
1418                                 * so it might be re-added, and we want to
1419                                 * know to recover this chunk.
1420                                 * In this case the device is here, and the
1421                                 * fact that this chunk is not in-sync is
1422                                 * recorded in the bad block log.
1423                                 */
1424                                continue;
1425                        }
1426                        if (is_bad) {
1427                                int good_sectors = first_bad - dev_sector;
1428                                if (good_sectors < max_sectors)
1429                                        max_sectors = good_sectors;
1430                        }
1431                }
1432                if (rdev) {
1433                        r10_bio->devs[i].bio = bio;
1434                        atomic_inc(&rdev->nr_pending);
1435                }
1436                if (rrdev) {
1437                        r10_bio->devs[i].repl_bio = bio;
1438                        atomic_inc(&rrdev->nr_pending);
1439                }
1440        }
1441        rcu_read_unlock();
1442
1443        if (unlikely(blocked_rdev)) {
1444                /* Have to wait for this device to get unblocked, then retry */
1445                int j;
1446                int d;
1447
1448                for (j = 0; j < i; j++) {
1449                        if (r10_bio->devs[j].bio) {
1450                                d = r10_bio->devs[j].devnum;
1451                                rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1452                        }
1453                        if (r10_bio->devs[j].repl_bio) {
1454                                struct md_rdev *rdev;
1455                                d = r10_bio->devs[j].devnum;
1456                                rdev = conf->mirrors[d].replacement;
1457                                if (!rdev) {
1458                                        /* Race with remove_disk */
1459                                        smp_mb();
1460                                        rdev = conf->mirrors[d].rdev;
1461                                }
1462                                rdev_dec_pending(rdev, mddev);
1463                        }
1464                }
1465                allow_barrier(conf);
1466                raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1467                md_wait_for_blocked_rdev(blocked_rdev, mddev);
1468                wait_barrier(conf);
1469                goto retry_write;
1470        }
1471
1472        if (max_sectors < r10_bio->sectors)
1473                r10_bio->sectors = max_sectors;
1474
1475        if (r10_bio->sectors < bio_sectors(bio)) {
1476                struct bio *split = bio_split(bio, r10_bio->sectors,
1477                                              GFP_NOIO, &conf->bio_split);
1478                bio_chain(split, bio);
1479                allow_barrier(conf);
1480                generic_make_request(bio);
1481                wait_barrier(conf);
1482                bio = split;
1483                r10_bio->master_bio = bio;
1484        }
1485
1486        atomic_set(&r10_bio->remaining, 1);
1487        md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1488
1489        for (i = 0; i < conf->copies; i++) {
1490                if (r10_bio->devs[i].bio)
1491                        raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1492                if (r10_bio->devs[i].repl_bio)
1493                        raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1494        }
1495        one_write_done(r10_bio);
1496}
1497
1498static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1499{
1500        struct r10conf *conf = mddev->private;
1501        struct r10bio *r10_bio;
1502
1503        r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1504
1505        r10_bio->master_bio = bio;
1506        r10_bio->sectors = sectors;
1507
1508        r10_bio->mddev = mddev;
1509        r10_bio->sector = bio->bi_iter.bi_sector;
1510        r10_bio->state = 0;
1511        memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
1512
1513        if (bio_data_dir(bio) == READ)
1514                raid10_read_request(mddev, bio, r10_bio);
1515        else
1516                raid10_write_request(mddev, bio, r10_bio);
1517}
1518
1519static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1520{
1521        struct r10conf *conf = mddev->private;
1522        sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1523        int chunk_sects = chunk_mask + 1;
1524        int sectors = bio_sectors(bio);
1525
1526        if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1527                md_flush_request(mddev, bio);
1528                return true;
1529        }
1530
1531        if (!md_write_start(mddev, bio))
1532                return false;
1533
1534        /*
1535         * If this request crosses a chunk boundary, we need to split
1536         * it.
1537         */
1538        if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1539                     sectors > chunk_sects
1540                     && (conf->geo.near_copies < conf->geo.raid_disks
1541                         || conf->prev.near_copies <
1542                         conf->prev.raid_disks)))
1543                sectors = chunk_sects -
1544                        (bio->bi_iter.bi_sector &
1545                         (chunk_sects - 1));
1546        __make_request(mddev, bio, sectors);
1547
1548        /* In case raid10d snuck in to freeze_array */
1549        wake_up(&conf->wait_barrier);
1550        return true;
1551}
1552
1553static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1554{
1555        struct r10conf *conf = mddev->private;
1556        int i;
1557
1558        if (conf->geo.near_copies < conf->geo.raid_disks)
1559                seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1560        if (conf->geo.near_copies > 1)
1561                seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1562        if (conf->geo.far_copies > 1) {
1563                if (conf->geo.far_offset)
1564                        seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1565                else
1566                        seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1567                if (conf->geo.far_set_size != conf->geo.raid_disks)
1568                        seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1569        }
1570        seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1571                                        conf->geo.raid_disks - mddev->degraded);
1572        rcu_read_lock();
1573        for (i = 0; i < conf->geo.raid_disks; i++) {
1574                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1575                seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1576        }
1577        rcu_read_unlock();
1578        seq_printf(seq, "]");
1579}
1580
1581/* check if there are enough drives for
1582 * every block to appear on atleast one.
1583 * Don't consider the device numbered 'ignore'
1584 * as we might be about to remove it.
1585 */
1586static int _enough(struct r10conf *conf, int previous, int ignore)
1587{
1588        int first = 0;
1589        int has_enough = 0;
1590        int disks, ncopies;
1591        if (previous) {
1592                disks = conf->prev.raid_disks;
1593                ncopies = conf->prev.near_copies;
1594        } else {
1595                disks = conf->geo.raid_disks;
1596                ncopies = conf->geo.near_copies;
1597        }
1598
1599        rcu_read_lock();
1600        do {
1601                int n = conf->copies;
1602                int cnt = 0;
1603                int this = first;
1604                while (n--) {
1605                        struct md_rdev *rdev;
1606                        if (this != ignore &&
1607                            (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1608                            test_bit(In_sync, &rdev->flags))
1609                                cnt++;
1610                        this = (this+1) % disks;
1611                }
1612                if (cnt == 0)
1613                        goto out;
1614                first = (first + ncopies) % disks;
1615        } while (first != 0);
1616        has_enough = 1;
1617out:
1618        rcu_read_unlock();
1619        return has_enough;
1620}
1621
1622static int enough(struct r10conf *conf, int ignore)
1623{
1624        /* when calling 'enough', both 'prev' and 'geo' must
1625         * be stable.
1626         * This is ensured if ->reconfig_mutex or ->device_lock
1627         * is held.
1628         */
1629        return _enough(conf, 0, ignore) &&
1630                _enough(conf, 1, ignore);
1631}
1632
1633static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1634{
1635        char b[BDEVNAME_SIZE];
1636        struct r10conf *conf = mddev->private;
1637        unsigned long flags;
1638
1639        /*
1640         * If it is not operational, then we have already marked it as dead
1641         * else if it is the last working disks, ignore the error, let the
1642         * next level up know.
1643         * else mark the drive as failed
1644         */
1645        spin_lock_irqsave(&conf->device_lock, flags);
1646        if (test_bit(In_sync, &rdev->flags)
1647            && !enough(conf, rdev->raid_disk)) {
1648                /*
1649                 * Don't fail the drive, just return an IO error.
1650                 */
1651                spin_unlock_irqrestore(&conf->device_lock, flags);
1652                return;
1653        }
1654        if (test_and_clear_bit(In_sync, &rdev->flags))
1655                mddev->degraded++;
1656        /*
1657         * If recovery is running, make sure it aborts.
1658         */
1659        set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1660        set_bit(Blocked, &rdev->flags);
1661        set_bit(Faulty, &rdev->flags);
1662        set_mask_bits(&mddev->sb_flags, 0,
1663                      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1664        spin_unlock_irqrestore(&conf->device_lock, flags);
1665        pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1666                "md/raid10:%s: Operation continuing on %d devices.\n",
1667                mdname(mddev), bdevname(rdev->bdev, b),
1668                mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1669}
1670
1671static void print_conf(struct r10conf *conf)
1672{
1673        int i;
1674        struct md_rdev *rdev;
1675
1676        pr_debug("RAID10 conf printout:\n");
1677        if (!conf) {
1678                pr_debug("(!conf)\n");
1679                return;
1680        }
1681        pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1682                 conf->geo.raid_disks);
1683
1684        /* This is only called with ->reconfix_mutex held, so
1685         * rcu protection of rdev is not needed */
1686        for (i = 0; i < conf->geo.raid_disks; i++) {
1687                char b[BDEVNAME_SIZE];
1688                rdev = conf->mirrors[i].rdev;
1689                if (rdev)
1690                        pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1691                                 i, !test_bit(In_sync, &rdev->flags),
1692                                 !test_bit(Faulty, &rdev->flags),
1693                                 bdevname(rdev->bdev,b));
1694        }
1695}
1696
1697static void close_sync(struct r10conf *conf)
1698{
1699        wait_barrier(conf);
1700        allow_barrier(conf);
1701
1702        mempool_exit(&conf->r10buf_pool);
1703}
1704
1705static int raid10_spare_active(struct mddev *mddev)
1706{
1707        int i;
1708        struct r10conf *conf = mddev->private;
1709        struct raid10_info *tmp;
1710        int count = 0;
1711        unsigned long flags;
1712
1713        /*
1714         * Find all non-in_sync disks within the RAID10 configuration
1715         * and mark them in_sync
1716         */
1717        for (i = 0; i < conf->geo.raid_disks; i++) {
1718                tmp = conf->mirrors + i;
1719                if (tmp->replacement
1720                    && tmp->replacement->recovery_offset == MaxSector
1721                    && !test_bit(Faulty, &tmp->replacement->flags)
1722                    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1723                        /* Replacement has just become active */
1724                        if (!tmp->rdev
1725                            || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1726                                count++;
1727                        if (tmp->rdev) {
1728                                /* Replaced device not technically faulty,
1729                                 * but we need to be sure it gets removed
1730                                 * and never re-added.
1731                                 */
1732                                set_bit(Faulty, &tmp->rdev->flags);
1733                                sysfs_notify_dirent_safe(
1734                                        tmp->rdev->sysfs_state);
1735                        }
1736                        sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1737                } else if (tmp->rdev
1738                           && tmp->rdev->recovery_offset == MaxSector
1739                           && !test_bit(Faulty, &tmp->rdev->flags)
1740                           && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1741                        count++;
1742                        sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1743                }
1744        }
1745        spin_lock_irqsave(&conf->device_lock, flags);
1746        mddev->degraded -= count;
1747        spin_unlock_irqrestore(&conf->device_lock, flags);
1748
1749        print_conf(conf);
1750        return count;
1751}
1752
1753static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1754{
1755        struct r10conf *conf = mddev->private;
1756        int err = -EEXIST;
1757        int mirror;
1758        int first = 0;
1759        int last = conf->geo.raid_disks - 1;
1760
1761        if (mddev->recovery_cp < MaxSector)
1762                /* only hot-add to in-sync arrays, as recovery is
1763                 * very different from resync
1764                 */
1765                return -EBUSY;
1766        if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1767                return -EINVAL;
1768
1769        if (md_integrity_add_rdev(rdev, mddev))
1770                return -ENXIO;
1771
1772        if (rdev->raid_disk >= 0)
1773                first = last = rdev->raid_disk;
1774
1775        if (rdev->saved_raid_disk >= first &&
1776            rdev->saved_raid_disk < conf->geo.raid_disks &&
1777            conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1778                mirror = rdev->saved_raid_disk;
1779        else
1780                mirror = first;
1781        for ( ; mirror <= last ; mirror++) {
1782                struct raid10_info *p = &conf->mirrors[mirror];
1783                if (p->recovery_disabled == mddev->recovery_disabled)
1784                        continue;
1785                if (p->rdev) {
1786                        if (!test_bit(WantReplacement, &p->rdev->flags) ||
1787                            p->replacement != NULL)
1788                                continue;
1789                        clear_bit(In_sync, &rdev->flags);
1790                        set_bit(Replacement, &rdev->flags);
1791                        rdev->raid_disk = mirror;
1792                        err = 0;
1793                        if (mddev->gendisk)
1794                                disk_stack_limits(mddev->gendisk, rdev->bdev,
1795                                                  rdev->data_offset << 9);
1796                        conf->fullsync = 1;
1797                        rcu_assign_pointer(p->replacement, rdev);
1798                        break;
1799                }
1800
1801                if (mddev->gendisk)
1802                        disk_stack_limits(mddev->gendisk, rdev->bdev,
1803                                          rdev->data_offset << 9);
1804
1805                p->head_position = 0;
1806                p->recovery_disabled = mddev->recovery_disabled - 1;
1807                rdev->raid_disk = mirror;
1808                err = 0;
1809                if (rdev->saved_raid_disk != mirror)
1810                        conf->fullsync = 1;
1811                rcu_assign_pointer(p->rdev, rdev);
1812                break;
1813        }
1814        if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1815                blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1816
1817        print_conf(conf);
1818        return err;
1819}
1820
1821static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1822{
1823        struct r10conf *conf = mddev->private;
1824        int err = 0;
1825        int number = rdev->raid_disk;
1826        struct md_rdev **rdevp;
1827        struct raid10_info *p = conf->mirrors + number;
1828
1829        print_conf(conf);
1830        if (rdev == p->rdev)
1831                rdevp = &p->rdev;
1832        else if (rdev == p->replacement)
1833                rdevp = &p->replacement;
1834        else
1835                return 0;
1836
1837        if (test_bit(In_sync, &rdev->flags) ||
1838            atomic_read(&rdev->nr_pending)) {
1839                err = -EBUSY;
1840                goto abort;
1841        }
1842        /* Only remove non-faulty devices if recovery
1843         * is not possible.
1844         */
1845        if (!test_bit(Faulty, &rdev->flags) &&
1846            mddev->recovery_disabled != p->recovery_disabled &&
1847            (!p->replacement || p->replacement == rdev) &&
1848            number < conf->geo.raid_disks &&
1849            enough(conf, -1)) {
1850                err = -EBUSY;
1851                goto abort;
1852        }
1853        *rdevp = NULL;
1854        if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1855                synchronize_rcu();
1856                if (atomic_read(&rdev->nr_pending)) {
1857                        /* lost the race, try later */
1858                        err = -EBUSY;
1859                        *rdevp = rdev;
1860                        goto abort;
1861                }
1862        }
1863        if (p->replacement) {
1864                /* We must have just cleared 'rdev' */
1865                p->rdev = p->replacement;
1866                clear_bit(Replacement, &p->replacement->flags);
1867                smp_mb(); /* Make sure other CPUs may see both as identical
1868                           * but will never see neither -- if they are careful.
1869                           */
1870                p->replacement = NULL;
1871        }
1872
1873        clear_bit(WantReplacement, &rdev->flags);
1874        err = md_integrity_register(mddev);
1875
1876abort:
1877
1878        print_conf(conf);
1879        return err;
1880}
1881
1882static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1883{
1884        struct r10conf *conf = r10_bio->mddev->private;
1885
1886        if (!bio->bi_status)
1887                set_bit(R10BIO_Uptodate, &r10_bio->state);
1888        else
1889                /* The write handler will notice the lack of
1890                 * R10BIO_Uptodate and record any errors etc
1891                 */
1892                atomic_add(r10_bio->sectors,
1893                           &conf->mirrors[d].rdev->corrected_errors);
1894
1895        /* for reconstruct, we always reschedule after a read.
1896         * for resync, only after all reads
1897         */
1898        rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1899        if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1900            atomic_dec_and_test(&r10_bio->remaining)) {
1901                /* we have read all the blocks,
1902                 * do the comparison in process context in raid10d
1903                 */
1904                reschedule_retry(r10_bio);
1905        }
1906}
1907
1908static void end_sync_read(struct bio *bio)
1909{
1910        struct r10bio *r10_bio = get_resync_r10bio(bio);
1911        struct r10conf *conf = r10_bio->mddev->private;
1912        int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1913
1914        __end_sync_read(r10_bio, bio, d);
1915}
1916
1917static void end_reshape_read(struct bio *bio)
1918{
1919        /* reshape read bio isn't allocated from r10buf_pool */
1920        struct r10bio *r10_bio = bio->bi_private;
1921
1922        __end_sync_read(r10_bio, bio, r10_bio->read_slot);
1923}
1924
1925static void end_sync_request(struct r10bio *r10_bio)
1926{
1927        struct mddev *mddev = r10_bio->mddev;
1928
1929        while (atomic_dec_and_test(&r10_bio->remaining)) {
1930                if (r10_bio->master_bio == NULL) {
1931                        /* the primary of several recovery bios */
1932                        sector_t s = r10_bio->sectors;
1933                        if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1934                            test_bit(R10BIO_WriteError, &r10_bio->state))
1935                                reschedule_retry(r10_bio);
1936                        else
1937                                put_buf(r10_bio);
1938                        md_done_sync(mddev, s, 1);
1939                        break;
1940                } else {
1941                        struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1942                        if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1943                            test_bit(R10BIO_WriteError, &r10_bio->state))
1944                                reschedule_retry(r10_bio);
1945                        else
1946                                put_buf(r10_bio);
1947                        r10_bio = r10_bio2;
1948                }
1949        }
1950}
1951
1952static void end_sync_write(struct bio *bio)
1953{
1954        struct r10bio *r10_bio = get_resync_r10bio(bio);
1955        struct mddev *mddev = r10_bio->mddev;
1956        struct r10conf *conf = mddev->private;
1957        int d;
1958        sector_t first_bad;
1959        int bad_sectors;
1960        int slot;
1961        int repl;
1962        struct md_rdev *rdev = NULL;
1963
1964        d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1965        if (repl)
1966                rdev = conf->mirrors[d].replacement;
1967        else
1968                rdev = conf->mirrors[d].rdev;
1969
1970        if (bio->bi_status) {
1971                if (repl)
1972                        md_error(mddev, rdev);
1973                else {
1974                        set_bit(WriteErrorSeen, &rdev->flags);
1975                        if (!test_and_set_bit(WantReplacement, &rdev->flags))
1976                                set_bit(MD_RECOVERY_NEEDED,
1977                                        &rdev->mddev->recovery);
1978                        set_bit(R10BIO_WriteError, &r10_bio->state);
1979                }
1980        } else if (is_badblock(rdev,
1981                             r10_bio->devs[slot].addr,
1982                             r10_bio->sectors,
1983                             &first_bad, &bad_sectors))
1984                set_bit(R10BIO_MadeGood, &r10_bio->state);
1985
1986        rdev_dec_pending(rdev, mddev);
1987
1988        end_sync_request(r10_bio);
1989}
1990
1991/*
1992 * Note: sync and recover and handled very differently for raid10
1993 * This code is for resync.
1994 * For resync, we read through virtual addresses and read all blocks.
1995 * If there is any error, we schedule a write.  The lowest numbered
1996 * drive is authoritative.
1997 * However requests come for physical address, so we need to map.
1998 * For every physical address there are raid_disks/copies virtual addresses,
1999 * which is always are least one, but is not necessarly an integer.
2000 * This means that a physical address can span multiple chunks, so we may
2001 * have to submit multiple io requests for a single sync request.
2002 */
2003/*
2004 * We check if all blocks are in-sync and only write to blocks that
2005 * aren't in sync
2006 */
2007static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2008{
2009        struct r10conf *conf = mddev->private;
2010        int i, first;
2011        struct bio *tbio, *fbio;
2012        int vcnt;
2013        struct page **tpages, **fpages;
2014
2015        atomic_set(&r10_bio->remaining, 1);
2016
2017        /* find the first device with a block */
2018        for (i=0; i<conf->copies; i++)
2019                if (!r10_bio->devs[i].bio->bi_status)
2020                        break;
2021
2022        if (i == conf->copies)
2023                goto done;
2024
2025        first = i;
2026        fbio = r10_bio->devs[i].bio;
2027        fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2028        fbio->bi_iter.bi_idx = 0;
2029        fpages = get_resync_pages(fbio)->pages;
2030
2031        vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2032        /* now find blocks with errors */
2033        for (i=0 ; i < conf->copies ; i++) {
2034                int  j, d;
2035                struct md_rdev *rdev;
2036                struct resync_pages *rp;
2037
2038                tbio = r10_bio->devs[i].bio;
2039
2040                if (tbio->bi_end_io != end_sync_read)
2041                        continue;
2042                if (i == first)
2043                        continue;
2044
2045                tpages = get_resync_pages(tbio)->pages;
2046                d = r10_bio->devs[i].devnum;
2047                rdev = conf->mirrors[d].rdev;
2048                if (!r10_bio->devs[i].bio->bi_status) {
2049                        /* We know that the bi_io_vec layout is the same for
2050                         * both 'first' and 'i', so we just compare them.
2051                         * All vec entries are PAGE_SIZE;
2052                         */
2053                        int sectors = r10_bio->sectors;
2054                        for (j = 0; j < vcnt; j++) {
2055                                int len = PAGE_SIZE;
2056                                if (sectors < (len / 512))
2057                                        len = sectors * 512;
2058                                if (memcmp(page_address(fpages[j]),
2059                                           page_address(tpages[j]),
2060                                           len))
2061                                        break;
2062                                sectors -= len/512;
2063                        }
2064                        if (j == vcnt)
2065                                continue;
2066                        atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2067                        if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2068                                /* Don't fix anything. */
2069                                continue;
2070                } else if (test_bit(FailFast, &rdev->flags)) {
2071                        /* Just give up on this device */
2072                        md_error(rdev->mddev, rdev);
2073                        continue;
2074                }
2075                /* Ok, we need to write this bio, either to correct an
2076                 * inconsistency or to correct an unreadable block.
2077                 * First we need to fixup bv_offset, bv_len and
2078                 * bi_vecs, as the read request might have corrupted these
2079                 */
2080                rp = get_resync_pages(tbio);
2081                bio_reset(tbio);
2082
2083                md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2084
2085                rp->raid_bio = r10_bio;
2086                tbio->bi_private = rp;
2087                tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2088                tbio->bi_end_io = end_sync_write;
2089                bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2090
2091                bio_copy_data(tbio, fbio);
2092
2093                atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2094                atomic_inc(&r10_bio->remaining);
2095                md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2096
2097                if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2098                        tbio->bi_opf |= MD_FAILFAST;
2099                tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2100                bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2101                generic_make_request(tbio);
2102        }
2103
2104        /* Now write out to any replacement devices
2105         * that are active
2106         */
2107        for (i = 0; i < conf->copies; i++) {
2108                int d;
2109
2110                tbio = r10_bio->devs[i].repl_bio;
2111                if (!tbio || !tbio->bi_end_io)
2112                        continue;
2113                if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2114                    && r10_bio->devs[i].bio != fbio)
2115                        bio_copy_data(tbio, fbio);
2116                d = r10_bio->devs[i].devnum;
2117                atomic_inc(&r10_bio->remaining);
2118                md_sync_acct(conf->mirrors[d].replacement->bdev,
2119                             bio_sectors(tbio));
2120                generic_make_request(tbio);
2121        }
2122
2123done:
2124        if (atomic_dec_and_test(&r10_bio->remaining)) {
2125                md_done_sync(mddev, r10_bio->sectors, 1);
2126                put_buf(r10_bio);
2127        }
2128}
2129
2130/*
2131 * Now for the recovery code.
2132 * Recovery happens across physical sectors.
2133 * We recover all non-is_sync drives by finding the virtual address of
2134 * each, and then choose a working drive that also has that virt address.
2135 * There is a separate r10_bio for each non-in_sync drive.
2136 * Only the first two slots are in use. The first for reading,
2137 * The second for writing.
2138 *
2139 */
2140static void fix_recovery_read_error(struct r10bio *r10_bio)
2141{
2142        /* We got a read error during recovery.
2143         * We repeat the read in smaller page-sized sections.
2144         * If a read succeeds, write it to the new device or record
2145         * a bad block if we cannot.
2146         * If a read fails, record a bad block on both old and
2147         * new devices.
2148         */
2149        struct mddev *mddev = r10_bio->mddev;
2150        struct r10conf *conf = mddev->private;
2151        struct bio *bio = r10_bio->devs[0].bio;
2152        sector_t sect = 0;
2153        int sectors = r10_bio->sectors;
2154        int idx = 0;
2155        int dr = r10_bio->devs[0].devnum;
2156        int dw = r10_bio->devs[1].devnum;
2157        struct page **pages = get_resync_pages(bio)->pages;
2158
2159        while (sectors) {
2160                int s = sectors;
2161                struct md_rdev *rdev;
2162                sector_t addr;
2163                int ok;
2164
2165                if (s > (PAGE_SIZE>>9))
2166                        s = PAGE_SIZE >> 9;
2167
2168                rdev = conf->mirrors[dr].rdev;
2169                addr = r10_bio->devs[0].addr + sect,
2170                ok = sync_page_io(rdev,
2171                                  addr,
2172                                  s << 9,
2173                                  pages[idx],
2174                                  REQ_OP_READ, 0, false);
2175                if (ok) {
2176                        rdev = conf->mirrors[dw].rdev;
2177                        addr = r10_bio->devs[1].addr + sect;
2178                        ok = sync_page_io(rdev,
2179                                          addr,
2180                                          s << 9,
2181                                          pages[idx],
2182                                          REQ_OP_WRITE, 0, false);
2183                        if (!ok) {
2184                                set_bit(WriteErrorSeen, &rdev->flags);
2185                                if (!test_and_set_bit(WantReplacement,
2186                                                      &rdev->flags))
2187                                        set_bit(MD_RECOVERY_NEEDED,
2188                                                &rdev->mddev->recovery);
2189                        }
2190                }
2191                if (!ok) {
2192                        /* We don't worry if we cannot set a bad block -
2193                         * it really is bad so there is no loss in not
2194                         * recording it yet
2195                         */
2196                        rdev_set_badblocks(rdev, addr, s, 0);
2197
2198                        if (rdev != conf->mirrors[dw].rdev) {
2199                                /* need bad block on destination too */
2200                                struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2201                                addr = r10_bio->devs[1].addr + sect;
2202                                ok = rdev_set_badblocks(rdev2, addr, s, 0);
2203                                if (!ok) {
2204                                        /* just abort the recovery */
2205                                        pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2206                                                  mdname(mddev));
2207
2208                                        conf->mirrors[dw].recovery_disabled
2209                                                = mddev->recovery_disabled;
2210                                        set_bit(MD_RECOVERY_INTR,
2211                                                &mddev->recovery);
2212                                        break;
2213                                }
2214                        }
2215                }
2216
2217                sectors -= s;
2218                sect += s;
2219                idx++;
2220        }
2221}
2222
2223static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2224{
2225        struct r10conf *conf = mddev->private;
2226        int d;
2227        struct bio *wbio, *wbio2;
2228
2229        if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2230                fix_recovery_read_error(r10_bio);
2231                end_sync_request(r10_bio);
2232                return;
2233        }
2234
2235        /*
2236         * share the pages with the first bio
2237         * and submit the write request
2238         */
2239        d = r10_bio->devs[1].devnum;
2240        wbio = r10_bio->devs[1].bio;
2241        wbio2 = r10_bio->devs[1].repl_bio;
2242        /* Need to test wbio2->bi_end_io before we call
2243         * generic_make_request as if the former is NULL,
2244         * the latter is free to free wbio2.
2245         */
2246        if (wbio2 && !wbio2->bi_end_io)
2247                wbio2 = NULL;
2248        if (wbio->bi_end_io) {
2249                atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2250                md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2251                generic_make_request(wbio);
2252        }
2253        if (wbio2) {
2254                atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2255                md_sync_acct(conf->mirrors[d].replacement->bdev,
2256                             bio_sectors(wbio2));
2257                generic_make_request(wbio2);
2258        }
2259}
2260
2261/*
2262 * Used by fix_read_error() to decay the per rdev read_errors.
2263 * We halve the read error count for every hour that has elapsed
2264 * since the last recorded read error.
2265 *
2266 */
2267static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2268{
2269        long cur_time_mon;
2270        unsigned long hours_since_last;
2271        unsigned int read_errors = atomic_read(&rdev->read_errors);
2272
2273        cur_time_mon = ktime_get_seconds();
2274
2275        if (rdev->last_read_error == 0) {
2276                /* first time we've seen a read error */
2277                rdev->last_read_error = cur_time_mon;
2278                return;
2279        }
2280
2281        hours_since_last = (long)(cur_time_mon -
2282                            rdev->last_read_error) / 3600;
2283
2284        rdev->last_read_error = cur_time_mon;
2285
2286        /*
2287         * if hours_since_last is > the number of bits in read_errors
2288         * just set read errors to 0. We do this to avoid
2289         * overflowing the shift of read_errors by hours_since_last.
2290         */
2291        if (hours_since_last >= 8 * sizeof(read_errors))
2292                atomic_set(&rdev->read_errors, 0);
2293        else
2294                atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2295}
2296
2297static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2298                            int sectors, struct page *page, int rw)
2299{
2300        sector_t first_bad;
2301        int bad_sectors;
2302
2303        if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2304            && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2305                return -1;
2306        if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2307                /* success */
2308                return 1;
2309        if (rw == WRITE) {
2310                set_bit(WriteErrorSeen, &rdev->flags);
2311                if (!test_and_set_bit(WantReplacement, &rdev->flags))
2312                        set_bit(MD_RECOVERY_NEEDED,
2313                                &rdev->mddev->recovery);
2314        }
2315        /* need to record an error - either for the block or the device */
2316        if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2317                md_error(rdev->mddev, rdev);
2318        return 0;
2319}
2320
2321/*
2322 * This is a kernel thread which:
2323 *
2324 *      1.      Retries failed read operations on working mirrors.
2325 *      2.      Updates the raid superblock when problems encounter.
2326 *      3.      Performs writes following reads for array synchronising.
2327 */
2328
2329static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2330{
2331        int sect = 0; /* Offset from r10_bio->sector */
2332        int sectors = r10_bio->sectors;
2333        struct md_rdev *rdev;
2334        int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2335        int d = r10_bio->devs[r10_bio->read_slot].devnum;
2336
2337        /* still own a reference to this rdev, so it cannot
2338         * have been cleared recently.
2339         */
2340        rdev = conf->mirrors[d].rdev;
2341
2342        if (test_bit(Faulty, &rdev->flags))
2343                /* drive has already been failed, just ignore any
2344                   more fix_read_error() attempts */
2345                return;
2346
2347        check_decay_read_errors(mddev, rdev);
2348        atomic_inc(&rdev->read_errors);
2349        if (atomic_read(&rdev->read_errors) > max_read_errors) {
2350                char b[BDEVNAME_SIZE];
2351                bdevname(rdev->bdev, b);
2352
2353                pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2354                          mdname(mddev), b,
2355                          atomic_read(&rdev->read_errors), max_read_errors);
2356                pr_notice("md/raid10:%s: %s: Failing raid device\n",
2357                          mdname(mddev), b);
2358                md_error(mddev, rdev);
2359                r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2360                return;
2361        }
2362
2363        while(sectors) {
2364                int s = sectors;
2365                int sl = r10_bio->read_slot;
2366                int success = 0;
2367                int start;
2368
2369                if (s > (PAGE_SIZE>>9))
2370                        s = PAGE_SIZE >> 9;
2371
2372                rcu_read_lock();
2373                do {
2374                        sector_t first_bad;
2375                        int bad_sectors;
2376
2377                        d = r10_bio->devs[sl].devnum;
2378                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2379                        if (rdev &&
2380                            test_bit(In_sync, &rdev->flags) &&
2381                            !test_bit(Faulty, &rdev->flags) &&
2382                            is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2383                                        &first_bad, &bad_sectors) == 0) {
2384                                atomic_inc(&rdev->nr_pending);
2385                                rcu_read_unlock();
2386                                success = sync_page_io(rdev,
2387                                                       r10_bio->devs[sl].addr +
2388                                                       sect,
2389                                                       s<<9,
2390                                                       conf->tmppage,
2391                                                       REQ_OP_READ, 0, false);
2392                                rdev_dec_pending(rdev, mddev);
2393                                rcu_read_lock();
2394                                if (success)
2395                                        break;
2396                        }
2397                        sl++;
2398                        if (sl == conf->copies)
2399                                sl = 0;
2400                } while (!success && sl != r10_bio->read_slot);
2401                rcu_read_unlock();
2402
2403                if (!success) {
2404                        /* Cannot read from anywhere, just mark the block
2405                         * as bad on the first device to discourage future
2406                         * reads.
2407                         */
2408                        int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2409                        rdev = conf->mirrors[dn].rdev;
2410
2411                        if (!rdev_set_badblocks(
2412                                    rdev,
2413                                    r10_bio->devs[r10_bio->read_slot].addr
2414                                    + sect,
2415                                    s, 0)) {
2416                                md_error(mddev, rdev);
2417                                r10_bio->devs[r10_bio->read_slot].bio
2418                                        = IO_BLOCKED;
2419                        }
2420                        break;
2421                }
2422
2423                start = sl;
2424                /* write it back and re-read */
2425                rcu_read_lock();
2426                while (sl != r10_bio->read_slot) {
2427                        char b[BDEVNAME_SIZE];
2428
2429                        if (sl==0)
2430                                sl = conf->copies;
2431                        sl--;
2432                        d = r10_bio->devs[sl].devnum;
2433                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2434                        if (!rdev ||
2435                            test_bit(Faulty, &rdev->flags) ||
2436                            !test_bit(In_sync, &rdev->flags))
2437                                continue;
2438
2439                        atomic_inc(&rdev->nr_pending);
2440                        rcu_read_unlock();
2441                        if (r10_sync_page_io(rdev,
2442                                             r10_bio->devs[sl].addr +
2443                                             sect,
2444                                             s, conf->tmppage, WRITE)
2445                            == 0) {
2446                                /* Well, this device is dead */
2447                                pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2448                                          mdname(mddev), s,
2449                                          (unsigned long long)(
2450                                                  sect +
2451                                                  choose_data_offset(r10_bio,
2452                                                                     rdev)),
2453                                          bdevname(rdev->bdev, b));
2454                                pr_notice("md/raid10:%s: %s: failing drive\n",
2455                                          mdname(mddev),
2456                                          bdevname(rdev->bdev, b));
2457                        }
2458                        rdev_dec_pending(rdev, mddev);
2459                        rcu_read_lock();
2460                }
2461                sl = start;
2462                while (sl != r10_bio->read_slot) {
2463                        char b[BDEVNAME_SIZE];
2464
2465                        if (sl==0)
2466                                sl = conf->copies;
2467                        sl--;
2468                        d = r10_bio->devs[sl].devnum;
2469                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2470                        if (!rdev ||
2471                            test_bit(Faulty, &rdev->flags) ||
2472                            !test_bit(In_sync, &rdev->flags))
2473                                continue;
2474
2475                        atomic_inc(&rdev->nr_pending);
2476                        rcu_read_unlock();
2477                        switch (r10_sync_page_io(rdev,
2478                                             r10_bio->devs[sl].addr +
2479                                             sect,
2480                                             s, conf->tmppage,
2481                                                 READ)) {
2482                        case 0:
2483                                /* Well, this device is dead */
2484                                pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2485                                       mdname(mddev), s,
2486                                       (unsigned long long)(
2487                                               sect +
2488                                               choose_data_offset(r10_bio, rdev)),
2489                                       bdevname(rdev->bdev, b));
2490                                pr_notice("md/raid10:%s: %s: failing drive\n",
2491                                       mdname(mddev),
2492                                       bdevname(rdev->bdev, b));
2493                                break;
2494                        case 1:
2495                                pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2496                                       mdname(mddev), s,
2497                                       (unsigned long long)(
2498                                               sect +
2499                                               choose_data_offset(r10_bio, rdev)),
2500                                       bdevname(rdev->bdev, b));
2501                                atomic_add(s, &rdev->corrected_errors);
2502                        }
2503
2504                        rdev_dec_pending(rdev, mddev);
2505                        rcu_read_lock();
2506                }
2507                rcu_read_unlock();
2508
2509                sectors -= s;
2510                sect += s;
2511        }
2512}
2513
2514static int narrow_write_error(struct r10bio *r10_bio, int i)
2515{
2516        struct bio *bio = r10_bio->master_bio;
2517        struct mddev *mddev = r10_bio->mddev;
2518        struct r10conf *conf = mddev->private;
2519        struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2520        /* bio has the data to be written to slot 'i' where
2521         * we just recently had a write error.
2522         * We repeatedly clone the bio and trim down to one block,
2523         * then try the write.  Where the write fails we record
2524         * a bad block.
2525         * It is conceivable that the bio doesn't exactly align with
2526         * blocks.  We must handle this.
2527         *
2528         * We currently own a reference to the rdev.
2529         */
2530
2531        int block_sectors;
2532        sector_t sector;
2533        int sectors;
2534        int sect_to_write = r10_bio->sectors;
2535        int ok = 1;
2536
2537        if (rdev->badblocks.shift < 0)
2538                return 0;
2539
2540        block_sectors = roundup(1 << rdev->badblocks.shift,
2541                                bdev_logical_block_size(rdev->bdev) >> 9);
2542        sector = r10_bio->sector;
2543        sectors = ((r10_bio->sector + block_sectors)
2544                   & ~(sector_t)(block_sectors - 1))
2545                - sector;
2546
2547        while (sect_to_write) {
2548                struct bio *wbio;
2549                sector_t wsector;
2550                if (sectors > sect_to_write)
2551                        sectors = sect_to_write;
2552                /* Write at 'sector' for 'sectors' */
2553                wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
2554                bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2555                wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2556                wbio->bi_iter.bi_sector = wsector +
2557                                   choose_data_offset(r10_bio, rdev);
2558                bio_set_dev(wbio, rdev->bdev);
2559                bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2560
2561                if (submit_bio_wait(wbio) < 0)
2562                        /* Failure! */
2563                        ok = rdev_set_badblocks(rdev, wsector,
2564                                                sectors, 0)
2565                                && ok;
2566
2567                bio_put(wbio);
2568                sect_to_write -= sectors;
2569                sector += sectors;
2570                sectors = block_sectors;
2571        }
2572        return ok;
2573}
2574
2575static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2576{
2577        int slot = r10_bio->read_slot;
2578        struct bio *bio;
2579        struct r10conf *conf = mddev->private;
2580        struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2581
2582        /* we got a read error. Maybe the drive is bad.  Maybe just
2583         * the block and we can fix it.
2584         * We freeze all other IO, and try reading the block from
2585         * other devices.  When we find one, we re-write
2586         * and check it that fixes the read error.
2587         * This is all done synchronously while the array is
2588         * frozen.
2589         */
2590        bio = r10_bio->devs[slot].bio;
2591        bio_put(bio);
2592        r10_bio->devs[slot].bio = NULL;
2593
2594        if (mddev->ro)
2595                r10_bio->devs[slot].bio = IO_BLOCKED;
2596        else if (!test_bit(FailFast, &rdev->flags)) {
2597                freeze_array(conf, 1);
2598                fix_read_error(conf, mddev, r10_bio);
2599                unfreeze_array(conf);
2600        } else
2601                md_error(mddev, rdev);
2602
2603        rdev_dec_pending(rdev, mddev);
2604        allow_barrier(conf);
2605        r10_bio->state = 0;
2606        raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2607}
2608
2609static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2610{
2611        /* Some sort of write request has finished and it
2612         * succeeded in writing where we thought there was a
2613         * bad block.  So forget the bad block.
2614         * Or possibly if failed and we need to record
2615         * a bad block.
2616         */
2617        int m;
2618        struct md_rdev *rdev;
2619
2620        if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2621            test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2622                for (m = 0; m < conf->copies; m++) {
2623                        int dev = r10_bio->devs[m].devnum;
2624                        rdev = conf->mirrors[dev].rdev;
2625                        if (r10_bio->devs[m].bio == NULL ||
2626                                r10_bio->devs[m].bio->bi_end_io == NULL)
2627                                continue;
2628                        if (!r10_bio->devs[m].bio->bi_status) {
2629                                rdev_clear_badblocks(
2630                                        rdev,
2631                                        r10_bio->devs[m].addr,
2632                                        r10_bio->sectors, 0);
2633                        } else {
2634                                if (!rdev_set_badblocks(
2635                                            rdev,
2636                                            r10_bio->devs[m].addr,
2637                                            r10_bio->sectors, 0))
2638                                        md_error(conf->mddev, rdev);
2639                        }
2640                        rdev = conf->mirrors[dev].replacement;
2641                        if (r10_bio->devs[m].repl_bio == NULL ||
2642                                r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2643                                continue;
2644
2645                        if (!r10_bio->devs[m].repl_bio->bi_status) {
2646                                rdev_clear_badblocks(
2647                                        rdev,
2648                                        r10_bio->devs[m].addr,
2649                                        r10_bio->sectors, 0);
2650                        } else {
2651                                if (!rdev_set_badblocks(
2652                                            rdev,
2653                                            r10_bio->devs[m].addr,
2654                                            r10_bio->sectors, 0))
2655                                        md_error(conf->mddev, rdev);
2656                        }
2657                }
2658                put_buf(r10_bio);
2659        } else {
2660                bool fail = false;
2661                for (m = 0; m < conf->copies; m++) {
2662                        int dev = r10_bio->devs[m].devnum;
2663                        struct bio *bio = r10_bio->devs[m].bio;
2664                        rdev = conf->mirrors[dev].rdev;
2665                        if (bio == IO_MADE_GOOD) {
2666                                rdev_clear_badblocks(
2667                                        rdev,
2668                                        r10_bio->devs[m].addr,
2669                                        r10_bio->sectors, 0);
2670                                rdev_dec_pending(rdev, conf->mddev);
2671                        } else if (bio != NULL && bio->bi_status) {
2672                                fail = true;
2673                                if (!narrow_write_error(r10_bio, m)) {
2674                                        md_error(conf->mddev, rdev);
2675                                        set_bit(R10BIO_Degraded,
2676                                                &r10_bio->state);
2677                                }
2678                                rdev_dec_pending(rdev, conf->mddev);
2679                        }
2680                        bio = r10_bio->devs[m].repl_bio;
2681                        rdev = conf->mirrors[dev].replacement;
2682                        if (rdev && bio == IO_MADE_GOOD) {
2683                                rdev_clear_badblocks(
2684                                        rdev,
2685                                        r10_bio->devs[m].addr,
2686                                        r10_bio->sectors, 0);
2687                                rdev_dec_pending(rdev, conf->mddev);
2688                        }
2689                }
2690                if (fail) {
2691                        spin_lock_irq(&conf->device_lock);
2692                        list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2693                        conf->nr_queued++;
2694                        spin_unlock_irq(&conf->device_lock);
2695                        /*
2696                         * In case freeze_array() is waiting for condition
2697                         * nr_pending == nr_queued + extra to be true.
2698                         */
2699                        wake_up(&conf->wait_barrier);
2700                        md_wakeup_thread(conf->mddev->thread);
2701                } else {
2702                        if (test_bit(R10BIO_WriteError,
2703                                     &r10_bio->state))
2704                                close_write(r10_bio);
2705                        raid_end_bio_io(r10_bio);
2706                }
2707        }
2708}
2709
2710static void raid10d(struct md_thread *thread)
2711{
2712        struct mddev *mddev = thread->mddev;
2713        struct r10bio *r10_bio;
2714        unsigned long flags;
2715        struct r10conf *conf = mddev->private;
2716        struct list_head *head = &conf->retry_list;
2717        struct blk_plug plug;
2718
2719        md_check_recovery(mddev);
2720
2721        if (!list_empty_careful(&conf->bio_end_io_list) &&
2722            !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2723                LIST_HEAD(tmp);
2724                spin_lock_irqsave(&conf->device_lock, flags);
2725                if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2726                        while (!list_empty(&conf->bio_end_io_list)) {
2727                                list_move(conf->bio_end_io_list.prev, &tmp);
2728                                conf->nr_queued--;
2729                        }
2730                }
2731                spin_unlock_irqrestore(&conf->device_lock, flags);
2732                while (!list_empty(&tmp)) {
2733                        r10_bio = list_first_entry(&tmp, struct r10bio,
2734                                                   retry_list);
2735                        list_del(&r10_bio->retry_list);
2736                        if (mddev->degraded)
2737                                set_bit(R10BIO_Degraded, &r10_bio->state);
2738
2739                        if (test_bit(R10BIO_WriteError,
2740                                     &r10_bio->state))
2741                                close_write(r10_bio);
2742                        raid_end_bio_io(r10_bio);
2743                }
2744        }
2745
2746        blk_start_plug(&plug);
2747        for (;;) {
2748
2749                flush_pending_writes(conf);
2750
2751                spin_lock_irqsave(&conf->device_lock, flags);
2752                if (list_empty(head)) {
2753                        spin_unlock_irqrestore(&conf->device_lock, flags);
2754                        break;
2755                }
2756                r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2757                list_del(head->prev);
2758                conf->nr_queued--;
2759                spin_unlock_irqrestore(&conf->device_lock, flags);
2760
2761                mddev = r10_bio->mddev;
2762                conf = mddev->private;
2763                if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2764                    test_bit(R10BIO_WriteError, &r10_bio->state))
2765                        handle_write_completed(conf, r10_bio);
2766                else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2767                        reshape_request_write(mddev, r10_bio);
2768                else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2769                        sync_request_write(mddev, r10_bio);
2770                else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2771                        recovery_request_write(mddev, r10_bio);
2772                else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2773                        handle_read_error(mddev, r10_bio);
2774                else
2775                        WARN_ON_ONCE(1);
2776
2777                cond_resched();
2778                if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2779                        md_check_recovery(mddev);
2780        }
2781        blk_finish_plug(&plug);
2782}
2783
2784static int init_resync(struct r10conf *conf)
2785{
2786        int ret, buffs, i;
2787
2788        buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2789        BUG_ON(mempool_initialized(&conf->r10buf_pool));
2790        conf->have_replacement = 0;
2791        for (i = 0; i < conf->geo.raid_disks; i++)
2792                if (conf->mirrors[i].replacement)
2793                        conf->have_replacement = 1;
2794        ret = mempool_init(&conf->r10buf_pool, buffs,
2795                           r10buf_pool_alloc, r10buf_pool_free, conf);
2796        if (ret)
2797                return ret;
2798        conf->next_resync = 0;
2799        return 0;
2800}
2801
2802static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
2803{
2804        struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
2805        struct rsync_pages *rp;
2806        struct bio *bio;
2807        int nalloc;
2808        int i;
2809
2810        if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
2811            test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
2812                nalloc = conf->copies; /* resync */
2813        else
2814                nalloc = 2; /* recovery */
2815
2816        for (i = 0; i < nalloc; i++) {
2817                bio = r10bio->devs[i].bio;
2818                rp = bio->bi_private;
2819                bio_reset(bio);
2820                bio->bi_private = rp;
2821                bio = r10bio->devs[i].repl_bio;
2822                if (bio) {
2823                        rp = bio->bi_private;
2824                        bio_reset(bio);
2825                        bio->bi_private = rp;
2826                }
2827        }
2828        return r10bio;
2829}
2830
2831/*
2832 * Set cluster_sync_high since we need other nodes to add the
2833 * range [cluster_sync_low, cluster_sync_high] to suspend list.
2834 */
2835static void raid10_set_cluster_sync_high(struct r10conf *conf)
2836{
2837        sector_t window_size;
2838        int extra_chunk, chunks;
2839
2840        /*
2841         * First, here we define "stripe" as a unit which across
2842         * all member devices one time, so we get chunks by use
2843         * raid_disks / near_copies. Otherwise, if near_copies is
2844         * close to raid_disks, then resync window could increases
2845         * linearly with the increase of raid_disks, which means
2846         * we will suspend a really large IO window while it is not
2847         * necessary. If raid_disks is not divisible by near_copies,
2848         * an extra chunk is needed to ensure the whole "stripe" is
2849         * covered.
2850         */
2851
2852        chunks = conf->geo.raid_disks / conf->geo.near_copies;
2853        if (conf->geo.raid_disks % conf->geo.near_copies == 0)
2854                extra_chunk = 0;
2855        else
2856                extra_chunk = 1;
2857        window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
2858
2859        /*
2860         * At least use a 32M window to align with raid1's resync window
2861         */
2862        window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
2863                        CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
2864
2865        conf->cluster_sync_high = conf->cluster_sync_low + window_size;
2866}
2867
2868/*
2869 * perform a "sync" on one "block"
2870 *
2871 * We need to make sure that no normal I/O request - particularly write
2872 * requests - conflict with active sync requests.
2873 *
2874 * This is achieved by tracking pending requests and a 'barrier' concept
2875 * that can be installed to exclude normal IO requests.
2876 *
2877 * Resync and recovery are handled very differently.
2878 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2879 *
2880 * For resync, we iterate over virtual addresses, read all copies,
2881 * and update if there are differences.  If only one copy is live,
2882 * skip it.
2883 * For recovery, we iterate over physical addresses, read a good
2884 * value for each non-in_sync drive, and over-write.
2885 *
2886 * So, for recovery we may have several outstanding complex requests for a
2887 * given address, one for each out-of-sync device.  We model this by allocating
2888 * a number of r10_bio structures, one for each out-of-sync device.
2889 * As we setup these structures, we collect all bio's together into a list
2890 * which we then process collectively to add pages, and then process again
2891 * to pass to generic_make_request.
2892 *
2893 * The r10_bio structures are linked using a borrowed master_bio pointer.
2894 * This link is counted in ->remaining.  When the r10_bio that points to NULL
2895 * has its remaining count decremented to 0, the whole complex operation
2896 * is complete.
2897 *
2898 */
2899
2900static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2901                             int *skipped)
2902{
2903        struct r10conf *conf = mddev->private;
2904        struct r10bio *r10_bio;
2905        struct bio *biolist = NULL, *bio;
2906        sector_t max_sector, nr_sectors;
2907        int i;
2908        int max_sync;
2909        sector_t sync_blocks;
2910        sector_t sectors_skipped = 0;
2911        int chunks_skipped = 0;
2912        sector_t chunk_mask = conf->geo.chunk_mask;
2913        int page_idx = 0;
2914
2915        if (!mempool_initialized(&conf->r10buf_pool))
2916                if (init_resync(conf))
2917                        return 0;
2918
2919        /*
2920         * Allow skipping a full rebuild for incremental assembly
2921         * of a clean array, like RAID1 does.
2922         */
2923        if (mddev->bitmap == NULL &&
2924            mddev->recovery_cp == MaxSector &&
2925            mddev->reshape_position == MaxSector &&
2926            !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2927            !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2928            !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2929            conf->fullsync == 0) {
2930                *skipped = 1;
2931                return mddev->dev_sectors - sector_nr;
2932        }
2933
2934 skipped:
2935        max_sector = mddev->dev_sectors;
2936        if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2937            test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2938                max_sector = mddev->resync_max_sectors;
2939        if (sector_nr >= max_sector) {
2940                conf->cluster_sync_low = 0;
2941                conf->cluster_sync_high = 0;
2942
2943                /* If we aborted, we need to abort the
2944                 * sync on the 'current' bitmap chucks (there can
2945                 * be several when recovering multiple devices).
2946                 * as we may have started syncing it but not finished.
2947                 * We can find the current address in
2948                 * mddev->curr_resync, but for recovery,
2949                 * we need to convert that to several
2950                 * virtual addresses.
2951                 */
2952                if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2953                        end_reshape(conf);
2954                        close_sync(conf);
2955                        return 0;
2956                }
2957
2958                if (mddev->curr_resync < max_sector) { /* aborted */
2959                        if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2960                                md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2961                                                   &sync_blocks, 1);
2962                        else for (i = 0; i < conf->geo.raid_disks; i++) {
2963                                sector_t sect =
2964                                        raid10_find_virt(conf, mddev->curr_resync, i);
2965                                md_bitmap_end_sync(mddev->bitmap, sect,
2966                                                   &sync_blocks, 1);
2967                        }
2968                } else {
2969                        /* completed sync */
2970                        if ((!mddev->bitmap || conf->fullsync)
2971                            && conf->have_replacement
2972                            && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2973                                /* Completed a full sync so the replacements
2974                                 * are now fully recovered.
2975                                 */
2976                                rcu_read_lock();
2977                                for (i = 0; i < conf->geo.raid_disks; i++) {
2978                                        struct md_rdev *rdev =
2979                                                rcu_dereference(conf->mirrors[i].replacement);
2980                                        if (rdev)
2981                                                rdev->recovery_offset = MaxSector;
2982                                }
2983                                rcu_read_unlock();
2984                        }
2985                        conf->fullsync = 0;
2986                }
2987                md_bitmap_close_sync(mddev->bitmap);
2988                close_sync(conf);
2989                *skipped = 1;
2990                return sectors_skipped;
2991        }
2992
2993        if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2994                return reshape_request(mddev, sector_nr, skipped);
2995
2996        if (chunks_skipped >= conf->geo.raid_disks) {
2997                /* if there has been nothing to do on any drive,
2998                 * then there is nothing to do at all..
2999                 */
3000                *skipped = 1;
3001                return (max_sector - sector_nr) + sectors_skipped;
3002        }
3003
3004        if (max_sector > mddev->resync_max)
3005                max_sector = mddev->resync_max; /* Don't do IO beyond here */
3006
3007        /* make sure whole request will fit in a chunk - if chunks
3008         * are meaningful
3009         */
3010        if (conf->geo.near_copies < conf->geo.raid_disks &&
3011            max_sector > (sector_nr | chunk_mask))
3012                max_sector = (sector_nr | chunk_mask) + 1;
3013
3014        /*
3015         * If there is non-resync activity waiting for a turn, then let it
3016         * though before starting on this new sync request.
3017         */
3018        if (conf->nr_waiting)
3019                schedule_timeout_uninterruptible(1);
3020
3021        /* Again, very different code for resync and recovery.
3022         * Both must result in an r10bio with a list of bios that
3023         * have bi_end_io, bi_sector, bi_disk set,
3024         * and bi_private set to the r10bio.
3025         * For recovery, we may actually create several r10bios
3026         * with 2 bios in each, that correspond to the bios in the main one.
3027         * In this case, the subordinate r10bios link back through a
3028         * borrowed master_bio pointer, and the counter in the master
3029         * includes a ref from each subordinate.
3030         */
3031        /* First, we decide what to do and set ->bi_end_io
3032         * To end_sync_read if we want to read, and
3033         * end_sync_write if we will want to write.
3034         */
3035
3036        max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3037        if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3038                /* recovery... the complicated one */
3039                int j;
3040                r10_bio = NULL;
3041
3042                for (i = 0 ; i < conf->geo.raid_disks; i++) {
3043                        int still_degraded;
3044                        struct r10bio *rb2;
3045                        sector_t sect;
3046                        int must_sync;
3047                        int any_working;
3048                        int need_recover = 0;
3049                        int need_replace = 0;
3050                        struct raid10_info *mirror = &conf->mirrors[i];
3051                        struct md_rdev *mrdev, *mreplace;
3052
3053                        rcu_read_lock();
3054                        mrdev = rcu_dereference(mirror->rdev);
3055                        mreplace = rcu_dereference(mirror->replacement);
3056
3057                        if (mrdev != NULL &&
3058                            !test_bit(Faulty, &mrdev->flags) &&
3059                            !test_bit(In_sync, &mrdev->flags))
3060                                need_recover = 1;
3061                        if (mreplace != NULL &&
3062                            !test_bit(Faulty, &mreplace->flags))
3063                                need_replace = 1;
3064
3065                        if (!need_recover && !need_replace) {
3066                                rcu_read_unlock();
3067                                continue;
3068                        }
3069
3070                        still_degraded = 0;
3071                        /* want to reconstruct this device */
3072                        rb2 = r10_bio;
3073                        sect = raid10_find_virt(conf, sector_nr, i);
3074                        if (sect >= mddev->resync_max_sectors) {
3075                                /* last stripe is not complete - don't
3076                                 * try to recover this sector.
3077                                 */
3078                                rcu_read_unlock();
3079                                continue;
3080                        }
3081                        if (mreplace && test_bit(Faulty, &mreplace->flags))
3082                                mreplace = NULL;
3083                        /* Unless we are doing a full sync, or a replacement
3084                         * we only need to recover the block if it is set in
3085                         * the bitmap
3086                         */
3087                        must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3088                                                         &sync_blocks, 1);
3089                        if (sync_blocks < max_sync)
3090                                max_sync = sync_blocks;
3091                        if (!must_sync &&
3092                            mreplace == NULL &&
3093                            !conf->fullsync) {
3094                                /* yep, skip the sync_blocks here, but don't assume
3095                                 * that there will never be anything to do here
3096                                 */
3097                                chunks_skipped = -1;
3098                                rcu_read_unlock();
3099                                continue;
3100                        }
3101                        atomic_inc(&mrdev->nr_pending);
3102                        if (mreplace)
3103                                atomic_inc(&mreplace->nr_pending);
3104                        rcu_read_unlock();
3105
3106                        r10_bio = raid10_alloc_init_r10buf(conf);
3107                        r10_bio->state = 0;
3108                        raise_barrier(conf, rb2 != NULL);
3109                        atomic_set(&r10_bio->remaining, 0);
3110
3111                        r10_bio->master_bio = (struct bio*)rb2;
3112                        if (rb2)
3113                                atomic_inc(&rb2->remaining);
3114                        r10_bio->mddev = mddev;
3115                        set_bit(R10BIO_IsRecover, &r10_bio->state);
3116                        r10_bio->sector = sect;
3117
3118                        raid10_find_phys(conf, r10_bio);
3119
3120                        /* Need to check if the array will still be
3121                         * degraded
3122                         */
3123                        rcu_read_lock();
3124                        for (j = 0; j < conf->geo.raid_disks; j++) {
3125                                struct md_rdev *rdev = rcu_dereference(
3126                                        conf->mirrors[j].rdev);
3127                                if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3128                                        still_degraded = 1;
3129                                        break;
3130                                }
3131                        }
3132
3133                        must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3134                                                         &sync_blocks, still_degraded);
3135
3136                        any_working = 0;
3137                        for (j=0; j<conf->copies;j++) {
3138                                int k;
3139                                int d = r10_bio->devs[j].devnum;
3140                                sector_t from_addr, to_addr;
3141                                struct md_rdev *rdev =
3142                                        rcu_dereference(conf->mirrors[d].rdev);
3143                                sector_t sector, first_bad;
3144                                int bad_sectors;
3145                                if (!rdev ||
3146                                    !test_bit(In_sync, &rdev->flags))
3147                                        continue;
3148                                /* This is where we read from */
3149                                any_working = 1;
3150                                sector = r10_bio->devs[j].addr;
3151
3152                                if (is_badblock(rdev, sector, max_sync,
3153                                                &first_bad, &bad_sectors)) {
3154                                        if (first_bad > sector)
3155                                                max_sync = first_bad - sector;
3156                                        else {
3157                                                bad_sectors -= (sector
3158                                                                - first_bad);
3159                                                if (max_sync > bad_sectors)
3160                                                        max_sync = bad_sectors;
3161                                                continue;
3162                                        }
3163                                }
3164                                bio = r10_bio->devs[0].bio;
3165                                bio->bi_next = biolist;
3166                                biolist = bio;
3167                                bio->bi_end_io = end_sync_read;
3168                                bio_set_op_attrs(bio, REQ_OP_READ, 0);
3169                                if (test_bit(FailFast, &rdev->flags))
3170                                        bio->bi_opf |= MD_FAILFAST;
3171                                from_addr = r10_bio->devs[j].addr;
3172                                bio->bi_iter.bi_sector = from_addr +
3173                                        rdev->data_offset;
3174                                bio_set_dev(bio, rdev->bdev);
3175                                atomic_inc(&rdev->nr_pending);
3176                                /* and we write to 'i' (if not in_sync) */
3177
3178                                for (k=0; k<conf->copies; k++)
3179                                        if (r10_bio->devs[k].devnum == i)
3180                                                break;
3181                                BUG_ON(k == conf->copies);
3182                                to_addr = r10_bio->devs[k].addr;
3183                                r10_bio->devs[0].devnum = d;
3184                                r10_bio->devs[0].addr = from_addr;
3185                                r10_bio->devs[1].devnum = i;
3186                                r10_bio->devs[1].addr = to_addr;
3187
3188                                if (need_recover) {
3189                                        bio = r10_bio->devs[1].bio;
3190                                        bio->bi_next = biolist;
3191                                        biolist = bio;
3192                                        bio->bi_end_io = end_sync_write;
3193                                        bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3194                                        bio->bi_iter.bi_sector = to_addr
3195                                                + mrdev->data_offset;
3196                                        bio_set_dev(bio, mrdev->bdev);
3197                                        atomic_inc(&r10_bio->remaining);
3198                                } else
3199                                        r10_bio->devs[1].bio->bi_end_io = NULL;
3200
3201                                /* and maybe write to replacement */
3202                                bio = r10_bio->devs[1].repl_bio;
3203                                if (bio)
3204                                        bio->bi_end_io = NULL;
3205                                /* Note: if need_replace, then bio
3206                                 * cannot be NULL as r10buf_pool_alloc will
3207                                 * have allocated it.
3208                                 */
3209                                if (!need_replace)
3210                                        break;
3211                                bio->bi_next = biolist;
3212                                biolist = bio;
3213                                bio->bi_end_io = end_sync_write;
3214                                bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3215                                bio->bi_iter.bi_sector = to_addr +
3216                                        mreplace->data_offset;
3217                                bio_set_dev(bio, mreplace->bdev);
3218                                atomic_inc(&r10_bio->remaining);
3219                                break;
3220                        }
3221                        rcu_read_unlock();
3222                        if (j == conf->copies) {
3223                                /* Cannot recover, so abort the recovery or
3224                                 * record a bad block */
3225                                if (any_working) {
3226                                        /* problem is that there are bad blocks
3227                                         * on other device(s)
3228                                         */
3229                                        int k;
3230                                        for (k = 0; k < conf->copies; k++)
3231                                                if (r10_bio->devs[k].devnum == i)
3232                                                        break;
3233                                        if (!test_bit(In_sync,
3234                                                      &mrdev->flags)
3235                                            && !rdev_set_badblocks(
3236                                                    mrdev,
3237                                                    r10_bio->devs[k].addr,
3238                                                    max_sync, 0))
3239                                                any_working = 0;
3240                                        if (mreplace &&
3241                                            !rdev_set_badblocks(
3242                                                    mreplace,
3243                                                    r10_bio->devs[k].addr,
3244                                                    max_sync, 0))
3245                                                any_working = 0;
3246                                }
3247                                if (!any_working)  {
3248                                        if (!test_and_set_bit(MD_RECOVERY_INTR,
3249                                                              &mddev->recovery))
3250                                                pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3251                                                       mdname(mddev));
3252                                        mirror->recovery_disabled
3253                                                = mddev->recovery_disabled;
3254                                }
3255                                put_buf(r10_bio);
3256                                if (rb2)
3257                                        atomic_dec(&rb2->remaining);
3258                                r10_bio = rb2;
3259                                rdev_dec_pending(mrdev, mddev);
3260                                if (mreplace)
3261                                        rdev_dec_pending(mreplace, mddev);
3262                                break;
3263                        }
3264                        rdev_dec_pending(mrdev, mddev);
3265                        if (mreplace)
3266                                rdev_dec_pending(mreplace, mddev);
3267                        if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3268                                /* Only want this if there is elsewhere to
3269                                 * read from. 'j' is currently the first
3270                                 * readable copy.
3271                                 */
3272                                int targets = 1;
3273                                for (; j < conf->copies; j++) {
3274                                        int d = r10_bio->devs[j].devnum;
3275                                        if (conf->mirrors[d].rdev &&
3276                                            test_bit(In_sync,
3277                                                      &conf->mirrors[d].rdev->flags))
3278                                                targets++;
3279                                }
3280                                if (targets == 1)
3281                                        r10_bio->devs[0].bio->bi_opf
3282                                                &= ~MD_FAILFAST;
3283                        }
3284                }
3285                if (biolist == NULL) {
3286                        while (r10_bio) {
3287                                struct r10bio *rb2 = r10_bio;
3288                                r10_bio = (struct r10bio*) rb2->master_bio;
3289                                rb2->master_bio = NULL;
3290                                put_buf(rb2);
3291                        }
3292                        goto giveup;
3293                }
3294        } else {
3295                /* resync. Schedule a read for every block at this virt offset */
3296                int count = 0;
3297
3298                /*
3299                 * Since curr_resync_completed could probably not update in
3300                 * time, and we will set cluster_sync_low based on it.
3301                 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3302                 * safety reason, which ensures curr_resync_completed is
3303                 * updated in bitmap_cond_end_sync.
3304                 */
3305                md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3306                                        mddev_is_clustered(mddev) &&
3307                                        (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3308
3309                if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3310                                          &sync_blocks, mddev->degraded) &&
3311                    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3312                                                 &mddev->recovery)) {
3313                        /* We can skip this block */
3314                        *skipped = 1;
3315                        return sync_blocks + sectors_skipped;
3316                }
3317                if (sync_blocks < max_sync)
3318                        max_sync = sync_blocks;
3319                r10_bio = raid10_alloc_init_r10buf(conf);
3320                r10_bio->state = 0;
3321
3322                r10_bio->mddev = mddev;
3323                atomic_set(&r10_bio->remaining, 0);
3324                raise_barrier(conf, 0);
3325                conf->next_resync = sector_nr;
3326
3327                r10_bio->master_bio = NULL;
3328                r10_bio->sector = sector_nr;
3329                set_bit(R10BIO_IsSync, &r10_bio->state);
3330                raid10_find_phys(conf, r10_bio);
3331                r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3332
3333                for (i = 0; i < conf->copies; i++) {
3334                        int d = r10_bio->devs[i].devnum;
3335                        sector_t first_bad, sector;
3336                        int bad_sectors;
3337                        struct md_rdev *rdev;
3338
3339                        if (r10_bio->devs[i].repl_bio)
3340                                r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3341
3342                        bio = r10_bio->devs[i].bio;
3343                        bio->bi_status = BLK_STS_IOERR;
3344                        rcu_read_lock();
3345                        rdev = rcu_dereference(conf->mirrors[d].rdev);
3346                        if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3347                                rcu_read_unlock();
3348                                continue;
3349                        }
3350                        sector = r10_bio->devs[i].addr;
3351                        if (is_badblock(rdev, sector, max_sync,
3352                                        &first_bad, &bad_sectors)) {
3353                                if (first_bad > sector)
3354                                        max_sync = first_bad - sector;
3355                                else {
3356                                        bad_sectors -= (sector - first_bad);
3357                                        if (max_sync > bad_sectors)
3358                                                max_sync = bad_sectors;
3359                                        rcu_read_unlock();
3360                                        continue;
3361                                }
3362                        }
3363                        atomic_inc(&rdev->nr_pending);
3364                        atomic_inc(&r10_bio->remaining);
3365                        bio->bi_next = biolist;
3366                        biolist = bio;
3367                        bio->bi_end_io = end_sync_read;
3368                        bio_set_op_attrs(bio, REQ_OP_READ, 0);
3369                        if (test_bit(FailFast, &rdev->flags))
3370                                bio->bi_opf |= MD_FAILFAST;
3371                        bio->bi_iter.bi_sector = sector + rdev->data_offset;
3372                        bio_set_dev(bio, rdev->bdev);
3373                        count++;
3374
3375                        rdev = rcu_dereference(conf->mirrors[d].replacement);
3376                        if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3377                                rcu_read_unlock();
3378                                continue;
3379                        }
3380                        atomic_inc(&rdev->nr_pending);
3381
3382                        /* Need to set up for writing to the replacement */
3383                        bio = r10_bio->devs[i].repl_bio;
3384                        bio->bi_status = BLK_STS_IOERR;
3385
3386                        sector = r10_bio->devs[i].addr;
3387                        bio->bi_next = biolist;
3388                        biolist = bio;
3389                        bio->bi_end_io = end_sync_write;
3390                        bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3391                        if (test_bit(FailFast, &rdev->flags))
3392                                bio->bi_opf |= MD_FAILFAST;
3393                        bio->bi_iter.bi_sector = sector + rdev->data_offset;
3394                        bio_set_dev(bio, rdev->bdev);
3395                        count++;
3396                        rcu_read_unlock();
3397                }
3398
3399                if (count < 2) {
3400                        for (i=0; i<conf->copies; i++) {
3401                                int d = r10_bio->devs[i].devnum;
3402                                if (r10_bio->devs[i].bio->bi_end_io)
3403                                        rdev_dec_pending(conf->mirrors[d].rdev,
3404                                                         mddev);
3405                                if (r10_bio->devs[i].repl_bio &&
3406                                    r10_bio->devs[i].repl_bio->bi_end_io)
3407                                        rdev_dec_pending(
3408                                                conf->mirrors[d].replacement,
3409                                                mddev);
3410                        }
3411                        put_buf(r10_bio);
3412                        biolist = NULL;
3413                        goto giveup;
3414                }
3415        }
3416
3417        nr_sectors = 0;
3418        if (sector_nr + max_sync < max_sector)
3419                max_sector = sector_nr + max_sync;
3420        do {
3421                struct page *page;
3422                int len = PAGE_SIZE;
3423                if (sector_nr + (len>>9) > max_sector)
3424                        len = (max_sector - sector_nr) << 9;
3425                if (len == 0)
3426                        break;
3427                for (bio= biolist ; bio ; bio=bio->bi_next) {
3428                        struct resync_pages *rp = get_resync_pages(bio);
3429                        page = resync_fetch_page(rp, page_idx);
3430                        /*
3431                         * won't fail because the vec table is big enough
3432                         * to hold all these pages
3433                         */
3434                        bio_add_page(bio, page, len, 0);
3435                }
3436                nr_sectors += len>>9;
3437                sector_nr += len>>9;
3438        } while (++page_idx < RESYNC_PAGES);
3439        r10_bio->sectors = nr_sectors;
3440
3441        if (mddev_is_clustered(mddev) &&
3442            test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3443                /* It is resync not recovery */
3444                if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3445                        conf->cluster_sync_low = mddev->curr_resync_completed;
3446                        raid10_set_cluster_sync_high(conf);
3447                        /* Send resync message */
3448                        md_cluster_ops->resync_info_update(mddev,
3449                                                conf->cluster_sync_low,
3450                                                conf->cluster_sync_high);
3451                }
3452        } else if (mddev_is_clustered(mddev)) {
3453                /* This is recovery not resync */
3454                sector_t sect_va1, sect_va2;
3455                bool broadcast_msg = false;
3456
3457                for (i = 0; i < conf->geo.raid_disks; i++) {
3458                        /*
3459                         * sector_nr is a device address for recovery, so we
3460                         * need translate it to array address before compare
3461                         * with cluster_sync_high.
3462                         */
3463                        sect_va1 = raid10_find_virt(conf, sector_nr, i);
3464
3465                        if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3466                                broadcast_msg = true;
3467                                /*
3468                                 * curr_resync_completed is similar as
3469                                 * sector_nr, so make the translation too.
3470                                 */
3471                                sect_va2 = raid10_find_virt(conf,
3472                                        mddev->curr_resync_completed, i);
3473
3474                                if (conf->cluster_sync_low == 0 ||
3475                                    conf->cluster_sync_low > sect_va2)
3476                                        conf->cluster_sync_low = sect_va2;
3477                        }
3478                }
3479                if (broadcast_msg) {
3480                        raid10_set_cluster_sync_high(conf);
3481                        md_cluster_ops->resync_info_update(mddev,
3482                                                conf->cluster_sync_low,
3483                                                conf->cluster_sync_high);
3484                }
3485        }
3486
3487        while (biolist) {
3488                bio = biolist;
3489                biolist = biolist->bi_next;
3490
3491                bio->bi_next = NULL;
3492                r10_bio = get_resync_r10bio(bio);
3493                r10_bio->sectors = nr_sectors;
3494
3495                if (bio->bi_end_io == end_sync_read) {
3496                        md_sync_acct_bio(bio, nr_sectors);
3497                        bio->bi_status = 0;
3498                        generic_make_request(bio);
3499                }
3500        }
3501
3502        if (sectors_skipped)
3503                /* pretend they weren't skipped, it makes
3504                 * no important difference in this case
3505                 */
3506                md_done_sync(mddev, sectors_skipped, 1);
3507
3508        return sectors_skipped + nr_sectors;
3509 giveup:
3510        /* There is nowhere to write, so all non-sync
3511         * drives must be failed or in resync, all drives
3512         * have a bad block, so try the next chunk...
3513         */
3514        if (sector_nr + max_sync < max_sector)
3515                max_sector = sector_nr + max_sync;
3516
3517        sectors_skipped += (max_sector - sector_nr);
3518        chunks_skipped ++;
3519        sector_nr = max_sector;
3520        goto skipped;
3521}
3522
3523static sector_t
3524raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3525{
3526        sector_t size;
3527        struct r10conf *conf = mddev->private;
3528
3529        if (!raid_disks)
3530                raid_disks = min(conf->geo.raid_disks,
3531                                 conf->prev.raid_disks);
3532        if (!sectors)
3533                sectors = conf->dev_sectors;
3534
3535        size = sectors >> conf->geo.chunk_shift;
3536        sector_div(size, conf->geo.far_copies);
3537        size = size * raid_disks;
3538        sector_div(size, conf->geo.near_copies);
3539
3540        return size << conf->geo.chunk_shift;
3541}
3542
3543static void calc_sectors(struct r10conf *conf, sector_t size)
3544{
3545        /* Calculate the number of sectors-per-device that will
3546         * actually be used, and set conf->dev_sectors and
3547         * conf->stride
3548         */
3549
3550        size = size >> conf->geo.chunk_shift;
3551        sector_div(size, conf->geo.far_copies);
3552        size = size * conf->geo.raid_disks;
3553        sector_div(size, conf->geo.near_copies);
3554        /* 'size' is now the number of chunks in the array */
3555        /* calculate "used chunks per device" */
3556        size = size * conf->copies;
3557
3558        /* We need to round up when dividing by raid_disks to
3559         * get the stride size.
3560         */
3561        size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3562
3563        conf->dev_sectors = size << conf->geo.chunk_shift;
3564
3565        if (conf->geo.far_offset)
3566                conf->geo.stride = 1 << conf->geo.chunk_shift;
3567        else {
3568                sector_div(size, conf->geo.far_copies);
3569                conf->geo.stride = size << conf->geo.chunk_shift;
3570        }
3571}
3572
3573enum geo_type {geo_new, geo_old, geo_start};
3574static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3575{
3576        int nc, fc, fo;
3577        int layout, chunk, disks;
3578        switch (new) {
3579        case geo_old:
3580                layout = mddev->layout;
3581                chunk = mddev->chunk_sectors;
3582                disks = mddev->raid_disks - mddev->delta_disks;
3583                break;
3584        case geo_new:
3585                layout = mddev->new_layout;
3586                chunk = mddev->new_chunk_sectors;
3587                disks = mddev->raid_disks;
3588                break;
3589        default: /* avoid 'may be unused' warnings */
3590        case geo_start: /* new when starting reshape - raid_disks not
3591                         * updated yet. */
3592                layout = mddev->new_layout;
3593                chunk = mddev->new_chunk_sectors;
3594                disks = mddev->raid_disks + mddev->delta_disks;
3595                break;
3596        }
3597        if (layout >> 19)
3598                return -1;
3599        if (chunk < (PAGE_SIZE >> 9) ||
3600            !is_power_of_2(chunk))
3601                return -2;
3602        nc = layout & 255;
3603        fc = (layout >> 8) & 255;
3604        fo = layout & (1<<16);
3605        geo->raid_disks = disks;
3606        geo->near_copies = nc;
3607        geo->far_copies = fc;
3608        geo->far_offset = fo;
3609        switch (layout >> 17) {
3610        case 0: /* original layout.  simple but not always optimal */
3611                geo->far_set_size = disks;
3612                break;
3613        case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3614                 * actually using this, but leave code here just in case.*/
3615                geo->far_set_size = disks/fc;
3616                WARN(geo->far_set_size < fc,
3617                     "This RAID10 layout does not provide data safety - please backup and create new array\n");
3618                break;
3619        case 2: /* "improved" layout fixed to match documentation */
3620                geo->far_set_size = fc * nc;
3621                break;
3622        default: /* Not a valid layout */
3623                return -1;
3624        }
3625        geo->chunk_mask = chunk - 1;
3626        geo->chunk_shift = ffz(~chunk);
3627        return nc*fc;
3628}
3629
3630static struct r10conf *setup_conf(struct mddev *mddev)
3631{
3632        struct r10conf *conf = NULL;
3633        int err = -EINVAL;
3634        struct geom geo;
3635        int copies;
3636
3637        copies = setup_geo(&geo, mddev, geo_new);
3638
3639        if (copies == -2) {
3640                pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3641                        mdname(mddev), PAGE_SIZE);
3642                goto out;
3643        }
3644
3645        if (copies < 2 || copies > mddev->raid_disks) {
3646                pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3647                        mdname(mddev), mddev->new_layout);
3648                goto out;
3649        }
3650
3651        err = -ENOMEM;
3652        conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3653        if (!conf)
3654                goto out;
3655
3656        /* FIXME calc properly */
3657        conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3658                                sizeof(struct raid10_info),
3659                                GFP_KERNEL);
3660        if (!conf->mirrors)
3661                goto out;
3662
3663        conf->tmppage = alloc_page(GFP_KERNEL);
3664        if (!conf->tmppage)
3665                goto out;
3666
3667        conf->geo = geo;
3668        conf->copies = copies;
3669        err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
3670                           rbio_pool_free, conf);
3671        if (err)
3672                goto out;
3673
3674        err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3675        if (err)
3676                goto out;
3677
3678        calc_sectors(conf, mddev->dev_sectors);
3679        if (mddev->reshape_position == MaxSector) {
3680                conf->prev = conf->geo;
3681                conf->reshape_progress = MaxSector;
3682        } else {
3683                if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3684                        err = -EINVAL;
3685                        goto out;
3686                }
3687                conf->reshape_progress = mddev->reshape_position;
3688                if (conf->prev.far_offset)
3689                        conf->prev.stride = 1 << conf->prev.chunk_shift;
3690                else
3691                        /* far_copies must be 1 */
3692                        conf->prev.stride = conf->dev_sectors;
3693        }
3694        conf->reshape_safe = conf->reshape_progress;
3695        spin_lock_init(&conf->device_lock);
3696        INIT_LIST_HEAD(&conf->retry_list);
3697        INIT_LIST_HEAD(&conf->bio_end_io_list);
3698
3699        spin_lock_init(&conf->resync_lock);
3700        init_waitqueue_head(&conf->wait_barrier);
3701        atomic_set(&conf->nr_pending, 0);
3702
3703        err = -ENOMEM;
3704        conf->thread = md_register_thread(raid10d, mddev, "raid10");
3705        if (!conf->thread)
3706                goto out;
3707
3708        conf->mddev = mddev;
3709        return conf;
3710
3711 out:
3712        if (conf) {
3713                mempool_exit(&conf->r10bio_pool);
3714                kfree(conf->mirrors);
3715                safe_put_page(conf->tmppage);
3716                bioset_exit(&conf->bio_split);
3717                kfree(conf);
3718        }
3719        return ERR_PTR(err);
3720}
3721
3722static int raid10_run(struct mddev *mddev)
3723{
3724        struct r10conf *conf;
3725        int i, disk_idx, chunk_size;
3726        struct raid10_info *disk;
3727        struct md_rdev *rdev;
3728        sector_t size;
3729        sector_t min_offset_diff = 0;
3730        int first = 1;
3731        bool discard_supported = false;
3732
3733        if (mddev_init_writes_pending(mddev) < 0)
3734                return -ENOMEM;
3735
3736        if (mddev->private == NULL) {
3737                conf = setup_conf(mddev);
3738                if (IS_ERR(conf))
3739                        return PTR_ERR(conf);
3740                mddev->private = conf;
3741        }
3742        conf = mddev->private;
3743        if (!conf)
3744                goto out;
3745
3746        if (mddev_is_clustered(conf->mddev)) {
3747                int fc, fo;
3748
3749                fc = (mddev->layout >> 8) & 255;
3750                fo = mddev->layout & (1<<16);
3751                if (fc > 1 || fo > 0) {
3752                        pr_err("only near layout is supported by clustered"
3753                                " raid10\n");
3754                        goto out_free_conf;
3755                }
3756        }
3757
3758        mddev->thread = conf->thread;
3759        conf->thread = NULL;
3760
3761        chunk_size = mddev->chunk_sectors << 9;
3762        if (mddev->queue) {
3763                blk_queue_max_discard_sectors(mddev->queue,
3764                                              mddev->chunk_sectors);
3765                blk_queue_max_write_same_sectors(mddev->queue, 0);
3766                blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3767                blk_queue_io_min(mddev->queue, chunk_size);
3768                if (conf->geo.raid_disks % conf->geo.near_copies)
3769                        blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3770                else
3771                        blk_queue_io_opt(mddev->queue, chunk_size *
3772                                         (conf->geo.raid_disks / conf->geo.near_copies));
3773        }
3774
3775        rdev_for_each(rdev, mddev) {
3776                long long diff;
3777
3778                disk_idx = rdev->raid_disk;
3779                if (disk_idx < 0)
3780                        continue;
3781                if (disk_idx >= conf->geo.raid_disks &&
3782                    disk_idx >= conf->prev.raid_disks)
3783                        continue;
3784                disk = conf->mirrors + disk_idx;
3785
3786                if (test_bit(Replacement, &rdev->flags)) {
3787                        if (disk->replacement)
3788                                goto out_free_conf;
3789                        disk->replacement = rdev;
3790                } else {
3791                        if (disk->rdev)
3792                                goto out_free_conf;
3793                        disk->rdev = rdev;
3794                }
3795                diff = (rdev->new_data_offset - rdev->data_offset);
3796                if (!mddev->reshape_backwards)
3797                        diff = -diff;
3798                if (diff < 0)
3799                        diff = 0;
3800                if (first || diff < min_offset_diff)
3801                        min_offset_diff = diff;
3802
3803                if (mddev->gendisk)
3804                        disk_stack_limits(mddev->gendisk, rdev->bdev,
3805                                          rdev->data_offset << 9);
3806
3807                disk->head_position = 0;
3808
3809                if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3810                        discard_supported = true;
3811                first = 0;
3812        }
3813
3814        if (mddev->queue) {
3815                if (discard_supported)
3816                        blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3817                                                mddev->queue);
3818                else
3819                        blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3820                                                  mddev->queue);
3821        }
3822        /* need to check that every block has at least one working mirror */
3823        if (!enough(conf, -1)) {
3824                pr_err("md/raid10:%s: not enough operational mirrors.\n",
3825                       mdname(mddev));
3826                goto out_free_conf;
3827        }
3828
3829        if (conf->reshape_progress != MaxSector) {
3830                /* must ensure that shape change is supported */
3831                if (conf->geo.far_copies != 1 &&
3832                    conf->geo.far_offset == 0)
3833                        goto out_free_conf;
3834                if (conf->prev.far_copies != 1 &&
3835                    conf->prev.far_offset == 0)
3836                        goto out_free_conf;
3837        }
3838
3839        mddev->degraded = 0;
3840        for (i = 0;
3841             i < conf->geo.raid_disks
3842                     || i < conf->prev.raid_disks;
3843             i++) {
3844
3845                disk = conf->mirrors + i;
3846
3847                if (!disk->rdev && disk->replacement) {
3848                        /* The replacement is all we have - use it */
3849                        disk->rdev = disk->replacement;
3850                        disk->replacement = NULL;
3851                        clear_bit(Replacement, &disk->rdev->flags);
3852                }
3853
3854                if (!disk->rdev ||
3855                    !test_bit(In_sync, &disk->rdev->flags)) {
3856                        disk->head_position = 0;
3857                        mddev->degraded++;
3858                        if (disk->rdev &&
3859                            disk->rdev->saved_raid_disk < 0)
3860                                conf->fullsync = 1;
3861                }
3862
3863                if (disk->replacement &&
3864                    !test_bit(In_sync, &disk->replacement->flags) &&
3865                    disk->replacement->saved_raid_disk < 0) {
3866                        conf->fullsync = 1;
3867                }
3868
3869                disk->recovery_disabled = mddev->recovery_disabled - 1;
3870        }
3871
3872        if (mddev->recovery_cp != MaxSector)
3873                pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3874                          mdname(mddev));
3875        pr_info("md/raid10:%s: active with %d out of %d devices\n",
3876                mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3877                conf->geo.raid_disks);
3878        /*
3879         * Ok, everything is just fine now
3880         */
3881        mddev->dev_sectors = conf->dev_sectors;
3882        size = raid10_size(mddev, 0, 0);
3883        md_set_array_sectors(mddev, size);
3884        mddev->resync_max_sectors = size;
3885        set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3886
3887        if (mddev->queue) {
3888                int stripe = conf->geo.raid_disks *
3889                        ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3890
3891                /* Calculate max read-ahead size.
3892                 * We need to readahead at least twice a whole stripe....
3893                 * maybe...
3894                 */
3895                stripe /= conf->geo.near_copies;
3896                if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
3897                        mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
3898        }
3899
3900        if (md_integrity_register(mddev))
3901                goto out_free_conf;
3902
3903        if (conf->reshape_progress != MaxSector) {
3904                unsigned long before_length, after_length;
3905
3906                before_length = ((1 << conf->prev.chunk_shift) *
3907                                 conf->prev.far_copies);
3908                after_length = ((1 << conf->geo.chunk_shift) *
3909                                conf->geo.far_copies);
3910
3911                if (max(before_length, after_length) > min_offset_diff) {
3912                        /* This cannot work */
3913                        pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3914                        goto out_free_conf;
3915                }
3916                conf->offset_diff = min_offset_diff;
3917
3918                clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3919                clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3920                set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3921                set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3922                mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3923                                                        "reshape");
3924                if (!mddev->sync_thread)
3925                        goto out_free_conf;
3926        }
3927
3928        return 0;
3929
3930out_free_conf:
3931        md_unregister_thread(&mddev->thread);
3932        mempool_exit(&conf->r10bio_pool);
3933        safe_put_page(conf->tmppage);
3934        kfree(conf->mirrors);
3935        kfree(conf);
3936        mddev->private = NULL;
3937out:
3938        return -EIO;
3939}
3940
3941static void raid10_free(struct mddev *mddev, void *priv)
3942{
3943        struct r10conf *conf = priv;
3944
3945        mempool_exit(&conf->r10bio_pool);
3946        safe_put_page(conf->tmppage);
3947        kfree(conf->mirrors);
3948        kfree(conf->mirrors_old);
3949        kfree(conf->mirrors_new);
3950        bioset_exit(&conf->bio_split);
3951        kfree(conf);
3952}
3953
3954static void raid10_quiesce(struct mddev *mddev, int quiesce)
3955{
3956        struct r10conf *conf = mddev->private;
3957
3958        if (quiesce)
3959                raise_barrier(conf, 0);
3960        else
3961                lower_barrier(conf);
3962}
3963
3964static int raid10_resize(struct mddev *mddev, sector_t sectors)
3965{
3966        /* Resize of 'far' arrays is not supported.
3967         * For 'near' and 'offset' arrays we can set the
3968         * number of sectors used to be an appropriate multiple
3969         * of the chunk size.
3970         * For 'offset', this is far_copies*chunksize.
3971         * For 'near' the multiplier is the LCM of
3972         * near_copies and raid_disks.
3973         * So if far_copies > 1 && !far_offset, fail.
3974         * Else find LCM(raid_disks, near_copy)*far_copies and
3975         * multiply by chunk_size.  Then round to this number.
3976         * This is mostly done by raid10_size()
3977         */
3978        struct r10conf *conf = mddev->private;
3979        sector_t oldsize, size;
3980
3981        if (mddev->reshape_position != MaxSector)
3982                return -EBUSY;
3983
3984        if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3985                return -EINVAL;
3986
3987        oldsize = raid10_size(mddev, 0, 0);
3988        size = raid10_size(mddev, sectors, 0);
3989        if (mddev->external_size &&
3990            mddev->array_sectors > size)
3991                return -EINVAL;
3992        if (mddev->bitmap) {
3993                int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
3994                if (ret)
3995                        return ret;
3996        }
3997        md_set_array_sectors(mddev, size);
3998        if (sectors > mddev->dev_sectors &&
3999            mddev->recovery_cp > oldsize) {
4000                mddev->recovery_cp = oldsize;
4001                set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4002        }
4003        calc_sectors(conf, sectors);
4004        mddev->dev_sectors = conf->dev_sectors;
4005        mddev->resync_max_sectors = size;
4006        return 0;
4007}
4008
4009static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4010{
4011        struct md_rdev *rdev;
4012        struct r10conf *conf;
4013
4014        if (mddev->degraded > 0) {
4015                pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4016                        mdname(mddev));
4017                return ERR_PTR(-EINVAL);
4018        }
4019        sector_div(size, devs);
4020
4021        /* Set new parameters */
4022        mddev->new_level = 10;
4023        /* new layout: far_copies = 1, near_copies = 2 */
4024        mddev->new_layout = (1<<8) + 2;
4025        mddev->new_chunk_sectors = mddev->chunk_sectors;
4026        mddev->delta_disks = mddev->raid_disks;
4027        mddev->raid_disks *= 2;
4028        /* make sure it will be not marked as dirty */
4029        mddev->recovery_cp = MaxSector;
4030        mddev->dev_sectors = size;
4031
4032        conf = setup_conf(mddev);
4033        if (!IS_ERR(conf)) {
4034                rdev_for_each(rdev, mddev)
4035                        if (rdev->raid_disk >= 0) {
4036                                rdev->new_raid_disk = rdev->raid_disk * 2;
4037                                rdev->sectors = size;
4038                        }
4039                conf->barrier = 1;
4040        }
4041
4042        return conf;
4043}
4044
4045static void *raid10_takeover(struct mddev *mddev)
4046{
4047        struct r0conf *raid0_conf;
4048
4049        /* raid10 can take over:
4050         *  raid0 - providing it has only two drives
4051         */
4052        if (mddev->level == 0) {
4053                /* for raid0 takeover only one zone is supported */
4054                raid0_conf = mddev->private;
4055                if (raid0_conf->nr_strip_zones > 1) {
4056                        pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4057                                mdname(mddev));
4058                        return ERR_PTR(-EINVAL);
4059                }
4060                return raid10_takeover_raid0(mddev,
4061                        raid0_conf->strip_zone->zone_end,
4062                        raid0_conf->strip_zone->nb_dev);
4063        }
4064        return ERR_PTR(-EINVAL);
4065}
4066
4067static int raid10_check_reshape(struct mddev *mddev)
4068{
4069        /* Called when there is a request to change
4070         * - layout (to ->new_layout)
4071         * - chunk size (to ->new_chunk_sectors)
4072         * - raid_disks (by delta_disks)
4073         * or when trying to restart a reshape that was ongoing.
4074         *
4075         * We need to validate the request and possibly allocate
4076         * space if that might be an issue later.
4077         *
4078         * Currently we reject any reshape of a 'far' mode array,
4079         * allow chunk size to change if new is generally acceptable,
4080         * allow raid_disks to increase, and allow
4081         * a switch between 'near' mode and 'offset' mode.
4082         */
4083        struct r10conf *conf = mddev->private;
4084        struct geom geo;
4085
4086        if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4087                return -EINVAL;
4088
4089        if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4090                /* mustn't change number of copies */
4091                return -EINVAL;
4092        if (geo.far_copies > 1 && !geo.far_offset)
4093                /* Cannot switch to 'far' mode */
4094                return -EINVAL;
4095
4096        if (mddev->array_sectors & geo.chunk_mask)
4097                        /* not factor of array size */
4098                        return -EINVAL;
4099
4100        if (!enough(conf, -1))
4101                return -EINVAL;
4102
4103        kfree(conf->mirrors_new);
4104        conf->mirrors_new = NULL;
4105        if (mddev->delta_disks > 0) {
4106                /* allocate new 'mirrors' list */
4107                conf->mirrors_new =
4108                        kcalloc(mddev->raid_disks + mddev->delta_disks,
4109                                sizeof(struct raid10_info),
4110                                GFP_KERNEL);
4111                if (!conf->mirrors_new)
4112                        return -ENOMEM;
4113        }
4114        return 0;
4115}
4116
4117/*
4118 * Need to check if array has failed when deciding whether to:
4119 *  - start an array
4120 *  - remove non-faulty devices
4121 *  - add a spare
4122 *  - allow a reshape
4123 * This determination is simple when no reshape is happening.
4124 * However if there is a reshape, we need to carefully check
4125 * both the before and after sections.
4126 * This is because some failed devices may only affect one
4127 * of the two sections, and some non-in_sync devices may
4128 * be insync in the section most affected by failed devices.
4129 */
4130static int calc_degraded(struct r10conf *conf)
4131{
4132        int degraded, degraded2;
4133        int i;
4134
4135        rcu_read_lock();
4136        degraded = 0;
4137        /* 'prev' section first */
4138        for (i = 0; i < conf->prev.raid_disks; i++) {
4139                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4140                if (!rdev || test_bit(Faulty, &rdev->flags))
4141                        degraded++;
4142                else if (!test_bit(In_sync, &rdev->flags))
4143                        /* When we can reduce the number of devices in
4144                         * an array, this might not contribute to
4145                         * 'degraded'.  It does now.
4146                         */
4147                        degraded++;
4148        }
4149        rcu_read_unlock();
4150        if (conf->geo.raid_disks == conf->prev.raid_disks)
4151                return degraded;
4152        rcu_read_lock();
4153        degraded2 = 0;
4154        for (i = 0; i < conf->geo.raid_disks; i++) {
4155                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4156                if (!rdev || test_bit(Faulty, &rdev->flags))
4157                        degraded2++;
4158                else if (!test_bit(In_sync, &rdev->flags)) {
4159                        /* If reshape is increasing the number of devices,
4160                         * this section has already been recovered, so
4161                         * it doesn't contribute to degraded.
4162                         * else it does.
4163                         */
4164                        if (conf->geo.raid_disks <= conf->prev.raid_disks)
4165                                degraded2++;
4166                }
4167        }
4168        rcu_read_unlock();
4169        if (degraded2 > degraded)
4170                return degraded2;
4171        return degraded;
4172}
4173
4174static int raid10_start_reshape(struct mddev *mddev)
4175{
4176        /* A 'reshape' has been requested. This commits
4177         * the various 'new' fields and sets MD_RECOVER_RESHAPE
4178         * This also checks if there are enough spares and adds them
4179         * to the array.
4180         * We currently require enough spares to make the final
4181         * array non-degraded.  We also require that the difference
4182         * between old and new data_offset - on each device - is
4183         * enough that we never risk over-writing.
4184         */
4185
4186        unsigned long before_length, after_length;
4187        sector_t min_offset_diff = 0;
4188        int first = 1;
4189        struct geom new;
4190        struct r10conf *conf = mddev->private;
4191        struct md_rdev *rdev;
4192        int spares = 0;
4193        int ret;
4194
4195        if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4196                return -EBUSY;
4197
4198        if (setup_geo(&new, mddev, geo_start) != conf->copies)
4199                return -EINVAL;
4200
4201        before_length = ((1 << conf->prev.chunk_shift) *
4202                         conf->prev.far_copies);
4203        after_length = ((1 << conf->geo.chunk_shift) *
4204                        conf->geo.far_copies);
4205
4206        rdev_for_each(rdev, mddev) {
4207                if (!test_bit(In_sync, &rdev->flags)
4208                    && !test_bit(Faulty, &rdev->flags))
4209                        spares++;
4210                if (rdev->raid_disk >= 0) {
4211                        long long diff = (rdev->new_data_offset
4212                                          - rdev->data_offset);
4213                        if (!mddev->reshape_backwards)
4214                                diff = -diff;
4215                        if (diff < 0)
4216                                diff = 0;
4217                        if (first || diff < min_offset_diff)
4218                                min_offset_diff = diff;
4219                        first = 0;
4220                }
4221        }
4222
4223        if (max(before_length, after_length) > min_offset_diff)
4224                return -EINVAL;
4225
4226        if (spares < mddev->delta_disks)
4227                return -EINVAL;
4228
4229        conf->offset_diff = min_offset_diff;
4230        spin_lock_irq(&conf->device_lock);
4231        if (conf->mirrors_new) {
4232                memcpy(conf->mirrors_new, conf->mirrors,
4233                       sizeof(struct raid10_info)*conf->prev.raid_disks);
4234                smp_mb();
4235                kfree(conf->mirrors_old);
4236                conf->mirrors_old = conf->mirrors;
4237                conf->mirrors = conf->mirrors_new;
4238                conf->mirrors_new = NULL;
4239        }
4240        setup_geo(&conf->geo, mddev, geo_start);
4241        smp_mb();
4242        if (mddev->reshape_backwards) {
4243                sector_t size = raid10_size(mddev, 0, 0);
4244                if (size < mddev->array_sectors) {
4245                        spin_unlock_irq(&conf->device_lock);
4246                        pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4247                                mdname(mddev));
4248                        return -EINVAL;
4249                }
4250                mddev->resync_max_sectors = size;
4251                conf->reshape_progress = size;
4252        } else
4253                conf->reshape_progress = 0;
4254        conf->reshape_safe = conf->reshape_progress;
4255        spin_unlock_irq(&conf->device_lock);
4256
4257        if (mddev->delta_disks && mddev->bitmap) {
4258                struct mdp_superblock_1 *sb = NULL;
4259                sector_t oldsize, newsize;
4260
4261                oldsize = raid10_size(mddev, 0, 0);
4262                newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4263
4264                if (!mddev_is_clustered(mddev)) {
4265                        ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4266                        if (ret)
4267                                goto abort;
4268                        else
4269                                goto out;
4270                }
4271
4272                rdev_for_each(rdev, mddev) {
4273                        if (rdev->raid_disk > -1 &&
4274                            !test_bit(Faulty, &rdev->flags))
4275                                sb = page_address(rdev->sb_page);
4276                }
4277
4278                /*
4279                 * some node is already performing reshape, and no need to
4280                 * call md_bitmap_resize again since it should be called when
4281                 * receiving BITMAP_RESIZE msg
4282                 */
4283                if ((sb && (le32_to_cpu(sb->feature_map) &
4284                            MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4285                        goto out;
4286
4287                ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4288                if (ret)
4289                        goto abort;
4290
4291                ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4292                if (ret) {
4293                        md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4294                        goto abort;
4295                }
4296        }
4297out:
4298        if (mddev->delta_disks > 0) {
4299                rdev_for_each(rdev, mddev)
4300                        if (rdev->raid_disk < 0 &&
4301                            !test_bit(Faulty, &rdev->flags)) {
4302                                if (raid10_add_disk(mddev, rdev) == 0) {
4303                                        if (rdev->raid_disk >=
4304                                            conf->prev.raid_disks)
4305                                                set_bit(In_sync, &rdev->flags);
4306                                        else
4307                                                rdev->recovery_offset = 0;
4308
4309                                        if (sysfs_link_rdev(mddev, rdev))
4310                                                /* Failure here  is OK */;
4311                                }
4312                        } else if (rdev->raid_disk >= conf->prev.raid_disks
4313                                   && !test_bit(Faulty, &rdev->flags)) {
4314                                /* This is a spare that was manually added */
4315                                set_bit(In_sync, &rdev->flags);
4316                        }
4317        }
4318        /* When a reshape changes the number of devices,
4319         * ->degraded is measured against the larger of the
4320         * pre and  post numbers.
4321         */
4322        spin_lock_irq(&conf->device_lock);
4323        mddev->degraded = calc_degraded(conf);
4324        spin_unlock_irq(&conf->device_lock);
4325        mddev->raid_disks = conf->geo.raid_disks;
4326        mddev->reshape_position = conf->reshape_progress;
4327        set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4328
4329        clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4330        clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4331        clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4332        set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4333        set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4334
4335        mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4336                                                "reshape");
4337        if (!mddev->sync_thread) {
4338                ret = -EAGAIN;
4339                goto abort;
4340        }
4341        conf->reshape_checkpoint = jiffies;
4342        md_wakeup_thread(mddev->sync_thread);
4343        md_new_event(mddev);
4344        return 0;
4345
4346abort:
4347        mddev->recovery = 0;
4348        spin_lock_irq(&conf->device_lock);
4349        conf->geo = conf->prev;
4350        mddev->raid_disks = conf->geo.raid_disks;
4351        rdev_for_each(rdev, mddev)
4352                rdev->new_data_offset = rdev->data_offset;
4353        smp_wmb();
4354        conf->reshape_progress = MaxSector;
4355        conf->reshape_safe = MaxSector;
4356        mddev->reshape_position = MaxSector;
4357        spin_unlock_irq(&conf->device_lock);
4358        return ret;
4359}
4360
4361/* Calculate the last device-address that could contain
4362 * any block from the chunk that includes the array-address 's'
4363 * and report the next address.
4364 * i.e. the address returned will be chunk-aligned and after
4365 * any data that is in the chunk containing 's'.
4366 */
4367static sector_t last_dev_address(sector_t s, struct geom *geo)
4368{
4369        s = (s | geo->chunk_mask) + 1;
4370        s >>= geo->chunk_shift;
4371        s *= geo->near_copies;
4372        s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4373        s *= geo->far_copies;
4374        s <<= geo->chunk_shift;
4375        return s;
4376}
4377
4378/* Calculate the first device-address that could contain
4379 * any block from the chunk that includes the array-address 's'.
4380 * This too will be the start of a chunk
4381 */
4382static sector_t first_dev_address(sector_t s, struct geom *geo)
4383{
4384        s >>= geo->chunk_shift;
4385        s *= geo->near_copies;
4386        sector_div(s, geo->raid_disks);
4387        s *= geo->far_copies;
4388        s <<= geo->chunk_shift;
4389        return s;
4390}
4391
4392static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4393                                int *skipped)
4394{
4395        /* We simply copy at most one chunk (smallest of old and new)
4396         * at a time, possibly less if that exceeds RESYNC_PAGES,
4397         * or we hit a bad block or something.
4398         * This might mean we pause for normal IO in the middle of
4399         * a chunk, but that is not a problem as mddev->reshape_position
4400         * can record any location.
4401         *
4402         * If we will want to write to a location that isn't
4403         * yet recorded as 'safe' (i.e. in metadata on disk) then
4404         * we need to flush all reshape requests and update the metadata.
4405         *
4406         * When reshaping forwards (e.g. to more devices), we interpret
4407         * 'safe' as the earliest block which might not have been copied
4408         * down yet.  We divide this by previous stripe size and multiply
4409         * by previous stripe length to get lowest device offset that we
4410         * cannot write to yet.
4411         * We interpret 'sector_nr' as an address that we want to write to.
4412         * From this we use last_device_address() to find where we might
4413         * write to, and first_device_address on the  'safe' position.
4414         * If this 'next' write position is after the 'safe' position,
4415         * we must update the metadata to increase the 'safe' position.
4416         *
4417         * When reshaping backwards, we round in the opposite direction
4418         * and perform the reverse test:  next write position must not be
4419         * less than current safe position.
4420         *
4421         * In all this the minimum difference in data offsets
4422         * (conf->offset_diff - always positive) allows a bit of slack,
4423         * so next can be after 'safe', but not by more than offset_diff
4424         *
4425         * We need to prepare all the bios here before we start any IO
4426         * to ensure the size we choose is acceptable to all devices.
4427         * The means one for each copy for write-out and an extra one for
4428         * read-in.
4429         * We store the read-in bio in ->master_bio and the others in
4430         * ->devs[x].bio and ->devs[x].repl_bio.
4431         */
4432        struct r10conf *conf = mddev->private;
4433        struct r10bio *r10_bio;
4434        sector_t next, safe, last;
4435        int max_sectors;
4436        int nr_sectors;
4437        int s;
4438        struct md_rdev *rdev;
4439        int need_flush = 0;
4440        struct bio *blist;
4441        struct bio *bio, *read_bio;
4442        int sectors_done = 0;
4443        struct page **pages;
4444
4445        if (sector_nr == 0) {
4446                /* If restarting in the middle, skip the initial sectors */
4447                if (mddev->reshape_backwards &&
4448                    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4449                        sector_nr = (raid10_size(mddev, 0, 0)
4450                                     - conf->reshape_progress);
4451                } else if (!mddev->reshape_backwards &&
4452                           conf->reshape_progress > 0)
4453                        sector_nr = conf->reshape_progress;
4454                if (sector_nr) {
4455                        mddev->curr_resync_completed = sector_nr;
4456                        sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4457                        *skipped = 1;
4458                        return sector_nr;
4459                }
4460        }
4461
4462        /* We don't use sector_nr to track where we are up to
4463         * as that doesn't work well for ->reshape_backwards.
4464         * So just use ->reshape_progress.
4465         */
4466        if (mddev->reshape_backwards) {
4467                /* 'next' is the earliest device address that we might
4468                 * write to for this chunk in the new layout
4469                 */
4470                next = first_dev_address(conf->reshape_progress - 1,
4471                                         &conf->geo);
4472
4473                /* 'safe' is the last device address that we might read from
4474                 * in the old layout after a restart
4475                 */
4476                safe = last_dev_address(conf->reshape_safe - 1,
4477                                        &conf->prev);
4478
4479                if (next + conf->offset_diff < safe)
4480                        need_flush = 1;
4481
4482                last = conf->reshape_progress - 1;
4483                sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4484                                               & conf->prev.chunk_mask);
4485                if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4486                        sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4487        } else {
4488                /* 'next' is after the last device address that we
4489                 * might write to for this chunk in the new layout
4490                 */
4491                next = last_dev_address(conf->reshape_progress, &conf->geo);
4492
4493                /* 'safe' is the earliest device address that we might
4494                 * read from in the old layout after a restart
4495                 */
4496                safe = first_dev_address(conf->reshape_safe, &conf->prev);
4497
4498                /* Need to update metadata if 'next' might be beyond 'safe'
4499                 * as that would possibly corrupt data
4500                 */
4501                if (next > safe + conf->offset_diff)
4502                        need_flush = 1;
4503
4504                sector_nr = conf->reshape_progress;
4505                last  = sector_nr | (conf->geo.chunk_mask
4506                                     & conf->prev.chunk_mask);
4507
4508                if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4509                        last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4510        }
4511
4512        if (need_flush ||
4513            time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4514                /* Need to update reshape_position in metadata */
4515                wait_barrier(conf);
4516                mddev->reshape_position = conf->reshape_progress;
4517                if (mddev->reshape_backwards)
4518                        mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4519                                - conf->reshape_progress;
4520                else
4521                        mddev->curr_resync_completed = conf->reshape_progress;
4522                conf->reshape_checkpoint = jiffies;
4523                set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4524                md_wakeup_thread(mddev->thread);
4525                wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4526                           test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4527                if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4528                        allow_barrier(conf);
4529                        return sectors_done;
4530                }
4531                conf->reshape_safe = mddev->reshape_position;
4532                allow_barrier(conf);
4533        }
4534
4535        raise_barrier(conf, 0);
4536read_more:
4537        /* Now schedule reads for blocks from sector_nr to last */
4538        r10_bio = raid10_alloc_init_r10buf(conf);
4539        r10_bio->state = 0;
4540        raise_barrier(conf, 1);
4541        atomic_set(&r10_bio->remaining, 0);
4542        r10_bio->mddev = mddev;
4543        r10_bio->sector = sector_nr;
4544        set_bit(R10BIO_IsReshape, &r10_bio->state);
4545        r10_bio->sectors = last - sector_nr + 1;
4546        rdev = read_balance(conf, r10_bio, &max_sectors);
4547        BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4548
4549        if (!rdev) {
4550                /* Cannot read from here, so need to record bad blocks
4551                 * on all the target devices.
4552                 */
4553                // FIXME
4554                mempool_free(r10_bio, &conf->r10buf_pool);
4555                set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4556                return sectors_done;
4557        }
4558
4559        read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4560
4561        bio_set_dev(read_bio, rdev->bdev);
4562        read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4563                               + rdev->data_offset);
4564        read_bio->bi_private = r10_bio;
4565        read_bio->bi_end_io = end_reshape_read;
4566        bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4567        read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4568        read_bio->bi_status = 0;
4569        read_bio->bi_vcnt = 0;
4570        read_bio->bi_iter.bi_size = 0;
4571        r10_bio->master_bio = read_bio;
4572        r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4573
4574        /*
4575         * Broadcast RESYNC message to other nodes, so all nodes would not
4576         * write to the region to avoid conflict.
4577        */
4578        if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4579                struct mdp_superblock_1 *sb = NULL;
4580                int sb_reshape_pos = 0;
4581
4582                conf->cluster_sync_low = sector_nr;
4583                conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4584                sb = page_address(rdev->sb_page);
4585                if (sb) {
4586                        sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4587                        /*
4588                         * Set cluster_sync_low again if next address for array
4589                         * reshape is less than cluster_sync_low. Since we can't
4590                         * update cluster_sync_low until it has finished reshape.
4591                         */
4592                        if (sb_reshape_pos < conf->cluster_sync_low)
4593                                conf->cluster_sync_low = sb_reshape_pos;
4594                }
4595
4596                md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4597                                                          conf->cluster_sync_high);
4598        }
4599
4600        /* Now find the locations in the new layout */
4601        __raid10_find_phys(&conf->geo, r10_bio);
4602
4603        blist = read_bio;
4604        read_bio->bi_next = NULL;
4605
4606        rcu_read_lock();
4607        for (s = 0; s < conf->copies*2; s++) {
4608                struct bio *b;
4609                int d = r10_bio->devs[s/2].devnum;
4610                struct md_rdev *rdev2;
4611                if (s&1) {
4612                        rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4613                        b = r10_bio->devs[s/2].repl_bio;
4614                } else {
4615                        rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4616                        b = r10_bio->devs[s/2].bio;
4617                }
4618                if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4619                        continue;
4620
4621                bio_set_dev(b, rdev2->bdev);
4622                b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4623                        rdev2->new_data_offset;
4624                b->bi_end_io = end_reshape_write;
4625                bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4626                b->bi_next = blist;
4627                blist = b;
4628        }
4629
4630        /* Now add as many pages as possible to all of these bios. */
4631
4632        nr_sectors = 0;
4633        pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4634        for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4635                struct page *page = pages[s / (PAGE_SIZE >> 9)];
4636                int len = (max_sectors - s) << 9;
4637                if (len > PAGE_SIZE)
4638                        len = PAGE_SIZE;
4639                for (bio = blist; bio ; bio = bio->bi_next) {
4640                        /*
4641                         * won't fail because the vec table is big enough
4642                         * to hold all these pages
4643                         */
4644                        bio_add_page(bio, page, len, 0);
4645                }
4646                sector_nr += len >> 9;
4647                nr_sectors += len >> 9;
4648        }
4649        rcu_read_unlock();
4650        r10_bio->sectors = nr_sectors;
4651
4652        /* Now submit the read */
4653        md_sync_acct_bio(read_bio, r10_bio->sectors);
4654        atomic_inc(&r10_bio->remaining);
4655        read_bio->bi_next = NULL;
4656        generic_make_request(read_bio);
4657        sectors_done += nr_sectors;
4658        if (sector_nr <= last)
4659                goto read_more;
4660
4661        lower_barrier(conf);
4662
4663        /* Now that we have done the whole section we can
4664         * update reshape_progress
4665         */
4666        if (mddev->reshape_backwards)
4667                conf->reshape_progress -= sectors_done;
4668        else
4669                conf->reshape_progress += sectors_done;
4670
4671        return sectors_done;
4672}
4673
4674static void end_reshape_request(struct r10bio *r10_bio);
4675static int handle_reshape_read_error(struct mddev *mddev,
4676                                     struct r10bio *r10_bio);
4677static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4678{
4679        /* Reshape read completed.  Hopefully we have a block
4680         * to write out.
4681         * If we got a read error then we do sync 1-page reads from
4682         * elsewhere until we find the data - or give up.
4683         */
4684        struct r10conf *conf = mddev->private;
4685        int s;
4686
4687        if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4688                if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4689                        /* Reshape has been aborted */
4690                        md_done_sync(mddev, r10_bio->sectors, 0);
4691                        return;
4692                }
4693
4694        /* We definitely have the data in the pages, schedule the
4695         * writes.
4696         */
4697        atomic_set(&r10_bio->remaining, 1);
4698        for (s = 0; s < conf->copies*2; s++) {
4699                struct bio *b;
4700                int d = r10_bio->devs[s/2].devnum;
4701                struct md_rdev *rdev;
4702                rcu_read_lock();
4703                if (s&1) {
4704                        rdev = rcu_dereference(conf->mirrors[d].replacement);
4705                        b = r10_bio->devs[s/2].repl_bio;
4706                } else {
4707                        rdev = rcu_dereference(conf->mirrors[d].rdev);
4708                        b = r10_bio->devs[s/2].bio;
4709                }
4710                if (!rdev || test_bit(Faulty, &rdev->flags)) {
4711                        rcu_read_unlock();
4712                        continue;
4713                }
4714                atomic_inc(&rdev->nr_pending);
4715                rcu_read_unlock();
4716                md_sync_acct_bio(b, r10_bio->sectors);
4717                atomic_inc(&r10_bio->remaining);
4718                b->bi_next = NULL;
4719                generic_make_request(b);
4720        }
4721        end_reshape_request(r10_bio);
4722}
4723
4724static void end_reshape(struct r10conf *conf)
4725{
4726        if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4727                return;
4728
4729        spin_lock_irq(&conf->device_lock);
4730        conf->prev = conf->geo;
4731        md_finish_reshape(conf->mddev);
4732        smp_wmb();
4733        conf->reshape_progress = MaxSector;
4734        conf->reshape_safe = MaxSector;
4735        spin_unlock_irq(&conf->device_lock);
4736
4737        /* read-ahead size must cover two whole stripes, which is
4738         * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4739         */
4740        if (conf->mddev->queue) {
4741                int stripe = conf->geo.raid_disks *
4742                        ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4743                stripe /= conf->geo.near_copies;
4744                if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
4745                        conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
4746        }
4747        conf->fullsync = 0;
4748}
4749
4750static void raid10_update_reshape_pos(struct mddev *mddev)
4751{
4752        struct r10conf *conf = mddev->private;
4753        sector_t lo, hi;
4754
4755        md_cluster_ops->resync_info_get(mddev, &lo, &hi);
4756        if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
4757            || mddev->reshape_position == MaxSector)
4758                conf->reshape_progress = mddev->reshape_position;
4759        else
4760                WARN_ON_ONCE(1);
4761}
4762
4763static int handle_reshape_read_error(struct mddev *mddev,
4764                                     struct r10bio *r10_bio)
4765{
4766        /* Use sync reads to get the blocks from somewhere else */
4767        int sectors = r10_bio->sectors;
4768        struct r10conf *conf = mddev->private;
4769        struct r10bio *r10b;
4770        int slot = 0;
4771        int idx = 0;
4772        struct page **pages;
4773
4774        r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
4775        if (!r10b) {
4776                set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4777                return -ENOMEM;
4778        }
4779
4780        /* reshape IOs share pages from .devs[0].bio */
4781        pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4782
4783        r10b->sector = r10_bio->sector;
4784        __raid10_find_phys(&conf->prev, r10b);
4785
4786        while (sectors) {
4787                int s = sectors;
4788                int success = 0;
4789                int first_slot = slot;
4790
4791                if (s > (PAGE_SIZE >> 9))
4792                        s = PAGE_SIZE >> 9;
4793
4794                rcu_read_lock();
4795                while (!success) {
4796                        int d = r10b->devs[slot].devnum;
4797                        struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4798                        sector_t addr;
4799                        if (rdev == NULL ||
4800                            test_bit(Faulty, &rdev->flags) ||
4801                            !test_bit(In_sync, &rdev->flags))
4802                                goto failed;
4803
4804                        addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4805                        atomic_inc(&rdev->nr_pending);
4806                        rcu_read_unlock();
4807                        success = sync_page_io(rdev,
4808                                               addr,
4809                                               s << 9,
4810                                               pages[idx],
4811                                               REQ_OP_READ, 0, false);
4812                        rdev_dec_pending(rdev, mddev);
4813                        rcu_read_lock();
4814                        if (success)
4815                                break;
4816                failed:
4817                        slot++;
4818                        if (slot >= conf->copies)
4819                                slot = 0;
4820                        if (slot == first_slot)
4821                                break;
4822                }
4823                rcu_read_unlock();
4824                if (!success) {
4825                        /* couldn't read this block, must give up */
4826                        set_bit(MD_RECOVERY_INTR,
4827                                &mddev->recovery);
4828                        kfree(r10b);
4829                        return -EIO;
4830                }
4831                sectors -= s;
4832                idx++;
4833        }
4834        kfree(r10b);
4835        return 0;
4836}
4837
4838static void end_reshape_write(struct bio *bio)
4839{
4840        struct r10bio *r10_bio = get_resync_r10bio(bio);
4841        struct mddev *mddev = r10_bio->mddev;
4842        struct r10conf *conf = mddev->private;
4843        int d;
4844        int slot;
4845        int repl;
4846        struct md_rdev *rdev = NULL;
4847
4848        d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4849        if (repl)
4850                rdev = conf->mirrors[d].replacement;
4851        if (!rdev) {
4852                smp_mb();
4853                rdev = conf->mirrors[d].rdev;
4854        }
4855
4856        if (bio->bi_status) {
4857                /* FIXME should record badblock */
4858                md_error(mddev, rdev);
4859        }
4860
4861        rdev_dec_pending(rdev, mddev);
4862        end_reshape_request(r10_bio);
4863}
4864
4865static void end_reshape_request(struct r10bio *r10_bio)
4866{
4867        if (!atomic_dec_and_test(&r10_bio->remaining))
4868                return;
4869        md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4870        bio_put(r10_bio->master_bio);
4871        put_buf(r10_bio);
4872}
4873
4874static void raid10_finish_reshape(struct mddev *mddev)
4875{
4876        struct r10conf *conf = mddev->private;
4877
4878        if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4879                return;
4880
4881        if (mddev->delta_disks > 0) {
4882                if (mddev->recovery_cp > mddev->resync_max_sectors) {
4883                        mddev->recovery_cp = mddev->resync_max_sectors;
4884                        set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4885                }
4886                mddev->resync_max_sectors = mddev->array_sectors;
4887        } else {
4888                int d;
4889                rcu_read_lock();
4890                for (d = conf->geo.raid_disks ;
4891                     d < conf->geo.raid_disks - mddev->delta_disks;
4892                     d++) {
4893                        struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4894                        if (rdev)
4895                                clear_bit(In_sync, &rdev->flags);
4896                        rdev = rcu_dereference(conf->mirrors[d].replacement);
4897                        if (rdev)
4898                                clear_bit(In_sync, &rdev->flags);
4899                }
4900                rcu_read_unlock();
4901        }
4902        mddev->layout = mddev->new_layout;
4903        mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4904        mddev->reshape_position = MaxSector;
4905        mddev->delta_disks = 0;
4906        mddev->reshape_backwards = 0;
4907}
4908
4909static struct md_personality raid10_personality =
4910{
4911        .name           = "raid10",
4912        .level          = 10,
4913        .owner          = THIS_MODULE,
4914        .make_request   = raid10_make_request,
4915        .run            = raid10_run,
4916        .free           = raid10_free,
4917        .status         = raid10_status,
4918        .error_handler  = raid10_error,
4919        .hot_add_disk   = raid10_add_disk,
4920        .hot_remove_disk= raid10_remove_disk,
4921        .spare_active   = raid10_spare_active,
4922        .sync_request   = raid10_sync_request,
4923        .quiesce        = raid10_quiesce,
4924        .size           = raid10_size,
4925        .resize         = raid10_resize,
4926        .takeover       = raid10_takeover,
4927        .check_reshape  = raid10_check_reshape,
4928        .start_reshape  = raid10_start_reshape,
4929        .finish_reshape = raid10_finish_reshape,
4930        .update_reshape_pos = raid10_update_reshape_pos,
4931        .congested      = raid10_congested,
4932};
4933
4934static int __init raid_init(void)
4935{
4936        return register_md_personality(&raid10_personality);
4937}
4938
4939static void raid_exit(void)
4940{
4941        unregister_md_personality(&raid10_personality);
4942}
4943
4944module_init(raid_init);
4945module_exit(raid_exit);
4946MODULE_LICENSE("GPL");
4947MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4948MODULE_ALIAS("md-personality-9"); /* RAID10 */
4949MODULE_ALIAS("md-raid10");
4950MODULE_ALIAS("md-level-10");
4951
4952module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4953