linux/drivers/md/raid5-cache.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2015 Shaohua Li <shli@fb.com>
   4 * Copyright (C) 2016 Song Liu <songliubraving@fb.com>
   5 */
   6#include <linux/kernel.h>
   7#include <linux/wait.h>
   8#include <linux/blkdev.h>
   9#include <linux/slab.h>
  10#include <linux/raid/md_p.h>
  11#include <linux/crc32c.h>
  12#include <linux/random.h>
  13#include <linux/kthread.h>
  14#include <linux/types.h>
  15#include "md.h"
  16#include "raid5.h"
  17#include "md-bitmap.h"
  18#include "raid5-log.h"
  19
  20/*
  21 * metadata/data stored in disk with 4k size unit (a block) regardless
  22 * underneath hardware sector size. only works with PAGE_SIZE == 4096
  23 */
  24#define BLOCK_SECTORS (8)
  25#define BLOCK_SECTOR_SHIFT (3)
  26
  27/*
  28 * log->max_free_space is min(1/4 disk size, 10G reclaimable space).
  29 *
  30 * In write through mode, the reclaim runs every log->max_free_space.
  31 * This can prevent the recovery scans for too long
  32 */
  33#define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
  34#define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
  35
  36/* wake up reclaim thread periodically */
  37#define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ)
  38/* start flush with these full stripes */
  39#define R5C_FULL_STRIPE_FLUSH_BATCH(conf) (conf->max_nr_stripes / 4)
  40/* reclaim stripes in groups */
  41#define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2)
  42
  43/*
  44 * We only need 2 bios per I/O unit to make progress, but ensure we
  45 * have a few more available to not get too tight.
  46 */
  47#define R5L_POOL_SIZE   4
  48
  49static char *r5c_journal_mode_str[] = {"write-through",
  50                                       "write-back"};
  51/*
  52 * raid5 cache state machine
  53 *
  54 * With the RAID cache, each stripe works in two phases:
  55 *      - caching phase
  56 *      - writing-out phase
  57 *
  58 * These two phases are controlled by bit STRIPE_R5C_CACHING:
  59 *   if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase
  60 *   if STRIPE_R5C_CACHING == 1, the stripe is in caching phase
  61 *
  62 * When there is no journal, or the journal is in write-through mode,
  63 * the stripe is always in writing-out phase.
  64 *
  65 * For write-back journal, the stripe is sent to caching phase on write
  66 * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off
  67 * the write-out phase by clearing STRIPE_R5C_CACHING.
  68 *
  69 * Stripes in caching phase do not write the raid disks. Instead, all
  70 * writes are committed from the log device. Therefore, a stripe in
  71 * caching phase handles writes as:
  72 *      - write to log device
  73 *      - return IO
  74 *
  75 * Stripes in writing-out phase handle writes as:
  76 *      - calculate parity
  77 *      - write pending data and parity to journal
  78 *      - write data and parity to raid disks
  79 *      - return IO for pending writes
  80 */
  81
  82struct r5l_log {
  83        struct md_rdev *rdev;
  84
  85        u32 uuid_checksum;
  86
  87        sector_t device_size;           /* log device size, round to
  88                                         * BLOCK_SECTORS */
  89        sector_t max_free_space;        /* reclaim run if free space is at
  90                                         * this size */
  91
  92        sector_t last_checkpoint;       /* log tail. where recovery scan
  93                                         * starts from */
  94        u64 last_cp_seq;                /* log tail sequence */
  95
  96        sector_t log_start;             /* log head. where new data appends */
  97        u64 seq;                        /* log head sequence */
  98
  99        sector_t next_checkpoint;
 100
 101        struct mutex io_mutex;
 102        struct r5l_io_unit *current_io; /* current io_unit accepting new data */
 103
 104        spinlock_t io_list_lock;
 105        struct list_head running_ios;   /* io_units which are still running,
 106                                         * and have not yet been completely
 107                                         * written to the log */
 108        struct list_head io_end_ios;    /* io_units which have been completely
 109                                         * written to the log but not yet written
 110                                         * to the RAID */
 111        struct list_head flushing_ios;  /* io_units which are waiting for log
 112                                         * cache flush */
 113        struct list_head finished_ios;  /* io_units which settle down in log disk */
 114        struct bio flush_bio;
 115
 116        struct list_head no_mem_stripes;   /* pending stripes, -ENOMEM */
 117
 118        struct kmem_cache *io_kc;
 119        mempool_t io_pool;
 120        struct bio_set bs;
 121        mempool_t meta_pool;
 122
 123        struct md_thread *reclaim_thread;
 124        unsigned long reclaim_target;   /* number of space that need to be
 125                                         * reclaimed.  if it's 0, reclaim spaces
 126                                         * used by io_units which are in
 127                                         * IO_UNIT_STRIPE_END state (eg, reclaim
 128                                         * dones't wait for specific io_unit
 129                                         * switching to IO_UNIT_STRIPE_END
 130                                         * state) */
 131        wait_queue_head_t iounit_wait;
 132
 133        struct list_head no_space_stripes; /* pending stripes, log has no space */
 134        spinlock_t no_space_stripes_lock;
 135
 136        bool need_cache_flush;
 137
 138        /* for r5c_cache */
 139        enum r5c_journal_mode r5c_journal_mode;
 140
 141        /* all stripes in r5cache, in the order of seq at sh->log_start */
 142        struct list_head stripe_in_journal_list;
 143
 144        spinlock_t stripe_in_journal_lock;
 145        atomic_t stripe_in_journal_count;
 146
 147        /* to submit async io_units, to fulfill ordering of flush */
 148        struct work_struct deferred_io_work;
 149        /* to disable write back during in degraded mode */
 150        struct work_struct disable_writeback_work;
 151
 152        /* to for chunk_aligned_read in writeback mode, details below */
 153        spinlock_t tree_lock;
 154        struct radix_tree_root big_stripe_tree;
 155};
 156
 157/*
 158 * Enable chunk_aligned_read() with write back cache.
 159 *
 160 * Each chunk may contain more than one stripe (for example, a 256kB
 161 * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For
 162 * chunk_aligned_read, these stripes are grouped into one "big_stripe".
 163 * For each big_stripe, we count how many stripes of this big_stripe
 164 * are in the write back cache. These data are tracked in a radix tree
 165 * (big_stripe_tree). We use radix_tree item pointer as the counter.
 166 * r5c_tree_index() is used to calculate keys for the radix tree.
 167 *
 168 * chunk_aligned_read() calls r5c_big_stripe_cached() to look up
 169 * big_stripe of each chunk in the tree. If this big_stripe is in the
 170 * tree, chunk_aligned_read() aborts. This look up is protected by
 171 * rcu_read_lock().
 172 *
 173 * It is necessary to remember whether a stripe is counted in
 174 * big_stripe_tree. Instead of adding new flag, we reuses existing flags:
 175 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these
 176 * two flags are set, the stripe is counted in big_stripe_tree. This
 177 * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to
 178 * r5c_try_caching_write(); and moving clear_bit of
 179 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to
 180 * r5c_finish_stripe_write_out().
 181 */
 182
 183/*
 184 * radix tree requests lowest 2 bits of data pointer to be 2b'00.
 185 * So it is necessary to left shift the counter by 2 bits before using it
 186 * as data pointer of the tree.
 187 */
 188#define R5C_RADIX_COUNT_SHIFT 2
 189
 190/*
 191 * calculate key for big_stripe_tree
 192 *
 193 * sect: align_bi->bi_iter.bi_sector or sh->sector
 194 */
 195static inline sector_t r5c_tree_index(struct r5conf *conf,
 196                                      sector_t sect)
 197{
 198        sector_t offset;
 199
 200        offset = sector_div(sect, conf->chunk_sectors);
 201        return sect;
 202}
 203
 204/*
 205 * an IO range starts from a meta data block and end at the next meta data
 206 * block. The io unit's the meta data block tracks data/parity followed it. io
 207 * unit is written to log disk with normal write, as we always flush log disk
 208 * first and then start move data to raid disks, there is no requirement to
 209 * write io unit with FLUSH/FUA
 210 */
 211struct r5l_io_unit {
 212        struct r5l_log *log;
 213
 214        struct page *meta_page; /* store meta block */
 215        int meta_offset;        /* current offset in meta_page */
 216
 217        struct bio *current_bio;/* current_bio accepting new data */
 218
 219        atomic_t pending_stripe;/* how many stripes not flushed to raid */
 220        u64 seq;                /* seq number of the metablock */
 221        sector_t log_start;     /* where the io_unit starts */
 222        sector_t log_end;       /* where the io_unit ends */
 223        struct list_head log_sibling; /* log->running_ios */
 224        struct list_head stripe_list; /* stripes added to the io_unit */
 225
 226        int state;
 227        bool need_split_bio;
 228        struct bio *split_bio;
 229
 230        unsigned int has_flush:1;               /* include flush request */
 231        unsigned int has_fua:1;                 /* include fua request */
 232        unsigned int has_null_flush:1;          /* include null flush request */
 233        unsigned int has_flush_payload:1;       /* include flush payload  */
 234        /*
 235         * io isn't sent yet, flush/fua request can only be submitted till it's
 236         * the first IO in running_ios list
 237         */
 238        unsigned int io_deferred:1;
 239
 240        struct bio_list flush_barriers;   /* size == 0 flush bios */
 241};
 242
 243/* r5l_io_unit state */
 244enum r5l_io_unit_state {
 245        IO_UNIT_RUNNING = 0,    /* accepting new IO */
 246        IO_UNIT_IO_START = 1,   /* io_unit bio start writing to log,
 247                                 * don't accepting new bio */
 248        IO_UNIT_IO_END = 2,     /* io_unit bio finish writing to log */
 249        IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */
 250};
 251
 252bool r5c_is_writeback(struct r5l_log *log)
 253{
 254        return (log != NULL &&
 255                log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK);
 256}
 257
 258static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
 259{
 260        start += inc;
 261        if (start >= log->device_size)
 262                start = start - log->device_size;
 263        return start;
 264}
 265
 266static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
 267                                  sector_t end)
 268{
 269        if (end >= start)
 270                return end - start;
 271        else
 272                return end + log->device_size - start;
 273}
 274
 275static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
 276{
 277        sector_t used_size;
 278
 279        used_size = r5l_ring_distance(log, log->last_checkpoint,
 280                                        log->log_start);
 281
 282        return log->device_size > used_size + size;
 283}
 284
 285static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
 286                                    enum r5l_io_unit_state state)
 287{
 288        if (WARN_ON(io->state >= state))
 289                return;
 290        io->state = state;
 291}
 292
 293static void
 294r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev)
 295{
 296        struct bio *wbi, *wbi2;
 297
 298        wbi = dev->written;
 299        dev->written = NULL;
 300        while (wbi && wbi->bi_iter.bi_sector <
 301               dev->sector + STRIPE_SECTORS) {
 302                wbi2 = r5_next_bio(wbi, dev->sector);
 303                md_write_end(conf->mddev);
 304                bio_endio(wbi);
 305                wbi = wbi2;
 306        }
 307}
 308
 309void r5c_handle_cached_data_endio(struct r5conf *conf,
 310                                  struct stripe_head *sh, int disks)
 311{
 312        int i;
 313
 314        for (i = sh->disks; i--; ) {
 315                if (sh->dev[i].written) {
 316                        set_bit(R5_UPTODATE, &sh->dev[i].flags);
 317                        r5c_return_dev_pending_writes(conf, &sh->dev[i]);
 318                        md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
 319                                           STRIPE_SECTORS,
 320                                           !test_bit(STRIPE_DEGRADED, &sh->state),
 321                                           0);
 322                }
 323        }
 324}
 325
 326void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
 327
 328/* Check whether we should flush some stripes to free up stripe cache */
 329void r5c_check_stripe_cache_usage(struct r5conf *conf)
 330{
 331        int total_cached;
 332
 333        if (!r5c_is_writeback(conf->log))
 334                return;
 335
 336        total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
 337                atomic_read(&conf->r5c_cached_full_stripes);
 338
 339        /*
 340         * The following condition is true for either of the following:
 341         *   - stripe cache pressure high:
 342         *          total_cached > 3/4 min_nr_stripes ||
 343         *          empty_inactive_list_nr > 0
 344         *   - stripe cache pressure moderate:
 345         *          total_cached > 1/2 min_nr_stripes
 346         */
 347        if (total_cached > conf->min_nr_stripes * 1 / 2 ||
 348            atomic_read(&conf->empty_inactive_list_nr) > 0)
 349                r5l_wake_reclaim(conf->log, 0);
 350}
 351
 352/*
 353 * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full
 354 * stripes in the cache
 355 */
 356void r5c_check_cached_full_stripe(struct r5conf *conf)
 357{
 358        if (!r5c_is_writeback(conf->log))
 359                return;
 360
 361        /*
 362         * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes
 363         * or a full stripe (chunk size / 4k stripes).
 364         */
 365        if (atomic_read(&conf->r5c_cached_full_stripes) >=
 366            min(R5C_FULL_STRIPE_FLUSH_BATCH(conf),
 367                conf->chunk_sectors >> STRIPE_SHIFT))
 368                r5l_wake_reclaim(conf->log, 0);
 369}
 370
 371/*
 372 * Total log space (in sectors) needed to flush all data in cache
 373 *
 374 * To avoid deadlock due to log space, it is necessary to reserve log
 375 * space to flush critical stripes (stripes that occupying log space near
 376 * last_checkpoint). This function helps check how much log space is
 377 * required to flush all cached stripes.
 378 *
 379 * To reduce log space requirements, two mechanisms are used to give cache
 380 * flush higher priorities:
 381 *    1. In handle_stripe_dirtying() and schedule_reconstruction(),
 382 *       stripes ALREADY in journal can be flushed w/o pending writes;
 383 *    2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal
 384 *       can be delayed (r5l_add_no_space_stripe).
 385 *
 386 * In cache flush, the stripe goes through 1 and then 2. For a stripe that
 387 * already passed 1, flushing it requires at most (conf->max_degraded + 1)
 388 * pages of journal space. For stripes that has not passed 1, flushing it
 389 * requires (conf->raid_disks + 1) pages of journal space. There are at
 390 * most (conf->group_cnt + 1) stripe that passed 1. So total journal space
 391 * required to flush all cached stripes (in pages) is:
 392 *
 393 *     (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) +
 394 *     (group_cnt + 1) * (raid_disks + 1)
 395 * or
 396 *     (stripe_in_journal_count) * (max_degraded + 1) +
 397 *     (group_cnt + 1) * (raid_disks - max_degraded)
 398 */
 399static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf)
 400{
 401        struct r5l_log *log = conf->log;
 402
 403        if (!r5c_is_writeback(log))
 404                return 0;
 405
 406        return BLOCK_SECTORS *
 407                ((conf->max_degraded + 1) * atomic_read(&log->stripe_in_journal_count) +
 408                 (conf->raid_disks - conf->max_degraded) * (conf->group_cnt + 1));
 409}
 410
 411/*
 412 * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL
 413 *
 414 * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of
 415 * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log
 416 * device is less than 2x of reclaim_required_space.
 417 */
 418static inline void r5c_update_log_state(struct r5l_log *log)
 419{
 420        struct r5conf *conf = log->rdev->mddev->private;
 421        sector_t free_space;
 422        sector_t reclaim_space;
 423        bool wake_reclaim = false;
 424
 425        if (!r5c_is_writeback(log))
 426                return;
 427
 428        free_space = r5l_ring_distance(log, log->log_start,
 429                                       log->last_checkpoint);
 430        reclaim_space = r5c_log_required_to_flush_cache(conf);
 431        if (free_space < 2 * reclaim_space)
 432                set_bit(R5C_LOG_CRITICAL, &conf->cache_state);
 433        else {
 434                if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
 435                        wake_reclaim = true;
 436                clear_bit(R5C_LOG_CRITICAL, &conf->cache_state);
 437        }
 438        if (free_space < 3 * reclaim_space)
 439                set_bit(R5C_LOG_TIGHT, &conf->cache_state);
 440        else
 441                clear_bit(R5C_LOG_TIGHT, &conf->cache_state);
 442
 443        if (wake_reclaim)
 444                r5l_wake_reclaim(log, 0);
 445}
 446
 447/*
 448 * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING.
 449 * This function should only be called in write-back mode.
 450 */
 451void r5c_make_stripe_write_out(struct stripe_head *sh)
 452{
 453        struct r5conf *conf = sh->raid_conf;
 454        struct r5l_log *log = conf->log;
 455
 456        BUG_ON(!r5c_is_writeback(log));
 457
 458        WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
 459        clear_bit(STRIPE_R5C_CACHING, &sh->state);
 460
 461        if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
 462                atomic_inc(&conf->preread_active_stripes);
 463}
 464
 465static void r5c_handle_data_cached(struct stripe_head *sh)
 466{
 467        int i;
 468
 469        for (i = sh->disks; i--; )
 470                if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
 471                        set_bit(R5_InJournal, &sh->dev[i].flags);
 472                        clear_bit(R5_LOCKED, &sh->dev[i].flags);
 473                }
 474        clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
 475}
 476
 477/*
 478 * this journal write must contain full parity,
 479 * it may also contain some data pages
 480 */
 481static void r5c_handle_parity_cached(struct stripe_head *sh)
 482{
 483        int i;
 484
 485        for (i = sh->disks; i--; )
 486                if (test_bit(R5_InJournal, &sh->dev[i].flags))
 487                        set_bit(R5_Wantwrite, &sh->dev[i].flags);
 488}
 489
 490/*
 491 * Setting proper flags after writing (or flushing) data and/or parity to the
 492 * log device. This is called from r5l_log_endio() or r5l_log_flush_endio().
 493 */
 494static void r5c_finish_cache_stripe(struct stripe_head *sh)
 495{
 496        struct r5l_log *log = sh->raid_conf->log;
 497
 498        if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
 499                BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
 500                /*
 501                 * Set R5_InJournal for parity dev[pd_idx]. This means
 502                 * all data AND parity in the journal. For RAID 6, it is
 503                 * NOT necessary to set the flag for dev[qd_idx], as the
 504                 * two parities are written out together.
 505                 */
 506                set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
 507        } else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) {
 508                r5c_handle_data_cached(sh);
 509        } else {
 510                r5c_handle_parity_cached(sh);
 511                set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
 512        }
 513}
 514
 515static void r5l_io_run_stripes(struct r5l_io_unit *io)
 516{
 517        struct stripe_head *sh, *next;
 518
 519        list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
 520                list_del_init(&sh->log_list);
 521
 522                r5c_finish_cache_stripe(sh);
 523
 524                set_bit(STRIPE_HANDLE, &sh->state);
 525                raid5_release_stripe(sh);
 526        }
 527}
 528
 529static void r5l_log_run_stripes(struct r5l_log *log)
 530{
 531        struct r5l_io_unit *io, *next;
 532
 533        lockdep_assert_held(&log->io_list_lock);
 534
 535        list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
 536                /* don't change list order */
 537                if (io->state < IO_UNIT_IO_END)
 538                        break;
 539
 540                list_move_tail(&io->log_sibling, &log->finished_ios);
 541                r5l_io_run_stripes(io);
 542        }
 543}
 544
 545static void r5l_move_to_end_ios(struct r5l_log *log)
 546{
 547        struct r5l_io_unit *io, *next;
 548
 549        lockdep_assert_held(&log->io_list_lock);
 550
 551        list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
 552                /* don't change list order */
 553                if (io->state < IO_UNIT_IO_END)
 554                        break;
 555                list_move_tail(&io->log_sibling, &log->io_end_ios);
 556        }
 557}
 558
 559static void __r5l_stripe_write_finished(struct r5l_io_unit *io);
 560static void r5l_log_endio(struct bio *bio)
 561{
 562        struct r5l_io_unit *io = bio->bi_private;
 563        struct r5l_io_unit *io_deferred;
 564        struct r5l_log *log = io->log;
 565        unsigned long flags;
 566        bool has_null_flush;
 567        bool has_flush_payload;
 568
 569        if (bio->bi_status)
 570                md_error(log->rdev->mddev, log->rdev);
 571
 572        bio_put(bio);
 573        mempool_free(io->meta_page, &log->meta_pool);
 574
 575        spin_lock_irqsave(&log->io_list_lock, flags);
 576        __r5l_set_io_unit_state(io, IO_UNIT_IO_END);
 577
 578        /*
 579         * if the io doesn't not have null_flush or flush payload,
 580         * it is not safe to access it after releasing io_list_lock.
 581         * Therefore, it is necessary to check the condition with
 582         * the lock held.
 583         */
 584        has_null_flush = io->has_null_flush;
 585        has_flush_payload = io->has_flush_payload;
 586
 587        if (log->need_cache_flush && !list_empty(&io->stripe_list))
 588                r5l_move_to_end_ios(log);
 589        else
 590                r5l_log_run_stripes(log);
 591        if (!list_empty(&log->running_ios)) {
 592                /*
 593                 * FLUSH/FUA io_unit is deferred because of ordering, now we
 594                 * can dispatch it
 595                 */
 596                io_deferred = list_first_entry(&log->running_ios,
 597                                               struct r5l_io_unit, log_sibling);
 598                if (io_deferred->io_deferred)
 599                        schedule_work(&log->deferred_io_work);
 600        }
 601
 602        spin_unlock_irqrestore(&log->io_list_lock, flags);
 603
 604        if (log->need_cache_flush)
 605                md_wakeup_thread(log->rdev->mddev->thread);
 606
 607        /* finish flush only io_unit and PAYLOAD_FLUSH only io_unit */
 608        if (has_null_flush) {
 609                struct bio *bi;
 610
 611                WARN_ON(bio_list_empty(&io->flush_barriers));
 612                while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) {
 613                        bio_endio(bi);
 614                        if (atomic_dec_and_test(&io->pending_stripe)) {
 615                                __r5l_stripe_write_finished(io);
 616                                return;
 617                        }
 618                }
 619        }
 620        /* decrease pending_stripe for flush payload */
 621        if (has_flush_payload)
 622                if (atomic_dec_and_test(&io->pending_stripe))
 623                        __r5l_stripe_write_finished(io);
 624}
 625
 626static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io)
 627{
 628        unsigned long flags;
 629
 630        spin_lock_irqsave(&log->io_list_lock, flags);
 631        __r5l_set_io_unit_state(io, IO_UNIT_IO_START);
 632        spin_unlock_irqrestore(&log->io_list_lock, flags);
 633
 634        /*
 635         * In case of journal device failures, submit_bio will get error
 636         * and calls endio, then active stripes will continue write
 637         * process. Therefore, it is not necessary to check Faulty bit
 638         * of journal device here.
 639         *
 640         * We can't check split_bio after current_bio is submitted. If
 641         * io->split_bio is null, after current_bio is submitted, current_bio
 642         * might already be completed and the io_unit is freed. We submit
 643         * split_bio first to avoid the issue.
 644         */
 645        if (io->split_bio) {
 646                if (io->has_flush)
 647                        io->split_bio->bi_opf |= REQ_PREFLUSH;
 648                if (io->has_fua)
 649                        io->split_bio->bi_opf |= REQ_FUA;
 650                submit_bio(io->split_bio);
 651        }
 652
 653        if (io->has_flush)
 654                io->current_bio->bi_opf |= REQ_PREFLUSH;
 655        if (io->has_fua)
 656                io->current_bio->bi_opf |= REQ_FUA;
 657        submit_bio(io->current_bio);
 658}
 659
 660/* deferred io_unit will be dispatched here */
 661static void r5l_submit_io_async(struct work_struct *work)
 662{
 663        struct r5l_log *log = container_of(work, struct r5l_log,
 664                                           deferred_io_work);
 665        struct r5l_io_unit *io = NULL;
 666        unsigned long flags;
 667
 668        spin_lock_irqsave(&log->io_list_lock, flags);
 669        if (!list_empty(&log->running_ios)) {
 670                io = list_first_entry(&log->running_ios, struct r5l_io_unit,
 671                                      log_sibling);
 672                if (!io->io_deferred)
 673                        io = NULL;
 674                else
 675                        io->io_deferred = 0;
 676        }
 677        spin_unlock_irqrestore(&log->io_list_lock, flags);
 678        if (io)
 679                r5l_do_submit_io(log, io);
 680}
 681
 682static void r5c_disable_writeback_async(struct work_struct *work)
 683{
 684        struct r5l_log *log = container_of(work, struct r5l_log,
 685                                           disable_writeback_work);
 686        struct mddev *mddev = log->rdev->mddev;
 687        struct r5conf *conf = mddev->private;
 688        int locked = 0;
 689
 690        if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
 691                return;
 692        pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n",
 693                mdname(mddev));
 694
 695        /* wait superblock change before suspend */
 696        wait_event(mddev->sb_wait,
 697                   conf->log == NULL ||
 698                   (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) &&
 699                    (locked = mddev_trylock(mddev))));
 700        if (locked) {
 701                mddev_suspend(mddev);
 702                log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
 703                mddev_resume(mddev);
 704                mddev_unlock(mddev);
 705        }
 706}
 707
 708static void r5l_submit_current_io(struct r5l_log *log)
 709{
 710        struct r5l_io_unit *io = log->current_io;
 711        struct r5l_meta_block *block;
 712        unsigned long flags;
 713        u32 crc;
 714        bool do_submit = true;
 715
 716        if (!io)
 717                return;
 718
 719        block = page_address(io->meta_page);
 720        block->meta_size = cpu_to_le32(io->meta_offset);
 721        crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
 722        block->checksum = cpu_to_le32(crc);
 723
 724        log->current_io = NULL;
 725        spin_lock_irqsave(&log->io_list_lock, flags);
 726        if (io->has_flush || io->has_fua) {
 727                if (io != list_first_entry(&log->running_ios,
 728                                           struct r5l_io_unit, log_sibling)) {
 729                        io->io_deferred = 1;
 730                        do_submit = false;
 731                }
 732        }
 733        spin_unlock_irqrestore(&log->io_list_lock, flags);
 734        if (do_submit)
 735                r5l_do_submit_io(log, io);
 736}
 737
 738static struct bio *r5l_bio_alloc(struct r5l_log *log)
 739{
 740        struct bio *bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES, &log->bs);
 741
 742        bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
 743        bio_set_dev(bio, log->rdev->bdev);
 744        bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
 745
 746        return bio;
 747}
 748
 749static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
 750{
 751        log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
 752
 753        r5c_update_log_state(log);
 754        /*
 755         * If we filled up the log device start from the beginning again,
 756         * which will require a new bio.
 757         *
 758         * Note: for this to work properly the log size needs to me a multiple
 759         * of BLOCK_SECTORS.
 760         */
 761        if (log->log_start == 0)
 762                io->need_split_bio = true;
 763
 764        io->log_end = log->log_start;
 765}
 766
 767static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
 768{
 769        struct r5l_io_unit *io;
 770        struct r5l_meta_block *block;
 771
 772        io = mempool_alloc(&log->io_pool, GFP_ATOMIC);
 773        if (!io)
 774                return NULL;
 775        memset(io, 0, sizeof(*io));
 776
 777        io->log = log;
 778        INIT_LIST_HEAD(&io->log_sibling);
 779        INIT_LIST_HEAD(&io->stripe_list);
 780        bio_list_init(&io->flush_barriers);
 781        io->state = IO_UNIT_RUNNING;
 782
 783        io->meta_page = mempool_alloc(&log->meta_pool, GFP_NOIO);
 784        block = page_address(io->meta_page);
 785        clear_page(block);
 786        block->magic = cpu_to_le32(R5LOG_MAGIC);
 787        block->version = R5LOG_VERSION;
 788        block->seq = cpu_to_le64(log->seq);
 789        block->position = cpu_to_le64(log->log_start);
 790
 791        io->log_start = log->log_start;
 792        io->meta_offset = sizeof(struct r5l_meta_block);
 793        io->seq = log->seq++;
 794
 795        io->current_bio = r5l_bio_alloc(log);
 796        io->current_bio->bi_end_io = r5l_log_endio;
 797        io->current_bio->bi_private = io;
 798        bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
 799
 800        r5_reserve_log_entry(log, io);
 801
 802        spin_lock_irq(&log->io_list_lock);
 803        list_add_tail(&io->log_sibling, &log->running_ios);
 804        spin_unlock_irq(&log->io_list_lock);
 805
 806        return io;
 807}
 808
 809static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
 810{
 811        if (log->current_io &&
 812            log->current_io->meta_offset + payload_size > PAGE_SIZE)
 813                r5l_submit_current_io(log);
 814
 815        if (!log->current_io) {
 816                log->current_io = r5l_new_meta(log);
 817                if (!log->current_io)
 818                        return -ENOMEM;
 819        }
 820
 821        return 0;
 822}
 823
 824static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
 825                                    sector_t location,
 826                                    u32 checksum1, u32 checksum2,
 827                                    bool checksum2_valid)
 828{
 829        struct r5l_io_unit *io = log->current_io;
 830        struct r5l_payload_data_parity *payload;
 831
 832        payload = page_address(io->meta_page) + io->meta_offset;
 833        payload->header.type = cpu_to_le16(type);
 834        payload->header.flags = cpu_to_le16(0);
 835        payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
 836                                    (PAGE_SHIFT - 9));
 837        payload->location = cpu_to_le64(location);
 838        payload->checksum[0] = cpu_to_le32(checksum1);
 839        if (checksum2_valid)
 840                payload->checksum[1] = cpu_to_le32(checksum2);
 841
 842        io->meta_offset += sizeof(struct r5l_payload_data_parity) +
 843                sizeof(__le32) * (1 + !!checksum2_valid);
 844}
 845
 846static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
 847{
 848        struct r5l_io_unit *io = log->current_io;
 849
 850        if (io->need_split_bio) {
 851                BUG_ON(io->split_bio);
 852                io->split_bio = io->current_bio;
 853                io->current_bio = r5l_bio_alloc(log);
 854                bio_chain(io->current_bio, io->split_bio);
 855                io->need_split_bio = false;
 856        }
 857
 858        if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
 859                BUG();
 860
 861        r5_reserve_log_entry(log, io);
 862}
 863
 864static void r5l_append_flush_payload(struct r5l_log *log, sector_t sect)
 865{
 866        struct mddev *mddev = log->rdev->mddev;
 867        struct r5conf *conf = mddev->private;
 868        struct r5l_io_unit *io;
 869        struct r5l_payload_flush *payload;
 870        int meta_size;
 871
 872        /*
 873         * payload_flush requires extra writes to the journal.
 874         * To avoid handling the extra IO in quiesce, just skip
 875         * flush_payload
 876         */
 877        if (conf->quiesce)
 878                return;
 879
 880        mutex_lock(&log->io_mutex);
 881        meta_size = sizeof(struct r5l_payload_flush) + sizeof(__le64);
 882
 883        if (r5l_get_meta(log, meta_size)) {
 884                mutex_unlock(&log->io_mutex);
 885                return;
 886        }
 887
 888        /* current implementation is one stripe per flush payload */
 889        io = log->current_io;
 890        payload = page_address(io->meta_page) + io->meta_offset;
 891        payload->header.type = cpu_to_le16(R5LOG_PAYLOAD_FLUSH);
 892        payload->header.flags = cpu_to_le16(0);
 893        payload->size = cpu_to_le32(sizeof(__le64));
 894        payload->flush_stripes[0] = cpu_to_le64(sect);
 895        io->meta_offset += meta_size;
 896        /* multiple flush payloads count as one pending_stripe */
 897        if (!io->has_flush_payload) {
 898                io->has_flush_payload = 1;
 899                atomic_inc(&io->pending_stripe);
 900        }
 901        mutex_unlock(&log->io_mutex);
 902}
 903
 904static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
 905                           int data_pages, int parity_pages)
 906{
 907        int i;
 908        int meta_size;
 909        int ret;
 910        struct r5l_io_unit *io;
 911
 912        meta_size =
 913                ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
 914                 * data_pages) +
 915                sizeof(struct r5l_payload_data_parity) +
 916                sizeof(__le32) * parity_pages;
 917
 918        ret = r5l_get_meta(log, meta_size);
 919        if (ret)
 920                return ret;
 921
 922        io = log->current_io;
 923
 924        if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state))
 925                io->has_flush = 1;
 926
 927        for (i = 0; i < sh->disks; i++) {
 928                if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
 929                    test_bit(R5_InJournal, &sh->dev[i].flags))
 930                        continue;
 931                if (i == sh->pd_idx || i == sh->qd_idx)
 932                        continue;
 933                if (test_bit(R5_WantFUA, &sh->dev[i].flags) &&
 934                    log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) {
 935                        io->has_fua = 1;
 936                        /*
 937                         * we need to flush journal to make sure recovery can
 938                         * reach the data with fua flag
 939                         */
 940                        io->has_flush = 1;
 941                }
 942                r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
 943                                        raid5_compute_blocknr(sh, i, 0),
 944                                        sh->dev[i].log_checksum, 0, false);
 945                r5l_append_payload_page(log, sh->dev[i].page);
 946        }
 947
 948        if (parity_pages == 2) {
 949                r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
 950                                        sh->sector, sh->dev[sh->pd_idx].log_checksum,
 951                                        sh->dev[sh->qd_idx].log_checksum, true);
 952                r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
 953                r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
 954        } else if (parity_pages == 1) {
 955                r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
 956                                        sh->sector, sh->dev[sh->pd_idx].log_checksum,
 957                                        0, false);
 958                r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
 959        } else  /* Just writing data, not parity, in caching phase */
 960                BUG_ON(parity_pages != 0);
 961
 962        list_add_tail(&sh->log_list, &io->stripe_list);
 963        atomic_inc(&io->pending_stripe);
 964        sh->log_io = io;
 965
 966        if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
 967                return 0;
 968
 969        if (sh->log_start == MaxSector) {
 970                BUG_ON(!list_empty(&sh->r5c));
 971                sh->log_start = io->log_start;
 972                spin_lock_irq(&log->stripe_in_journal_lock);
 973                list_add_tail(&sh->r5c,
 974                              &log->stripe_in_journal_list);
 975                spin_unlock_irq(&log->stripe_in_journal_lock);
 976                atomic_inc(&log->stripe_in_journal_count);
 977        }
 978        return 0;
 979}
 980
 981/* add stripe to no_space_stripes, and then wake up reclaim */
 982static inline void r5l_add_no_space_stripe(struct r5l_log *log,
 983                                           struct stripe_head *sh)
 984{
 985        spin_lock(&log->no_space_stripes_lock);
 986        list_add_tail(&sh->log_list, &log->no_space_stripes);
 987        spin_unlock(&log->no_space_stripes_lock);
 988}
 989
 990/*
 991 * running in raid5d, where reclaim could wait for raid5d too (when it flushes
 992 * data from log to raid disks), so we shouldn't wait for reclaim here
 993 */
 994int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
 995{
 996        struct r5conf *conf = sh->raid_conf;
 997        int write_disks = 0;
 998        int data_pages, parity_pages;
 999        int reserve;
1000        int i;
1001        int ret = 0;
1002        bool wake_reclaim = false;
1003
1004        if (!log)
1005                return -EAGAIN;
1006        /* Don't support stripe batch */
1007        if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
1008            test_bit(STRIPE_SYNCING, &sh->state)) {
1009                /* the stripe is written to log, we start writing it to raid */
1010                clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
1011                return -EAGAIN;
1012        }
1013
1014        WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
1015
1016        for (i = 0; i < sh->disks; i++) {
1017                void *addr;
1018
1019                if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
1020                    test_bit(R5_InJournal, &sh->dev[i].flags))
1021                        continue;
1022
1023                write_disks++;
1024                /* checksum is already calculated in last run */
1025                if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
1026                        continue;
1027                addr = kmap_atomic(sh->dev[i].page);
1028                sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
1029                                                    addr, PAGE_SIZE);
1030                kunmap_atomic(addr);
1031        }
1032        parity_pages = 1 + !!(sh->qd_idx >= 0);
1033        data_pages = write_disks - parity_pages;
1034
1035        set_bit(STRIPE_LOG_TRAPPED, &sh->state);
1036        /*
1037         * The stripe must enter state machine again to finish the write, so
1038         * don't delay.
1039         */
1040        clear_bit(STRIPE_DELAYED, &sh->state);
1041        atomic_inc(&sh->count);
1042
1043        mutex_lock(&log->io_mutex);
1044        /* meta + data */
1045        reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
1046
1047        if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1048                if (!r5l_has_free_space(log, reserve)) {
1049                        r5l_add_no_space_stripe(log, sh);
1050                        wake_reclaim = true;
1051                } else {
1052                        ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1053                        if (ret) {
1054                                spin_lock_irq(&log->io_list_lock);
1055                                list_add_tail(&sh->log_list,
1056                                              &log->no_mem_stripes);
1057                                spin_unlock_irq(&log->io_list_lock);
1058                        }
1059                }
1060        } else {  /* R5C_JOURNAL_MODE_WRITE_BACK */
1061                /*
1062                 * log space critical, do not process stripes that are
1063                 * not in cache yet (sh->log_start == MaxSector).
1064                 */
1065                if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
1066                    sh->log_start == MaxSector) {
1067                        r5l_add_no_space_stripe(log, sh);
1068                        wake_reclaim = true;
1069                        reserve = 0;
1070                } else if (!r5l_has_free_space(log, reserve)) {
1071                        if (sh->log_start == log->last_checkpoint)
1072                                BUG();
1073                        else
1074                                r5l_add_no_space_stripe(log, sh);
1075                } else {
1076                        ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1077                        if (ret) {
1078                                spin_lock_irq(&log->io_list_lock);
1079                                list_add_tail(&sh->log_list,
1080                                              &log->no_mem_stripes);
1081                                spin_unlock_irq(&log->io_list_lock);
1082                        }
1083                }
1084        }
1085
1086        mutex_unlock(&log->io_mutex);
1087        if (wake_reclaim)
1088                r5l_wake_reclaim(log, reserve);
1089        return 0;
1090}
1091
1092void r5l_write_stripe_run(struct r5l_log *log)
1093{
1094        if (!log)
1095                return;
1096        mutex_lock(&log->io_mutex);
1097        r5l_submit_current_io(log);
1098        mutex_unlock(&log->io_mutex);
1099}
1100
1101int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
1102{
1103        if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1104                /*
1105                 * in write through (journal only)
1106                 * we flush log disk cache first, then write stripe data to
1107                 * raid disks. So if bio is finished, the log disk cache is
1108                 * flushed already. The recovery guarantees we can recovery
1109                 * the bio from log disk, so we don't need to flush again
1110                 */
1111                if (bio->bi_iter.bi_size == 0) {
1112                        bio_endio(bio);
1113                        return 0;
1114                }
1115                bio->bi_opf &= ~REQ_PREFLUSH;
1116        } else {
1117                /* write back (with cache) */
1118                if (bio->bi_iter.bi_size == 0) {
1119                        mutex_lock(&log->io_mutex);
1120                        r5l_get_meta(log, 0);
1121                        bio_list_add(&log->current_io->flush_barriers, bio);
1122                        log->current_io->has_flush = 1;
1123                        log->current_io->has_null_flush = 1;
1124                        atomic_inc(&log->current_io->pending_stripe);
1125                        r5l_submit_current_io(log);
1126                        mutex_unlock(&log->io_mutex);
1127                        return 0;
1128                }
1129        }
1130        return -EAGAIN;
1131}
1132
1133/* This will run after log space is reclaimed */
1134static void r5l_run_no_space_stripes(struct r5l_log *log)
1135{
1136        struct stripe_head *sh;
1137
1138        spin_lock(&log->no_space_stripes_lock);
1139        while (!list_empty(&log->no_space_stripes)) {
1140                sh = list_first_entry(&log->no_space_stripes,
1141                                      struct stripe_head, log_list);
1142                list_del_init(&sh->log_list);
1143                set_bit(STRIPE_HANDLE, &sh->state);
1144                raid5_release_stripe(sh);
1145        }
1146        spin_unlock(&log->no_space_stripes_lock);
1147}
1148
1149/*
1150 * calculate new last_checkpoint
1151 * for write through mode, returns log->next_checkpoint
1152 * for write back, returns log_start of first sh in stripe_in_journal_list
1153 */
1154static sector_t r5c_calculate_new_cp(struct r5conf *conf)
1155{
1156        struct stripe_head *sh;
1157        struct r5l_log *log = conf->log;
1158        sector_t new_cp;
1159        unsigned long flags;
1160
1161        if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
1162                return log->next_checkpoint;
1163
1164        spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1165        if (list_empty(&conf->log->stripe_in_journal_list)) {
1166                /* all stripes flushed */
1167                spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1168                return log->next_checkpoint;
1169        }
1170        sh = list_first_entry(&conf->log->stripe_in_journal_list,
1171                              struct stripe_head, r5c);
1172        new_cp = sh->log_start;
1173        spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1174        return new_cp;
1175}
1176
1177static sector_t r5l_reclaimable_space(struct r5l_log *log)
1178{
1179        struct r5conf *conf = log->rdev->mddev->private;
1180
1181        return r5l_ring_distance(log, log->last_checkpoint,
1182                                 r5c_calculate_new_cp(conf));
1183}
1184
1185static void r5l_run_no_mem_stripe(struct r5l_log *log)
1186{
1187        struct stripe_head *sh;
1188
1189        lockdep_assert_held(&log->io_list_lock);
1190
1191        if (!list_empty(&log->no_mem_stripes)) {
1192                sh = list_first_entry(&log->no_mem_stripes,
1193                                      struct stripe_head, log_list);
1194                list_del_init(&sh->log_list);
1195                set_bit(STRIPE_HANDLE, &sh->state);
1196                raid5_release_stripe(sh);
1197        }
1198}
1199
1200static bool r5l_complete_finished_ios(struct r5l_log *log)
1201{
1202        struct r5l_io_unit *io, *next;
1203        bool found = false;
1204
1205        lockdep_assert_held(&log->io_list_lock);
1206
1207        list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
1208                /* don't change list order */
1209                if (io->state < IO_UNIT_STRIPE_END)
1210                        break;
1211
1212                log->next_checkpoint = io->log_start;
1213
1214                list_del(&io->log_sibling);
1215                mempool_free(io, &log->io_pool);
1216                r5l_run_no_mem_stripe(log);
1217
1218                found = true;
1219        }
1220
1221        return found;
1222}
1223
1224static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
1225{
1226        struct r5l_log *log = io->log;
1227        struct r5conf *conf = log->rdev->mddev->private;
1228        unsigned long flags;
1229
1230        spin_lock_irqsave(&log->io_list_lock, flags);
1231        __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
1232
1233        if (!r5l_complete_finished_ios(log)) {
1234                spin_unlock_irqrestore(&log->io_list_lock, flags);
1235                return;
1236        }
1237
1238        if (r5l_reclaimable_space(log) > log->max_free_space ||
1239            test_bit(R5C_LOG_TIGHT, &conf->cache_state))
1240                r5l_wake_reclaim(log, 0);
1241
1242        spin_unlock_irqrestore(&log->io_list_lock, flags);
1243        wake_up(&log->iounit_wait);
1244}
1245
1246void r5l_stripe_write_finished(struct stripe_head *sh)
1247{
1248        struct r5l_io_unit *io;
1249
1250        io = sh->log_io;
1251        sh->log_io = NULL;
1252
1253        if (io && atomic_dec_and_test(&io->pending_stripe))
1254                __r5l_stripe_write_finished(io);
1255}
1256
1257static void r5l_log_flush_endio(struct bio *bio)
1258{
1259        struct r5l_log *log = container_of(bio, struct r5l_log,
1260                flush_bio);
1261        unsigned long flags;
1262        struct r5l_io_unit *io;
1263
1264        if (bio->bi_status)
1265                md_error(log->rdev->mddev, log->rdev);
1266
1267        spin_lock_irqsave(&log->io_list_lock, flags);
1268        list_for_each_entry(io, &log->flushing_ios, log_sibling)
1269                r5l_io_run_stripes(io);
1270        list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
1271        spin_unlock_irqrestore(&log->io_list_lock, flags);
1272}
1273
1274/*
1275 * Starting dispatch IO to raid.
1276 * io_unit(meta) consists of a log. There is one situation we want to avoid. A
1277 * broken meta in the middle of a log causes recovery can't find meta at the
1278 * head of log. If operations require meta at the head persistent in log, we
1279 * must make sure meta before it persistent in log too. A case is:
1280 *
1281 * stripe data/parity is in log, we start write stripe to raid disks. stripe
1282 * data/parity must be persistent in log before we do the write to raid disks.
1283 *
1284 * The solution is we restrictly maintain io_unit list order. In this case, we
1285 * only write stripes of an io_unit to raid disks till the io_unit is the first
1286 * one whose data/parity is in log.
1287 */
1288void r5l_flush_stripe_to_raid(struct r5l_log *log)
1289{
1290        bool do_flush;
1291
1292        if (!log || !log->need_cache_flush)
1293                return;
1294
1295        spin_lock_irq(&log->io_list_lock);
1296        /* flush bio is running */
1297        if (!list_empty(&log->flushing_ios)) {
1298                spin_unlock_irq(&log->io_list_lock);
1299                return;
1300        }
1301        list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
1302        do_flush = !list_empty(&log->flushing_ios);
1303        spin_unlock_irq(&log->io_list_lock);
1304
1305        if (!do_flush)
1306                return;
1307        bio_reset(&log->flush_bio);
1308        bio_set_dev(&log->flush_bio, log->rdev->bdev);
1309        log->flush_bio.bi_end_io = r5l_log_flush_endio;
1310        log->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
1311        submit_bio(&log->flush_bio);
1312}
1313
1314static void r5l_write_super(struct r5l_log *log, sector_t cp);
1315static void r5l_write_super_and_discard_space(struct r5l_log *log,
1316        sector_t end)
1317{
1318        struct block_device *bdev = log->rdev->bdev;
1319        struct mddev *mddev;
1320
1321        r5l_write_super(log, end);
1322
1323        if (!blk_queue_discard(bdev_get_queue(bdev)))
1324                return;
1325
1326        mddev = log->rdev->mddev;
1327        /*
1328         * Discard could zero data, so before discard we must make sure
1329         * superblock is updated to new log tail. Updating superblock (either
1330         * directly call md_update_sb() or depend on md thread) must hold
1331         * reconfig mutex. On the other hand, raid5_quiesce is called with
1332         * reconfig_mutex hold. The first step of raid5_quiesce() is waitting
1333         * for all IO finish, hence waitting for reclaim thread, while reclaim
1334         * thread is calling this function and waitting for reconfig mutex. So
1335         * there is a deadlock. We workaround this issue with a trylock.
1336         * FIXME: we could miss discard if we can't take reconfig mutex
1337         */
1338        set_mask_bits(&mddev->sb_flags, 0,
1339                BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1340        if (!mddev_trylock(mddev))
1341                return;
1342        md_update_sb(mddev, 1);
1343        mddev_unlock(mddev);
1344
1345        /* discard IO error really doesn't matter, ignore it */
1346        if (log->last_checkpoint < end) {
1347                blkdev_issue_discard(bdev,
1348                                log->last_checkpoint + log->rdev->data_offset,
1349                                end - log->last_checkpoint, GFP_NOIO, 0);
1350        } else {
1351                blkdev_issue_discard(bdev,
1352                                log->last_checkpoint + log->rdev->data_offset,
1353                                log->device_size - log->last_checkpoint,
1354                                GFP_NOIO, 0);
1355                blkdev_issue_discard(bdev, log->rdev->data_offset, end,
1356                                GFP_NOIO, 0);
1357        }
1358}
1359
1360/*
1361 * r5c_flush_stripe moves stripe from cached list to handle_list. When called,
1362 * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes.
1363 *
1364 * must hold conf->device_lock
1365 */
1366static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh)
1367{
1368        BUG_ON(list_empty(&sh->lru));
1369        BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
1370        BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
1371
1372        /*
1373         * The stripe is not ON_RELEASE_LIST, so it is safe to call
1374         * raid5_release_stripe() while holding conf->device_lock
1375         */
1376        BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
1377        lockdep_assert_held(&conf->device_lock);
1378
1379        list_del_init(&sh->lru);
1380        atomic_inc(&sh->count);
1381
1382        set_bit(STRIPE_HANDLE, &sh->state);
1383        atomic_inc(&conf->active_stripes);
1384        r5c_make_stripe_write_out(sh);
1385
1386        if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
1387                atomic_inc(&conf->r5c_flushing_partial_stripes);
1388        else
1389                atomic_inc(&conf->r5c_flushing_full_stripes);
1390        raid5_release_stripe(sh);
1391}
1392
1393/*
1394 * if num == 0, flush all full stripes
1395 * if num > 0, flush all full stripes. If less than num full stripes are
1396 *             flushed, flush some partial stripes until totally num stripes are
1397 *             flushed or there is no more cached stripes.
1398 */
1399void r5c_flush_cache(struct r5conf *conf, int num)
1400{
1401        int count;
1402        struct stripe_head *sh, *next;
1403
1404        lockdep_assert_held(&conf->device_lock);
1405        if (!conf->log)
1406                return;
1407
1408        count = 0;
1409        list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) {
1410                r5c_flush_stripe(conf, sh);
1411                count++;
1412        }
1413
1414        if (count >= num)
1415                return;
1416        list_for_each_entry_safe(sh, next,
1417                                 &conf->r5c_partial_stripe_list, lru) {
1418                r5c_flush_stripe(conf, sh);
1419                if (++count >= num)
1420                        break;
1421        }
1422}
1423
1424static void r5c_do_reclaim(struct r5conf *conf)
1425{
1426        struct r5l_log *log = conf->log;
1427        struct stripe_head *sh;
1428        int count = 0;
1429        unsigned long flags;
1430        int total_cached;
1431        int stripes_to_flush;
1432        int flushing_partial, flushing_full;
1433
1434        if (!r5c_is_writeback(log))
1435                return;
1436
1437        flushing_partial = atomic_read(&conf->r5c_flushing_partial_stripes);
1438        flushing_full = atomic_read(&conf->r5c_flushing_full_stripes);
1439        total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
1440                atomic_read(&conf->r5c_cached_full_stripes) -
1441                flushing_full - flushing_partial;
1442
1443        if (total_cached > conf->min_nr_stripes * 3 / 4 ||
1444            atomic_read(&conf->empty_inactive_list_nr) > 0)
1445                /*
1446                 * if stripe cache pressure high, flush all full stripes and
1447                 * some partial stripes
1448                 */
1449                stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP;
1450        else if (total_cached > conf->min_nr_stripes * 1 / 2 ||
1451                 atomic_read(&conf->r5c_cached_full_stripes) - flushing_full >
1452                 R5C_FULL_STRIPE_FLUSH_BATCH(conf))
1453                /*
1454                 * if stripe cache pressure moderate, or if there is many full
1455                 * stripes,flush all full stripes
1456                 */
1457                stripes_to_flush = 0;
1458        else
1459                /* no need to flush */
1460                stripes_to_flush = -1;
1461
1462        if (stripes_to_flush >= 0) {
1463                spin_lock_irqsave(&conf->device_lock, flags);
1464                r5c_flush_cache(conf, stripes_to_flush);
1465                spin_unlock_irqrestore(&conf->device_lock, flags);
1466        }
1467
1468        /* if log space is tight, flush stripes on stripe_in_journal_list */
1469        if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) {
1470                spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1471                spin_lock(&conf->device_lock);
1472                list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) {
1473                        /*
1474                         * stripes on stripe_in_journal_list could be in any
1475                         * state of the stripe_cache state machine. In this
1476                         * case, we only want to flush stripe on
1477                         * r5c_cached_full/partial_stripes. The following
1478                         * condition makes sure the stripe is on one of the
1479                         * two lists.
1480                         */
1481                        if (!list_empty(&sh->lru) &&
1482                            !test_bit(STRIPE_HANDLE, &sh->state) &&
1483                            atomic_read(&sh->count) == 0) {
1484                                r5c_flush_stripe(conf, sh);
1485                                if (count++ >= R5C_RECLAIM_STRIPE_GROUP)
1486                                        break;
1487                        }
1488                }
1489                spin_unlock(&conf->device_lock);
1490                spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1491        }
1492
1493        if (!test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
1494                r5l_run_no_space_stripes(log);
1495
1496        md_wakeup_thread(conf->mddev->thread);
1497}
1498
1499static void r5l_do_reclaim(struct r5l_log *log)
1500{
1501        struct r5conf *conf = log->rdev->mddev->private;
1502        sector_t reclaim_target = xchg(&log->reclaim_target, 0);
1503        sector_t reclaimable;
1504        sector_t next_checkpoint;
1505        bool write_super;
1506
1507        spin_lock_irq(&log->io_list_lock);
1508        write_super = r5l_reclaimable_space(log) > log->max_free_space ||
1509                reclaim_target != 0 || !list_empty(&log->no_space_stripes);
1510        /*
1511         * move proper io_unit to reclaim list. We should not change the order.
1512         * reclaimable/unreclaimable io_unit can be mixed in the list, we
1513         * shouldn't reuse space of an unreclaimable io_unit
1514         */
1515        while (1) {
1516                reclaimable = r5l_reclaimable_space(log);
1517                if (reclaimable >= reclaim_target ||
1518                    (list_empty(&log->running_ios) &&
1519                     list_empty(&log->io_end_ios) &&
1520                     list_empty(&log->flushing_ios) &&
1521                     list_empty(&log->finished_ios)))
1522                        break;
1523
1524                md_wakeup_thread(log->rdev->mddev->thread);
1525                wait_event_lock_irq(log->iounit_wait,
1526                                    r5l_reclaimable_space(log) > reclaimable,
1527                                    log->io_list_lock);
1528        }
1529
1530        next_checkpoint = r5c_calculate_new_cp(conf);
1531        spin_unlock_irq(&log->io_list_lock);
1532
1533        if (reclaimable == 0 || !write_super)
1534                return;
1535
1536        /*
1537         * write_super will flush cache of each raid disk. We must write super
1538         * here, because the log area might be reused soon and we don't want to
1539         * confuse recovery
1540         */
1541        r5l_write_super_and_discard_space(log, next_checkpoint);
1542
1543        mutex_lock(&log->io_mutex);
1544        log->last_checkpoint = next_checkpoint;
1545        r5c_update_log_state(log);
1546        mutex_unlock(&log->io_mutex);
1547
1548        r5l_run_no_space_stripes(log);
1549}
1550
1551static void r5l_reclaim_thread(struct md_thread *thread)
1552{
1553        struct mddev *mddev = thread->mddev;
1554        struct r5conf *conf = mddev->private;
1555        struct r5l_log *log = conf->log;
1556
1557        if (!log)
1558                return;
1559        r5c_do_reclaim(conf);
1560        r5l_do_reclaim(log);
1561}
1562
1563void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
1564{
1565        unsigned long target;
1566        unsigned long new = (unsigned long)space; /* overflow in theory */
1567
1568        if (!log)
1569                return;
1570        do {
1571                target = log->reclaim_target;
1572                if (new < target)
1573                        return;
1574        } while (cmpxchg(&log->reclaim_target, target, new) != target);
1575        md_wakeup_thread(log->reclaim_thread);
1576}
1577
1578void r5l_quiesce(struct r5l_log *log, int quiesce)
1579{
1580        struct mddev *mddev;
1581
1582        if (quiesce) {
1583                /* make sure r5l_write_super_and_discard_space exits */
1584                mddev = log->rdev->mddev;
1585                wake_up(&mddev->sb_wait);
1586                kthread_park(log->reclaim_thread->tsk);
1587                r5l_wake_reclaim(log, MaxSector);
1588                r5l_do_reclaim(log);
1589        } else
1590                kthread_unpark(log->reclaim_thread->tsk);
1591}
1592
1593bool r5l_log_disk_error(struct r5conf *conf)
1594{
1595        struct r5l_log *log;
1596        bool ret;
1597        /* don't allow write if journal disk is missing */
1598        rcu_read_lock();
1599        log = rcu_dereference(conf->log);
1600
1601        if (!log)
1602                ret = test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
1603        else
1604                ret = test_bit(Faulty, &log->rdev->flags);
1605        rcu_read_unlock();
1606        return ret;
1607}
1608
1609#define R5L_RECOVERY_PAGE_POOL_SIZE 256
1610
1611struct r5l_recovery_ctx {
1612        struct page *meta_page;         /* current meta */
1613        sector_t meta_total_blocks;     /* total size of current meta and data */
1614        sector_t pos;                   /* recovery position */
1615        u64 seq;                        /* recovery position seq */
1616        int data_parity_stripes;        /* number of data_parity stripes */
1617        int data_only_stripes;          /* number of data_only stripes */
1618        struct list_head cached_list;
1619
1620        /*
1621         * read ahead page pool (ra_pool)
1622         * in recovery, log is read sequentially. It is not efficient to
1623         * read every page with sync_page_io(). The read ahead page pool
1624         * reads multiple pages with one IO, so further log read can
1625         * just copy data from the pool.
1626         */
1627        struct page *ra_pool[R5L_RECOVERY_PAGE_POOL_SIZE];
1628        sector_t pool_offset;   /* offset of first page in the pool */
1629        int total_pages;        /* total allocated pages */
1630        int valid_pages;        /* pages with valid data */
1631        struct bio *ra_bio;     /* bio to do the read ahead */
1632};
1633
1634static int r5l_recovery_allocate_ra_pool(struct r5l_log *log,
1635                                            struct r5l_recovery_ctx *ctx)
1636{
1637        struct page *page;
1638
1639        ctx->ra_bio = bio_alloc_bioset(GFP_KERNEL, BIO_MAX_PAGES, &log->bs);
1640        if (!ctx->ra_bio)
1641                return -ENOMEM;
1642
1643        ctx->valid_pages = 0;
1644        ctx->total_pages = 0;
1645        while (ctx->total_pages < R5L_RECOVERY_PAGE_POOL_SIZE) {
1646                page = alloc_page(GFP_KERNEL);
1647
1648                if (!page)
1649                        break;
1650                ctx->ra_pool[ctx->total_pages] = page;
1651                ctx->total_pages += 1;
1652        }
1653
1654        if (ctx->total_pages == 0) {
1655                bio_put(ctx->ra_bio);
1656                return -ENOMEM;
1657        }
1658
1659        ctx->pool_offset = 0;
1660        return 0;
1661}
1662
1663static void r5l_recovery_free_ra_pool(struct r5l_log *log,
1664                                        struct r5l_recovery_ctx *ctx)
1665{
1666        int i;
1667
1668        for (i = 0; i < ctx->total_pages; ++i)
1669                put_page(ctx->ra_pool[i]);
1670        bio_put(ctx->ra_bio);
1671}
1672
1673/*
1674 * fetch ctx->valid_pages pages from offset
1675 * In normal cases, ctx->valid_pages == ctx->total_pages after the call.
1676 * However, if the offset is close to the end of the journal device,
1677 * ctx->valid_pages could be smaller than ctx->total_pages
1678 */
1679static int r5l_recovery_fetch_ra_pool(struct r5l_log *log,
1680                                      struct r5l_recovery_ctx *ctx,
1681                                      sector_t offset)
1682{
1683        bio_reset(ctx->ra_bio);
1684        bio_set_dev(ctx->ra_bio, log->rdev->bdev);
1685        bio_set_op_attrs(ctx->ra_bio, REQ_OP_READ, 0);
1686        ctx->ra_bio->bi_iter.bi_sector = log->rdev->data_offset + offset;
1687
1688        ctx->valid_pages = 0;
1689        ctx->pool_offset = offset;
1690
1691        while (ctx->valid_pages < ctx->total_pages) {
1692                bio_add_page(ctx->ra_bio,
1693                             ctx->ra_pool[ctx->valid_pages], PAGE_SIZE, 0);
1694                ctx->valid_pages += 1;
1695
1696                offset = r5l_ring_add(log, offset, BLOCK_SECTORS);
1697
1698                if (offset == 0)  /* reached end of the device */
1699                        break;
1700        }
1701
1702        return submit_bio_wait(ctx->ra_bio);
1703}
1704
1705/*
1706 * try read a page from the read ahead page pool, if the page is not in the
1707 * pool, call r5l_recovery_fetch_ra_pool
1708 */
1709static int r5l_recovery_read_page(struct r5l_log *log,
1710                                  struct r5l_recovery_ctx *ctx,
1711                                  struct page *page,
1712                                  sector_t offset)
1713{
1714        int ret;
1715
1716        if (offset < ctx->pool_offset ||
1717            offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS) {
1718                ret = r5l_recovery_fetch_ra_pool(log, ctx, offset);
1719                if (ret)
1720                        return ret;
1721        }
1722
1723        BUG_ON(offset < ctx->pool_offset ||
1724               offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS);
1725
1726        memcpy(page_address(page),
1727               page_address(ctx->ra_pool[(offset - ctx->pool_offset) >>
1728                                         BLOCK_SECTOR_SHIFT]),
1729               PAGE_SIZE);
1730        return 0;
1731}
1732
1733static int r5l_recovery_read_meta_block(struct r5l_log *log,
1734                                        struct r5l_recovery_ctx *ctx)
1735{
1736        struct page *page = ctx->meta_page;
1737        struct r5l_meta_block *mb;
1738        u32 crc, stored_crc;
1739        int ret;
1740
1741        ret = r5l_recovery_read_page(log, ctx, page, ctx->pos);
1742        if (ret != 0)
1743                return ret;
1744
1745        mb = page_address(page);
1746        stored_crc = le32_to_cpu(mb->checksum);
1747        mb->checksum = 0;
1748
1749        if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1750            le64_to_cpu(mb->seq) != ctx->seq ||
1751            mb->version != R5LOG_VERSION ||
1752            le64_to_cpu(mb->position) != ctx->pos)
1753                return -EINVAL;
1754
1755        crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1756        if (stored_crc != crc)
1757                return -EINVAL;
1758
1759        if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
1760                return -EINVAL;
1761
1762        ctx->meta_total_blocks = BLOCK_SECTORS;
1763
1764        return 0;
1765}
1766
1767static void
1768r5l_recovery_create_empty_meta_block(struct r5l_log *log,
1769                                     struct page *page,
1770                                     sector_t pos, u64 seq)
1771{
1772        struct r5l_meta_block *mb;
1773
1774        mb = page_address(page);
1775        clear_page(mb);
1776        mb->magic = cpu_to_le32(R5LOG_MAGIC);
1777        mb->version = R5LOG_VERSION;
1778        mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
1779        mb->seq = cpu_to_le64(seq);
1780        mb->position = cpu_to_le64(pos);
1781}
1782
1783static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
1784                                          u64 seq)
1785{
1786        struct page *page;
1787        struct r5l_meta_block *mb;
1788
1789        page = alloc_page(GFP_KERNEL);
1790        if (!page)
1791                return -ENOMEM;
1792        r5l_recovery_create_empty_meta_block(log, page, pos, seq);
1793        mb = page_address(page);
1794        mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
1795                                             mb, PAGE_SIZE));
1796        if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE,
1797                          REQ_SYNC | REQ_FUA, false)) {
1798                __free_page(page);
1799                return -EIO;
1800        }
1801        __free_page(page);
1802        return 0;
1803}
1804
1805/*
1806 * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite
1807 * to mark valid (potentially not flushed) data in the journal.
1808 *
1809 * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb,
1810 * so there should not be any mismatch here.
1811 */
1812static void r5l_recovery_load_data(struct r5l_log *log,
1813                                   struct stripe_head *sh,
1814                                   struct r5l_recovery_ctx *ctx,
1815                                   struct r5l_payload_data_parity *payload,
1816                                   sector_t log_offset)
1817{
1818        struct mddev *mddev = log->rdev->mddev;
1819        struct r5conf *conf = mddev->private;
1820        int dd_idx;
1821
1822        raid5_compute_sector(conf,
1823                             le64_to_cpu(payload->location), 0,
1824                             &dd_idx, sh);
1825        r5l_recovery_read_page(log, ctx, sh->dev[dd_idx].page, log_offset);
1826        sh->dev[dd_idx].log_checksum =
1827                le32_to_cpu(payload->checksum[0]);
1828        ctx->meta_total_blocks += BLOCK_SECTORS;
1829
1830        set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags);
1831        set_bit(STRIPE_R5C_CACHING, &sh->state);
1832}
1833
1834static void r5l_recovery_load_parity(struct r5l_log *log,
1835                                     struct stripe_head *sh,
1836                                     struct r5l_recovery_ctx *ctx,
1837                                     struct r5l_payload_data_parity *payload,
1838                                     sector_t log_offset)
1839{
1840        struct mddev *mddev = log->rdev->mddev;
1841        struct r5conf *conf = mddev->private;
1842
1843        ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
1844        r5l_recovery_read_page(log, ctx, sh->dev[sh->pd_idx].page, log_offset);
1845        sh->dev[sh->pd_idx].log_checksum =
1846                le32_to_cpu(payload->checksum[0]);
1847        set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags);
1848
1849        if (sh->qd_idx >= 0) {
1850                r5l_recovery_read_page(
1851                        log, ctx, sh->dev[sh->qd_idx].page,
1852                        r5l_ring_add(log, log_offset, BLOCK_SECTORS));
1853                sh->dev[sh->qd_idx].log_checksum =
1854                        le32_to_cpu(payload->checksum[1]);
1855                set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags);
1856        }
1857        clear_bit(STRIPE_R5C_CACHING, &sh->state);
1858}
1859
1860static void r5l_recovery_reset_stripe(struct stripe_head *sh)
1861{
1862        int i;
1863
1864        sh->state = 0;
1865        sh->log_start = MaxSector;
1866        for (i = sh->disks; i--; )
1867                sh->dev[i].flags = 0;
1868}
1869
1870static void
1871r5l_recovery_replay_one_stripe(struct r5conf *conf,
1872                               struct stripe_head *sh,
1873                               struct r5l_recovery_ctx *ctx)
1874{
1875        struct md_rdev *rdev, *rrdev;
1876        int disk_index;
1877        int data_count = 0;
1878
1879        for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1880                if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1881                        continue;
1882                if (disk_index == sh->qd_idx || disk_index == sh->pd_idx)
1883                        continue;
1884                data_count++;
1885        }
1886
1887        /*
1888         * stripes that only have parity must have been flushed
1889         * before the crash that we are now recovering from, so
1890         * there is nothing more to recovery.
1891         */
1892        if (data_count == 0)
1893                goto out;
1894
1895        for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1896                if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1897                        continue;
1898
1899                /* in case device is broken */
1900                rcu_read_lock();
1901                rdev = rcu_dereference(conf->disks[disk_index].rdev);
1902                if (rdev) {
1903                        atomic_inc(&rdev->nr_pending);
1904                        rcu_read_unlock();
1905                        sync_page_io(rdev, sh->sector, PAGE_SIZE,
1906                                     sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1907                                     false);
1908                        rdev_dec_pending(rdev, rdev->mddev);
1909                        rcu_read_lock();
1910                }
1911                rrdev = rcu_dereference(conf->disks[disk_index].replacement);
1912                if (rrdev) {
1913                        atomic_inc(&rrdev->nr_pending);
1914                        rcu_read_unlock();
1915                        sync_page_io(rrdev, sh->sector, PAGE_SIZE,
1916                                     sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1917                                     false);
1918                        rdev_dec_pending(rrdev, rrdev->mddev);
1919                        rcu_read_lock();
1920                }
1921                rcu_read_unlock();
1922        }
1923        ctx->data_parity_stripes++;
1924out:
1925        r5l_recovery_reset_stripe(sh);
1926}
1927
1928static struct stripe_head *
1929r5c_recovery_alloc_stripe(
1930                struct r5conf *conf,
1931                sector_t stripe_sect,
1932                int noblock)
1933{
1934        struct stripe_head *sh;
1935
1936        sh = raid5_get_active_stripe(conf, stripe_sect, 0, noblock, 0);
1937        if (!sh)
1938                return NULL;  /* no more stripe available */
1939
1940        r5l_recovery_reset_stripe(sh);
1941
1942        return sh;
1943}
1944
1945static struct stripe_head *
1946r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect)
1947{
1948        struct stripe_head *sh;
1949
1950        list_for_each_entry(sh, list, lru)
1951                if (sh->sector == sect)
1952                        return sh;
1953        return NULL;
1954}
1955
1956static void
1957r5c_recovery_drop_stripes(struct list_head *cached_stripe_list,
1958                          struct r5l_recovery_ctx *ctx)
1959{
1960        struct stripe_head *sh, *next;
1961
1962        list_for_each_entry_safe(sh, next, cached_stripe_list, lru) {
1963                r5l_recovery_reset_stripe(sh);
1964                list_del_init(&sh->lru);
1965                raid5_release_stripe(sh);
1966        }
1967}
1968
1969static void
1970r5c_recovery_replay_stripes(struct list_head *cached_stripe_list,
1971                            struct r5l_recovery_ctx *ctx)
1972{
1973        struct stripe_head *sh, *next;
1974
1975        list_for_each_entry_safe(sh, next, cached_stripe_list, lru)
1976                if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
1977                        r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx);
1978                        list_del_init(&sh->lru);
1979                        raid5_release_stripe(sh);
1980                }
1981}
1982
1983/* if matches return 0; otherwise return -EINVAL */
1984static int
1985r5l_recovery_verify_data_checksum(struct r5l_log *log,
1986                                  struct r5l_recovery_ctx *ctx,
1987                                  struct page *page,
1988                                  sector_t log_offset, __le32 log_checksum)
1989{
1990        void *addr;
1991        u32 checksum;
1992
1993        r5l_recovery_read_page(log, ctx, page, log_offset);
1994        addr = kmap_atomic(page);
1995        checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
1996        kunmap_atomic(addr);
1997        return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL;
1998}
1999
2000/*
2001 * before loading data to stripe cache, we need verify checksum for all data,
2002 * if there is mismatch for any data page, we drop all data in the mata block
2003 */
2004static int
2005r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log,
2006                                         struct r5l_recovery_ctx *ctx)
2007{
2008        struct mddev *mddev = log->rdev->mddev;
2009        struct r5conf *conf = mddev->private;
2010        struct r5l_meta_block *mb = page_address(ctx->meta_page);
2011        sector_t mb_offset = sizeof(struct r5l_meta_block);
2012        sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2013        struct page *page;
2014        struct r5l_payload_data_parity *payload;
2015        struct r5l_payload_flush *payload_flush;
2016
2017        page = alloc_page(GFP_KERNEL);
2018        if (!page)
2019                return -ENOMEM;
2020
2021        while (mb_offset < le32_to_cpu(mb->meta_size)) {
2022                payload = (void *)mb + mb_offset;
2023                payload_flush = (void *)mb + mb_offset;
2024
2025                if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2026                        if (r5l_recovery_verify_data_checksum(
2027                                    log, ctx, page, log_offset,
2028                                    payload->checksum[0]) < 0)
2029                                goto mismatch;
2030                } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) {
2031                        if (r5l_recovery_verify_data_checksum(
2032                                    log, ctx, page, log_offset,
2033                                    payload->checksum[0]) < 0)
2034                                goto mismatch;
2035                        if (conf->max_degraded == 2 && /* q for RAID 6 */
2036                            r5l_recovery_verify_data_checksum(
2037                                    log, ctx, page,
2038                                    r5l_ring_add(log, log_offset,
2039                                                 BLOCK_SECTORS),
2040                                    payload->checksum[1]) < 0)
2041                                goto mismatch;
2042                } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2043                        /* nothing to do for R5LOG_PAYLOAD_FLUSH here */
2044                } else /* not R5LOG_PAYLOAD_DATA/PARITY/FLUSH */
2045                        goto mismatch;
2046
2047                if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2048                        mb_offset += sizeof(struct r5l_payload_flush) +
2049                                le32_to_cpu(payload_flush->size);
2050                } else {
2051                        /* DATA or PARITY payload */
2052                        log_offset = r5l_ring_add(log, log_offset,
2053                                                  le32_to_cpu(payload->size));
2054                        mb_offset += sizeof(struct r5l_payload_data_parity) +
2055                                sizeof(__le32) *
2056                                (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2057                }
2058
2059        }
2060
2061        put_page(page);
2062        return 0;
2063
2064mismatch:
2065        put_page(page);
2066        return -EINVAL;
2067}
2068
2069/*
2070 * Analyze all data/parity pages in one meta block
2071 * Returns:
2072 * 0 for success
2073 * -EINVAL for unknown playload type
2074 * -EAGAIN for checksum mismatch of data page
2075 * -ENOMEM for run out of memory (alloc_page failed or run out of stripes)
2076 */
2077static int
2078r5c_recovery_analyze_meta_block(struct r5l_log *log,
2079                                struct r5l_recovery_ctx *ctx,
2080                                struct list_head *cached_stripe_list)
2081{
2082        struct mddev *mddev = log->rdev->mddev;
2083        struct r5conf *conf = mddev->private;
2084        struct r5l_meta_block *mb;
2085        struct r5l_payload_data_parity *payload;
2086        struct r5l_payload_flush *payload_flush;
2087        int mb_offset;
2088        sector_t log_offset;
2089        sector_t stripe_sect;
2090        struct stripe_head *sh;
2091        int ret;
2092
2093        /*
2094         * for mismatch in data blocks, we will drop all data in this mb, but
2095         * we will still read next mb for other data with FLUSH flag, as
2096         * io_unit could finish out of order.
2097         */
2098        ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx);
2099        if (ret == -EINVAL)
2100                return -EAGAIN;
2101        else if (ret)
2102                return ret;   /* -ENOMEM duo to alloc_page() failed */
2103
2104        mb = page_address(ctx->meta_page);
2105        mb_offset = sizeof(struct r5l_meta_block);
2106        log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2107
2108        while (mb_offset < le32_to_cpu(mb->meta_size)) {
2109                int dd;
2110
2111                payload = (void *)mb + mb_offset;
2112                payload_flush = (void *)mb + mb_offset;
2113
2114                if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2115                        int i, count;
2116
2117                        count = le32_to_cpu(payload_flush->size) / sizeof(__le64);
2118                        for (i = 0; i < count; ++i) {
2119                                stripe_sect = le64_to_cpu(payload_flush->flush_stripes[i]);
2120                                sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2121                                                                stripe_sect);
2122                                if (sh) {
2123                                        WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2124                                        r5l_recovery_reset_stripe(sh);
2125                                        list_del_init(&sh->lru);
2126                                        raid5_release_stripe(sh);
2127                                }
2128                        }
2129
2130                        mb_offset += sizeof(struct r5l_payload_flush) +
2131                                le32_to_cpu(payload_flush->size);
2132                        continue;
2133                }
2134
2135                /* DATA or PARITY payload */
2136                stripe_sect = (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) ?
2137                        raid5_compute_sector(
2138                                conf, le64_to_cpu(payload->location), 0, &dd,
2139                                NULL)
2140                        : le64_to_cpu(payload->location);
2141
2142                sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2143                                                stripe_sect);
2144
2145                if (!sh) {
2146                        sh = r5c_recovery_alloc_stripe(conf, stripe_sect, 1);
2147                        /*
2148                         * cannot get stripe from raid5_get_active_stripe
2149                         * try replay some stripes
2150                         */
2151                        if (!sh) {
2152                                r5c_recovery_replay_stripes(
2153                                        cached_stripe_list, ctx);
2154                                sh = r5c_recovery_alloc_stripe(
2155                                        conf, stripe_sect, 1);
2156                        }
2157                        if (!sh) {
2158                                int new_size = conf->min_nr_stripes * 2;
2159                                pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n",
2160                                        mdname(mddev),
2161                                        new_size);
2162                                ret = raid5_set_cache_size(mddev, new_size);
2163                                if (conf->min_nr_stripes <= new_size / 2) {
2164                                        pr_err("md/raid:%s: Cannot increase cache size, ret=%d, new_size=%d, min_nr_stripes=%d, max_nr_stripes=%d\n",
2165                                                mdname(mddev),
2166                                                ret,
2167                                                new_size,
2168                                                conf->min_nr_stripes,
2169                                                conf->max_nr_stripes);
2170                                        return -ENOMEM;
2171                                }
2172                                sh = r5c_recovery_alloc_stripe(
2173                                        conf, stripe_sect, 0);
2174                        }
2175                        if (!sh) {
2176                                pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n",
2177                                        mdname(mddev));
2178                                return -ENOMEM;
2179                        }
2180                        list_add_tail(&sh->lru, cached_stripe_list);
2181                }
2182
2183                if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2184                        if (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
2185                            test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) {
2186                                r5l_recovery_replay_one_stripe(conf, sh, ctx);
2187                                list_move_tail(&sh->lru, cached_stripe_list);
2188                        }
2189                        r5l_recovery_load_data(log, sh, ctx, payload,
2190                                               log_offset);
2191                } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY)
2192                        r5l_recovery_load_parity(log, sh, ctx, payload,
2193                                                 log_offset);
2194                else
2195                        return -EINVAL;
2196
2197                log_offset = r5l_ring_add(log, log_offset,
2198                                          le32_to_cpu(payload->size));
2199
2200                mb_offset += sizeof(struct r5l_payload_data_parity) +
2201                        sizeof(__le32) *
2202                        (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2203        }
2204
2205        return 0;
2206}
2207
2208/*
2209 * Load the stripe into cache. The stripe will be written out later by
2210 * the stripe cache state machine.
2211 */
2212static void r5c_recovery_load_one_stripe(struct r5l_log *log,
2213                                         struct stripe_head *sh)
2214{
2215        struct r5dev *dev;
2216        int i;
2217
2218        for (i = sh->disks; i--; ) {
2219                dev = sh->dev + i;
2220                if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) {
2221                        set_bit(R5_InJournal, &dev->flags);
2222                        set_bit(R5_UPTODATE, &dev->flags);
2223                }
2224        }
2225}
2226
2227/*
2228 * Scan through the log for all to-be-flushed data
2229 *
2230 * For stripes with data and parity, namely Data-Parity stripe
2231 * (STRIPE_R5C_CACHING == 0), we simply replay all the writes.
2232 *
2233 * For stripes with only data, namely Data-Only stripe
2234 * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine.
2235 *
2236 * For a stripe, if we see data after parity, we should discard all previous
2237 * data and parity for this stripe, as these data are already flushed to
2238 * the array.
2239 *
2240 * At the end of the scan, we return the new journal_tail, which points to
2241 * first data-only stripe on the journal device, or next invalid meta block.
2242 */
2243static int r5c_recovery_flush_log(struct r5l_log *log,
2244                                  struct r5l_recovery_ctx *ctx)
2245{
2246        struct stripe_head *sh;
2247        int ret = 0;
2248
2249        /* scan through the log */
2250        while (1) {
2251                if (r5l_recovery_read_meta_block(log, ctx))
2252                        break;
2253
2254                ret = r5c_recovery_analyze_meta_block(log, ctx,
2255                                                      &ctx->cached_list);
2256                /*
2257                 * -EAGAIN means mismatch in data block, in this case, we still
2258                 * try scan the next metablock
2259                 */
2260                if (ret && ret != -EAGAIN)
2261                        break;   /* ret == -EINVAL or -ENOMEM */
2262                ctx->seq++;
2263                ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
2264        }
2265
2266        if (ret == -ENOMEM) {
2267                r5c_recovery_drop_stripes(&ctx->cached_list, ctx);
2268                return ret;
2269        }
2270
2271        /* replay data-parity stripes */
2272        r5c_recovery_replay_stripes(&ctx->cached_list, ctx);
2273
2274        /* load data-only stripes to stripe cache */
2275        list_for_each_entry(sh, &ctx->cached_list, lru) {
2276                WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2277                r5c_recovery_load_one_stripe(log, sh);
2278                ctx->data_only_stripes++;
2279        }
2280
2281        return 0;
2282}
2283
2284/*
2285 * we did a recovery. Now ctx.pos points to an invalid meta block. New
2286 * log will start here. but we can't let superblock point to last valid
2287 * meta block. The log might looks like:
2288 * | meta 1| meta 2| meta 3|
2289 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
2290 * superblock points to meta 1, we write a new valid meta 2n.  if crash
2291 * happens again, new recovery will start from meta 1. Since meta 2n is
2292 * valid now, recovery will think meta 3 is valid, which is wrong.
2293 * The solution is we create a new meta in meta2 with its seq == meta
2294 * 1's seq + 10000 and let superblock points to meta2. The same recovery
2295 * will not think meta 3 is a valid meta, because its seq doesn't match
2296 */
2297
2298/*
2299 * Before recovery, the log looks like the following
2300 *
2301 *   ---------------------------------------------
2302 *   |           valid log        | invalid log  |
2303 *   ---------------------------------------------
2304 *   ^
2305 *   |- log->last_checkpoint
2306 *   |- log->last_cp_seq
2307 *
2308 * Now we scan through the log until we see invalid entry
2309 *
2310 *   ---------------------------------------------
2311 *   |           valid log        | invalid log  |
2312 *   ---------------------------------------------
2313 *   ^                            ^
2314 *   |- log->last_checkpoint      |- ctx->pos
2315 *   |- log->last_cp_seq          |- ctx->seq
2316 *
2317 * From this point, we need to increase seq number by 10 to avoid
2318 * confusing next recovery.
2319 *
2320 *   ---------------------------------------------
2321 *   |           valid log        | invalid log  |
2322 *   ---------------------------------------------
2323 *   ^                              ^
2324 *   |- log->last_checkpoint        |- ctx->pos+1
2325 *   |- log->last_cp_seq            |- ctx->seq+10001
2326 *
2327 * However, it is not safe to start the state machine yet, because data only
2328 * parities are not yet secured in RAID. To save these data only parities, we
2329 * rewrite them from seq+11.
2330 *
2331 *   -----------------------------------------------------------------
2332 *   |           valid log        | data only stripes | invalid log  |
2333 *   -----------------------------------------------------------------
2334 *   ^                                                ^
2335 *   |- log->last_checkpoint                          |- ctx->pos+n
2336 *   |- log->last_cp_seq                              |- ctx->seq+10000+n
2337 *
2338 * If failure happens again during this process, the recovery can safe start
2339 * again from log->last_checkpoint.
2340 *
2341 * Once data only stripes are rewritten to journal, we move log_tail
2342 *
2343 *   -----------------------------------------------------------------
2344 *   |     old log        |    data only stripes    | invalid log  |
2345 *   -----------------------------------------------------------------
2346 *                        ^                         ^
2347 *                        |- log->last_checkpoint   |- ctx->pos+n
2348 *                        |- log->last_cp_seq       |- ctx->seq+10000+n
2349 *
2350 * Then we can safely start the state machine. If failure happens from this
2351 * point on, the recovery will start from new log->last_checkpoint.
2352 */
2353static int
2354r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log,
2355                                       struct r5l_recovery_ctx *ctx)
2356{
2357        struct stripe_head *sh;
2358        struct mddev *mddev = log->rdev->mddev;
2359        struct page *page;
2360        sector_t next_checkpoint = MaxSector;
2361
2362        page = alloc_page(GFP_KERNEL);
2363        if (!page) {
2364                pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n",
2365                       mdname(mddev));
2366                return -ENOMEM;
2367        }
2368
2369        WARN_ON(list_empty(&ctx->cached_list));
2370
2371        list_for_each_entry(sh, &ctx->cached_list, lru) {
2372                struct r5l_meta_block *mb;
2373                int i;
2374                int offset;
2375                sector_t write_pos;
2376
2377                WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2378                r5l_recovery_create_empty_meta_block(log, page,
2379                                                     ctx->pos, ctx->seq);
2380                mb = page_address(page);
2381                offset = le32_to_cpu(mb->meta_size);
2382                write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2383
2384                for (i = sh->disks; i--; ) {
2385                        struct r5dev *dev = &sh->dev[i];
2386                        struct r5l_payload_data_parity *payload;
2387                        void *addr;
2388
2389                        if (test_bit(R5_InJournal, &dev->flags)) {
2390                                payload = (void *)mb + offset;
2391                                payload->header.type = cpu_to_le16(
2392                                        R5LOG_PAYLOAD_DATA);
2393                                payload->size = cpu_to_le32(BLOCK_SECTORS);
2394                                payload->location = cpu_to_le64(
2395                                        raid5_compute_blocknr(sh, i, 0));
2396                                addr = kmap_atomic(dev->page);
2397                                payload->checksum[0] = cpu_to_le32(
2398                                        crc32c_le(log->uuid_checksum, addr,
2399                                                  PAGE_SIZE));
2400                                kunmap_atomic(addr);
2401                                sync_page_io(log->rdev, write_pos, PAGE_SIZE,
2402                                             dev->page, REQ_OP_WRITE, 0, false);
2403                                write_pos = r5l_ring_add(log, write_pos,
2404                                                         BLOCK_SECTORS);
2405                                offset += sizeof(__le32) +
2406                                        sizeof(struct r5l_payload_data_parity);
2407
2408                        }
2409                }
2410                mb->meta_size = cpu_to_le32(offset);
2411                mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
2412                                                     mb, PAGE_SIZE));
2413                sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page,
2414                             REQ_OP_WRITE, REQ_SYNC | REQ_FUA, false);
2415                sh->log_start = ctx->pos;
2416                list_add_tail(&sh->r5c, &log->stripe_in_journal_list);
2417                atomic_inc(&log->stripe_in_journal_count);
2418                ctx->pos = write_pos;
2419                ctx->seq += 1;
2420                next_checkpoint = sh->log_start;
2421        }
2422        log->next_checkpoint = next_checkpoint;
2423        __free_page(page);
2424        return 0;
2425}
2426
2427static void r5c_recovery_flush_data_only_stripes(struct r5l_log *log,
2428                                                 struct r5l_recovery_ctx *ctx)
2429{
2430        struct mddev *mddev = log->rdev->mddev;
2431        struct r5conf *conf = mddev->private;
2432        struct stripe_head *sh, *next;
2433
2434        if (ctx->data_only_stripes == 0)
2435                return;
2436
2437        log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_BACK;
2438
2439        list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) {
2440                r5c_make_stripe_write_out(sh);
2441                set_bit(STRIPE_HANDLE, &sh->state);
2442                list_del_init(&sh->lru);
2443                raid5_release_stripe(sh);
2444        }
2445
2446        /* reuse conf->wait_for_quiescent in recovery */
2447        wait_event(conf->wait_for_quiescent,
2448                   atomic_read(&conf->active_stripes) == 0);
2449
2450        log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
2451}
2452
2453static int r5l_recovery_log(struct r5l_log *log)
2454{
2455        struct mddev *mddev = log->rdev->mddev;
2456        struct r5l_recovery_ctx *ctx;
2457        int ret;
2458        sector_t pos;
2459
2460        ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2461        if (!ctx)
2462                return -ENOMEM;
2463
2464        ctx->pos = log->last_checkpoint;
2465        ctx->seq = log->last_cp_seq;
2466        INIT_LIST_HEAD(&ctx->cached_list);
2467        ctx->meta_page = alloc_page(GFP_KERNEL);
2468
2469        if (!ctx->meta_page) {
2470                ret =  -ENOMEM;
2471                goto meta_page;
2472        }
2473
2474        if (r5l_recovery_allocate_ra_pool(log, ctx) != 0) {
2475                ret = -ENOMEM;
2476                goto ra_pool;
2477        }
2478
2479        ret = r5c_recovery_flush_log(log, ctx);
2480
2481        if (ret)
2482                goto error;
2483
2484        pos = ctx->pos;
2485        ctx->seq += 10000;
2486
2487        if ((ctx->data_only_stripes == 0) && (ctx->data_parity_stripes == 0))
2488                pr_info("md/raid:%s: starting from clean shutdown\n",
2489                         mdname(mddev));
2490        else
2491                pr_info("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n",
2492                         mdname(mddev), ctx->data_only_stripes,
2493                         ctx->data_parity_stripes);
2494
2495        if (ctx->data_only_stripes == 0) {
2496                log->next_checkpoint = ctx->pos;
2497                r5l_log_write_empty_meta_block(log, ctx->pos, ctx->seq++);
2498                ctx->pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2499        } else if (r5c_recovery_rewrite_data_only_stripes(log, ctx)) {
2500                pr_err("md/raid:%s: failed to rewrite stripes to journal\n",
2501                       mdname(mddev));
2502                ret =  -EIO;
2503                goto error;
2504        }
2505
2506        log->log_start = ctx->pos;
2507        log->seq = ctx->seq;
2508        log->last_checkpoint = pos;
2509        r5l_write_super(log, pos);
2510
2511        r5c_recovery_flush_data_only_stripes(log, ctx);
2512        ret = 0;
2513error:
2514        r5l_recovery_free_ra_pool(log, ctx);
2515ra_pool:
2516        __free_page(ctx->meta_page);
2517meta_page:
2518        kfree(ctx);
2519        return ret;
2520}
2521
2522static void r5l_write_super(struct r5l_log *log, sector_t cp)
2523{
2524        struct mddev *mddev = log->rdev->mddev;
2525
2526        log->rdev->journal_tail = cp;
2527        set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2528}
2529
2530static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page)
2531{
2532        struct r5conf *conf;
2533        int ret;
2534
2535        ret = mddev_lock(mddev);
2536        if (ret)
2537                return ret;
2538
2539        conf = mddev->private;
2540        if (!conf || !conf->log) {
2541                mddev_unlock(mddev);
2542                return 0;
2543        }
2544
2545        switch (conf->log->r5c_journal_mode) {
2546        case R5C_JOURNAL_MODE_WRITE_THROUGH:
2547                ret = snprintf(
2548                        page, PAGE_SIZE, "[%s] %s\n",
2549                        r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2550                        r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2551                break;
2552        case R5C_JOURNAL_MODE_WRITE_BACK:
2553                ret = snprintf(
2554                        page, PAGE_SIZE, "%s [%s]\n",
2555                        r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2556                        r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2557                break;
2558        default:
2559                ret = 0;
2560        }
2561        mddev_unlock(mddev);
2562        return ret;
2563}
2564
2565/*
2566 * Set journal cache mode on @mddev (external API initially needed by dm-raid).
2567 *
2568 * @mode as defined in 'enum r5c_journal_mode'.
2569 *
2570 */
2571int r5c_journal_mode_set(struct mddev *mddev, int mode)
2572{
2573        struct r5conf *conf;
2574
2575        if (mode < R5C_JOURNAL_MODE_WRITE_THROUGH ||
2576            mode > R5C_JOURNAL_MODE_WRITE_BACK)
2577                return -EINVAL;
2578
2579        conf = mddev->private;
2580        if (!conf || !conf->log)
2581                return -ENODEV;
2582
2583        if (raid5_calc_degraded(conf) > 0 &&
2584            mode == R5C_JOURNAL_MODE_WRITE_BACK)
2585                return -EINVAL;
2586
2587        mddev_suspend(mddev);
2588        conf->log->r5c_journal_mode = mode;
2589        mddev_resume(mddev);
2590
2591        pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n",
2592                 mdname(mddev), mode, r5c_journal_mode_str[mode]);
2593        return 0;
2594}
2595EXPORT_SYMBOL(r5c_journal_mode_set);
2596
2597static ssize_t r5c_journal_mode_store(struct mddev *mddev,
2598                                      const char *page, size_t length)
2599{
2600        int mode = ARRAY_SIZE(r5c_journal_mode_str);
2601        size_t len = length;
2602        int ret;
2603
2604        if (len < 2)
2605                return -EINVAL;
2606
2607        if (page[len - 1] == '\n')
2608                len--;
2609
2610        while (mode--)
2611                if (strlen(r5c_journal_mode_str[mode]) == len &&
2612                    !strncmp(page, r5c_journal_mode_str[mode], len))
2613                        break;
2614        ret = mddev_lock(mddev);
2615        if (ret)
2616                return ret;
2617        ret = r5c_journal_mode_set(mddev, mode);
2618        mddev_unlock(mddev);
2619        return ret ?: length;
2620}
2621
2622struct md_sysfs_entry
2623r5c_journal_mode = __ATTR(journal_mode, 0644,
2624                          r5c_journal_mode_show, r5c_journal_mode_store);
2625
2626/*
2627 * Try handle write operation in caching phase. This function should only
2628 * be called in write-back mode.
2629 *
2630 * If all outstanding writes can be handled in caching phase, returns 0
2631 * If writes requires write-out phase, call r5c_make_stripe_write_out()
2632 * and returns -EAGAIN
2633 */
2634int r5c_try_caching_write(struct r5conf *conf,
2635                          struct stripe_head *sh,
2636                          struct stripe_head_state *s,
2637                          int disks)
2638{
2639        struct r5l_log *log = conf->log;
2640        int i;
2641        struct r5dev *dev;
2642        int to_cache = 0;
2643        void **pslot;
2644        sector_t tree_index;
2645        int ret;
2646        uintptr_t refcount;
2647
2648        BUG_ON(!r5c_is_writeback(log));
2649
2650        if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
2651                /*
2652                 * There are two different scenarios here:
2653                 *  1. The stripe has some data cached, and it is sent to
2654                 *     write-out phase for reclaim
2655                 *  2. The stripe is clean, and this is the first write
2656                 *
2657                 * For 1, return -EAGAIN, so we continue with
2658                 * handle_stripe_dirtying().
2659                 *
2660                 * For 2, set STRIPE_R5C_CACHING and continue with caching
2661                 * write.
2662                 */
2663
2664                /* case 1: anything injournal or anything in written */
2665                if (s->injournal > 0 || s->written > 0)
2666                        return -EAGAIN;
2667                /* case 2 */
2668                set_bit(STRIPE_R5C_CACHING, &sh->state);
2669        }
2670
2671        /*
2672         * When run in degraded mode, array is set to write-through mode.
2673         * This check helps drain pending write safely in the transition to
2674         * write-through mode.
2675         *
2676         * When a stripe is syncing, the write is also handled in write
2677         * through mode.
2678         */
2679        if (s->failed || test_bit(STRIPE_SYNCING, &sh->state)) {
2680                r5c_make_stripe_write_out(sh);
2681                return -EAGAIN;
2682        }
2683
2684        for (i = disks; i--; ) {
2685                dev = &sh->dev[i];
2686                /* if non-overwrite, use writing-out phase */
2687                if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) &&
2688                    !test_bit(R5_InJournal, &dev->flags)) {
2689                        r5c_make_stripe_write_out(sh);
2690                        return -EAGAIN;
2691                }
2692        }
2693
2694        /* if the stripe is not counted in big_stripe_tree, add it now */
2695        if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
2696            !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2697                tree_index = r5c_tree_index(conf, sh->sector);
2698                spin_lock(&log->tree_lock);
2699                pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2700                                               tree_index);
2701                if (pslot) {
2702                        refcount = (uintptr_t)radix_tree_deref_slot_protected(
2703                                pslot, &log->tree_lock) >>
2704                                R5C_RADIX_COUNT_SHIFT;
2705                        radix_tree_replace_slot(
2706                                &log->big_stripe_tree, pslot,
2707                                (void *)((refcount + 1) << R5C_RADIX_COUNT_SHIFT));
2708                } else {
2709                        /*
2710                         * this radix_tree_insert can fail safely, so no
2711                         * need to call radix_tree_preload()
2712                         */
2713                        ret = radix_tree_insert(
2714                                &log->big_stripe_tree, tree_index,
2715                                (void *)(1 << R5C_RADIX_COUNT_SHIFT));
2716                        if (ret) {
2717                                spin_unlock(&log->tree_lock);
2718                                r5c_make_stripe_write_out(sh);
2719                                return -EAGAIN;
2720                        }
2721                }
2722                spin_unlock(&log->tree_lock);
2723
2724                /*
2725                 * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is
2726                 * counted in the radix tree
2727                 */
2728                set_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state);
2729                atomic_inc(&conf->r5c_cached_partial_stripes);
2730        }
2731
2732        for (i = disks; i--; ) {
2733                dev = &sh->dev[i];
2734                if (dev->towrite) {
2735                        set_bit(R5_Wantwrite, &dev->flags);
2736                        set_bit(R5_Wantdrain, &dev->flags);
2737                        set_bit(R5_LOCKED, &dev->flags);
2738                        to_cache++;
2739                }
2740        }
2741
2742        if (to_cache) {
2743                set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2744                /*
2745                 * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data()
2746                 * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in
2747                 * r5c_handle_data_cached()
2748                 */
2749                set_bit(STRIPE_LOG_TRAPPED, &sh->state);
2750        }
2751
2752        return 0;
2753}
2754
2755/*
2756 * free extra pages (orig_page) we allocated for prexor
2757 */
2758void r5c_release_extra_page(struct stripe_head *sh)
2759{
2760        struct r5conf *conf = sh->raid_conf;
2761        int i;
2762        bool using_disk_info_extra_page;
2763
2764        using_disk_info_extra_page =
2765                sh->dev[0].orig_page == conf->disks[0].extra_page;
2766
2767        for (i = sh->disks; i--; )
2768                if (sh->dev[i].page != sh->dev[i].orig_page) {
2769                        struct page *p = sh->dev[i].orig_page;
2770
2771                        sh->dev[i].orig_page = sh->dev[i].page;
2772                        clear_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2773
2774                        if (!using_disk_info_extra_page)
2775                                put_page(p);
2776                }
2777
2778        if (using_disk_info_extra_page) {
2779                clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state);
2780                md_wakeup_thread(conf->mddev->thread);
2781        }
2782}
2783
2784void r5c_use_extra_page(struct stripe_head *sh)
2785{
2786        struct r5conf *conf = sh->raid_conf;
2787        int i;
2788        struct r5dev *dev;
2789
2790        for (i = sh->disks; i--; ) {
2791                dev = &sh->dev[i];
2792                if (dev->orig_page != dev->page)
2793                        put_page(dev->orig_page);
2794                dev->orig_page = conf->disks[i].extra_page;
2795        }
2796}
2797
2798/*
2799 * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the
2800 * stripe is committed to RAID disks.
2801 */
2802void r5c_finish_stripe_write_out(struct r5conf *conf,
2803                                 struct stripe_head *sh,
2804                                 struct stripe_head_state *s)
2805{
2806        struct r5l_log *log = conf->log;
2807        int i;
2808        int do_wakeup = 0;
2809        sector_t tree_index;
2810        void **pslot;
2811        uintptr_t refcount;
2812
2813        if (!log || !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags))
2814                return;
2815
2816        WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2817        clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
2818
2819        if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
2820                return;
2821
2822        for (i = sh->disks; i--; ) {
2823                clear_bit(R5_InJournal, &sh->dev[i].flags);
2824                if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2825                        do_wakeup = 1;
2826        }
2827
2828        /*
2829         * analyse_stripe() runs before r5c_finish_stripe_write_out(),
2830         * We updated R5_InJournal, so we also update s->injournal.
2831         */
2832        s->injournal = 0;
2833
2834        if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2835                if (atomic_dec_and_test(&conf->pending_full_writes))
2836                        md_wakeup_thread(conf->mddev->thread);
2837
2838        if (do_wakeup)
2839                wake_up(&conf->wait_for_overlap);
2840
2841        spin_lock_irq(&log->stripe_in_journal_lock);
2842        list_del_init(&sh->r5c);
2843        spin_unlock_irq(&log->stripe_in_journal_lock);
2844        sh->log_start = MaxSector;
2845
2846        atomic_dec(&log->stripe_in_journal_count);
2847        r5c_update_log_state(log);
2848
2849        /* stop counting this stripe in big_stripe_tree */
2850        if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) ||
2851            test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2852                tree_index = r5c_tree_index(conf, sh->sector);
2853                spin_lock(&log->tree_lock);
2854                pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2855                                               tree_index);
2856                BUG_ON(pslot == NULL);
2857                refcount = (uintptr_t)radix_tree_deref_slot_protected(
2858                        pslot, &log->tree_lock) >>
2859                        R5C_RADIX_COUNT_SHIFT;
2860                if (refcount == 1)
2861                        radix_tree_delete(&log->big_stripe_tree, tree_index);
2862                else
2863                        radix_tree_replace_slot(
2864                                &log->big_stripe_tree, pslot,
2865                                (void *)((refcount - 1) << R5C_RADIX_COUNT_SHIFT));
2866                spin_unlock(&log->tree_lock);
2867        }
2868
2869        if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) {
2870                BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0);
2871                atomic_dec(&conf->r5c_flushing_partial_stripes);
2872                atomic_dec(&conf->r5c_cached_partial_stripes);
2873        }
2874
2875        if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2876                BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0);
2877                atomic_dec(&conf->r5c_flushing_full_stripes);
2878                atomic_dec(&conf->r5c_cached_full_stripes);
2879        }
2880
2881        r5l_append_flush_payload(log, sh->sector);
2882        /* stripe is flused to raid disks, we can do resync now */
2883        if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
2884                set_bit(STRIPE_HANDLE, &sh->state);
2885}
2886
2887int r5c_cache_data(struct r5l_log *log, struct stripe_head *sh)
2888{
2889        struct r5conf *conf = sh->raid_conf;
2890        int pages = 0;
2891        int reserve;
2892        int i;
2893        int ret = 0;
2894
2895        BUG_ON(!log);
2896
2897        for (i = 0; i < sh->disks; i++) {
2898                void *addr;
2899
2900                if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
2901                        continue;
2902                addr = kmap_atomic(sh->dev[i].page);
2903                sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
2904                                                    addr, PAGE_SIZE);
2905                kunmap_atomic(addr);
2906                pages++;
2907        }
2908        WARN_ON(pages == 0);
2909
2910        /*
2911         * The stripe must enter state machine again to call endio, so
2912         * don't delay.
2913         */
2914        clear_bit(STRIPE_DELAYED, &sh->state);
2915        atomic_inc(&sh->count);
2916
2917        mutex_lock(&log->io_mutex);
2918        /* meta + data */
2919        reserve = (1 + pages) << (PAGE_SHIFT - 9);
2920
2921        if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
2922            sh->log_start == MaxSector)
2923                r5l_add_no_space_stripe(log, sh);
2924        else if (!r5l_has_free_space(log, reserve)) {
2925                if (sh->log_start == log->last_checkpoint)
2926                        BUG();
2927                else
2928                        r5l_add_no_space_stripe(log, sh);
2929        } else {
2930                ret = r5l_log_stripe(log, sh, pages, 0);
2931                if (ret) {
2932                        spin_lock_irq(&log->io_list_lock);
2933                        list_add_tail(&sh->log_list, &log->no_mem_stripes);
2934                        spin_unlock_irq(&log->io_list_lock);
2935                }
2936        }
2937
2938        mutex_unlock(&log->io_mutex);
2939        return 0;
2940}
2941
2942/* check whether this big stripe is in write back cache. */
2943bool r5c_big_stripe_cached(struct r5conf *conf, sector_t sect)
2944{
2945        struct r5l_log *log = conf->log;
2946        sector_t tree_index;
2947        void *slot;
2948
2949        if (!log)
2950                return false;
2951
2952        WARN_ON_ONCE(!rcu_read_lock_held());
2953        tree_index = r5c_tree_index(conf, sect);
2954        slot = radix_tree_lookup(&log->big_stripe_tree, tree_index);
2955        return slot != NULL;
2956}
2957
2958static int r5l_load_log(struct r5l_log *log)
2959{
2960        struct md_rdev *rdev = log->rdev;
2961        struct page *page;
2962        struct r5l_meta_block *mb;
2963        sector_t cp = log->rdev->journal_tail;
2964        u32 stored_crc, expected_crc;
2965        bool create_super = false;
2966        int ret = 0;
2967
2968        /* Make sure it's valid */
2969        if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
2970                cp = 0;
2971        page = alloc_page(GFP_KERNEL);
2972        if (!page)
2973                return -ENOMEM;
2974
2975        if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, 0, false)) {
2976                ret = -EIO;
2977                goto ioerr;
2978        }
2979        mb = page_address(page);
2980
2981        if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
2982            mb->version != R5LOG_VERSION) {
2983                create_super = true;
2984                goto create;
2985        }
2986        stored_crc = le32_to_cpu(mb->checksum);
2987        mb->checksum = 0;
2988        expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
2989        if (stored_crc != expected_crc) {
2990                create_super = true;
2991                goto create;
2992        }
2993        if (le64_to_cpu(mb->position) != cp) {
2994                create_super = true;
2995                goto create;
2996        }
2997create:
2998        if (create_super) {
2999                log->last_cp_seq = prandom_u32();
3000                cp = 0;
3001                r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq);
3002                /*
3003                 * Make sure super points to correct address. Log might have
3004                 * data very soon. If super hasn't correct log tail address,
3005                 * recovery can't find the log
3006                 */
3007                r5l_write_super(log, cp);
3008        } else
3009                log->last_cp_seq = le64_to_cpu(mb->seq);
3010
3011        log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
3012        log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
3013        if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
3014                log->max_free_space = RECLAIM_MAX_FREE_SPACE;
3015        log->last_checkpoint = cp;
3016
3017        __free_page(page);
3018
3019        if (create_super) {
3020                log->log_start = r5l_ring_add(log, cp, BLOCK_SECTORS);
3021                log->seq = log->last_cp_seq + 1;
3022                log->next_checkpoint = cp;
3023        } else
3024                ret = r5l_recovery_log(log);
3025
3026        r5c_update_log_state(log);
3027        return ret;
3028ioerr:
3029        __free_page(page);
3030        return ret;
3031}
3032
3033int r5l_start(struct r5l_log *log)
3034{
3035        int ret;
3036
3037        if (!log)
3038                return 0;
3039
3040        ret = r5l_load_log(log);
3041        if (ret) {
3042                struct mddev *mddev = log->rdev->mddev;
3043                struct r5conf *conf = mddev->private;
3044
3045                r5l_exit_log(conf);
3046        }
3047        return ret;
3048}
3049
3050void r5c_update_on_rdev_error(struct mddev *mddev, struct md_rdev *rdev)
3051{
3052        struct r5conf *conf = mddev->private;
3053        struct r5l_log *log = conf->log;
3054
3055        if (!log)
3056                return;
3057
3058        if ((raid5_calc_degraded(conf) > 0 ||
3059             test_bit(Journal, &rdev->flags)) &&
3060            conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK)
3061                schedule_work(&log->disable_writeback_work);
3062}
3063
3064int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
3065{
3066        struct request_queue *q = bdev_get_queue(rdev->bdev);
3067        struct r5l_log *log;
3068        char b[BDEVNAME_SIZE];
3069        int ret;
3070
3071        pr_debug("md/raid:%s: using device %s as journal\n",
3072                 mdname(conf->mddev), bdevname(rdev->bdev, b));
3073
3074        if (PAGE_SIZE != 4096)
3075                return -EINVAL;
3076
3077        /*
3078         * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and
3079         * raid_disks r5l_payload_data_parity.
3080         *
3081         * Write journal and cache does not work for very big array
3082         * (raid_disks > 203)
3083         */
3084        if (sizeof(struct r5l_meta_block) +
3085            ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) *
3086             conf->raid_disks) > PAGE_SIZE) {
3087                pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n",
3088                       mdname(conf->mddev), conf->raid_disks);
3089                return -EINVAL;
3090        }
3091
3092        log = kzalloc(sizeof(*log), GFP_KERNEL);
3093        if (!log)
3094                return -ENOMEM;
3095        log->rdev = rdev;
3096
3097        log->need_cache_flush = test_bit(QUEUE_FLAG_WC, &q->queue_flags) != 0;
3098
3099        log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
3100                                       sizeof(rdev->mddev->uuid));
3101
3102        mutex_init(&log->io_mutex);
3103
3104        spin_lock_init(&log->io_list_lock);
3105        INIT_LIST_HEAD(&log->running_ios);
3106        INIT_LIST_HEAD(&log->io_end_ios);
3107        INIT_LIST_HEAD(&log->flushing_ios);
3108        INIT_LIST_HEAD(&log->finished_ios);
3109        bio_init(&log->flush_bio, NULL, 0);
3110
3111        log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
3112        if (!log->io_kc)
3113                goto io_kc;
3114
3115        ret = mempool_init_slab_pool(&log->io_pool, R5L_POOL_SIZE, log->io_kc);
3116        if (ret)
3117                goto io_pool;
3118
3119        ret = bioset_init(&log->bs, R5L_POOL_SIZE, 0, BIOSET_NEED_BVECS);
3120        if (ret)
3121                goto io_bs;
3122
3123        ret = mempool_init_page_pool(&log->meta_pool, R5L_POOL_SIZE, 0);
3124        if (ret)
3125                goto out_mempool;
3126
3127        spin_lock_init(&log->tree_lock);
3128        INIT_RADIX_TREE(&log->big_stripe_tree, GFP_NOWAIT | __GFP_NOWARN);
3129
3130        log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
3131                                                 log->rdev->mddev, "reclaim");
3132        if (!log->reclaim_thread)
3133                goto reclaim_thread;
3134        log->reclaim_thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL;
3135
3136        init_waitqueue_head(&log->iounit_wait);
3137
3138        INIT_LIST_HEAD(&log->no_mem_stripes);
3139
3140        INIT_LIST_HEAD(&log->no_space_stripes);
3141        spin_lock_init(&log->no_space_stripes_lock);
3142
3143        INIT_WORK(&log->deferred_io_work, r5l_submit_io_async);
3144        INIT_WORK(&log->disable_writeback_work, r5c_disable_writeback_async);
3145
3146        log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
3147        INIT_LIST_HEAD(&log->stripe_in_journal_list);
3148        spin_lock_init(&log->stripe_in_journal_lock);
3149        atomic_set(&log->stripe_in_journal_count, 0);
3150
3151        rcu_assign_pointer(conf->log, log);
3152
3153        set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
3154        return 0;
3155
3156reclaim_thread:
3157        mempool_exit(&log->meta_pool);
3158out_mempool:
3159        bioset_exit(&log->bs);
3160io_bs:
3161        mempool_exit(&log->io_pool);
3162io_pool:
3163        kmem_cache_destroy(log->io_kc);
3164io_kc:
3165        kfree(log);
3166        return -EINVAL;
3167}
3168
3169void r5l_exit_log(struct r5conf *conf)
3170{
3171        struct r5l_log *log = conf->log;
3172
3173        conf->log = NULL;
3174        synchronize_rcu();
3175
3176        /* Ensure disable_writeback_work wakes up and exits */
3177        wake_up(&conf->mddev->sb_wait);
3178        flush_work(&log->disable_writeback_work);
3179        md_unregister_thread(&log->reclaim_thread);
3180        mempool_exit(&log->meta_pool);
3181        bioset_exit(&log->bs);
3182        mempool_exit(&log->io_pool);
3183        kmem_cache_destroy(log->io_kc);
3184        kfree(log);
3185}
3186