linux/drivers/md/raid5.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * raid5.c : Multiple Devices driver for Linux
   4 *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
   5 *         Copyright (C) 1999, 2000 Ingo Molnar
   6 *         Copyright (C) 2002, 2003 H. Peter Anvin
   7 *
   8 * RAID-4/5/6 management functions.
   9 * Thanks to Penguin Computing for making the RAID-6 development possible
  10 * by donating a test server!
  11 */
  12
  13/*
  14 * BITMAP UNPLUGGING:
  15 *
  16 * The sequencing for updating the bitmap reliably is a little
  17 * subtle (and I got it wrong the first time) so it deserves some
  18 * explanation.
  19 *
  20 * We group bitmap updates into batches.  Each batch has a number.
  21 * We may write out several batches at once, but that isn't very important.
  22 * conf->seq_write is the number of the last batch successfully written.
  23 * conf->seq_flush is the number of the last batch that was closed to
  24 *    new additions.
  25 * When we discover that we will need to write to any block in a stripe
  26 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
  27 * the number of the batch it will be in. This is seq_flush+1.
  28 * When we are ready to do a write, if that batch hasn't been written yet,
  29 *   we plug the array and queue the stripe for later.
  30 * When an unplug happens, we increment bm_flush, thus closing the current
  31 *   batch.
  32 * When we notice that bm_flush > bm_write, we write out all pending updates
  33 * to the bitmap, and advance bm_write to where bm_flush was.
  34 * This may occasionally write a bit out twice, but is sure never to
  35 * miss any bits.
  36 */
  37
  38#include <linux/blkdev.h>
  39#include <linux/kthread.h>
  40#include <linux/raid/pq.h>
  41#include <linux/async_tx.h>
  42#include <linux/module.h>
  43#include <linux/async.h>
  44#include <linux/seq_file.h>
  45#include <linux/cpu.h>
  46#include <linux/slab.h>
  47#include <linux/ratelimit.h>
  48#include <linux/nodemask.h>
  49
  50#include <trace/events/block.h>
  51#include <linux/list_sort.h>
  52
  53#include "md.h"
  54#include "raid5.h"
  55#include "raid0.h"
  56#include "md-bitmap.h"
  57#include "raid5-log.h"
  58
  59#define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
  60
  61#define cpu_to_group(cpu) cpu_to_node(cpu)
  62#define ANY_GROUP NUMA_NO_NODE
  63
  64static bool devices_handle_discard_safely = false;
  65module_param(devices_handle_discard_safely, bool, 0644);
  66MODULE_PARM_DESC(devices_handle_discard_safely,
  67                 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
  68static struct workqueue_struct *raid5_wq;
  69
  70static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
  71{
  72        int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
  73        return &conf->stripe_hashtbl[hash];
  74}
  75
  76static inline int stripe_hash_locks_hash(sector_t sect)
  77{
  78        return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
  79}
  80
  81static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
  82{
  83        spin_lock_irq(conf->hash_locks + hash);
  84        spin_lock(&conf->device_lock);
  85}
  86
  87static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
  88{
  89        spin_unlock(&conf->device_lock);
  90        spin_unlock_irq(conf->hash_locks + hash);
  91}
  92
  93static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
  94{
  95        int i;
  96        spin_lock_irq(conf->hash_locks);
  97        for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
  98                spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
  99        spin_lock(&conf->device_lock);
 100}
 101
 102static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
 103{
 104        int i;
 105        spin_unlock(&conf->device_lock);
 106        for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
 107                spin_unlock(conf->hash_locks + i);
 108        spin_unlock_irq(conf->hash_locks);
 109}
 110
 111/* Find first data disk in a raid6 stripe */
 112static inline int raid6_d0(struct stripe_head *sh)
 113{
 114        if (sh->ddf_layout)
 115                /* ddf always start from first device */
 116                return 0;
 117        /* md starts just after Q block */
 118        if (sh->qd_idx == sh->disks - 1)
 119                return 0;
 120        else
 121                return sh->qd_idx + 1;
 122}
 123static inline int raid6_next_disk(int disk, int raid_disks)
 124{
 125        disk++;
 126        return (disk < raid_disks) ? disk : 0;
 127}
 128
 129/* When walking through the disks in a raid5, starting at raid6_d0,
 130 * We need to map each disk to a 'slot', where the data disks are slot
 131 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
 132 * is raid_disks-1.  This help does that mapping.
 133 */
 134static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
 135                             int *count, int syndrome_disks)
 136{
 137        int slot = *count;
 138
 139        if (sh->ddf_layout)
 140                (*count)++;
 141        if (idx == sh->pd_idx)
 142                return syndrome_disks;
 143        if (idx == sh->qd_idx)
 144                return syndrome_disks + 1;
 145        if (!sh->ddf_layout)
 146                (*count)++;
 147        return slot;
 148}
 149
 150static void print_raid5_conf (struct r5conf *conf);
 151
 152static int stripe_operations_active(struct stripe_head *sh)
 153{
 154        return sh->check_state || sh->reconstruct_state ||
 155               test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
 156               test_bit(STRIPE_COMPUTE_RUN, &sh->state);
 157}
 158
 159static bool stripe_is_lowprio(struct stripe_head *sh)
 160{
 161        return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
 162                test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
 163               !test_bit(STRIPE_R5C_CACHING, &sh->state);
 164}
 165
 166static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
 167{
 168        struct r5conf *conf = sh->raid_conf;
 169        struct r5worker_group *group;
 170        int thread_cnt;
 171        int i, cpu = sh->cpu;
 172
 173        if (!cpu_online(cpu)) {
 174                cpu = cpumask_any(cpu_online_mask);
 175                sh->cpu = cpu;
 176        }
 177
 178        if (list_empty(&sh->lru)) {
 179                struct r5worker_group *group;
 180                group = conf->worker_groups + cpu_to_group(cpu);
 181                if (stripe_is_lowprio(sh))
 182                        list_add_tail(&sh->lru, &group->loprio_list);
 183                else
 184                        list_add_tail(&sh->lru, &group->handle_list);
 185                group->stripes_cnt++;
 186                sh->group = group;
 187        }
 188
 189        if (conf->worker_cnt_per_group == 0) {
 190                md_wakeup_thread(conf->mddev->thread);
 191                return;
 192        }
 193
 194        group = conf->worker_groups + cpu_to_group(sh->cpu);
 195
 196        group->workers[0].working = true;
 197        /* at least one worker should run to avoid race */
 198        queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
 199
 200        thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
 201        /* wakeup more workers */
 202        for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
 203                if (group->workers[i].working == false) {
 204                        group->workers[i].working = true;
 205                        queue_work_on(sh->cpu, raid5_wq,
 206                                      &group->workers[i].work);
 207                        thread_cnt--;
 208                }
 209        }
 210}
 211
 212static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
 213                              struct list_head *temp_inactive_list)
 214{
 215        int i;
 216        int injournal = 0;      /* number of date pages with R5_InJournal */
 217
 218        BUG_ON(!list_empty(&sh->lru));
 219        BUG_ON(atomic_read(&conf->active_stripes)==0);
 220
 221        if (r5c_is_writeback(conf->log))
 222                for (i = sh->disks; i--; )
 223                        if (test_bit(R5_InJournal, &sh->dev[i].flags))
 224                                injournal++;
 225        /*
 226         * In the following cases, the stripe cannot be released to cached
 227         * lists. Therefore, we make the stripe write out and set
 228         * STRIPE_HANDLE:
 229         *   1. when quiesce in r5c write back;
 230         *   2. when resync is requested fot the stripe.
 231         */
 232        if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
 233            (conf->quiesce && r5c_is_writeback(conf->log) &&
 234             !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
 235                if (test_bit(STRIPE_R5C_CACHING, &sh->state))
 236                        r5c_make_stripe_write_out(sh);
 237                set_bit(STRIPE_HANDLE, &sh->state);
 238        }
 239
 240        if (test_bit(STRIPE_HANDLE, &sh->state)) {
 241                if (test_bit(STRIPE_DELAYED, &sh->state) &&
 242                    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
 243                        list_add_tail(&sh->lru, &conf->delayed_list);
 244                else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
 245                           sh->bm_seq - conf->seq_write > 0)
 246                        list_add_tail(&sh->lru, &conf->bitmap_list);
 247                else {
 248                        clear_bit(STRIPE_DELAYED, &sh->state);
 249                        clear_bit(STRIPE_BIT_DELAY, &sh->state);
 250                        if (conf->worker_cnt_per_group == 0) {
 251                                if (stripe_is_lowprio(sh))
 252                                        list_add_tail(&sh->lru,
 253                                                        &conf->loprio_list);
 254                                else
 255                                        list_add_tail(&sh->lru,
 256                                                        &conf->handle_list);
 257                        } else {
 258                                raid5_wakeup_stripe_thread(sh);
 259                                return;
 260                        }
 261                }
 262                md_wakeup_thread(conf->mddev->thread);
 263        } else {
 264                BUG_ON(stripe_operations_active(sh));
 265                if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
 266                        if (atomic_dec_return(&conf->preread_active_stripes)
 267                            < IO_THRESHOLD)
 268                                md_wakeup_thread(conf->mddev->thread);
 269                atomic_dec(&conf->active_stripes);
 270                if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
 271                        if (!r5c_is_writeback(conf->log))
 272                                list_add_tail(&sh->lru, temp_inactive_list);
 273                        else {
 274                                WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
 275                                if (injournal == 0)
 276                                        list_add_tail(&sh->lru, temp_inactive_list);
 277                                else if (injournal == conf->raid_disks - conf->max_degraded) {
 278                                        /* full stripe */
 279                                        if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
 280                                                atomic_inc(&conf->r5c_cached_full_stripes);
 281                                        if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
 282                                                atomic_dec(&conf->r5c_cached_partial_stripes);
 283                                        list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
 284                                        r5c_check_cached_full_stripe(conf);
 285                                } else
 286                                        /*
 287                                         * STRIPE_R5C_PARTIAL_STRIPE is set in
 288                                         * r5c_try_caching_write(). No need to
 289                                         * set it again.
 290                                         */
 291                                        list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
 292                        }
 293                }
 294        }
 295}
 296
 297static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
 298                             struct list_head *temp_inactive_list)
 299{
 300        if (atomic_dec_and_test(&sh->count))
 301                do_release_stripe(conf, sh, temp_inactive_list);
 302}
 303
 304/*
 305 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
 306 *
 307 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
 308 * given time. Adding stripes only takes device lock, while deleting stripes
 309 * only takes hash lock.
 310 */
 311static void release_inactive_stripe_list(struct r5conf *conf,
 312                                         struct list_head *temp_inactive_list,
 313                                         int hash)
 314{
 315        int size;
 316        bool do_wakeup = false;
 317        unsigned long flags;
 318
 319        if (hash == NR_STRIPE_HASH_LOCKS) {
 320                size = NR_STRIPE_HASH_LOCKS;
 321                hash = NR_STRIPE_HASH_LOCKS - 1;
 322        } else
 323                size = 1;
 324        while (size) {
 325                struct list_head *list = &temp_inactive_list[size - 1];
 326
 327                /*
 328                 * We don't hold any lock here yet, raid5_get_active_stripe() might
 329                 * remove stripes from the list
 330                 */
 331                if (!list_empty_careful(list)) {
 332                        spin_lock_irqsave(conf->hash_locks + hash, flags);
 333                        if (list_empty(conf->inactive_list + hash) &&
 334                            !list_empty(list))
 335                                atomic_dec(&conf->empty_inactive_list_nr);
 336                        list_splice_tail_init(list, conf->inactive_list + hash);
 337                        do_wakeup = true;
 338                        spin_unlock_irqrestore(conf->hash_locks + hash, flags);
 339                }
 340                size--;
 341                hash--;
 342        }
 343
 344        if (do_wakeup) {
 345                wake_up(&conf->wait_for_stripe);
 346                if (atomic_read(&conf->active_stripes) == 0)
 347                        wake_up(&conf->wait_for_quiescent);
 348                if (conf->retry_read_aligned)
 349                        md_wakeup_thread(conf->mddev->thread);
 350        }
 351}
 352
 353/* should hold conf->device_lock already */
 354static int release_stripe_list(struct r5conf *conf,
 355                               struct list_head *temp_inactive_list)
 356{
 357        struct stripe_head *sh, *t;
 358        int count = 0;
 359        struct llist_node *head;
 360
 361        head = llist_del_all(&conf->released_stripes);
 362        head = llist_reverse_order(head);
 363        llist_for_each_entry_safe(sh, t, head, release_list) {
 364                int hash;
 365
 366                /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
 367                smp_mb();
 368                clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
 369                /*
 370                 * Don't worry the bit is set here, because if the bit is set
 371                 * again, the count is always > 1. This is true for
 372                 * STRIPE_ON_UNPLUG_LIST bit too.
 373                 */
 374                hash = sh->hash_lock_index;
 375                __release_stripe(conf, sh, &temp_inactive_list[hash]);
 376                count++;
 377        }
 378
 379        return count;
 380}
 381
 382void raid5_release_stripe(struct stripe_head *sh)
 383{
 384        struct r5conf *conf = sh->raid_conf;
 385        unsigned long flags;
 386        struct list_head list;
 387        int hash;
 388        bool wakeup;
 389
 390        /* Avoid release_list until the last reference.
 391         */
 392        if (atomic_add_unless(&sh->count, -1, 1))
 393                return;
 394
 395        if (unlikely(!conf->mddev->thread) ||
 396                test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
 397                goto slow_path;
 398        wakeup = llist_add(&sh->release_list, &conf->released_stripes);
 399        if (wakeup)
 400                md_wakeup_thread(conf->mddev->thread);
 401        return;
 402slow_path:
 403        /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
 404        if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
 405                INIT_LIST_HEAD(&list);
 406                hash = sh->hash_lock_index;
 407                do_release_stripe(conf, sh, &list);
 408                spin_unlock_irqrestore(&conf->device_lock, flags);
 409                release_inactive_stripe_list(conf, &list, hash);
 410        }
 411}
 412
 413static inline void remove_hash(struct stripe_head *sh)
 414{
 415        pr_debug("remove_hash(), stripe %llu\n",
 416                (unsigned long long)sh->sector);
 417
 418        hlist_del_init(&sh->hash);
 419}
 420
 421static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
 422{
 423        struct hlist_head *hp = stripe_hash(conf, sh->sector);
 424
 425        pr_debug("insert_hash(), stripe %llu\n",
 426                (unsigned long long)sh->sector);
 427
 428        hlist_add_head(&sh->hash, hp);
 429}
 430
 431/* find an idle stripe, make sure it is unhashed, and return it. */
 432static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
 433{
 434        struct stripe_head *sh = NULL;
 435        struct list_head *first;
 436
 437        if (list_empty(conf->inactive_list + hash))
 438                goto out;
 439        first = (conf->inactive_list + hash)->next;
 440        sh = list_entry(first, struct stripe_head, lru);
 441        list_del_init(first);
 442        remove_hash(sh);
 443        atomic_inc(&conf->active_stripes);
 444        BUG_ON(hash != sh->hash_lock_index);
 445        if (list_empty(conf->inactive_list + hash))
 446                atomic_inc(&conf->empty_inactive_list_nr);
 447out:
 448        return sh;
 449}
 450
 451static void shrink_buffers(struct stripe_head *sh)
 452{
 453        struct page *p;
 454        int i;
 455        int num = sh->raid_conf->pool_size;
 456
 457        for (i = 0; i < num ; i++) {
 458                WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
 459                p = sh->dev[i].page;
 460                if (!p)
 461                        continue;
 462                sh->dev[i].page = NULL;
 463                put_page(p);
 464        }
 465}
 466
 467static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
 468{
 469        int i;
 470        int num = sh->raid_conf->pool_size;
 471
 472        for (i = 0; i < num; i++) {
 473                struct page *page;
 474
 475                if (!(page = alloc_page(gfp))) {
 476                        return 1;
 477                }
 478                sh->dev[i].page = page;
 479                sh->dev[i].orig_page = page;
 480        }
 481
 482        return 0;
 483}
 484
 485static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
 486                            struct stripe_head *sh);
 487
 488static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
 489{
 490        struct r5conf *conf = sh->raid_conf;
 491        int i, seq;
 492
 493        BUG_ON(atomic_read(&sh->count) != 0);
 494        BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
 495        BUG_ON(stripe_operations_active(sh));
 496        BUG_ON(sh->batch_head);
 497
 498        pr_debug("init_stripe called, stripe %llu\n",
 499                (unsigned long long)sector);
 500retry:
 501        seq = read_seqcount_begin(&conf->gen_lock);
 502        sh->generation = conf->generation - previous;
 503        sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
 504        sh->sector = sector;
 505        stripe_set_idx(sector, conf, previous, sh);
 506        sh->state = 0;
 507
 508        for (i = sh->disks; i--; ) {
 509                struct r5dev *dev = &sh->dev[i];
 510
 511                if (dev->toread || dev->read || dev->towrite || dev->written ||
 512                    test_bit(R5_LOCKED, &dev->flags)) {
 513                        pr_err("sector=%llx i=%d %p %p %p %p %d\n",
 514                               (unsigned long long)sh->sector, i, dev->toread,
 515                               dev->read, dev->towrite, dev->written,
 516                               test_bit(R5_LOCKED, &dev->flags));
 517                        WARN_ON(1);
 518                }
 519                dev->flags = 0;
 520                dev->sector = raid5_compute_blocknr(sh, i, previous);
 521        }
 522        if (read_seqcount_retry(&conf->gen_lock, seq))
 523                goto retry;
 524        sh->overwrite_disks = 0;
 525        insert_hash(conf, sh);
 526        sh->cpu = smp_processor_id();
 527        set_bit(STRIPE_BATCH_READY, &sh->state);
 528}
 529
 530static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
 531                                         short generation)
 532{
 533        struct stripe_head *sh;
 534
 535        pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
 536        hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
 537                if (sh->sector == sector && sh->generation == generation)
 538                        return sh;
 539        pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
 540        return NULL;
 541}
 542
 543/*
 544 * Need to check if array has failed when deciding whether to:
 545 *  - start an array
 546 *  - remove non-faulty devices
 547 *  - add a spare
 548 *  - allow a reshape
 549 * This determination is simple when no reshape is happening.
 550 * However if there is a reshape, we need to carefully check
 551 * both the before and after sections.
 552 * This is because some failed devices may only affect one
 553 * of the two sections, and some non-in_sync devices may
 554 * be insync in the section most affected by failed devices.
 555 */
 556int raid5_calc_degraded(struct r5conf *conf)
 557{
 558        int degraded, degraded2;
 559        int i;
 560
 561        rcu_read_lock();
 562        degraded = 0;
 563        for (i = 0; i < conf->previous_raid_disks; i++) {
 564                struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
 565                if (rdev && test_bit(Faulty, &rdev->flags))
 566                        rdev = rcu_dereference(conf->disks[i].replacement);
 567                if (!rdev || test_bit(Faulty, &rdev->flags))
 568                        degraded++;
 569                else if (test_bit(In_sync, &rdev->flags))
 570                        ;
 571                else
 572                        /* not in-sync or faulty.
 573                         * If the reshape increases the number of devices,
 574                         * this is being recovered by the reshape, so
 575                         * this 'previous' section is not in_sync.
 576                         * If the number of devices is being reduced however,
 577                         * the device can only be part of the array if
 578                         * we are reverting a reshape, so this section will
 579                         * be in-sync.
 580                         */
 581                        if (conf->raid_disks >= conf->previous_raid_disks)
 582                                degraded++;
 583        }
 584        rcu_read_unlock();
 585        if (conf->raid_disks == conf->previous_raid_disks)
 586                return degraded;
 587        rcu_read_lock();
 588        degraded2 = 0;
 589        for (i = 0; i < conf->raid_disks; i++) {
 590                struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
 591                if (rdev && test_bit(Faulty, &rdev->flags))
 592                        rdev = rcu_dereference(conf->disks[i].replacement);
 593                if (!rdev || test_bit(Faulty, &rdev->flags))
 594                        degraded2++;
 595                else if (test_bit(In_sync, &rdev->flags))
 596                        ;
 597                else
 598                        /* not in-sync or faulty.
 599                         * If reshape increases the number of devices, this
 600                         * section has already been recovered, else it
 601                         * almost certainly hasn't.
 602                         */
 603                        if (conf->raid_disks <= conf->previous_raid_disks)
 604                                degraded2++;
 605        }
 606        rcu_read_unlock();
 607        if (degraded2 > degraded)
 608                return degraded2;
 609        return degraded;
 610}
 611
 612static int has_failed(struct r5conf *conf)
 613{
 614        int degraded;
 615
 616        if (conf->mddev->reshape_position == MaxSector)
 617                return conf->mddev->degraded > conf->max_degraded;
 618
 619        degraded = raid5_calc_degraded(conf);
 620        if (degraded > conf->max_degraded)
 621                return 1;
 622        return 0;
 623}
 624
 625struct stripe_head *
 626raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
 627                        int previous, int noblock, int noquiesce)
 628{
 629        struct stripe_head *sh;
 630        int hash = stripe_hash_locks_hash(sector);
 631        int inc_empty_inactive_list_flag;
 632
 633        pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
 634
 635        spin_lock_irq(conf->hash_locks + hash);
 636
 637        do {
 638                wait_event_lock_irq(conf->wait_for_quiescent,
 639                                    conf->quiesce == 0 || noquiesce,
 640                                    *(conf->hash_locks + hash));
 641                sh = __find_stripe(conf, sector, conf->generation - previous);
 642                if (!sh) {
 643                        if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
 644                                sh = get_free_stripe(conf, hash);
 645                                if (!sh && !test_bit(R5_DID_ALLOC,
 646                                                     &conf->cache_state))
 647                                        set_bit(R5_ALLOC_MORE,
 648                                                &conf->cache_state);
 649                        }
 650                        if (noblock && sh == NULL)
 651                                break;
 652
 653                        r5c_check_stripe_cache_usage(conf);
 654                        if (!sh) {
 655                                set_bit(R5_INACTIVE_BLOCKED,
 656                                        &conf->cache_state);
 657                                r5l_wake_reclaim(conf->log, 0);
 658                                wait_event_lock_irq(
 659                                        conf->wait_for_stripe,
 660                                        !list_empty(conf->inactive_list + hash) &&
 661                                        (atomic_read(&conf->active_stripes)
 662                                         < (conf->max_nr_stripes * 3 / 4)
 663                                         || !test_bit(R5_INACTIVE_BLOCKED,
 664                                                      &conf->cache_state)),
 665                                        *(conf->hash_locks + hash));
 666                                clear_bit(R5_INACTIVE_BLOCKED,
 667                                          &conf->cache_state);
 668                        } else {
 669                                init_stripe(sh, sector, previous);
 670                                atomic_inc(&sh->count);
 671                        }
 672                } else if (!atomic_inc_not_zero(&sh->count)) {
 673                        spin_lock(&conf->device_lock);
 674                        if (!atomic_read(&sh->count)) {
 675                                if (!test_bit(STRIPE_HANDLE, &sh->state))
 676                                        atomic_inc(&conf->active_stripes);
 677                                BUG_ON(list_empty(&sh->lru) &&
 678                                       !test_bit(STRIPE_EXPANDING, &sh->state));
 679                                inc_empty_inactive_list_flag = 0;
 680                                if (!list_empty(conf->inactive_list + hash))
 681                                        inc_empty_inactive_list_flag = 1;
 682                                list_del_init(&sh->lru);
 683                                if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
 684                                        atomic_inc(&conf->empty_inactive_list_nr);
 685                                if (sh->group) {
 686                                        sh->group->stripes_cnt--;
 687                                        sh->group = NULL;
 688                                }
 689                        }
 690                        atomic_inc(&sh->count);
 691                        spin_unlock(&conf->device_lock);
 692                }
 693        } while (sh == NULL);
 694
 695        spin_unlock_irq(conf->hash_locks + hash);
 696        return sh;
 697}
 698
 699static bool is_full_stripe_write(struct stripe_head *sh)
 700{
 701        BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
 702        return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
 703}
 704
 705static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
 706                __acquires(&sh1->stripe_lock)
 707                __acquires(&sh2->stripe_lock)
 708{
 709        if (sh1 > sh2) {
 710                spin_lock_irq(&sh2->stripe_lock);
 711                spin_lock_nested(&sh1->stripe_lock, 1);
 712        } else {
 713                spin_lock_irq(&sh1->stripe_lock);
 714                spin_lock_nested(&sh2->stripe_lock, 1);
 715        }
 716}
 717
 718static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
 719                __releases(&sh1->stripe_lock)
 720                __releases(&sh2->stripe_lock)
 721{
 722        spin_unlock(&sh1->stripe_lock);
 723        spin_unlock_irq(&sh2->stripe_lock);
 724}
 725
 726/* Only freshly new full stripe normal write stripe can be added to a batch list */
 727static bool stripe_can_batch(struct stripe_head *sh)
 728{
 729        struct r5conf *conf = sh->raid_conf;
 730
 731        if (raid5_has_log(conf) || raid5_has_ppl(conf))
 732                return false;
 733        return test_bit(STRIPE_BATCH_READY, &sh->state) &&
 734                !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
 735                is_full_stripe_write(sh);
 736}
 737
 738/* we only do back search */
 739static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
 740{
 741        struct stripe_head *head;
 742        sector_t head_sector, tmp_sec;
 743        int hash;
 744        int dd_idx;
 745        int inc_empty_inactive_list_flag;
 746
 747        /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
 748        tmp_sec = sh->sector;
 749        if (!sector_div(tmp_sec, conf->chunk_sectors))
 750                return;
 751        head_sector = sh->sector - STRIPE_SECTORS;
 752
 753        hash = stripe_hash_locks_hash(head_sector);
 754        spin_lock_irq(conf->hash_locks + hash);
 755        head = __find_stripe(conf, head_sector, conf->generation);
 756        if (head && !atomic_inc_not_zero(&head->count)) {
 757                spin_lock(&conf->device_lock);
 758                if (!atomic_read(&head->count)) {
 759                        if (!test_bit(STRIPE_HANDLE, &head->state))
 760                                atomic_inc(&conf->active_stripes);
 761                        BUG_ON(list_empty(&head->lru) &&
 762                               !test_bit(STRIPE_EXPANDING, &head->state));
 763                        inc_empty_inactive_list_flag = 0;
 764                        if (!list_empty(conf->inactive_list + hash))
 765                                inc_empty_inactive_list_flag = 1;
 766                        list_del_init(&head->lru);
 767                        if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
 768                                atomic_inc(&conf->empty_inactive_list_nr);
 769                        if (head->group) {
 770                                head->group->stripes_cnt--;
 771                                head->group = NULL;
 772                        }
 773                }
 774                atomic_inc(&head->count);
 775                spin_unlock(&conf->device_lock);
 776        }
 777        spin_unlock_irq(conf->hash_locks + hash);
 778
 779        if (!head)
 780                return;
 781        if (!stripe_can_batch(head))
 782                goto out;
 783
 784        lock_two_stripes(head, sh);
 785        /* clear_batch_ready clear the flag */
 786        if (!stripe_can_batch(head) || !stripe_can_batch(sh))
 787                goto unlock_out;
 788
 789        if (sh->batch_head)
 790                goto unlock_out;
 791
 792        dd_idx = 0;
 793        while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
 794                dd_idx++;
 795        if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
 796            bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
 797                goto unlock_out;
 798
 799        if (head->batch_head) {
 800                spin_lock(&head->batch_head->batch_lock);
 801                /* This batch list is already running */
 802                if (!stripe_can_batch(head)) {
 803                        spin_unlock(&head->batch_head->batch_lock);
 804                        goto unlock_out;
 805                }
 806                /*
 807                 * We must assign batch_head of this stripe within the
 808                 * batch_lock, otherwise clear_batch_ready of batch head
 809                 * stripe could clear BATCH_READY bit of this stripe and
 810                 * this stripe->batch_head doesn't get assigned, which
 811                 * could confuse clear_batch_ready for this stripe
 812                 */
 813                sh->batch_head = head->batch_head;
 814
 815                /*
 816                 * at this point, head's BATCH_READY could be cleared, but we
 817                 * can still add the stripe to batch list
 818                 */
 819                list_add(&sh->batch_list, &head->batch_list);
 820                spin_unlock(&head->batch_head->batch_lock);
 821        } else {
 822                head->batch_head = head;
 823                sh->batch_head = head->batch_head;
 824                spin_lock(&head->batch_lock);
 825                list_add_tail(&sh->batch_list, &head->batch_list);
 826                spin_unlock(&head->batch_lock);
 827        }
 828
 829        if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
 830                if (atomic_dec_return(&conf->preread_active_stripes)
 831                    < IO_THRESHOLD)
 832                        md_wakeup_thread(conf->mddev->thread);
 833
 834        if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
 835                int seq = sh->bm_seq;
 836                if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
 837                    sh->batch_head->bm_seq > seq)
 838                        seq = sh->batch_head->bm_seq;
 839                set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
 840                sh->batch_head->bm_seq = seq;
 841        }
 842
 843        atomic_inc(&sh->count);
 844unlock_out:
 845        unlock_two_stripes(head, sh);
 846out:
 847        raid5_release_stripe(head);
 848}
 849
 850/* Determine if 'data_offset' or 'new_data_offset' should be used
 851 * in this stripe_head.
 852 */
 853static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
 854{
 855        sector_t progress = conf->reshape_progress;
 856        /* Need a memory barrier to make sure we see the value
 857         * of conf->generation, or ->data_offset that was set before
 858         * reshape_progress was updated.
 859         */
 860        smp_rmb();
 861        if (progress == MaxSector)
 862                return 0;
 863        if (sh->generation == conf->generation - 1)
 864                return 0;
 865        /* We are in a reshape, and this is a new-generation stripe,
 866         * so use new_data_offset.
 867         */
 868        return 1;
 869}
 870
 871static void dispatch_bio_list(struct bio_list *tmp)
 872{
 873        struct bio *bio;
 874
 875        while ((bio = bio_list_pop(tmp)))
 876                generic_make_request(bio);
 877}
 878
 879static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b)
 880{
 881        const struct r5pending_data *da = list_entry(a,
 882                                struct r5pending_data, sibling);
 883        const struct r5pending_data *db = list_entry(b,
 884                                struct r5pending_data, sibling);
 885        if (da->sector > db->sector)
 886                return 1;
 887        if (da->sector < db->sector)
 888                return -1;
 889        return 0;
 890}
 891
 892static void dispatch_defer_bios(struct r5conf *conf, int target,
 893                                struct bio_list *list)
 894{
 895        struct r5pending_data *data;
 896        struct list_head *first, *next = NULL;
 897        int cnt = 0;
 898
 899        if (conf->pending_data_cnt == 0)
 900                return;
 901
 902        list_sort(NULL, &conf->pending_list, cmp_stripe);
 903
 904        first = conf->pending_list.next;
 905
 906        /* temporarily move the head */
 907        if (conf->next_pending_data)
 908                list_move_tail(&conf->pending_list,
 909                                &conf->next_pending_data->sibling);
 910
 911        while (!list_empty(&conf->pending_list)) {
 912                data = list_first_entry(&conf->pending_list,
 913                        struct r5pending_data, sibling);
 914                if (&data->sibling == first)
 915                        first = data->sibling.next;
 916                next = data->sibling.next;
 917
 918                bio_list_merge(list, &data->bios);
 919                list_move(&data->sibling, &conf->free_list);
 920                cnt++;
 921                if (cnt >= target)
 922                        break;
 923        }
 924        conf->pending_data_cnt -= cnt;
 925        BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
 926
 927        if (next != &conf->pending_list)
 928                conf->next_pending_data = list_entry(next,
 929                                struct r5pending_data, sibling);
 930        else
 931                conf->next_pending_data = NULL;
 932        /* list isn't empty */
 933        if (first != &conf->pending_list)
 934                list_move_tail(&conf->pending_list, first);
 935}
 936
 937static void flush_deferred_bios(struct r5conf *conf)
 938{
 939        struct bio_list tmp = BIO_EMPTY_LIST;
 940
 941        if (conf->pending_data_cnt == 0)
 942                return;
 943
 944        spin_lock(&conf->pending_bios_lock);
 945        dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
 946        BUG_ON(conf->pending_data_cnt != 0);
 947        spin_unlock(&conf->pending_bios_lock);
 948
 949        dispatch_bio_list(&tmp);
 950}
 951
 952static void defer_issue_bios(struct r5conf *conf, sector_t sector,
 953                                struct bio_list *bios)
 954{
 955        struct bio_list tmp = BIO_EMPTY_LIST;
 956        struct r5pending_data *ent;
 957
 958        spin_lock(&conf->pending_bios_lock);
 959        ent = list_first_entry(&conf->free_list, struct r5pending_data,
 960                                                        sibling);
 961        list_move_tail(&ent->sibling, &conf->pending_list);
 962        ent->sector = sector;
 963        bio_list_init(&ent->bios);
 964        bio_list_merge(&ent->bios, bios);
 965        conf->pending_data_cnt++;
 966        if (conf->pending_data_cnt >= PENDING_IO_MAX)
 967                dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
 968
 969        spin_unlock(&conf->pending_bios_lock);
 970
 971        dispatch_bio_list(&tmp);
 972}
 973
 974static void
 975raid5_end_read_request(struct bio *bi);
 976static void
 977raid5_end_write_request(struct bio *bi);
 978
 979static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
 980{
 981        struct r5conf *conf = sh->raid_conf;
 982        int i, disks = sh->disks;
 983        struct stripe_head *head_sh = sh;
 984        struct bio_list pending_bios = BIO_EMPTY_LIST;
 985        bool should_defer;
 986
 987        might_sleep();
 988
 989        if (log_stripe(sh, s) == 0)
 990                return;
 991
 992        should_defer = conf->batch_bio_dispatch && conf->group_cnt;
 993
 994        for (i = disks; i--; ) {
 995                int op, op_flags = 0;
 996                int replace_only = 0;
 997                struct bio *bi, *rbi;
 998                struct md_rdev *rdev, *rrdev = NULL;
 999
1000                sh = head_sh;
1001                if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1002                        op = REQ_OP_WRITE;
1003                        if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1004                                op_flags = REQ_FUA;
1005                        if (test_bit(R5_Discard, &sh->dev[i].flags))
1006                                op = REQ_OP_DISCARD;
1007                } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1008                        op = REQ_OP_READ;
1009                else if (test_and_clear_bit(R5_WantReplace,
1010                                            &sh->dev[i].flags)) {
1011                        op = REQ_OP_WRITE;
1012                        replace_only = 1;
1013                } else
1014                        continue;
1015                if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1016                        op_flags |= REQ_SYNC;
1017
1018again:
1019                bi = &sh->dev[i].req;
1020                rbi = &sh->dev[i].rreq; /* For writing to replacement */
1021
1022                rcu_read_lock();
1023                rrdev = rcu_dereference(conf->disks[i].replacement);
1024                smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1025                rdev = rcu_dereference(conf->disks[i].rdev);
1026                if (!rdev) {
1027                        rdev = rrdev;
1028                        rrdev = NULL;
1029                }
1030                if (op_is_write(op)) {
1031                        if (replace_only)
1032                                rdev = NULL;
1033                        if (rdev == rrdev)
1034                                /* We raced and saw duplicates */
1035                                rrdev = NULL;
1036                } else {
1037                        if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1038                                rdev = rrdev;
1039                        rrdev = NULL;
1040                }
1041
1042                if (rdev && test_bit(Faulty, &rdev->flags))
1043                        rdev = NULL;
1044                if (rdev)
1045                        atomic_inc(&rdev->nr_pending);
1046                if (rrdev && test_bit(Faulty, &rrdev->flags))
1047                        rrdev = NULL;
1048                if (rrdev)
1049                        atomic_inc(&rrdev->nr_pending);
1050                rcu_read_unlock();
1051
1052                /* We have already checked bad blocks for reads.  Now
1053                 * need to check for writes.  We never accept write errors
1054                 * on the replacement, so we don't to check rrdev.
1055                 */
1056                while (op_is_write(op) && rdev &&
1057                       test_bit(WriteErrorSeen, &rdev->flags)) {
1058                        sector_t first_bad;
1059                        int bad_sectors;
1060                        int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
1061                                              &first_bad, &bad_sectors);
1062                        if (!bad)
1063                                break;
1064
1065                        if (bad < 0) {
1066                                set_bit(BlockedBadBlocks, &rdev->flags);
1067                                if (!conf->mddev->external &&
1068                                    conf->mddev->sb_flags) {
1069                                        /* It is very unlikely, but we might
1070                                         * still need to write out the
1071                                         * bad block log - better give it
1072                                         * a chance*/
1073                                        md_check_recovery(conf->mddev);
1074                                }
1075                                /*
1076                                 * Because md_wait_for_blocked_rdev
1077                                 * will dec nr_pending, we must
1078                                 * increment it first.
1079                                 */
1080                                atomic_inc(&rdev->nr_pending);
1081                                md_wait_for_blocked_rdev(rdev, conf->mddev);
1082                        } else {
1083                                /* Acknowledged bad block - skip the write */
1084                                rdev_dec_pending(rdev, conf->mddev);
1085                                rdev = NULL;
1086                        }
1087                }
1088
1089                if (rdev) {
1090                        if (s->syncing || s->expanding || s->expanded
1091                            || s->replacing)
1092                                md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1093
1094                        set_bit(STRIPE_IO_STARTED, &sh->state);
1095
1096                        bio_set_dev(bi, rdev->bdev);
1097                        bio_set_op_attrs(bi, op, op_flags);
1098                        bi->bi_end_io = op_is_write(op)
1099                                ? raid5_end_write_request
1100                                : raid5_end_read_request;
1101                        bi->bi_private = sh;
1102
1103                        pr_debug("%s: for %llu schedule op %d on disc %d\n",
1104                                __func__, (unsigned long long)sh->sector,
1105                                bi->bi_opf, i);
1106                        atomic_inc(&sh->count);
1107                        if (sh != head_sh)
1108                                atomic_inc(&head_sh->count);
1109                        if (use_new_offset(conf, sh))
1110                                bi->bi_iter.bi_sector = (sh->sector
1111                                                 + rdev->new_data_offset);
1112                        else
1113                                bi->bi_iter.bi_sector = (sh->sector
1114                                                 + rdev->data_offset);
1115                        if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1116                                bi->bi_opf |= REQ_NOMERGE;
1117
1118                        if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1119                                WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1120
1121                        if (!op_is_write(op) &&
1122                            test_bit(R5_InJournal, &sh->dev[i].flags))
1123                                /*
1124                                 * issuing read for a page in journal, this
1125                                 * must be preparing for prexor in rmw; read
1126                                 * the data into orig_page
1127                                 */
1128                                sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1129                        else
1130                                sh->dev[i].vec.bv_page = sh->dev[i].page;
1131                        bi->bi_vcnt = 1;
1132                        bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1133                        bi->bi_io_vec[0].bv_offset = 0;
1134                        bi->bi_iter.bi_size = STRIPE_SIZE;
1135                        bi->bi_write_hint = sh->dev[i].write_hint;
1136                        if (!rrdev)
1137                                sh->dev[i].write_hint = RWF_WRITE_LIFE_NOT_SET;
1138                        /*
1139                         * If this is discard request, set bi_vcnt 0. We don't
1140                         * want to confuse SCSI because SCSI will replace payload
1141                         */
1142                        if (op == REQ_OP_DISCARD)
1143                                bi->bi_vcnt = 0;
1144                        if (rrdev)
1145                                set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1146
1147                        if (conf->mddev->gendisk)
1148                                trace_block_bio_remap(bi->bi_disk->queue,
1149                                                      bi, disk_devt(conf->mddev->gendisk),
1150                                                      sh->dev[i].sector);
1151                        if (should_defer && op_is_write(op))
1152                                bio_list_add(&pending_bios, bi);
1153                        else
1154                                generic_make_request(bi);
1155                }
1156                if (rrdev) {
1157                        if (s->syncing || s->expanding || s->expanded
1158                            || s->replacing)
1159                                md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1160
1161                        set_bit(STRIPE_IO_STARTED, &sh->state);
1162
1163                        bio_set_dev(rbi, rrdev->bdev);
1164                        bio_set_op_attrs(rbi, op, op_flags);
1165                        BUG_ON(!op_is_write(op));
1166                        rbi->bi_end_io = raid5_end_write_request;
1167                        rbi->bi_private = sh;
1168
1169                        pr_debug("%s: for %llu schedule op %d on "
1170                                 "replacement disc %d\n",
1171                                __func__, (unsigned long long)sh->sector,
1172                                rbi->bi_opf, i);
1173                        atomic_inc(&sh->count);
1174                        if (sh != head_sh)
1175                                atomic_inc(&head_sh->count);
1176                        if (use_new_offset(conf, sh))
1177                                rbi->bi_iter.bi_sector = (sh->sector
1178                                                  + rrdev->new_data_offset);
1179                        else
1180                                rbi->bi_iter.bi_sector = (sh->sector
1181                                                  + rrdev->data_offset);
1182                        if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1183                                WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1184                        sh->dev[i].rvec.bv_page = sh->dev[i].page;
1185                        rbi->bi_vcnt = 1;
1186                        rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1187                        rbi->bi_io_vec[0].bv_offset = 0;
1188                        rbi->bi_iter.bi_size = STRIPE_SIZE;
1189                        rbi->bi_write_hint = sh->dev[i].write_hint;
1190                        sh->dev[i].write_hint = RWF_WRITE_LIFE_NOT_SET;
1191                        /*
1192                         * If this is discard request, set bi_vcnt 0. We don't
1193                         * want to confuse SCSI because SCSI will replace payload
1194                         */
1195                        if (op == REQ_OP_DISCARD)
1196                                rbi->bi_vcnt = 0;
1197                        if (conf->mddev->gendisk)
1198                                trace_block_bio_remap(rbi->bi_disk->queue,
1199                                                      rbi, disk_devt(conf->mddev->gendisk),
1200                                                      sh->dev[i].sector);
1201                        if (should_defer && op_is_write(op))
1202                                bio_list_add(&pending_bios, rbi);
1203                        else
1204                                generic_make_request(rbi);
1205                }
1206                if (!rdev && !rrdev) {
1207                        if (op_is_write(op))
1208                                set_bit(STRIPE_DEGRADED, &sh->state);
1209                        pr_debug("skip op %d on disc %d for sector %llu\n",
1210                                bi->bi_opf, i, (unsigned long long)sh->sector);
1211                        clear_bit(R5_LOCKED, &sh->dev[i].flags);
1212                        set_bit(STRIPE_HANDLE, &sh->state);
1213                }
1214
1215                if (!head_sh->batch_head)
1216                        continue;
1217                sh = list_first_entry(&sh->batch_list, struct stripe_head,
1218                                      batch_list);
1219                if (sh != head_sh)
1220                        goto again;
1221        }
1222
1223        if (should_defer && !bio_list_empty(&pending_bios))
1224                defer_issue_bios(conf, head_sh->sector, &pending_bios);
1225}
1226
1227static struct dma_async_tx_descriptor *
1228async_copy_data(int frombio, struct bio *bio, struct page **page,
1229        sector_t sector, struct dma_async_tx_descriptor *tx,
1230        struct stripe_head *sh, int no_skipcopy)
1231{
1232        struct bio_vec bvl;
1233        struct bvec_iter iter;
1234        struct page *bio_page;
1235        int page_offset;
1236        struct async_submit_ctl submit;
1237        enum async_tx_flags flags = 0;
1238
1239        if (bio->bi_iter.bi_sector >= sector)
1240                page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1241        else
1242                page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1243
1244        if (frombio)
1245                flags |= ASYNC_TX_FENCE;
1246        init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1247
1248        bio_for_each_segment(bvl, bio, iter) {
1249                int len = bvl.bv_len;
1250                int clen;
1251                int b_offset = 0;
1252
1253                if (page_offset < 0) {
1254                        b_offset = -page_offset;
1255                        page_offset += b_offset;
1256                        len -= b_offset;
1257                }
1258
1259                if (len > 0 && page_offset + len > STRIPE_SIZE)
1260                        clen = STRIPE_SIZE - page_offset;
1261                else
1262                        clen = len;
1263
1264                if (clen > 0) {
1265                        b_offset += bvl.bv_offset;
1266                        bio_page = bvl.bv_page;
1267                        if (frombio) {
1268                                if (sh->raid_conf->skip_copy &&
1269                                    b_offset == 0 && page_offset == 0 &&
1270                                    clen == STRIPE_SIZE &&
1271                                    !no_skipcopy)
1272                                        *page = bio_page;
1273                                else
1274                                        tx = async_memcpy(*page, bio_page, page_offset,
1275                                                  b_offset, clen, &submit);
1276                        } else
1277                                tx = async_memcpy(bio_page, *page, b_offset,
1278                                                  page_offset, clen, &submit);
1279                }
1280                /* chain the operations */
1281                submit.depend_tx = tx;
1282
1283                if (clen < len) /* hit end of page */
1284                        break;
1285                page_offset +=  len;
1286        }
1287
1288        return tx;
1289}
1290
1291static void ops_complete_biofill(void *stripe_head_ref)
1292{
1293        struct stripe_head *sh = stripe_head_ref;
1294        int i;
1295
1296        pr_debug("%s: stripe %llu\n", __func__,
1297                (unsigned long long)sh->sector);
1298
1299        /* clear completed biofills */
1300        for (i = sh->disks; i--; ) {
1301                struct r5dev *dev = &sh->dev[i];
1302
1303                /* acknowledge completion of a biofill operation */
1304                /* and check if we need to reply to a read request,
1305                 * new R5_Wantfill requests are held off until
1306                 * !STRIPE_BIOFILL_RUN
1307                 */
1308                if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1309                        struct bio *rbi, *rbi2;
1310
1311                        BUG_ON(!dev->read);
1312                        rbi = dev->read;
1313                        dev->read = NULL;
1314                        while (rbi && rbi->bi_iter.bi_sector <
1315                                dev->sector + STRIPE_SECTORS) {
1316                                rbi2 = r5_next_bio(rbi, dev->sector);
1317                                bio_endio(rbi);
1318                                rbi = rbi2;
1319                        }
1320                }
1321        }
1322        clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1323
1324        set_bit(STRIPE_HANDLE, &sh->state);
1325        raid5_release_stripe(sh);
1326}
1327
1328static void ops_run_biofill(struct stripe_head *sh)
1329{
1330        struct dma_async_tx_descriptor *tx = NULL;
1331        struct async_submit_ctl submit;
1332        int i;
1333
1334        BUG_ON(sh->batch_head);
1335        pr_debug("%s: stripe %llu\n", __func__,
1336                (unsigned long long)sh->sector);
1337
1338        for (i = sh->disks; i--; ) {
1339                struct r5dev *dev = &sh->dev[i];
1340                if (test_bit(R5_Wantfill, &dev->flags)) {
1341                        struct bio *rbi;
1342                        spin_lock_irq(&sh->stripe_lock);
1343                        dev->read = rbi = dev->toread;
1344                        dev->toread = NULL;
1345                        spin_unlock_irq(&sh->stripe_lock);
1346                        while (rbi && rbi->bi_iter.bi_sector <
1347                                dev->sector + STRIPE_SECTORS) {
1348                                tx = async_copy_data(0, rbi, &dev->page,
1349                                                     dev->sector, tx, sh, 0);
1350                                rbi = r5_next_bio(rbi, dev->sector);
1351                        }
1352                }
1353        }
1354
1355        atomic_inc(&sh->count);
1356        init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1357        async_trigger_callback(&submit);
1358}
1359
1360static void mark_target_uptodate(struct stripe_head *sh, int target)
1361{
1362        struct r5dev *tgt;
1363
1364        if (target < 0)
1365                return;
1366
1367        tgt = &sh->dev[target];
1368        set_bit(R5_UPTODATE, &tgt->flags);
1369        BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1370        clear_bit(R5_Wantcompute, &tgt->flags);
1371}
1372
1373static void ops_complete_compute(void *stripe_head_ref)
1374{
1375        struct stripe_head *sh = stripe_head_ref;
1376
1377        pr_debug("%s: stripe %llu\n", __func__,
1378                (unsigned long long)sh->sector);
1379
1380        /* mark the computed target(s) as uptodate */
1381        mark_target_uptodate(sh, sh->ops.target);
1382        mark_target_uptodate(sh, sh->ops.target2);
1383
1384        clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1385        if (sh->check_state == check_state_compute_run)
1386                sh->check_state = check_state_compute_result;
1387        set_bit(STRIPE_HANDLE, &sh->state);
1388        raid5_release_stripe(sh);
1389}
1390
1391/* return a pointer to the address conversion region of the scribble buffer */
1392static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1393{
1394        return percpu->scribble + i * percpu->scribble_obj_size;
1395}
1396
1397/* return a pointer to the address conversion region of the scribble buffer */
1398static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1399                                 struct raid5_percpu *percpu, int i)
1400{
1401        return (void *) (to_addr_page(percpu, i) + sh->disks + 2);
1402}
1403
1404static struct dma_async_tx_descriptor *
1405ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1406{
1407        int disks = sh->disks;
1408        struct page **xor_srcs = to_addr_page(percpu, 0);
1409        int target = sh->ops.target;
1410        struct r5dev *tgt = &sh->dev[target];
1411        struct page *xor_dest = tgt->page;
1412        int count = 0;
1413        struct dma_async_tx_descriptor *tx;
1414        struct async_submit_ctl submit;
1415        int i;
1416
1417        BUG_ON(sh->batch_head);
1418
1419        pr_debug("%s: stripe %llu block: %d\n",
1420                __func__, (unsigned long long)sh->sector, target);
1421        BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1422
1423        for (i = disks; i--; )
1424                if (i != target)
1425                        xor_srcs[count++] = sh->dev[i].page;
1426
1427        atomic_inc(&sh->count);
1428
1429        init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1430                          ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1431        if (unlikely(count == 1))
1432                tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1433        else
1434                tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1435
1436        return tx;
1437}
1438
1439/* set_syndrome_sources - populate source buffers for gen_syndrome
1440 * @srcs - (struct page *) array of size sh->disks
1441 * @sh - stripe_head to parse
1442 *
1443 * Populates srcs in proper layout order for the stripe and returns the
1444 * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1445 * destination buffer is recorded in srcs[count] and the Q destination
1446 * is recorded in srcs[count+1]].
1447 */
1448static int set_syndrome_sources(struct page **srcs,
1449                                struct stripe_head *sh,
1450                                int srctype)
1451{
1452        int disks = sh->disks;
1453        int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1454        int d0_idx = raid6_d0(sh);
1455        int count;
1456        int i;
1457
1458        for (i = 0; i < disks; i++)
1459                srcs[i] = NULL;
1460
1461        count = 0;
1462        i = d0_idx;
1463        do {
1464                int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1465                struct r5dev *dev = &sh->dev[i];
1466
1467                if (i == sh->qd_idx || i == sh->pd_idx ||
1468                    (srctype == SYNDROME_SRC_ALL) ||
1469                    (srctype == SYNDROME_SRC_WANT_DRAIN &&
1470                     (test_bit(R5_Wantdrain, &dev->flags) ||
1471                      test_bit(R5_InJournal, &dev->flags))) ||
1472                    (srctype == SYNDROME_SRC_WRITTEN &&
1473                     (dev->written ||
1474                      test_bit(R5_InJournal, &dev->flags)))) {
1475                        if (test_bit(R5_InJournal, &dev->flags))
1476                                srcs[slot] = sh->dev[i].orig_page;
1477                        else
1478                                srcs[slot] = sh->dev[i].page;
1479                }
1480                i = raid6_next_disk(i, disks);
1481        } while (i != d0_idx);
1482
1483        return syndrome_disks;
1484}
1485
1486static struct dma_async_tx_descriptor *
1487ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1488{
1489        int disks = sh->disks;
1490        struct page **blocks = to_addr_page(percpu, 0);
1491        int target;
1492        int qd_idx = sh->qd_idx;
1493        struct dma_async_tx_descriptor *tx;
1494        struct async_submit_ctl submit;
1495        struct r5dev *tgt;
1496        struct page *dest;
1497        int i;
1498        int count;
1499
1500        BUG_ON(sh->batch_head);
1501        if (sh->ops.target < 0)
1502                target = sh->ops.target2;
1503        else if (sh->ops.target2 < 0)
1504                target = sh->ops.target;
1505        else
1506                /* we should only have one valid target */
1507                BUG();
1508        BUG_ON(target < 0);
1509        pr_debug("%s: stripe %llu block: %d\n",
1510                __func__, (unsigned long long)sh->sector, target);
1511
1512        tgt = &sh->dev[target];
1513        BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1514        dest = tgt->page;
1515
1516        atomic_inc(&sh->count);
1517
1518        if (target == qd_idx) {
1519                count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1520                blocks[count] = NULL; /* regenerating p is not necessary */
1521                BUG_ON(blocks[count+1] != dest); /* q should already be set */
1522                init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1523                                  ops_complete_compute, sh,
1524                                  to_addr_conv(sh, percpu, 0));
1525                tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1526        } else {
1527                /* Compute any data- or p-drive using XOR */
1528                count = 0;
1529                for (i = disks; i-- ; ) {
1530                        if (i == target || i == qd_idx)
1531                                continue;
1532                        blocks[count++] = sh->dev[i].page;
1533                }
1534
1535                init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1536                                  NULL, ops_complete_compute, sh,
1537                                  to_addr_conv(sh, percpu, 0));
1538                tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1539        }
1540
1541        return tx;
1542}
1543
1544static struct dma_async_tx_descriptor *
1545ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1546{
1547        int i, count, disks = sh->disks;
1548        int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1549        int d0_idx = raid6_d0(sh);
1550        int faila = -1, failb = -1;
1551        int target = sh->ops.target;
1552        int target2 = sh->ops.target2;
1553        struct r5dev *tgt = &sh->dev[target];
1554        struct r5dev *tgt2 = &sh->dev[target2];
1555        struct dma_async_tx_descriptor *tx;
1556        struct page **blocks = to_addr_page(percpu, 0);
1557        struct async_submit_ctl submit;
1558
1559        BUG_ON(sh->batch_head);
1560        pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1561                 __func__, (unsigned long long)sh->sector, target, target2);
1562        BUG_ON(target < 0 || target2 < 0);
1563        BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1564        BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1565
1566        /* we need to open-code set_syndrome_sources to handle the
1567         * slot number conversion for 'faila' and 'failb'
1568         */
1569        for (i = 0; i < disks ; i++)
1570                blocks[i] = NULL;
1571        count = 0;
1572        i = d0_idx;
1573        do {
1574                int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1575
1576                blocks[slot] = sh->dev[i].page;
1577
1578                if (i == target)
1579                        faila = slot;
1580                if (i == target2)
1581                        failb = slot;
1582                i = raid6_next_disk(i, disks);
1583        } while (i != d0_idx);
1584
1585        BUG_ON(faila == failb);
1586        if (failb < faila)
1587                swap(faila, failb);
1588        pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1589                 __func__, (unsigned long long)sh->sector, faila, failb);
1590
1591        atomic_inc(&sh->count);
1592
1593        if (failb == syndrome_disks+1) {
1594                /* Q disk is one of the missing disks */
1595                if (faila == syndrome_disks) {
1596                        /* Missing P+Q, just recompute */
1597                        init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1598                                          ops_complete_compute, sh,
1599                                          to_addr_conv(sh, percpu, 0));
1600                        return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1601                                                  STRIPE_SIZE, &submit);
1602                } else {
1603                        struct page *dest;
1604                        int data_target;
1605                        int qd_idx = sh->qd_idx;
1606
1607                        /* Missing D+Q: recompute D from P, then recompute Q */
1608                        if (target == qd_idx)
1609                                data_target = target2;
1610                        else
1611                                data_target = target;
1612
1613                        count = 0;
1614                        for (i = disks; i-- ; ) {
1615                                if (i == data_target || i == qd_idx)
1616                                        continue;
1617                                blocks[count++] = sh->dev[i].page;
1618                        }
1619                        dest = sh->dev[data_target].page;
1620                        init_async_submit(&submit,
1621                                          ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1622                                          NULL, NULL, NULL,
1623                                          to_addr_conv(sh, percpu, 0));
1624                        tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1625                                       &submit);
1626
1627                        count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1628                        init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1629                                          ops_complete_compute, sh,
1630                                          to_addr_conv(sh, percpu, 0));
1631                        return async_gen_syndrome(blocks, 0, count+2,
1632                                                  STRIPE_SIZE, &submit);
1633                }
1634        } else {
1635                init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1636                                  ops_complete_compute, sh,
1637                                  to_addr_conv(sh, percpu, 0));
1638                if (failb == syndrome_disks) {
1639                        /* We're missing D+P. */
1640                        return async_raid6_datap_recov(syndrome_disks+2,
1641                                                       STRIPE_SIZE, faila,
1642                                                       blocks, &submit);
1643                } else {
1644                        /* We're missing D+D. */
1645                        return async_raid6_2data_recov(syndrome_disks+2,
1646                                                       STRIPE_SIZE, faila, failb,
1647                                                       blocks, &submit);
1648                }
1649        }
1650}
1651
1652static void ops_complete_prexor(void *stripe_head_ref)
1653{
1654        struct stripe_head *sh = stripe_head_ref;
1655
1656        pr_debug("%s: stripe %llu\n", __func__,
1657                (unsigned long long)sh->sector);
1658
1659        if (r5c_is_writeback(sh->raid_conf->log))
1660                /*
1661                 * raid5-cache write back uses orig_page during prexor.
1662                 * After prexor, it is time to free orig_page
1663                 */
1664                r5c_release_extra_page(sh);
1665}
1666
1667static struct dma_async_tx_descriptor *
1668ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1669                struct dma_async_tx_descriptor *tx)
1670{
1671        int disks = sh->disks;
1672        struct page **xor_srcs = to_addr_page(percpu, 0);
1673        int count = 0, pd_idx = sh->pd_idx, i;
1674        struct async_submit_ctl submit;
1675
1676        /* existing parity data subtracted */
1677        struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1678
1679        BUG_ON(sh->batch_head);
1680        pr_debug("%s: stripe %llu\n", __func__,
1681                (unsigned long long)sh->sector);
1682
1683        for (i = disks; i--; ) {
1684                struct r5dev *dev = &sh->dev[i];
1685                /* Only process blocks that are known to be uptodate */
1686                if (test_bit(R5_InJournal, &dev->flags))
1687                        xor_srcs[count++] = dev->orig_page;
1688                else if (test_bit(R5_Wantdrain, &dev->flags))
1689                        xor_srcs[count++] = dev->page;
1690        }
1691
1692        init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1693                          ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1694        tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1695
1696        return tx;
1697}
1698
1699static struct dma_async_tx_descriptor *
1700ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1701                struct dma_async_tx_descriptor *tx)
1702{
1703        struct page **blocks = to_addr_page(percpu, 0);
1704        int count;
1705        struct async_submit_ctl submit;
1706
1707        pr_debug("%s: stripe %llu\n", __func__,
1708                (unsigned long long)sh->sector);
1709
1710        count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1711
1712        init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1713                          ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1714        tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1715
1716        return tx;
1717}
1718
1719static struct dma_async_tx_descriptor *
1720ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1721{
1722        struct r5conf *conf = sh->raid_conf;
1723        int disks = sh->disks;
1724        int i;
1725        struct stripe_head *head_sh = sh;
1726
1727        pr_debug("%s: stripe %llu\n", __func__,
1728                (unsigned long long)sh->sector);
1729
1730        for (i = disks; i--; ) {
1731                struct r5dev *dev;
1732                struct bio *chosen;
1733
1734                sh = head_sh;
1735                if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1736                        struct bio *wbi;
1737
1738again:
1739                        dev = &sh->dev[i];
1740                        /*
1741                         * clear R5_InJournal, so when rewriting a page in
1742                         * journal, it is not skipped by r5l_log_stripe()
1743                         */
1744                        clear_bit(R5_InJournal, &dev->flags);
1745                        spin_lock_irq(&sh->stripe_lock);
1746                        chosen = dev->towrite;
1747                        dev->towrite = NULL;
1748                        sh->overwrite_disks = 0;
1749                        BUG_ON(dev->written);
1750                        wbi = dev->written = chosen;
1751                        spin_unlock_irq(&sh->stripe_lock);
1752                        WARN_ON(dev->page != dev->orig_page);
1753
1754                        while (wbi && wbi->bi_iter.bi_sector <
1755                                dev->sector + STRIPE_SECTORS) {
1756                                if (wbi->bi_opf & REQ_FUA)
1757                                        set_bit(R5_WantFUA, &dev->flags);
1758                                if (wbi->bi_opf & REQ_SYNC)
1759                                        set_bit(R5_SyncIO, &dev->flags);
1760                                if (bio_op(wbi) == REQ_OP_DISCARD)
1761                                        set_bit(R5_Discard, &dev->flags);
1762                                else {
1763                                        tx = async_copy_data(1, wbi, &dev->page,
1764                                                             dev->sector, tx, sh,
1765                                                             r5c_is_writeback(conf->log));
1766                                        if (dev->page != dev->orig_page &&
1767                                            !r5c_is_writeback(conf->log)) {
1768                                                set_bit(R5_SkipCopy, &dev->flags);
1769                                                clear_bit(R5_UPTODATE, &dev->flags);
1770                                                clear_bit(R5_OVERWRITE, &dev->flags);
1771                                        }
1772                                }
1773                                wbi = r5_next_bio(wbi, dev->sector);
1774                        }
1775
1776                        if (head_sh->batch_head) {
1777                                sh = list_first_entry(&sh->batch_list,
1778                                                      struct stripe_head,
1779                                                      batch_list);
1780                                if (sh == head_sh)
1781                                        continue;
1782                                goto again;
1783                        }
1784                }
1785        }
1786
1787        return tx;
1788}
1789
1790static void ops_complete_reconstruct(void *stripe_head_ref)
1791{
1792        struct stripe_head *sh = stripe_head_ref;
1793        int disks = sh->disks;
1794        int pd_idx = sh->pd_idx;
1795        int qd_idx = sh->qd_idx;
1796        int i;
1797        bool fua = false, sync = false, discard = false;
1798
1799        pr_debug("%s: stripe %llu\n", __func__,
1800                (unsigned long long)sh->sector);
1801
1802        for (i = disks; i--; ) {
1803                fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1804                sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1805                discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1806        }
1807
1808        for (i = disks; i--; ) {
1809                struct r5dev *dev = &sh->dev[i];
1810
1811                if (dev->written || i == pd_idx || i == qd_idx) {
1812                        if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
1813                                set_bit(R5_UPTODATE, &dev->flags);
1814                                if (test_bit(STRIPE_EXPAND_READY, &sh->state))
1815                                        set_bit(R5_Expanded, &dev->flags);
1816                        }
1817                        if (fua)
1818                                set_bit(R5_WantFUA, &dev->flags);
1819                        if (sync)
1820                                set_bit(R5_SyncIO, &dev->flags);
1821                }
1822        }
1823
1824        if (sh->reconstruct_state == reconstruct_state_drain_run)
1825                sh->reconstruct_state = reconstruct_state_drain_result;
1826        else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1827                sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1828        else {
1829                BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1830                sh->reconstruct_state = reconstruct_state_result;
1831        }
1832
1833        set_bit(STRIPE_HANDLE, &sh->state);
1834        raid5_release_stripe(sh);
1835}
1836
1837static void
1838ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1839                     struct dma_async_tx_descriptor *tx)
1840{
1841        int disks = sh->disks;
1842        struct page **xor_srcs;
1843        struct async_submit_ctl submit;
1844        int count, pd_idx = sh->pd_idx, i;
1845        struct page *xor_dest;
1846        int prexor = 0;
1847        unsigned long flags;
1848        int j = 0;
1849        struct stripe_head *head_sh = sh;
1850        int last_stripe;
1851
1852        pr_debug("%s: stripe %llu\n", __func__,
1853                (unsigned long long)sh->sector);
1854
1855        for (i = 0; i < sh->disks; i++) {
1856                if (pd_idx == i)
1857                        continue;
1858                if (!test_bit(R5_Discard, &sh->dev[i].flags))
1859                        break;
1860        }
1861        if (i >= sh->disks) {
1862                atomic_inc(&sh->count);
1863                set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1864                ops_complete_reconstruct(sh);
1865                return;
1866        }
1867again:
1868        count = 0;
1869        xor_srcs = to_addr_page(percpu, j);
1870        /* check if prexor is active which means only process blocks
1871         * that are part of a read-modify-write (written)
1872         */
1873        if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1874                prexor = 1;
1875                xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1876                for (i = disks; i--; ) {
1877                        struct r5dev *dev = &sh->dev[i];
1878                        if (head_sh->dev[i].written ||
1879                            test_bit(R5_InJournal, &head_sh->dev[i].flags))
1880                                xor_srcs[count++] = dev->page;
1881                }
1882        } else {
1883                xor_dest = sh->dev[pd_idx].page;
1884                for (i = disks; i--; ) {
1885                        struct r5dev *dev = &sh->dev[i];
1886                        if (i != pd_idx)
1887                                xor_srcs[count++] = dev->page;
1888                }
1889        }
1890
1891        /* 1/ if we prexor'd then the dest is reused as a source
1892         * 2/ if we did not prexor then we are redoing the parity
1893         * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1894         * for the synchronous xor case
1895         */
1896        last_stripe = !head_sh->batch_head ||
1897                list_first_entry(&sh->batch_list,
1898                                 struct stripe_head, batch_list) == head_sh;
1899        if (last_stripe) {
1900                flags = ASYNC_TX_ACK |
1901                        (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1902
1903                atomic_inc(&head_sh->count);
1904                init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1905                                  to_addr_conv(sh, percpu, j));
1906        } else {
1907                flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1908                init_async_submit(&submit, flags, tx, NULL, NULL,
1909                                  to_addr_conv(sh, percpu, j));
1910        }
1911
1912        if (unlikely(count == 1))
1913                tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1914        else
1915                tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1916        if (!last_stripe) {
1917                j++;
1918                sh = list_first_entry(&sh->batch_list, struct stripe_head,
1919                                      batch_list);
1920                goto again;
1921        }
1922}
1923
1924static void
1925ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1926                     struct dma_async_tx_descriptor *tx)
1927{
1928        struct async_submit_ctl submit;
1929        struct page **blocks;
1930        int count, i, j = 0;
1931        struct stripe_head *head_sh = sh;
1932        int last_stripe;
1933        int synflags;
1934        unsigned long txflags;
1935
1936        pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1937
1938        for (i = 0; i < sh->disks; i++) {
1939                if (sh->pd_idx == i || sh->qd_idx == i)
1940                        continue;
1941                if (!test_bit(R5_Discard, &sh->dev[i].flags))
1942                        break;
1943        }
1944        if (i >= sh->disks) {
1945                atomic_inc(&sh->count);
1946                set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1947                set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1948                ops_complete_reconstruct(sh);
1949                return;
1950        }
1951
1952again:
1953        blocks = to_addr_page(percpu, j);
1954
1955        if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1956                synflags = SYNDROME_SRC_WRITTEN;
1957                txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1958        } else {
1959                synflags = SYNDROME_SRC_ALL;
1960                txflags = ASYNC_TX_ACK;
1961        }
1962
1963        count = set_syndrome_sources(blocks, sh, synflags);
1964        last_stripe = !head_sh->batch_head ||
1965                list_first_entry(&sh->batch_list,
1966                                 struct stripe_head, batch_list) == head_sh;
1967
1968        if (last_stripe) {
1969                atomic_inc(&head_sh->count);
1970                init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1971                                  head_sh, to_addr_conv(sh, percpu, j));
1972        } else
1973                init_async_submit(&submit, 0, tx, NULL, NULL,
1974                                  to_addr_conv(sh, percpu, j));
1975        tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1976        if (!last_stripe) {
1977                j++;
1978                sh = list_first_entry(&sh->batch_list, struct stripe_head,
1979                                      batch_list);
1980                goto again;
1981        }
1982}
1983
1984static void ops_complete_check(void *stripe_head_ref)
1985{
1986        struct stripe_head *sh = stripe_head_ref;
1987
1988        pr_debug("%s: stripe %llu\n", __func__,
1989                (unsigned long long)sh->sector);
1990
1991        sh->check_state = check_state_check_result;
1992        set_bit(STRIPE_HANDLE, &sh->state);
1993        raid5_release_stripe(sh);
1994}
1995
1996static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1997{
1998        int disks = sh->disks;
1999        int pd_idx = sh->pd_idx;
2000        int qd_idx = sh->qd_idx;
2001        struct page *xor_dest;
2002        struct page **xor_srcs = to_addr_page(percpu, 0);
2003        struct dma_async_tx_descriptor *tx;
2004        struct async_submit_ctl submit;
2005        int count;
2006        int i;
2007
2008        pr_debug("%s: stripe %llu\n", __func__,
2009                (unsigned long long)sh->sector);
2010
2011        BUG_ON(sh->batch_head);
2012        count = 0;
2013        xor_dest = sh->dev[pd_idx].page;
2014        xor_srcs[count++] = xor_dest;
2015        for (i = disks; i--; ) {
2016                if (i == pd_idx || i == qd_idx)
2017                        continue;
2018                xor_srcs[count++] = sh->dev[i].page;
2019        }
2020
2021        init_async_submit(&submit, 0, NULL, NULL, NULL,
2022                          to_addr_conv(sh, percpu, 0));
2023        tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
2024                           &sh->ops.zero_sum_result, &submit);
2025
2026        atomic_inc(&sh->count);
2027        init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2028        tx = async_trigger_callback(&submit);
2029}
2030
2031static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2032{
2033        struct page **srcs = to_addr_page(percpu, 0);
2034        struct async_submit_ctl submit;
2035        int count;
2036
2037        pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2038                (unsigned long long)sh->sector, checkp);
2039
2040        BUG_ON(sh->batch_head);
2041        count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
2042        if (!checkp)
2043                srcs[count] = NULL;
2044
2045        atomic_inc(&sh->count);
2046        init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2047                          sh, to_addr_conv(sh, percpu, 0));
2048        async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
2049                           &sh->ops.zero_sum_result, percpu->spare_page, &submit);
2050}
2051
2052static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2053{
2054        int overlap_clear = 0, i, disks = sh->disks;
2055        struct dma_async_tx_descriptor *tx = NULL;
2056        struct r5conf *conf = sh->raid_conf;
2057        int level = conf->level;
2058        struct raid5_percpu *percpu;
2059        unsigned long cpu;
2060
2061        cpu = get_cpu();
2062        percpu = per_cpu_ptr(conf->percpu, cpu);
2063        if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2064                ops_run_biofill(sh);
2065                overlap_clear++;
2066        }
2067
2068        if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2069                if (level < 6)
2070                        tx = ops_run_compute5(sh, percpu);
2071                else {
2072                        if (sh->ops.target2 < 0 || sh->ops.target < 0)
2073                                tx = ops_run_compute6_1(sh, percpu);
2074                        else
2075                                tx = ops_run_compute6_2(sh, percpu);
2076                }
2077                /* terminate the chain if reconstruct is not set to be run */
2078                if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2079                        async_tx_ack(tx);
2080        }
2081
2082        if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2083                if (level < 6)
2084                        tx = ops_run_prexor5(sh, percpu, tx);
2085                else
2086                        tx = ops_run_prexor6(sh, percpu, tx);
2087        }
2088
2089        if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2090                tx = ops_run_partial_parity(sh, percpu, tx);
2091
2092        if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2093                tx = ops_run_biodrain(sh, tx);
2094                overlap_clear++;
2095        }
2096
2097        if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2098                if (level < 6)
2099                        ops_run_reconstruct5(sh, percpu, tx);
2100                else
2101                        ops_run_reconstruct6(sh, percpu, tx);
2102        }
2103
2104        if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2105                if (sh->check_state == check_state_run)
2106                        ops_run_check_p(sh, percpu);
2107                else if (sh->check_state == check_state_run_q)
2108                        ops_run_check_pq(sh, percpu, 0);
2109                else if (sh->check_state == check_state_run_pq)
2110                        ops_run_check_pq(sh, percpu, 1);
2111                else
2112                        BUG();
2113        }
2114
2115        if (overlap_clear && !sh->batch_head)
2116                for (i = disks; i--; ) {
2117                        struct r5dev *dev = &sh->dev[i];
2118                        if (test_and_clear_bit(R5_Overlap, &dev->flags))
2119                                wake_up(&sh->raid_conf->wait_for_overlap);
2120                }
2121        put_cpu();
2122}
2123
2124static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2125{
2126        if (sh->ppl_page)
2127                __free_page(sh->ppl_page);
2128        kmem_cache_free(sc, sh);
2129}
2130
2131static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2132        int disks, struct r5conf *conf)
2133{
2134        struct stripe_head *sh;
2135        int i;
2136
2137        sh = kmem_cache_zalloc(sc, gfp);
2138        if (sh) {
2139                spin_lock_init(&sh->stripe_lock);
2140                spin_lock_init(&sh->batch_lock);
2141                INIT_LIST_HEAD(&sh->batch_list);
2142                INIT_LIST_HEAD(&sh->lru);
2143                INIT_LIST_HEAD(&sh->r5c);
2144                INIT_LIST_HEAD(&sh->log_list);
2145                atomic_set(&sh->count, 1);
2146                sh->raid_conf = conf;
2147                sh->log_start = MaxSector;
2148                for (i = 0; i < disks; i++) {
2149                        struct r5dev *dev = &sh->dev[i];
2150
2151                        bio_init(&dev->req, &dev->vec, 1);
2152                        bio_init(&dev->rreq, &dev->rvec, 1);
2153                }
2154
2155                if (raid5_has_ppl(conf)) {
2156                        sh->ppl_page = alloc_page(gfp);
2157                        if (!sh->ppl_page) {
2158                                free_stripe(sc, sh);
2159                                sh = NULL;
2160                        }
2161                }
2162        }
2163        return sh;
2164}
2165static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2166{
2167        struct stripe_head *sh;
2168
2169        sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2170        if (!sh)
2171                return 0;
2172
2173        if (grow_buffers(sh, gfp)) {
2174                shrink_buffers(sh);
2175                free_stripe(conf->slab_cache, sh);
2176                return 0;
2177        }
2178        sh->hash_lock_index =
2179                conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2180        /* we just created an active stripe so... */
2181        atomic_inc(&conf->active_stripes);
2182
2183        raid5_release_stripe(sh);
2184        conf->max_nr_stripes++;
2185        return 1;
2186}
2187
2188static int grow_stripes(struct r5conf *conf, int num)
2189{
2190        struct kmem_cache *sc;
2191        size_t namelen = sizeof(conf->cache_name[0]);
2192        int devs = max(conf->raid_disks, conf->previous_raid_disks);
2193
2194        if (conf->mddev->gendisk)
2195                snprintf(conf->cache_name[0], namelen,
2196                        "raid%d-%s", conf->level, mdname(conf->mddev));
2197        else
2198                snprintf(conf->cache_name[0], namelen,
2199                        "raid%d-%p", conf->level, conf->mddev);
2200        snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2201
2202        conf->active_name = 0;
2203        sc = kmem_cache_create(conf->cache_name[conf->active_name],
2204                               sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2205                               0, 0, NULL);
2206        if (!sc)
2207                return 1;
2208        conf->slab_cache = sc;
2209        conf->pool_size = devs;
2210        while (num--)
2211                if (!grow_one_stripe(conf, GFP_KERNEL))
2212                        return 1;
2213
2214        return 0;
2215}
2216
2217/**
2218 * scribble_len - return the required size of the scribble region
2219 * @num - total number of disks in the array
2220 *
2221 * The size must be enough to contain:
2222 * 1/ a struct page pointer for each device in the array +2
2223 * 2/ room to convert each entry in (1) to its corresponding dma
2224 *    (dma_map_page()) or page (page_address()) address.
2225 *
2226 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2227 * calculate over all devices (not just the data blocks), using zeros in place
2228 * of the P and Q blocks.
2229 */
2230static int scribble_alloc(struct raid5_percpu *percpu,
2231                          int num, int cnt, gfp_t flags)
2232{
2233        size_t obj_size =
2234                sizeof(struct page *) * (num+2) +
2235                sizeof(addr_conv_t) * (num+2);
2236        void *scribble;
2237
2238        scribble = kvmalloc_array(cnt, obj_size, flags);
2239        if (!scribble)
2240                return -ENOMEM;
2241
2242        kvfree(percpu->scribble);
2243
2244        percpu->scribble = scribble;
2245        percpu->scribble_obj_size = obj_size;
2246        return 0;
2247}
2248
2249static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2250{
2251        unsigned long cpu;
2252        int err = 0;
2253
2254        /*
2255         * Never shrink. And mddev_suspend() could deadlock if this is called
2256         * from raid5d. In that case, scribble_disks and scribble_sectors
2257         * should equal to new_disks and new_sectors
2258         */
2259        if (conf->scribble_disks >= new_disks &&
2260            conf->scribble_sectors >= new_sectors)
2261                return 0;
2262        mddev_suspend(conf->mddev);
2263        get_online_cpus();
2264
2265        for_each_present_cpu(cpu) {
2266                struct raid5_percpu *percpu;
2267
2268                percpu = per_cpu_ptr(conf->percpu, cpu);
2269                err = scribble_alloc(percpu, new_disks,
2270                                     new_sectors / STRIPE_SECTORS,
2271                                     GFP_NOIO);
2272                if (err)
2273                        break;
2274        }
2275
2276        put_online_cpus();
2277        mddev_resume(conf->mddev);
2278        if (!err) {
2279                conf->scribble_disks = new_disks;
2280                conf->scribble_sectors = new_sectors;
2281        }
2282        return err;
2283}
2284
2285static int resize_stripes(struct r5conf *conf, int newsize)
2286{
2287        /* Make all the stripes able to hold 'newsize' devices.
2288         * New slots in each stripe get 'page' set to a new page.
2289         *
2290         * This happens in stages:
2291         * 1/ create a new kmem_cache and allocate the required number of
2292         *    stripe_heads.
2293         * 2/ gather all the old stripe_heads and transfer the pages across
2294         *    to the new stripe_heads.  This will have the side effect of
2295         *    freezing the array as once all stripe_heads have been collected,
2296         *    no IO will be possible.  Old stripe heads are freed once their
2297         *    pages have been transferred over, and the old kmem_cache is
2298         *    freed when all stripes are done.
2299         * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2300         *    we simple return a failure status - no need to clean anything up.
2301         * 4/ allocate new pages for the new slots in the new stripe_heads.
2302         *    If this fails, we don't bother trying the shrink the
2303         *    stripe_heads down again, we just leave them as they are.
2304         *    As each stripe_head is processed the new one is released into
2305         *    active service.
2306         *
2307         * Once step2 is started, we cannot afford to wait for a write,
2308         * so we use GFP_NOIO allocations.
2309         */
2310        struct stripe_head *osh, *nsh;
2311        LIST_HEAD(newstripes);
2312        struct disk_info *ndisks;
2313        int err = 0;
2314        struct kmem_cache *sc;
2315        int i;
2316        int hash, cnt;
2317
2318        md_allow_write(conf->mddev);
2319
2320        /* Step 1 */
2321        sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2322                               sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2323                               0, 0, NULL);
2324        if (!sc)
2325                return -ENOMEM;
2326
2327        /* Need to ensure auto-resizing doesn't interfere */
2328        mutex_lock(&conf->cache_size_mutex);
2329
2330        for (i = conf->max_nr_stripes; i; i--) {
2331                nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2332                if (!nsh)
2333                        break;
2334
2335                list_add(&nsh->lru, &newstripes);
2336        }
2337        if (i) {
2338                /* didn't get enough, give up */
2339                while (!list_empty(&newstripes)) {
2340                        nsh = list_entry(newstripes.next, struct stripe_head, lru);
2341                        list_del(&nsh->lru);
2342                        free_stripe(sc, nsh);
2343                }
2344                kmem_cache_destroy(sc);
2345                mutex_unlock(&conf->cache_size_mutex);
2346                return -ENOMEM;
2347        }
2348        /* Step 2 - Must use GFP_NOIO now.
2349         * OK, we have enough stripes, start collecting inactive
2350         * stripes and copying them over
2351         */
2352        hash = 0;
2353        cnt = 0;
2354        list_for_each_entry(nsh, &newstripes, lru) {
2355                lock_device_hash_lock(conf, hash);
2356                wait_event_cmd(conf->wait_for_stripe,
2357                                    !list_empty(conf->inactive_list + hash),
2358                                    unlock_device_hash_lock(conf, hash),
2359                                    lock_device_hash_lock(conf, hash));
2360                osh = get_free_stripe(conf, hash);
2361                unlock_device_hash_lock(conf, hash);
2362
2363                for(i=0; i<conf->pool_size; i++) {
2364                        nsh->dev[i].page = osh->dev[i].page;
2365                        nsh->dev[i].orig_page = osh->dev[i].page;
2366                }
2367                nsh->hash_lock_index = hash;
2368                free_stripe(conf->slab_cache, osh);
2369                cnt++;
2370                if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2371                    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2372                        hash++;
2373                        cnt = 0;
2374                }
2375        }
2376        kmem_cache_destroy(conf->slab_cache);
2377
2378        /* Step 3.
2379         * At this point, we are holding all the stripes so the array
2380         * is completely stalled, so now is a good time to resize
2381         * conf->disks and the scribble region
2382         */
2383        ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
2384        if (ndisks) {
2385                for (i = 0; i < conf->pool_size; i++)
2386                        ndisks[i] = conf->disks[i];
2387
2388                for (i = conf->pool_size; i < newsize; i++) {
2389                        ndisks[i].extra_page = alloc_page(GFP_NOIO);
2390                        if (!ndisks[i].extra_page)
2391                                err = -ENOMEM;
2392                }
2393
2394                if (err) {
2395                        for (i = conf->pool_size; i < newsize; i++)
2396                                if (ndisks[i].extra_page)
2397                                        put_page(ndisks[i].extra_page);
2398                        kfree(ndisks);
2399                } else {
2400                        kfree(conf->disks);
2401                        conf->disks = ndisks;
2402                }
2403        } else
2404                err = -ENOMEM;
2405
2406        mutex_unlock(&conf->cache_size_mutex);
2407
2408        conf->slab_cache = sc;
2409        conf->active_name = 1-conf->active_name;
2410
2411        /* Step 4, return new stripes to service */
2412        while(!list_empty(&newstripes)) {
2413                nsh = list_entry(newstripes.next, struct stripe_head, lru);
2414                list_del_init(&nsh->lru);
2415
2416                for (i=conf->raid_disks; i < newsize; i++)
2417                        if (nsh->dev[i].page == NULL) {
2418                                struct page *p = alloc_page(GFP_NOIO);
2419                                nsh->dev[i].page = p;
2420                                nsh->dev[i].orig_page = p;
2421                                if (!p)
2422                                        err = -ENOMEM;
2423                        }
2424                raid5_release_stripe(nsh);
2425        }
2426        /* critical section pass, GFP_NOIO no longer needed */
2427
2428        if (!err)
2429                conf->pool_size = newsize;
2430        return err;
2431}
2432
2433static int drop_one_stripe(struct r5conf *conf)
2434{
2435        struct stripe_head *sh;
2436        int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2437
2438        spin_lock_irq(conf->hash_locks + hash);
2439        sh = get_free_stripe(conf, hash);
2440        spin_unlock_irq(conf->hash_locks + hash);
2441        if (!sh)
2442                return 0;
2443        BUG_ON(atomic_read(&sh->count));
2444        shrink_buffers(sh);
2445        free_stripe(conf->slab_cache, sh);
2446        atomic_dec(&conf->active_stripes);
2447        conf->max_nr_stripes--;
2448        return 1;
2449}
2450
2451static void shrink_stripes(struct r5conf *conf)
2452{
2453        while (conf->max_nr_stripes &&
2454               drop_one_stripe(conf))
2455                ;
2456
2457        kmem_cache_destroy(conf->slab_cache);
2458        conf->slab_cache = NULL;
2459}
2460
2461static void raid5_end_read_request(struct bio * bi)
2462{
2463        struct stripe_head *sh = bi->bi_private;
2464        struct r5conf *conf = sh->raid_conf;
2465        int disks = sh->disks, i;
2466        char b[BDEVNAME_SIZE];
2467        struct md_rdev *rdev = NULL;
2468        sector_t s;
2469
2470        for (i=0 ; i<disks; i++)
2471                if (bi == &sh->dev[i].req)
2472                        break;
2473
2474        pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2475                (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2476                bi->bi_status);
2477        if (i == disks) {
2478                bio_reset(bi);
2479                BUG();
2480                return;
2481        }
2482        if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2483                /* If replacement finished while this request was outstanding,
2484                 * 'replacement' might be NULL already.
2485                 * In that case it moved down to 'rdev'.
2486                 * rdev is not removed until all requests are finished.
2487                 */
2488                rdev = conf->disks[i].replacement;
2489        if (!rdev)
2490                rdev = conf->disks[i].rdev;
2491
2492        if (use_new_offset(conf, sh))
2493                s = sh->sector + rdev->new_data_offset;
2494        else
2495                s = sh->sector + rdev->data_offset;
2496        if (!bi->bi_status) {
2497                set_bit(R5_UPTODATE, &sh->dev[i].flags);
2498                if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2499                        /* Note that this cannot happen on a
2500                         * replacement device.  We just fail those on
2501                         * any error
2502                         */
2503                        pr_info_ratelimited(
2504                                "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2505                                mdname(conf->mddev), STRIPE_SECTORS,
2506                                (unsigned long long)s,
2507                                bdevname(rdev->bdev, b));
2508                        atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2509                        clear_bit(R5_ReadError, &sh->dev[i].flags);
2510                        clear_bit(R5_ReWrite, &sh->dev[i].flags);
2511                } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2512                        clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2513
2514                if (test_bit(R5_InJournal, &sh->dev[i].flags))
2515                        /*
2516                         * end read for a page in journal, this
2517                         * must be preparing for prexor in rmw
2518                         */
2519                        set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2520
2521                if (atomic_read(&rdev->read_errors))
2522                        atomic_set(&rdev->read_errors, 0);
2523        } else {
2524                const char *bdn = bdevname(rdev->bdev, b);
2525                int retry = 0;
2526                int set_bad = 0;
2527
2528                clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2529                atomic_inc(&rdev->read_errors);
2530                if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2531                        pr_warn_ratelimited(
2532                                "md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2533                                mdname(conf->mddev),
2534                                (unsigned long long)s,
2535                                bdn);
2536                else if (conf->mddev->degraded >= conf->max_degraded) {
2537                        set_bad = 1;
2538                        pr_warn_ratelimited(
2539                                "md/raid:%s: read error not correctable (sector %llu on %s).\n",
2540                                mdname(conf->mddev),
2541                                (unsigned long long)s,
2542                                bdn);
2543                } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2544                        /* Oh, no!!! */
2545                        set_bad = 1;
2546                        pr_warn_ratelimited(
2547                                "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2548                                mdname(conf->mddev),
2549                                (unsigned long long)s,
2550                                bdn);
2551                } else if (atomic_read(&rdev->read_errors)
2552                         > conf->max_nr_stripes)
2553                        pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2554                               mdname(conf->mddev), bdn);
2555                else
2556                        retry = 1;
2557                if (set_bad && test_bit(In_sync, &rdev->flags)
2558                    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2559                        retry = 1;
2560                if (retry)
2561                        if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2562                                set_bit(R5_ReadError, &sh->dev[i].flags);
2563                                clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2564                        } else
2565                                set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2566                else {
2567                        clear_bit(R5_ReadError, &sh->dev[i].flags);
2568                        clear_bit(R5_ReWrite, &sh->dev[i].flags);
2569                        if (!(set_bad
2570                              && test_bit(In_sync, &rdev->flags)
2571                              && rdev_set_badblocks(
2572                                      rdev, sh->sector, STRIPE_SECTORS, 0)))
2573                                md_error(conf->mddev, rdev);
2574                }
2575        }
2576        rdev_dec_pending(rdev, conf->mddev);
2577        bio_reset(bi);
2578        clear_bit(R5_LOCKED, &sh->dev[i].flags);
2579        set_bit(STRIPE_HANDLE, &sh->state);
2580        raid5_release_stripe(sh);
2581}
2582
2583static void raid5_end_write_request(struct bio *bi)
2584{
2585        struct stripe_head *sh = bi->bi_private;
2586        struct r5conf *conf = sh->raid_conf;
2587        int disks = sh->disks, i;
2588        struct md_rdev *uninitialized_var(rdev);
2589        sector_t first_bad;
2590        int bad_sectors;
2591        int replacement = 0;
2592
2593        for (i = 0 ; i < disks; i++) {
2594                if (bi == &sh->dev[i].req) {
2595                        rdev = conf->disks[i].rdev;
2596                        break;
2597                }
2598                if (bi == &sh->dev[i].rreq) {
2599                        rdev = conf->disks[i].replacement;
2600                        if (rdev)
2601                                replacement = 1;
2602                        else
2603                                /* rdev was removed and 'replacement'
2604                                 * replaced it.  rdev is not removed
2605                                 * until all requests are finished.
2606                                 */
2607                                rdev = conf->disks[i].rdev;
2608                        break;
2609                }
2610        }
2611        pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2612                (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2613                bi->bi_status);
2614        if (i == disks) {
2615                bio_reset(bi);
2616                BUG();
2617                return;
2618        }
2619
2620        if (replacement) {
2621                if (bi->bi_status)
2622                        md_error(conf->mddev, rdev);
2623                else if (is_badblock(rdev, sh->sector,
2624                                     STRIPE_SECTORS,
2625                                     &first_bad, &bad_sectors))
2626                        set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2627        } else {
2628                if (bi->bi_status) {
2629                        set_bit(STRIPE_DEGRADED, &sh->state);
2630                        set_bit(WriteErrorSeen, &rdev->flags);
2631                        set_bit(R5_WriteError, &sh->dev[i].flags);
2632                        if (!test_and_set_bit(WantReplacement, &rdev->flags))
2633                                set_bit(MD_RECOVERY_NEEDED,
2634                                        &rdev->mddev->recovery);
2635                } else if (is_badblock(rdev, sh->sector,
2636                                       STRIPE_SECTORS,
2637                                       &first_bad, &bad_sectors)) {
2638                        set_bit(R5_MadeGood, &sh->dev[i].flags);
2639                        if (test_bit(R5_ReadError, &sh->dev[i].flags))
2640                                /* That was a successful write so make
2641                                 * sure it looks like we already did
2642                                 * a re-write.
2643                                 */
2644                                set_bit(R5_ReWrite, &sh->dev[i].flags);
2645                }
2646        }
2647        rdev_dec_pending(rdev, conf->mddev);
2648
2649        if (sh->batch_head && bi->bi_status && !replacement)
2650                set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2651
2652        bio_reset(bi);
2653        if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2654                clear_bit(R5_LOCKED, &sh->dev[i].flags);
2655        set_bit(STRIPE_HANDLE, &sh->state);
2656        raid5_release_stripe(sh);
2657
2658        if (sh->batch_head && sh != sh->batch_head)
2659                raid5_release_stripe(sh->batch_head);
2660}
2661
2662static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2663{
2664        char b[BDEVNAME_SIZE];
2665        struct r5conf *conf = mddev->private;
2666        unsigned long flags;
2667        pr_debug("raid456: error called\n");
2668
2669        spin_lock_irqsave(&conf->device_lock, flags);
2670
2671        if (test_bit(In_sync, &rdev->flags) &&
2672            mddev->degraded == conf->max_degraded) {
2673                /*
2674                 * Don't allow to achieve failed state
2675                 * Don't try to recover this device
2676                 */
2677                conf->recovery_disabled = mddev->recovery_disabled;
2678                spin_unlock_irqrestore(&conf->device_lock, flags);
2679                return;
2680        }
2681
2682        set_bit(Faulty, &rdev->flags);
2683        clear_bit(In_sync, &rdev->flags);
2684        mddev->degraded = raid5_calc_degraded(conf);
2685        spin_unlock_irqrestore(&conf->device_lock, flags);
2686        set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2687
2688        set_bit(Blocked, &rdev->flags);
2689        set_mask_bits(&mddev->sb_flags, 0,
2690                      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2691        pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2692                "md/raid:%s: Operation continuing on %d devices.\n",
2693                mdname(mddev),
2694                bdevname(rdev->bdev, b),
2695                mdname(mddev),
2696                conf->raid_disks - mddev->degraded);
2697        r5c_update_on_rdev_error(mddev, rdev);
2698}
2699
2700/*
2701 * Input: a 'big' sector number,
2702 * Output: index of the data and parity disk, and the sector # in them.
2703 */
2704sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2705                              int previous, int *dd_idx,
2706                              struct stripe_head *sh)
2707{
2708        sector_t stripe, stripe2;
2709        sector_t chunk_number;
2710        unsigned int chunk_offset;
2711        int pd_idx, qd_idx;
2712        int ddf_layout = 0;
2713        sector_t new_sector;
2714        int algorithm = previous ? conf->prev_algo
2715                                 : conf->algorithm;
2716        int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2717                                         : conf->chunk_sectors;
2718        int raid_disks = previous ? conf->previous_raid_disks
2719                                  : conf->raid_disks;
2720        int data_disks = raid_disks - conf->max_degraded;
2721
2722        /* First compute the information on this sector */
2723
2724        /*
2725         * Compute the chunk number and the sector offset inside the chunk
2726         */
2727        chunk_offset = sector_div(r_sector, sectors_per_chunk);
2728        chunk_number = r_sector;
2729
2730        /*
2731         * Compute the stripe number
2732         */
2733        stripe = chunk_number;
2734        *dd_idx = sector_div(stripe, data_disks);
2735        stripe2 = stripe;
2736        /*
2737         * Select the parity disk based on the user selected algorithm.
2738         */
2739        pd_idx = qd_idx = -1;
2740        switch(conf->level) {
2741        case 4:
2742                pd_idx = data_disks;
2743                break;
2744        case 5:
2745                switch (algorithm) {
2746                case ALGORITHM_LEFT_ASYMMETRIC:
2747                        pd_idx = data_disks - sector_div(stripe2, raid_disks);
2748                        if (*dd_idx >= pd_idx)
2749                                (*dd_idx)++;
2750                        break;
2751                case ALGORITHM_RIGHT_ASYMMETRIC:
2752                        pd_idx = sector_div(stripe2, raid_disks);
2753                        if (*dd_idx >= pd_idx)
2754                                (*dd_idx)++;
2755                        break;
2756                case ALGORITHM_LEFT_SYMMETRIC:
2757                        pd_idx = data_disks - sector_div(stripe2, raid_disks);
2758                        *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2759                        break;
2760                case ALGORITHM_RIGHT_SYMMETRIC:
2761                        pd_idx = sector_div(stripe2, raid_disks);
2762                        *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2763                        break;
2764                case ALGORITHM_PARITY_0:
2765                        pd_idx = 0;
2766                        (*dd_idx)++;
2767                        break;
2768                case ALGORITHM_PARITY_N:
2769                        pd_idx = data_disks;
2770                        break;
2771                default:
2772                        BUG();
2773                }
2774                break;
2775        case 6:
2776
2777                switch (algorithm) {
2778                case ALGORITHM_LEFT_ASYMMETRIC:
2779                        pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2780                        qd_idx = pd_idx + 1;
2781                        if (pd_idx == raid_disks-1) {
2782                                (*dd_idx)++;    /* Q D D D P */
2783                                qd_idx = 0;
2784                        } else if (*dd_idx >= pd_idx)
2785                                (*dd_idx) += 2; /* D D P Q D */
2786                        break;
2787                case ALGORITHM_RIGHT_ASYMMETRIC:
2788                        pd_idx = sector_div(stripe2, raid_disks);
2789                        qd_idx = pd_idx + 1;
2790                        if (pd_idx == raid_disks-1) {
2791                                (*dd_idx)++;    /* Q D D D P */
2792                                qd_idx = 0;
2793                        } else if (*dd_idx >= pd_idx)
2794                                (*dd_idx) += 2; /* D D P Q D */
2795                        break;
2796                case ALGORITHM_LEFT_SYMMETRIC:
2797                        pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2798                        qd_idx = (pd_idx + 1) % raid_disks;
2799                        *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2800                        break;
2801                case ALGORITHM_RIGHT_SYMMETRIC:
2802                        pd_idx = sector_div(stripe2, raid_disks);
2803                        qd_idx = (pd_idx + 1) % raid_disks;
2804                        *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2805                        break;
2806
2807                case ALGORITHM_PARITY_0:
2808                        pd_idx = 0;
2809                        qd_idx = 1;
2810                        (*dd_idx) += 2;
2811                        break;
2812                case ALGORITHM_PARITY_N:
2813                        pd_idx = data_disks;
2814                        qd_idx = data_disks + 1;
2815                        break;
2816
2817                case ALGORITHM_ROTATING_ZERO_RESTART:
2818                        /* Exactly the same as RIGHT_ASYMMETRIC, but or
2819                         * of blocks for computing Q is different.
2820                         */
2821                        pd_idx = sector_div(stripe2, raid_disks);
2822                        qd_idx = pd_idx + 1;
2823                        if (pd_idx == raid_disks-1) {
2824                                (*dd_idx)++;    /* Q D D D P */
2825                                qd_idx = 0;
2826                        } else if (*dd_idx >= pd_idx)
2827                                (*dd_idx) += 2; /* D D P Q D */
2828                        ddf_layout = 1;
2829                        break;
2830
2831                case ALGORITHM_ROTATING_N_RESTART:
2832                        /* Same a left_asymmetric, by first stripe is
2833                         * D D D P Q  rather than
2834                         * Q D D D P
2835                         */
2836                        stripe2 += 1;
2837                        pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2838                        qd_idx = pd_idx + 1;
2839                        if (pd_idx == raid_disks-1) {
2840                                (*dd_idx)++;    /* Q D D D P */
2841                                qd_idx = 0;
2842                        } else if (*dd_idx >= pd_idx)
2843                                (*dd_idx) += 2; /* D D P Q D */
2844                        ddf_layout = 1;
2845                        break;
2846
2847                case ALGORITHM_ROTATING_N_CONTINUE:
2848                        /* Same as left_symmetric but Q is before P */
2849                        pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2850                        qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2851                        *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2852                        ddf_layout = 1;
2853                        break;
2854
2855                case ALGORITHM_LEFT_ASYMMETRIC_6:
2856                        /* RAID5 left_asymmetric, with Q on last device */
2857                        pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2858                        if (*dd_idx >= pd_idx)
2859                                (*dd_idx)++;
2860                        qd_idx = raid_disks - 1;
2861                        break;
2862
2863                case ALGORITHM_RIGHT_ASYMMETRIC_6:
2864                        pd_idx = sector_div(stripe2, raid_disks-1);
2865                        if (*dd_idx >= pd_idx)
2866                                (*dd_idx)++;
2867                        qd_idx = raid_disks - 1;
2868                        break;
2869
2870                case ALGORITHM_LEFT_SYMMETRIC_6:
2871                        pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2872                        *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2873                        qd_idx = raid_disks - 1;
2874                        break;
2875
2876                case ALGORITHM_RIGHT_SYMMETRIC_6:
2877                        pd_idx = sector_div(stripe2, raid_disks-1);
2878                        *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2879                        qd_idx = raid_disks - 1;
2880                        break;
2881
2882                case ALGORITHM_PARITY_0_6:
2883                        pd_idx = 0;
2884                        (*dd_idx)++;
2885                        qd_idx = raid_disks - 1;
2886                        break;
2887
2888                default:
2889                        BUG();
2890                }
2891                break;
2892        }
2893
2894        if (sh) {
2895                sh->pd_idx = pd_idx;
2896                sh->qd_idx = qd_idx;
2897                sh->ddf_layout = ddf_layout;
2898        }
2899        /*
2900         * Finally, compute the new sector number
2901         */
2902        new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2903        return new_sector;
2904}
2905
2906sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2907{
2908        struct r5conf *conf = sh->raid_conf;
2909        int raid_disks = sh->disks;
2910        int data_disks = raid_disks - conf->max_degraded;
2911        sector_t new_sector = sh->sector, check;
2912        int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2913                                         : conf->chunk_sectors;
2914        int algorithm = previous ? conf->prev_algo
2915                                 : conf->algorithm;
2916        sector_t stripe;
2917        int chunk_offset;
2918        sector_t chunk_number;
2919        int dummy1, dd_idx = i;
2920        sector_t r_sector;
2921        struct stripe_head sh2;
2922
2923        chunk_offset = sector_div(new_sector, sectors_per_chunk);
2924        stripe = new_sector;
2925
2926        if (i == sh->pd_idx)
2927                return 0;
2928        switch(conf->level) {
2929        case 4: break;
2930        case 5:
2931                switch (algorithm) {
2932                case ALGORITHM_LEFT_ASYMMETRIC:
2933                case ALGORITHM_RIGHT_ASYMMETRIC:
2934                        if (i > sh->pd_idx)
2935                                i--;
2936                        break;
2937                case ALGORITHM_LEFT_SYMMETRIC:
2938                case ALGORITHM_RIGHT_SYMMETRIC:
2939                        if (i < sh->pd_idx)
2940                                i += raid_disks;
2941                        i -= (sh->pd_idx + 1);
2942                        break;
2943                case ALGORITHM_PARITY_0:
2944                        i -= 1;
2945                        break;
2946                case ALGORITHM_PARITY_N:
2947                        break;
2948                default:
2949                        BUG();
2950                }
2951                break;
2952        case 6:
2953                if (i == sh->qd_idx)
2954                        return 0; /* It is the Q disk */
2955                switch (algorithm) {
2956                case ALGORITHM_LEFT_ASYMMETRIC:
2957                case ALGORITHM_RIGHT_ASYMMETRIC:
2958                case ALGORITHM_ROTATING_ZERO_RESTART:
2959                case ALGORITHM_ROTATING_N_RESTART:
2960                        if (sh->pd_idx == raid_disks-1)
2961                                i--;    /* Q D D D P */
2962                        else if (i > sh->pd_idx)
2963                                i -= 2; /* D D P Q D */
2964                        break;
2965                case ALGORITHM_LEFT_SYMMETRIC:
2966                case ALGORITHM_RIGHT_SYMMETRIC:
2967                        if (sh->pd_idx == raid_disks-1)
2968                                i--; /* Q D D D P */
2969                        else {
2970                                /* D D P Q D */
2971                                if (i < sh->pd_idx)
2972                                        i += raid_disks;
2973                                i -= (sh->pd_idx + 2);
2974                        }
2975                        break;
2976                case ALGORITHM_PARITY_0:
2977                        i -= 2;
2978                        break;
2979                case ALGORITHM_PARITY_N:
2980                        break;
2981                case ALGORITHM_ROTATING_N_CONTINUE:
2982                        /* Like left_symmetric, but P is before Q */
2983                        if (sh->pd_idx == 0)
2984                                i--;    /* P D D D Q */
2985                        else {
2986                                /* D D Q P D */
2987                                if (i < sh->pd_idx)
2988                                        i += raid_disks;
2989                                i -= (sh->pd_idx + 1);
2990                        }
2991                        break;
2992                case ALGORITHM_LEFT_ASYMMETRIC_6:
2993                case ALGORITHM_RIGHT_ASYMMETRIC_6:
2994                        if (i > sh->pd_idx)
2995                                i--;
2996                        break;
2997                case ALGORITHM_LEFT_SYMMETRIC_6:
2998                case ALGORITHM_RIGHT_SYMMETRIC_6:
2999                        if (i < sh->pd_idx)
3000                                i += data_disks + 1;
3001                        i -= (sh->pd_idx + 1);
3002                        break;
3003                case ALGORITHM_PARITY_0_6:
3004                        i -= 1;
3005                        break;
3006                default:
3007                        BUG();
3008                }
3009                break;
3010        }
3011
3012        chunk_number = stripe * data_disks + i;
3013        r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3014
3015        check = raid5_compute_sector(conf, r_sector,
3016                                     previous, &dummy1, &sh2);
3017        if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3018                || sh2.qd_idx != sh->qd_idx) {
3019                pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3020                        mdname(conf->mddev));
3021                return 0;
3022        }
3023        return r_sector;
3024}
3025
3026/*
3027 * There are cases where we want handle_stripe_dirtying() and
3028 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3029 *
3030 * This function checks whether we want to delay the towrite. Specifically,
3031 * we delay the towrite when:
3032 *
3033 *   1. degraded stripe has a non-overwrite to the missing dev, AND this
3034 *      stripe has data in journal (for other devices).
3035 *
3036 *      In this case, when reading data for the non-overwrite dev, it is
3037 *      necessary to handle complex rmw of write back cache (prexor with
3038 *      orig_page, and xor with page). To keep read path simple, we would
3039 *      like to flush data in journal to RAID disks first, so complex rmw
3040 *      is handled in the write patch (handle_stripe_dirtying).
3041 *
3042 *   2. when journal space is critical (R5C_LOG_CRITICAL=1)
3043 *
3044 *      It is important to be able to flush all stripes in raid5-cache.
3045 *      Therefore, we need reserve some space on the journal device for
3046 *      these flushes. If flush operation includes pending writes to the
3047 *      stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3048 *      for the flush out. If we exclude these pending writes from flush
3049 *      operation, we only need (conf->max_degraded + 1) pages per stripe.
3050 *      Therefore, excluding pending writes in these cases enables more
3051 *      efficient use of the journal device.
3052 *
3053 *      Note: To make sure the stripe makes progress, we only delay
3054 *      towrite for stripes with data already in journal (injournal > 0).
3055 *      When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3056 *      no_space_stripes list.
3057 *
3058 *   3. during journal failure
3059 *      In journal failure, we try to flush all cached data to raid disks
3060 *      based on data in stripe cache. The array is read-only to upper
3061 *      layers, so we would skip all pending writes.
3062 *
3063 */
3064static inline bool delay_towrite(struct r5conf *conf,
3065                                 struct r5dev *dev,
3066                                 struct stripe_head_state *s)
3067{
3068        /* case 1 above */
3069        if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3070            !test_bit(R5_Insync, &dev->flags) && s->injournal)
3071                return true;
3072        /* case 2 above */
3073        if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3074            s->injournal > 0)
3075                return true;
3076        /* case 3 above */
3077        if (s->log_failed && s->injournal)
3078                return true;
3079        return false;
3080}
3081
3082static void
3083schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3084                         int rcw, int expand)
3085{
3086        int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3087        struct r5conf *conf = sh->raid_conf;
3088        int level = conf->level;
3089
3090        if (rcw) {
3091                /*
3092                 * In some cases, handle_stripe_dirtying initially decided to
3093                 * run rmw and allocates extra page for prexor. However, rcw is
3094                 * cheaper later on. We need to free the extra page now,
3095                 * because we won't be able to do that in ops_complete_prexor().
3096                 */
3097                r5c_release_extra_page(sh);
3098
3099                for (i = disks; i--; ) {
3100                        struct r5dev *dev = &sh->dev[i];
3101
3102                        if (dev->towrite && !delay_towrite(conf, dev, s)) {
3103                                set_bit(R5_LOCKED, &dev->flags);
3104                                set_bit(R5_Wantdrain, &dev->flags);
3105                                if (!expand)
3106                                        clear_bit(R5_UPTODATE, &dev->flags);
3107                                s->locked++;
3108                        } else if (test_bit(R5_InJournal, &dev->flags)) {
3109                                set_bit(R5_LOCKED, &dev->flags);
3110                                s->locked++;
3111                        }
3112                }
3113                /* if we are not expanding this is a proper write request, and
3114                 * there will be bios with new data to be drained into the
3115                 * stripe cache
3116                 */
3117                if (!expand) {
3118                        if (!s->locked)
3119                                /* False alarm, nothing to do */
3120                                return;
3121                        sh->reconstruct_state = reconstruct_state_drain_run;
3122                        set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3123                } else
3124                        sh->reconstruct_state = reconstruct_state_run;
3125
3126                set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3127
3128                if (s->locked + conf->max_degraded == disks)
3129                        if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3130                                atomic_inc(&conf->pending_full_writes);
3131        } else {
3132                BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3133                        test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3134                BUG_ON(level == 6 &&
3135                        (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3136                           test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3137
3138                for (i = disks; i--; ) {
3139                        struct r5dev *dev = &sh->dev[i];
3140                        if (i == pd_idx || i == qd_idx)
3141                                continue;
3142
3143                        if (dev->towrite &&
3144                            (test_bit(R5_UPTODATE, &dev->flags) ||
3145                             test_bit(R5_Wantcompute, &dev->flags))) {
3146                                set_bit(R5_Wantdrain, &dev->flags);
3147                                set_bit(R5_LOCKED, &dev->flags);
3148                                clear_bit(R5_UPTODATE, &dev->flags);
3149                                s->locked++;
3150                        } else if (test_bit(R5_InJournal, &dev->flags)) {
3151                                set_bit(R5_LOCKED, &dev->flags);
3152                                s->locked++;
3153                        }
3154                }
3155                if (!s->locked)
3156                        /* False alarm - nothing to do */
3157                        return;
3158                sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3159                set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3160                set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3161                set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3162        }
3163
3164        /* keep the parity disk(s) locked while asynchronous operations
3165         * are in flight
3166         */
3167        set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3168        clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3169        s->locked++;
3170
3171        if (level == 6) {
3172                int qd_idx = sh->qd_idx;
3173                struct r5dev *dev = &sh->dev[qd_idx];
3174
3175                set_bit(R5_LOCKED, &dev->flags);
3176                clear_bit(R5_UPTODATE, &dev->flags);
3177                s->locked++;
3178        }
3179
3180        if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3181            test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3182            !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3183            test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3184                set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3185
3186        pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3187                __func__, (unsigned long long)sh->sector,
3188                s->locked, s->ops_request);
3189}
3190
3191/*
3192 * Each stripe/dev can have one or more bion attached.
3193 * toread/towrite point to the first in a chain.
3194 * The bi_next chain must be in order.
3195 */
3196static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3197                          int forwrite, int previous)
3198{
3199        struct bio **bip;
3200        struct r5conf *conf = sh->raid_conf;
3201        int firstwrite=0;
3202
3203        pr_debug("adding bi b#%llu to stripe s#%llu\n",
3204                (unsigned long long)bi->bi_iter.bi_sector,
3205                (unsigned long long)sh->sector);
3206
3207        spin_lock_irq(&sh->stripe_lock);
3208        sh->dev[dd_idx].write_hint = bi->bi_write_hint;
3209        /* Don't allow new IO added to stripes in batch list */
3210        if (sh->batch_head)
3211                goto overlap;
3212        if (forwrite) {
3213                bip = &sh->dev[dd_idx].towrite;
3214                if (*bip == NULL)
3215                        firstwrite = 1;
3216        } else
3217                bip = &sh->dev[dd_idx].toread;
3218        while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3219                if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3220                        goto overlap;
3221                bip = & (*bip)->bi_next;
3222        }
3223        if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3224                goto overlap;
3225
3226        if (forwrite && raid5_has_ppl(conf)) {
3227                /*
3228                 * With PPL only writes to consecutive data chunks within a
3229                 * stripe are allowed because for a single stripe_head we can
3230                 * only have one PPL entry at a time, which describes one data
3231                 * range. Not really an overlap, but wait_for_overlap can be
3232                 * used to handle this.
3233                 */
3234                sector_t sector;
3235                sector_t first = 0;
3236                sector_t last = 0;
3237                int count = 0;
3238                int i;
3239
3240                for (i = 0; i < sh->disks; i++) {
3241                        if (i != sh->pd_idx &&
3242                            (i == dd_idx || sh->dev[i].towrite)) {
3243                                sector = sh->dev[i].sector;
3244                                if (count == 0 || sector < first)
3245                                        first = sector;
3246                                if (sector > last)
3247                                        last = sector;
3248                                count++;
3249                        }
3250                }
3251
3252                if (first + conf->chunk_sectors * (count - 1) != last)
3253                        goto overlap;
3254        }
3255
3256        if (!forwrite || previous)
3257                clear_bit(STRIPE_BATCH_READY, &sh->state);
3258
3259        BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3260        if (*bip)
3261                bi->bi_next = *bip;
3262        *bip = bi;
3263        bio_inc_remaining(bi);
3264        md_write_inc(conf->mddev, bi);
3265
3266        if (forwrite) {
3267                /* check if page is covered */
3268                sector_t sector = sh->dev[dd_idx].sector;
3269                for (bi=sh->dev[dd_idx].towrite;
3270                     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3271                             bi && bi->bi_iter.bi_sector <= sector;
3272                     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3273                        if (bio_end_sector(bi) >= sector)
3274                                sector = bio_end_sector(bi);
3275                }
3276                if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3277                        if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3278                                sh->overwrite_disks++;
3279        }
3280
3281        pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3282                (unsigned long long)(*bip)->bi_iter.bi_sector,
3283                (unsigned long long)sh->sector, dd_idx);
3284
3285        if (conf->mddev->bitmap && firstwrite) {
3286                /* Cannot hold spinlock over bitmap_startwrite,
3287                 * but must ensure this isn't added to a batch until
3288                 * we have added to the bitmap and set bm_seq.
3289                 * So set STRIPE_BITMAP_PENDING to prevent
3290                 * batching.
3291                 * If multiple add_stripe_bio() calls race here they
3292                 * much all set STRIPE_BITMAP_PENDING.  So only the first one
3293                 * to complete "bitmap_startwrite" gets to set
3294                 * STRIPE_BIT_DELAY.  This is important as once a stripe
3295                 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3296                 * any more.
3297                 */
3298                set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3299                spin_unlock_irq(&sh->stripe_lock);
3300                md_bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3301                                     STRIPE_SECTORS, 0);
3302                spin_lock_irq(&sh->stripe_lock);
3303                clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3304                if (!sh->batch_head) {
3305                        sh->bm_seq = conf->seq_flush+1;
3306                        set_bit(STRIPE_BIT_DELAY, &sh->state);
3307                }
3308        }
3309        spin_unlock_irq(&sh->stripe_lock);
3310
3311        if (stripe_can_batch(sh))
3312                stripe_add_to_batch_list(conf, sh);
3313        return 1;
3314
3315 overlap:
3316        set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3317        spin_unlock_irq(&sh->stripe_lock);
3318        return 0;
3319}
3320
3321static void end_reshape(struct r5conf *conf);
3322
3323static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3324                            struct stripe_head *sh)
3325{
3326        int sectors_per_chunk =
3327                previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3328        int dd_idx;
3329        int chunk_offset = sector_div(stripe, sectors_per_chunk);
3330        int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3331
3332        raid5_compute_sector(conf,
3333                             stripe * (disks - conf->max_degraded)
3334                             *sectors_per_chunk + chunk_offset,
3335                             previous,
3336                             &dd_idx, sh);
3337}
3338
3339static void
3340handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3341                     struct stripe_head_state *s, int disks)
3342{
3343        int i;
3344        BUG_ON(sh->batch_head);
3345        for (i = disks; i--; ) {
3346                struct bio *bi;
3347                int bitmap_end = 0;
3348
3349                if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3350                        struct md_rdev *rdev;
3351                        rcu_read_lock();
3352                        rdev = rcu_dereference(conf->disks[i].rdev);
3353                        if (rdev && test_bit(In_sync, &rdev->flags) &&
3354                            !test_bit(Faulty, &rdev->flags))
3355                                atomic_inc(&rdev->nr_pending);
3356                        else
3357                                rdev = NULL;
3358                        rcu_read_unlock();
3359                        if (rdev) {
3360                                if (!rdev_set_badblocks(
3361                                            rdev,
3362                                            sh->sector,
3363                                            STRIPE_SECTORS, 0))
3364                                        md_error(conf->mddev, rdev);
3365                                rdev_dec_pending(rdev, conf->mddev);
3366                        }
3367                }
3368                spin_lock_irq(&sh->stripe_lock);
3369                /* fail all writes first */
3370                bi = sh->dev[i].towrite;
3371                sh->dev[i].towrite = NULL;
3372                sh->overwrite_disks = 0;
3373                spin_unlock_irq(&sh->stripe_lock);
3374                if (bi)
3375                        bitmap_end = 1;
3376
3377                log_stripe_write_finished(sh);
3378
3379                if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3380                        wake_up(&conf->wait_for_overlap);
3381
3382                while (bi && bi->bi_iter.bi_sector <
3383                        sh->dev[i].sector + STRIPE_SECTORS) {
3384                        struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3385
3386                        md_write_end(conf->mddev);
3387                        bio_io_error(bi);
3388                        bi = nextbi;
3389                }
3390                if (bitmap_end)
3391                        md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3392                                           STRIPE_SECTORS, 0, 0);
3393                bitmap_end = 0;
3394                /* and fail all 'written' */
3395                bi = sh->dev[i].written;
3396                sh->dev[i].written = NULL;
3397                if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3398                        WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3399                        sh->dev[i].page = sh->dev[i].orig_page;
3400                }
3401
3402                if (bi) bitmap_end = 1;
3403                while (bi && bi->bi_iter.bi_sector <
3404                       sh->dev[i].sector + STRIPE_SECTORS) {
3405                        struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3406
3407                        md_write_end(conf->mddev);
3408                        bio_io_error(bi);
3409                        bi = bi2;
3410                }
3411
3412                /* fail any reads if this device is non-operational and
3413                 * the data has not reached the cache yet.
3414                 */
3415                if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3416                    s->failed > conf->max_degraded &&
3417                    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3418                      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3419                        spin_lock_irq(&sh->stripe_lock);
3420                        bi = sh->dev[i].toread;
3421                        sh->dev[i].toread = NULL;
3422                        spin_unlock_irq(&sh->stripe_lock);
3423                        if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3424                                wake_up(&conf->wait_for_overlap);
3425                        if (bi)
3426                                s->to_read--;
3427                        while (bi && bi->bi_iter.bi_sector <
3428                               sh->dev[i].sector + STRIPE_SECTORS) {
3429                                struct bio *nextbi =
3430                                        r5_next_bio(bi, sh->dev[i].sector);
3431
3432                                bio_io_error(bi);
3433                                bi = nextbi;
3434                        }
3435                }
3436                if (bitmap_end)
3437                        md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3438                                           STRIPE_SECTORS, 0, 0);
3439                /* If we were in the middle of a write the parity block might
3440                 * still be locked - so just clear all R5_LOCKED flags
3441                 */
3442                clear_bit(R5_LOCKED, &sh->dev[i].flags);
3443        }
3444        s->to_write = 0;
3445        s->written = 0;
3446
3447        if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3448                if (atomic_dec_and_test(&conf->pending_full_writes))
3449                        md_wakeup_thread(conf->mddev->thread);
3450}
3451
3452static void
3453handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3454                   struct stripe_head_state *s)
3455{
3456        int abort = 0;
3457        int i;
3458
3459        BUG_ON(sh->batch_head);
3460        clear_bit(STRIPE_SYNCING, &sh->state);
3461        if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3462                wake_up(&conf->wait_for_overlap);
3463        s->syncing = 0;
3464        s->replacing = 0;
3465        /* There is nothing more to do for sync/check/repair.
3466         * Don't even need to abort as that is handled elsewhere
3467         * if needed, and not always wanted e.g. if there is a known
3468         * bad block here.
3469         * For recover/replace we need to record a bad block on all
3470         * non-sync devices, or abort the recovery
3471         */
3472        if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3473                /* During recovery devices cannot be removed, so
3474                 * locking and refcounting of rdevs is not needed
3475                 */
3476                rcu_read_lock();
3477                for (i = 0; i < conf->raid_disks; i++) {
3478                        struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3479                        if (rdev
3480                            && !test_bit(Faulty, &rdev->flags)
3481                            && !test_bit(In_sync, &rdev->flags)
3482                            && !rdev_set_badblocks(rdev, sh->sector,
3483                                                   STRIPE_SECTORS, 0))
3484                                abort = 1;
3485                        rdev = rcu_dereference(conf->disks[i].replacement);
3486                        if (rdev
3487                            && !test_bit(Faulty, &rdev->flags)
3488                            && !test_bit(In_sync, &rdev->flags)
3489                            && !rdev_set_badblocks(rdev, sh->sector,
3490                                                   STRIPE_SECTORS, 0))
3491                                abort = 1;
3492                }
3493                rcu_read_unlock();
3494                if (abort)
3495                        conf->recovery_disabled =
3496                                conf->mddev->recovery_disabled;
3497        }
3498        md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3499}
3500
3501static int want_replace(struct stripe_head *sh, int disk_idx)
3502{
3503        struct md_rdev *rdev;
3504        int rv = 0;
3505
3506        rcu_read_lock();
3507        rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3508        if (rdev
3509            && !test_bit(Faulty, &rdev->flags)
3510            && !test_bit(In_sync, &rdev->flags)
3511            && (rdev->recovery_offset <= sh->sector
3512                || rdev->mddev->recovery_cp <= sh->sector))
3513                rv = 1;
3514        rcu_read_unlock();
3515        return rv;
3516}
3517
3518static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3519                           int disk_idx, int disks)
3520{
3521        struct r5dev *dev = &sh->dev[disk_idx];
3522        struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3523                                  &sh->dev[s->failed_num[1]] };
3524        int i;
3525
3526
3527        if (test_bit(R5_LOCKED, &dev->flags) ||
3528            test_bit(R5_UPTODATE, &dev->flags))
3529                /* No point reading this as we already have it or have
3530                 * decided to get it.
3531                 */
3532                return 0;
3533
3534        if (dev->toread ||
3535            (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3536                /* We need this block to directly satisfy a request */
3537                return 1;
3538
3539        if (s->syncing || s->expanding ||
3540            (s->replacing && want_replace(sh, disk_idx)))
3541                /* When syncing, or expanding we read everything.
3542                 * When replacing, we need the replaced block.
3543                 */
3544                return 1;
3545
3546        if ((s->failed >= 1 && fdev[0]->toread) ||
3547            (s->failed >= 2 && fdev[1]->toread))
3548                /* If we want to read from a failed device, then
3549                 * we need to actually read every other device.
3550                 */
3551                return 1;
3552
3553        /* Sometimes neither read-modify-write nor reconstruct-write
3554         * cycles can work.  In those cases we read every block we
3555         * can.  Then the parity-update is certain to have enough to
3556         * work with.
3557         * This can only be a problem when we need to write something,
3558         * and some device has failed.  If either of those tests
3559         * fail we need look no further.
3560         */
3561        if (!s->failed || !s->to_write)
3562                return 0;
3563
3564        if (test_bit(R5_Insync, &dev->flags) &&
3565            !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3566                /* Pre-reads at not permitted until after short delay
3567                 * to gather multiple requests.  However if this
3568                 * device is no Insync, the block could only be computed
3569                 * and there is no need to delay that.
3570                 */
3571                return 0;
3572
3573        for (i = 0; i < s->failed && i < 2; i++) {
3574                if (fdev[i]->towrite &&
3575                    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3576                    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3577                        /* If we have a partial write to a failed
3578                         * device, then we will need to reconstruct
3579                         * the content of that device, so all other
3580                         * devices must be read.
3581                         */
3582                        return 1;
3583        }
3584
3585        /* If we are forced to do a reconstruct-write, either because
3586         * the current RAID6 implementation only supports that, or
3587         * because parity cannot be trusted and we are currently
3588         * recovering it, there is extra need to be careful.
3589         * If one of the devices that we would need to read, because
3590         * it is not being overwritten (and maybe not written at all)
3591         * is missing/faulty, then we need to read everything we can.
3592         */
3593        if (sh->raid_conf->level != 6 &&
3594            sh->sector < sh->raid_conf->mddev->recovery_cp)
3595                /* reconstruct-write isn't being forced */
3596                return 0;
3597        for (i = 0; i < s->failed && i < 2; i++) {
3598                if (s->failed_num[i] != sh->pd_idx &&
3599                    s->failed_num[i] != sh->qd_idx &&
3600                    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3601                    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3602                        return 1;
3603        }
3604
3605        return 0;
3606}
3607
3608/* fetch_block - checks the given member device to see if its data needs
3609 * to be read or computed to satisfy a request.
3610 *
3611 * Returns 1 when no more member devices need to be checked, otherwise returns
3612 * 0 to tell the loop in handle_stripe_fill to continue
3613 */
3614static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3615                       int disk_idx, int disks)
3616{
3617        struct r5dev *dev = &sh->dev[disk_idx];
3618
3619        /* is the data in this block needed, and can we get it? */
3620        if (need_this_block(sh, s, disk_idx, disks)) {
3621                /* we would like to get this block, possibly by computing it,
3622                 * otherwise read it if the backing disk is insync
3623                 */
3624                BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3625                BUG_ON(test_bit(R5_Wantread, &dev->flags));
3626                BUG_ON(sh->batch_head);
3627
3628                /*
3629                 * In the raid6 case if the only non-uptodate disk is P
3630                 * then we already trusted P to compute the other failed
3631                 * drives. It is safe to compute rather than re-read P.
3632                 * In other cases we only compute blocks from failed
3633                 * devices, otherwise check/repair might fail to detect
3634                 * a real inconsistency.
3635                 */
3636
3637                if ((s->uptodate == disks - 1) &&
3638                    ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3639                    (s->failed && (disk_idx == s->failed_num[0] ||
3640                                   disk_idx == s->failed_num[1])))) {
3641                        /* have disk failed, and we're requested to fetch it;
3642                         * do compute it
3643                         */
3644                        pr_debug("Computing stripe %llu block %d\n",
3645                               (unsigned long long)sh->sector, disk_idx);
3646                        set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3647                        set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3648                        set_bit(R5_Wantcompute, &dev->flags);
3649                        sh->ops.target = disk_idx;
3650                        sh->ops.target2 = -1; /* no 2nd target */
3651                        s->req_compute = 1;
3652                        /* Careful: from this point on 'uptodate' is in the eye
3653                         * of raid_run_ops which services 'compute' operations
3654                         * before writes. R5_Wantcompute flags a block that will
3655                         * be R5_UPTODATE by the time it is needed for a
3656                         * subsequent operation.
3657                         */
3658                        s->uptodate++;
3659                        return 1;
3660                } else if (s->uptodate == disks-2 && s->failed >= 2) {
3661                        /* Computing 2-failure is *very* expensive; only
3662                         * do it if failed >= 2
3663                         */
3664                        int other;
3665                        for (other = disks; other--; ) {
3666                                if (other == disk_idx)
3667                                        continue;
3668                                if (!test_bit(R5_UPTODATE,
3669                                      &sh->dev[other].flags))
3670                                        break;
3671                        }
3672                        BUG_ON(other < 0);
3673                        pr_debug("Computing stripe %llu blocks %d,%d\n",
3674                               (unsigned long long)sh->sector,
3675                               disk_idx, other);
3676                        set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3677                        set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3678                        set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3679                        set_bit(R5_Wantcompute, &sh->dev[other].flags);
3680                        sh->ops.target = disk_idx;
3681                        sh->ops.target2 = other;
3682                        s->uptodate += 2;
3683                        s->req_compute = 1;
3684                        return 1;
3685                } else if (test_bit(R5_Insync, &dev->flags)) {
3686                        set_bit(R5_LOCKED, &dev->flags);
3687                        set_bit(R5_Wantread, &dev->flags);
3688                        s->locked++;
3689                        pr_debug("Reading block %d (sync=%d)\n",
3690                                disk_idx, s->syncing);
3691                }
3692        }
3693
3694        return 0;
3695}
3696
3697/**
3698 * handle_stripe_fill - read or compute data to satisfy pending requests.
3699 */
3700static void handle_stripe_fill(struct stripe_head *sh,
3701                               struct stripe_head_state *s,
3702                               int disks)
3703{
3704        int i;
3705
3706        /* look for blocks to read/compute, skip this if a compute
3707         * is already in flight, or if the stripe contents are in the
3708         * midst of changing due to a write
3709         */
3710        if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3711            !sh->reconstruct_state) {
3712
3713                /*
3714                 * For degraded stripe with data in journal, do not handle
3715                 * read requests yet, instead, flush the stripe to raid
3716                 * disks first, this avoids handling complex rmw of write
3717                 * back cache (prexor with orig_page, and then xor with
3718                 * page) in the read path
3719                 */
3720                if (s->injournal && s->failed) {
3721                        if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3722                                r5c_make_stripe_write_out(sh);
3723                        goto out;
3724                }
3725
3726                for (i = disks; i--; )
3727                        if (fetch_block(sh, s, i, disks))
3728                                break;
3729        }
3730out:
3731        set_bit(STRIPE_HANDLE, &sh->state);
3732}
3733
3734static void break_stripe_batch_list(struct stripe_head *head_sh,
3735                                    unsigned long handle_flags);
3736/* handle_stripe_clean_event
3737 * any written block on an uptodate or failed drive can be returned.
3738 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3739 * never LOCKED, so we don't need to test 'failed' directly.
3740 */
3741static void handle_stripe_clean_event(struct r5conf *conf,
3742        struct stripe_head *sh, int disks)
3743{
3744        int i;
3745        struct r5dev *dev;
3746        int discard_pending = 0;
3747        struct stripe_head *head_sh = sh;
3748        bool do_endio = false;
3749
3750        for (i = disks; i--; )
3751                if (sh->dev[i].written) {
3752                        dev = &sh->dev[i];
3753                        if (!test_bit(R5_LOCKED, &dev->flags) &&
3754                            (test_bit(R5_UPTODATE, &dev->flags) ||
3755                             test_bit(R5_Discard, &dev->flags) ||
3756                             test_bit(R5_SkipCopy, &dev->flags))) {
3757                                /* We can return any write requests */
3758                                struct bio *wbi, *wbi2;
3759                                pr_debug("Return write for disc %d\n", i);
3760                                if (test_and_clear_bit(R5_Discard, &dev->flags))
3761                                        clear_bit(R5_UPTODATE, &dev->flags);
3762                                if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3763                                        WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3764                                }
3765                                do_endio = true;
3766
3767returnbi:
3768                                dev->page = dev->orig_page;
3769                                wbi = dev->written;
3770                                dev->written = NULL;
3771                                while (wbi && wbi->bi_iter.bi_sector <
3772                                        dev->sector + STRIPE_SECTORS) {
3773                                        wbi2 = r5_next_bio(wbi, dev->sector);
3774                                        md_write_end(conf->mddev);
3775                                        bio_endio(wbi);
3776                                        wbi = wbi2;
3777                                }
3778                                md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3779                                                   STRIPE_SECTORS,
3780                                                   !test_bit(STRIPE_DEGRADED, &sh->state),
3781                                                   0);
3782                                if (head_sh->batch_head) {
3783                                        sh = list_first_entry(&sh->batch_list,
3784                                                              struct stripe_head,
3785                                                              batch_list);
3786                                        if (sh != head_sh) {
3787                                                dev = &sh->dev[i];
3788                                                goto returnbi;
3789                                        }
3790                                }
3791                                sh = head_sh;
3792                                dev = &sh->dev[i];
3793                        } else if (test_bit(R5_Discard, &dev->flags))
3794                                discard_pending = 1;
3795                }
3796
3797        log_stripe_write_finished(sh);
3798
3799        if (!discard_pending &&
3800            test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3801                int hash;
3802                clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3803                clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3804                if (sh->qd_idx >= 0) {
3805                        clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3806                        clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3807                }
3808                /* now that discard is done we can proceed with any sync */
3809                clear_bit(STRIPE_DISCARD, &sh->state);
3810                /*
3811                 * SCSI discard will change some bio fields and the stripe has
3812                 * no updated data, so remove it from hash list and the stripe
3813                 * will be reinitialized
3814                 */
3815unhash:
3816                hash = sh->hash_lock_index;
3817                spin_lock_irq(conf->hash_locks + hash);
3818                remove_hash(sh);
3819                spin_unlock_irq(conf->hash_locks + hash);
3820                if (head_sh->batch_head) {
3821                        sh = list_first_entry(&sh->batch_list,
3822                                              struct stripe_head, batch_list);
3823                        if (sh != head_sh)
3824                                        goto unhash;
3825                }
3826                sh = head_sh;
3827
3828                if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3829                        set_bit(STRIPE_HANDLE, &sh->state);
3830
3831        }
3832
3833        if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3834                if (atomic_dec_and_test(&conf->pending_full_writes))
3835                        md_wakeup_thread(conf->mddev->thread);
3836
3837        if (head_sh->batch_head && do_endio)
3838                break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3839}
3840
3841/*
3842 * For RMW in write back cache, we need extra page in prexor to store the
3843 * old data. This page is stored in dev->orig_page.
3844 *
3845 * This function checks whether we have data for prexor. The exact logic
3846 * is:
3847 *       R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3848 */
3849static inline bool uptodate_for_rmw(struct r5dev *dev)
3850{
3851        return (test_bit(R5_UPTODATE, &dev->flags)) &&
3852                (!test_bit(R5_InJournal, &dev->flags) ||
3853                 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
3854}
3855
3856static int handle_stripe_dirtying(struct r5conf *conf,
3857                                  struct stripe_head *sh,
3858                                  struct stripe_head_state *s,
3859                                  int disks)
3860{
3861        int rmw = 0, rcw = 0, i;
3862        sector_t recovery_cp = conf->mddev->recovery_cp;
3863
3864        /* Check whether resync is now happening or should start.
3865         * If yes, then the array is dirty (after unclean shutdown or
3866         * initial creation), so parity in some stripes might be inconsistent.
3867         * In this case, we need to always do reconstruct-write, to ensure
3868         * that in case of drive failure or read-error correction, we
3869         * generate correct data from the parity.
3870         */
3871        if (conf->rmw_level == PARITY_DISABLE_RMW ||
3872            (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3873             s->failed == 0)) {
3874                /* Calculate the real rcw later - for now make it
3875                 * look like rcw is cheaper
3876                 */
3877                rcw = 1; rmw = 2;
3878                pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3879                         conf->rmw_level, (unsigned long long)recovery_cp,
3880                         (unsigned long long)sh->sector);
3881        } else for (i = disks; i--; ) {
3882                /* would I have to read this buffer for read_modify_write */
3883                struct r5dev *dev = &sh->dev[i];
3884                if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3885                     i == sh->pd_idx || i == sh->qd_idx ||
3886                     test_bit(R5_InJournal, &dev->flags)) &&
3887                    !test_bit(R5_LOCKED, &dev->flags) &&
3888                    !(uptodate_for_rmw(dev) ||
3889                      test_bit(R5_Wantcompute, &dev->flags))) {
3890                        if (test_bit(R5_Insync, &dev->flags))
3891                                rmw++;
3892                        else
3893                                rmw += 2*disks;  /* cannot read it */
3894                }
3895                /* Would I have to read this buffer for reconstruct_write */
3896                if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3897                    i != sh->pd_idx && i != sh->qd_idx &&
3898                    !test_bit(R5_LOCKED, &dev->flags) &&
3899                    !(test_bit(R5_UPTODATE, &dev->flags) ||
3900                      test_bit(R5_Wantcompute, &dev->flags))) {
3901                        if (test_bit(R5_Insync, &dev->flags))
3902                                rcw++;
3903                        else
3904                                rcw += 2*disks;
3905                }
3906        }
3907
3908        pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
3909                 (unsigned long long)sh->sector, sh->state, rmw, rcw);
3910        set_bit(STRIPE_HANDLE, &sh->state);
3911        if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
3912                /* prefer read-modify-write, but need to get some data */
3913                if (conf->mddev->queue)
3914                        blk_add_trace_msg(conf->mddev->queue,
3915                                          "raid5 rmw %llu %d",
3916                                          (unsigned long long)sh->sector, rmw);
3917                for (i = disks; i--; ) {
3918                        struct r5dev *dev = &sh->dev[i];
3919                        if (test_bit(R5_InJournal, &dev->flags) &&
3920                            dev->page == dev->orig_page &&
3921                            !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
3922                                /* alloc page for prexor */
3923                                struct page *p = alloc_page(GFP_NOIO);
3924
3925                                if (p) {
3926                                        dev->orig_page = p;
3927                                        continue;
3928                                }
3929
3930                                /*
3931                                 * alloc_page() failed, try use
3932                                 * disk_info->extra_page
3933                                 */
3934                                if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
3935                                                      &conf->cache_state)) {
3936                                        r5c_use_extra_page(sh);
3937                                        break;
3938                                }
3939
3940                                /* extra_page in use, add to delayed_list */
3941                                set_bit(STRIPE_DELAYED, &sh->state);
3942                                s->waiting_extra_page = 1;
3943                                return -EAGAIN;
3944                        }
3945                }
3946
3947                for (i = disks; i--; ) {
3948                        struct r5dev *dev = &sh->dev[i];
3949                        if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3950                             i == sh->pd_idx || i == sh->qd_idx ||
3951                             test_bit(R5_InJournal, &dev->flags)) &&
3952                            !test_bit(R5_LOCKED, &dev->flags) &&
3953                            !(uptodate_for_rmw(dev) ||
3954                              test_bit(R5_Wantcompute, &dev->flags)) &&
3955                            test_bit(R5_Insync, &dev->flags)) {
3956                                if (test_bit(STRIPE_PREREAD_ACTIVE,
3957                                             &sh->state)) {
3958                                        pr_debug("Read_old block %d for r-m-w\n",
3959                                                 i);
3960                                        set_bit(R5_LOCKED, &dev->flags);
3961                                        set_bit(R5_Wantread, &dev->flags);
3962                                        s->locked++;
3963                                } else {
3964                                        set_bit(STRIPE_DELAYED, &sh->state);
3965                                        set_bit(STRIPE_HANDLE, &sh->state);
3966                                }
3967                        }
3968                }
3969        }
3970        if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
3971                /* want reconstruct write, but need to get some data */
3972                int qread =0;
3973                rcw = 0;
3974                for (i = disks; i--; ) {
3975                        struct r5dev *dev = &sh->dev[i];
3976                        if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3977                            i != sh->pd_idx && i != sh->qd_idx &&
3978                            !test_bit(R5_LOCKED, &dev->flags) &&
3979                            !(test_bit(R5_UPTODATE, &dev->flags) ||
3980                              test_bit(R5_Wantcompute, &dev->flags))) {
3981                                rcw++;
3982                                if (test_bit(R5_Insync, &dev->flags) &&
3983                                    test_bit(STRIPE_PREREAD_ACTIVE,
3984                                             &sh->state)) {
3985                                        pr_debug("Read_old block "
3986                                                "%d for Reconstruct\n", i);
3987                                        set_bit(R5_LOCKED, &dev->flags);
3988                                        set_bit(R5_Wantread, &dev->flags);
3989                                        s->locked++;
3990                                        qread++;
3991                                } else {
3992                                        set_bit(STRIPE_DELAYED, &sh->state);
3993                                        set_bit(STRIPE_HANDLE, &sh->state);
3994                                }
3995                        }
3996                }
3997                if (rcw && conf->mddev->queue)
3998                        blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3999                                          (unsigned long long)sh->sector,
4000                                          rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
4001        }
4002
4003        if (rcw > disks && rmw > disks &&
4004            !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4005                set_bit(STRIPE_DELAYED, &sh->state);
4006
4007        /* now if nothing is locked, and if we have enough data,
4008         * we can start a write request
4009         */
4010        /* since handle_stripe can be called at any time we need to handle the
4011         * case where a compute block operation has been submitted and then a
4012         * subsequent call wants to start a write request.  raid_run_ops only
4013         * handles the case where compute block and reconstruct are requested
4014         * simultaneously.  If this is not the case then new writes need to be
4015         * held off until the compute completes.
4016         */
4017        if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4018            (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4019             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4020                schedule_reconstruction(sh, s, rcw == 0, 0);
4021        return 0;
4022}
4023
4024static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4025                                struct stripe_head_state *s, int disks)
4026{
4027        struct r5dev *dev = NULL;
4028
4029        BUG_ON(sh->batch_head);
4030        set_bit(STRIPE_HANDLE, &sh->state);
4031
4032        switch (sh->check_state) {
4033        case check_state_idle:
4034                /* start a new check operation if there are no failures */
4035                if (s->failed == 0) {
4036                        BUG_ON(s->uptodate != disks);
4037                        sh->check_state = check_state_run;
4038                        set_bit(STRIPE_OP_CHECK, &s->ops_request);
4039                        clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4040                        s->uptodate--;
4041                        break;
4042                }
4043                dev = &sh->dev[s->failed_num[0]];
4044                /* fall through */
4045        case check_state_compute_result:
4046                sh->check_state = check_state_idle;
4047                if (!dev)
4048                        dev = &sh->dev[sh->pd_idx];
4049
4050                /* check that a write has not made the stripe insync */
4051                if (test_bit(STRIPE_INSYNC, &sh->state))
4052                        break;
4053
4054                /* either failed parity check, or recovery is happening */
4055                BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4056                BUG_ON(s->uptodate != disks);
4057
4058                set_bit(R5_LOCKED, &dev->flags);
4059                s->locked++;
4060                set_bit(R5_Wantwrite, &dev->flags);
4061
4062                clear_bit(STRIPE_DEGRADED, &sh->state);
4063                set_bit(STRIPE_INSYNC, &sh->state);
4064                break;
4065        case check_state_run:
4066                break; /* we will be called again upon completion */
4067        case check_state_check_result:
4068                sh->check_state = check_state_idle;
4069
4070                /* if a failure occurred during the check operation, leave
4071                 * STRIPE_INSYNC not set and let the stripe be handled again
4072                 */
4073                if (s->failed)
4074                        break;
4075
4076                /* handle a successful check operation, if parity is correct
4077                 * we are done.  Otherwise update the mismatch count and repair
4078                 * parity if !MD_RECOVERY_CHECK
4079                 */
4080                if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4081                        /* parity is correct (on disc,
4082                         * not in buffer any more)
4083                         */
4084                        set_bit(STRIPE_INSYNC, &sh->state);
4085                else {
4086                        atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4087                        if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4088                                /* don't try to repair!! */
4089                                set_bit(STRIPE_INSYNC, &sh->state);
4090                                pr_warn_ratelimited("%s: mismatch sector in range "
4091                                                    "%llu-%llu\n", mdname(conf->mddev),
4092                                                    (unsigned long long) sh->sector,
4093                                                    (unsigned long long) sh->sector +
4094                                                    STRIPE_SECTORS);
4095                        } else {
4096                                sh->check_state = check_state_compute_run;
4097                                set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4098                                set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4099                                set_bit(R5_Wantcompute,
4100                                        &sh->dev[sh->pd_idx].flags);
4101                                sh->ops.target = sh->pd_idx;
4102                                sh->ops.target2 = -1;
4103                                s->uptodate++;
4104                        }
4105                }
4106                break;
4107        case check_state_compute_run:
4108                break;
4109        default:
4110                pr_err("%s: unknown check_state: %d sector: %llu\n",
4111                       __func__, sh->check_state,
4112                       (unsigned long long) sh->sector);
4113                BUG();
4114        }
4115}
4116
4117static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4118                                  struct stripe_head_state *s,
4119                                  int disks)
4120{
4121        int pd_idx = sh->pd_idx;
4122        int qd_idx = sh->qd_idx;
4123        struct r5dev *dev;
4124
4125        BUG_ON(sh->batch_head);
4126        set_bit(STRIPE_HANDLE, &sh->state);
4127
4128        BUG_ON(s->failed > 2);
4129
4130        /* Want to check and possibly repair P and Q.
4131         * However there could be one 'failed' device, in which
4132         * case we can only check one of them, possibly using the
4133         * other to generate missing data
4134         */
4135
4136        switch (sh->check_state) {
4137        case check_state_idle:
4138                /* start a new check operation if there are < 2 failures */
4139                if (s->failed == s->q_failed) {
4140                        /* The only possible failed device holds Q, so it
4141                         * makes sense to check P (If anything else were failed,
4142                         * we would have used P to recreate it).
4143                         */
4144                        sh->check_state = check_state_run;
4145                }
4146                if (!s->q_failed && s->failed < 2) {
4147                        /* Q is not failed, and we didn't use it to generate
4148                         * anything, so it makes sense to check it
4149                         */
4150                        if (sh->check_state == check_state_run)
4151                                sh->check_state = check_state_run_pq;
4152                        else
4153                                sh->check_state = check_state_run_q;
4154                }
4155
4156                /* discard potentially stale zero_sum_result */
4157                sh->ops.zero_sum_result = 0;
4158
4159                if (sh->check_state == check_state_run) {
4160                        /* async_xor_zero_sum destroys the contents of P */
4161                        clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4162                        s->uptodate--;
4163                }
4164                if (sh->check_state >= check_state_run &&
4165                    sh->check_state <= check_state_run_pq) {
4166                        /* async_syndrome_zero_sum preserves P and Q, so
4167                         * no need to mark them !uptodate here
4168                         */
4169                        set_bit(STRIPE_OP_CHECK, &s->ops_request);
4170                        break;
4171                }
4172
4173                /* we have 2-disk failure */
4174                BUG_ON(s->failed != 2);
4175                /* fall through */
4176        case check_state_compute_result:
4177                sh->check_state = check_state_idle;
4178
4179                /* check that a write has not made the stripe insync */
4180                if (test_bit(STRIPE_INSYNC, &sh->state))
4181                        break;
4182
4183                /* now write out any block on a failed drive,
4184                 * or P or Q if they were recomputed
4185                 */
4186                dev = NULL;
4187                if (s->failed == 2) {
4188                        dev = &sh->dev[s->failed_num[1]];
4189                        s->locked++;
4190                        set_bit(R5_LOCKED, &dev->flags);
4191                        set_bit(R5_Wantwrite, &dev->flags);
4192                }
4193                if (s->failed >= 1) {
4194                        dev = &sh->dev[s->failed_num[0]];
4195                        s->locked++;
4196                        set_bit(R5_LOCKED, &dev->flags);
4197                        set_bit(R5_Wantwrite, &dev->flags);
4198                }
4199                if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4200                        dev = &sh->dev[pd_idx];
4201                        s->locked++;
4202                        set_bit(R5_LOCKED, &dev->flags);
4203                        set_bit(R5_Wantwrite, &dev->flags);
4204                }
4205                if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4206                        dev = &sh->dev[qd_idx];
4207                        s->locked++;
4208                        set_bit(R5_LOCKED, &dev->flags);
4209                        set_bit(R5_Wantwrite, &dev->flags);
4210                }
4211                if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags),
4212                              "%s: disk%td not up to date\n",
4213                              mdname(conf->mddev),
4214                              dev - (struct r5dev *) &sh->dev)) {
4215                        clear_bit(R5_LOCKED, &dev->flags);
4216                        clear_bit(R5_Wantwrite, &dev->flags);
4217                        s->locked--;
4218                }
4219                clear_bit(STRIPE_DEGRADED, &sh->state);
4220
4221                set_bit(STRIPE_INSYNC, &sh->state);
4222                break;
4223        case check_state_run:
4224        case check_state_run_q:
4225        case check_state_run_pq:
4226                break; /* we will be called again upon completion */
4227        case check_state_check_result:
4228                sh->check_state = check_state_idle;
4229
4230                /* handle a successful check operation, if parity is correct
4231                 * we are done.  Otherwise update the mismatch count and repair
4232                 * parity if !MD_RECOVERY_CHECK
4233                 */
4234                if (sh->ops.zero_sum_result == 0) {
4235                        /* both parities are correct */
4236                        if (!s->failed)
4237                                set_bit(STRIPE_INSYNC, &sh->state);
4238                        else {
4239                                /* in contrast to the raid5 case we can validate
4240                                 * parity, but still have a failure to write
4241                                 * back
4242                                 */
4243                                sh->check_state = check_state_compute_result;
4244                                /* Returning at this point means that we may go
4245                                 * off and bring p and/or q uptodate again so
4246                                 * we make sure to check zero_sum_result again
4247                                 * to verify if p or q need writeback
4248                                 */
4249                        }
4250                } else {
4251                        atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4252                        if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4253                                /* don't try to repair!! */
4254                                set_bit(STRIPE_INSYNC, &sh->state);
4255                                pr_warn_ratelimited("%s: mismatch sector in range "
4256                                                    "%llu-%llu\n", mdname(conf->mddev),
4257                                                    (unsigned long long) sh->sector,
4258                                                    (unsigned long long) sh->sector +
4259                                                    STRIPE_SECTORS);
4260                        } else {
4261                                int *target = &sh->ops.target;
4262
4263                                sh->ops.target = -1;
4264                                sh->ops.target2 = -1;
4265                                sh->check_state = check_state_compute_run;
4266                                set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4267                                set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4268                                if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4269                                        set_bit(R5_Wantcompute,
4270                                                &sh->dev[pd_idx].flags);
4271                                        *target = pd_idx;
4272                                        target = &sh->ops.target2;
4273                                        s->uptodate++;
4274                                }
4275                                if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4276                                        set_bit(R5_Wantcompute,
4277                                                &sh->dev[qd_idx].flags);
4278                                        *target = qd_idx;
4279                                        s->uptodate++;
4280                                }
4281                        }
4282                }
4283                break;
4284        case check_state_compute_run:
4285                break;
4286        default:
4287                pr_warn("%s: unknown check_state: %d sector: %llu\n",
4288                        __func__, sh->check_state,
4289                        (unsigned long long) sh->sector);
4290                BUG();
4291        }
4292}
4293
4294static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4295{
4296        int i;
4297
4298        /* We have read all the blocks in this stripe and now we need to
4299         * copy some of them into a target stripe for expand.
4300         */
4301        struct dma_async_tx_descriptor *tx = NULL;
4302        BUG_ON(sh->batch_head);
4303        clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4304        for (i = 0; i < sh->disks; i++)
4305                if (i != sh->pd_idx && i != sh->qd_idx) {
4306                        int dd_idx, j;
4307                        struct stripe_head *sh2;
4308                        struct async_submit_ctl submit;
4309
4310                        sector_t bn = raid5_compute_blocknr(sh, i, 1);
4311                        sector_t s = raid5_compute_sector(conf, bn, 0,
4312                                                          &dd_idx, NULL);
4313                        sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4314                        if (sh2 == NULL)
4315                                /* so far only the early blocks of this stripe
4316                                 * have been requested.  When later blocks
4317                                 * get requested, we will try again
4318                                 */
4319                                continue;
4320                        if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4321                           test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4322                                /* must have already done this block */
4323                                raid5_release_stripe(sh2);
4324                                continue;
4325                        }
4326
4327                        /* place all the copies on one channel */
4328                        init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4329                        tx = async_memcpy(sh2->dev[dd_idx].page,
4330                                          sh->dev[i].page, 0, 0, STRIPE_SIZE,
4331                                          &submit);
4332
4333                        set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4334                        set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4335                        for (j = 0; j < conf->raid_disks; j++)
4336                                if (j != sh2->pd_idx &&
4337                                    j != sh2->qd_idx &&
4338                                    !test_bit(R5_Expanded, &sh2->dev[j].flags))
4339                                        break;
4340                        if (j == conf->raid_disks) {
4341                                set_bit(STRIPE_EXPAND_READY, &sh2->state);
4342                                set_bit(STRIPE_HANDLE, &sh2->state);
4343                        }
4344                        raid5_release_stripe(sh2);
4345
4346                }
4347        /* done submitting copies, wait for them to complete */
4348        async_tx_quiesce(&tx);
4349}
4350
4351/*
4352 * handle_stripe - do things to a stripe.
4353 *
4354 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4355 * state of various bits to see what needs to be done.
4356 * Possible results:
4357 *    return some read requests which now have data
4358 *    return some write requests which are safely on storage
4359 *    schedule a read on some buffers
4360 *    schedule a write of some buffers
4361 *    return confirmation of parity correctness
4362 *
4363 */
4364
4365static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4366{
4367        struct r5conf *conf = sh->raid_conf;
4368        int disks = sh->disks;
4369        struct r5dev *dev;
4370        int i;
4371        int do_recovery = 0;
4372
4373        memset(s, 0, sizeof(*s));
4374
4375        s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4376        s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4377        s->failed_num[0] = -1;
4378        s->failed_num[1] = -1;
4379        s->log_failed = r5l_log_disk_error(conf);
4380
4381        /* Now to look around and see what can be done */
4382        rcu_read_lock();
4383        for (i=disks; i--; ) {
4384                struct md_rdev *rdev;
4385                sector_t first_bad;
4386                int bad_sectors;
4387                int is_bad = 0;
4388
4389                dev = &sh->dev[i];
4390
4391                pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4392                         i, dev->flags,
4393                         dev->toread, dev->towrite, dev->written);
4394                /* maybe we can reply to a read
4395                 *
4396                 * new wantfill requests are only permitted while
4397                 * ops_complete_biofill is guaranteed to be inactive
4398                 */
4399                if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4400                    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4401                        set_bit(R5_Wantfill, &dev->flags);
4402
4403                /* now count some things */
4404                if (test_bit(R5_LOCKED, &dev->flags))
4405                        s->locked++;
4406                if (test_bit(R5_UPTODATE, &dev->flags))
4407                        s->uptodate++;
4408                if (test_bit(R5_Wantcompute, &dev->flags)) {
4409                        s->compute++;
4410                        BUG_ON(s->compute > 2);
4411                }
4412
4413                if (test_bit(R5_Wantfill, &dev->flags))
4414                        s->to_fill++;
4415                else if (dev->toread)
4416                        s->to_read++;
4417                if (dev->towrite) {
4418                        s->to_write++;
4419                        if (!test_bit(R5_OVERWRITE, &dev->flags))
4420                                s->non_overwrite++;
4421                }
4422                if (dev->written)
4423                        s->written++;
4424                /* Prefer to use the replacement for reads, but only
4425                 * if it is recovered enough and has no bad blocks.
4426                 */
4427                rdev = rcu_dereference(conf->disks[i].replacement);
4428                if (rdev && !test_bit(Faulty, &rdev->flags) &&
4429                    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4430                    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4431                                 &first_bad, &bad_sectors))
4432                        set_bit(R5_ReadRepl, &dev->flags);
4433                else {
4434                        if (rdev && !test_bit(Faulty, &rdev->flags))
4435                                set_bit(R5_NeedReplace, &dev->flags);
4436                        else
4437                                clear_bit(R5_NeedReplace, &dev->flags);
4438                        rdev = rcu_dereference(conf->disks[i].rdev);
4439                        clear_bit(R5_ReadRepl, &dev->flags);
4440                }
4441                if (rdev && test_bit(Faulty, &rdev->flags))
4442                        rdev = NULL;
4443                if (rdev) {
4444                        is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4445                                             &first_bad, &bad_sectors);
4446                        if (s->blocked_rdev == NULL
4447                            && (test_bit(Blocked, &rdev->flags)
4448                                || is_bad < 0)) {
4449                                if (is_bad < 0)
4450                                        set_bit(BlockedBadBlocks,
4451                                                &rdev->flags);
4452                                s->blocked_rdev = rdev;
4453                                atomic_inc(&rdev->nr_pending);
4454                        }
4455                }
4456                clear_bit(R5_Insync, &dev->flags);
4457                if (!rdev)
4458                        /* Not in-sync */;
4459                else if (is_bad) {
4460                        /* also not in-sync */
4461                        if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4462                            test_bit(R5_UPTODATE, &dev->flags)) {
4463                                /* treat as in-sync, but with a read error
4464                                 * which we can now try to correct
4465                                 */
4466                                set_bit(R5_Insync, &dev->flags);
4467                                set_bit(R5_ReadError, &dev->flags);
4468                        }
4469                } else if (test_bit(In_sync, &rdev->flags))
4470                        set_bit(R5_Insync, &dev->flags);
4471                else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4472                        /* in sync if before recovery_offset */
4473                        set_bit(R5_Insync, &dev->flags);
4474                else if (test_bit(R5_UPTODATE, &dev->flags) &&
4475                         test_bit(R5_Expanded, &dev->flags))
4476                        /* If we've reshaped into here, we assume it is Insync.
4477                         * We will shortly update recovery_offset to make
4478                         * it official.
4479                         */
4480                        set_bit(R5_Insync, &dev->flags);
4481
4482                if (test_bit(R5_WriteError, &dev->flags)) {
4483                        /* This flag does not apply to '.replacement'
4484                         * only to .rdev, so make sure to check that*/
4485                        struct md_rdev *rdev2 = rcu_dereference(
4486                                conf->disks[i].rdev);
4487                        if (rdev2 == rdev)
4488                                clear_bit(R5_Insync, &dev->flags);
4489                        if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4490                                s->handle_bad_blocks = 1;
4491                                atomic_inc(&rdev2->nr_pending);
4492                        } else
4493                                clear_bit(R5_WriteError, &dev->flags);
4494                }
4495                if (test_bit(R5_MadeGood, &dev->flags)) {
4496                        /* This flag does not apply to '.replacement'
4497                         * only to .rdev, so make sure to check that*/
4498                        struct md_rdev *rdev2 = rcu_dereference(
4499                                conf->disks[i].rdev);
4500                        if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4501                                s->handle_bad_blocks = 1;
4502                                atomic_inc(&rdev2->nr_pending);
4503                        } else
4504                                clear_bit(R5_MadeGood, &dev->flags);
4505                }
4506                if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4507                        struct md_rdev *rdev2 = rcu_dereference(
4508                                conf->disks[i].replacement);
4509                        if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4510                                s->handle_bad_blocks = 1;
4511                                atomic_inc(&rdev2->nr_pending);
4512                        } else
4513                                clear_bit(R5_MadeGoodRepl, &dev->flags);
4514                }
4515                if (!test_bit(R5_Insync, &dev->flags)) {
4516                        /* The ReadError flag will just be confusing now */
4517                        clear_bit(R5_ReadError, &dev->flags);
4518                        clear_bit(R5_ReWrite, &dev->flags);
4519                }
4520                if (test_bit(R5_ReadError, &dev->flags))
4521                        clear_bit(R5_Insync, &dev->flags);
4522                if (!test_bit(R5_Insync, &dev->flags)) {
4523                        if (s->failed < 2)
4524                                s->failed_num[s->failed] = i;
4525                        s->failed++;
4526                        if (rdev && !test_bit(Faulty, &rdev->flags))
4527                                do_recovery = 1;
4528                        else if (!rdev) {
4529                                rdev = rcu_dereference(
4530                                    conf->disks[i].replacement);
4531                                if (rdev && !test_bit(Faulty, &rdev->flags))
4532                                        do_recovery = 1;
4533                        }
4534                }
4535
4536                if (test_bit(R5_InJournal, &dev->flags))
4537                        s->injournal++;
4538                if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4539                        s->just_cached++;
4540        }
4541        if (test_bit(STRIPE_SYNCING, &sh->state)) {
4542                /* If there is a failed device being replaced,
4543                 *     we must be recovering.
4544                 * else if we are after recovery_cp, we must be syncing
4545                 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4546                 * else we can only be replacing
4547                 * sync and recovery both need to read all devices, and so
4548                 * use the same flag.
4549                 */
4550                if (do_recovery ||
4551                    sh->sector >= conf->mddev->recovery_cp ||
4552                    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4553                        s->syncing = 1;
4554                else
4555                        s->replacing = 1;
4556        }
4557        rcu_read_unlock();
4558}
4559
4560static int clear_batch_ready(struct stripe_head *sh)
4561{
4562        /* Return '1' if this is a member of batch, or
4563         * '0' if it is a lone stripe or a head which can now be
4564         * handled.
4565         */
4566        struct stripe_head *tmp;
4567        if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4568                return (sh->batch_head && sh->batch_head != sh);
4569        spin_lock(&sh->stripe_lock);
4570        if (!sh->batch_head) {
4571                spin_unlock(&sh->stripe_lock);
4572                return 0;
4573        }
4574
4575        /*
4576         * this stripe could be added to a batch list before we check
4577         * BATCH_READY, skips it
4578         */
4579        if (sh->batch_head != sh) {
4580                spin_unlock(&sh->stripe_lock);
4581                return 1;
4582        }
4583        spin_lock(&sh->batch_lock);
4584        list_for_each_entry(tmp, &sh->batch_list, batch_list)
4585                clear_bit(STRIPE_BATCH_READY, &tmp->state);
4586        spin_unlock(&sh->batch_lock);
4587        spin_unlock(&sh->stripe_lock);
4588
4589        /*
4590         * BATCH_READY is cleared, no new stripes can be added.
4591         * batch_list can be accessed without lock
4592         */
4593        return 0;
4594}
4595
4596static void break_stripe_batch_list(struct stripe_head *head_sh,
4597                                    unsigned long handle_flags)
4598{
4599        struct stripe_head *sh, *next;
4600        int i;
4601        int do_wakeup = 0;
4602
4603        list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4604
4605                list_del_init(&sh->batch_list);
4606
4607                WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4608                                          (1 << STRIPE_SYNCING) |
4609                                          (1 << STRIPE_REPLACED) |
4610                                          (1 << STRIPE_DELAYED) |
4611                                          (1 << STRIPE_BIT_DELAY) |
4612                                          (1 << STRIPE_FULL_WRITE) |
4613                                          (1 << STRIPE_BIOFILL_RUN) |
4614                                          (1 << STRIPE_COMPUTE_RUN)  |
4615                                          (1 << STRIPE_OPS_REQ_PENDING) |
4616                                          (1 << STRIPE_DISCARD) |
4617                                          (1 << STRIPE_BATCH_READY) |
4618                                          (1 << STRIPE_BATCH_ERR) |
4619                                          (1 << STRIPE_BITMAP_PENDING)),
4620                        "stripe state: %lx\n", sh->state);
4621                WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4622                                              (1 << STRIPE_REPLACED)),
4623                        "head stripe state: %lx\n", head_sh->state);
4624
4625                set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4626                                            (1 << STRIPE_PREREAD_ACTIVE) |
4627                                            (1 << STRIPE_DEGRADED) |
4628                                            (1 << STRIPE_ON_UNPLUG_LIST)),
4629                              head_sh->state & (1 << STRIPE_INSYNC));
4630
4631                sh->check_state = head_sh->check_state;
4632                sh->reconstruct_state = head_sh->reconstruct_state;
4633                spin_lock_irq(&sh->stripe_lock);
4634                sh->batch_head = NULL;
4635                spin_unlock_irq(&sh->stripe_lock);
4636                for (i = 0; i < sh->disks; i++) {
4637                        if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4638                                do_wakeup = 1;
4639                        sh->dev[i].flags = head_sh->dev[i].flags &
4640                                (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4641                }
4642                if (handle_flags == 0 ||
4643                    sh->state & handle_flags)
4644                        set_bit(STRIPE_HANDLE, &sh->state);
4645                raid5_release_stripe(sh);
4646        }
4647        spin_lock_irq(&head_sh->stripe_lock);
4648        head_sh->batch_head = NULL;
4649        spin_unlock_irq(&head_sh->stripe_lock);
4650        for (i = 0; i < head_sh->disks; i++)
4651                if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4652                        do_wakeup = 1;
4653        if (head_sh->state & handle_flags)
4654                set_bit(STRIPE_HANDLE, &head_sh->state);
4655
4656        if (do_wakeup)
4657                wake_up(&head_sh->raid_conf->wait_for_overlap);
4658}
4659
4660static void handle_stripe(struct stripe_head *sh)
4661{
4662        struct stripe_head_state s;
4663        struct r5conf *conf = sh->raid_conf;
4664        int i;
4665        int prexor;
4666        int disks = sh->disks;
4667        struct r5dev *pdev, *qdev;
4668
4669        clear_bit(STRIPE_HANDLE, &sh->state);
4670        if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4671                /* already being handled, ensure it gets handled
4672                 * again when current action finishes */
4673                set_bit(STRIPE_HANDLE, &sh->state);
4674                return;
4675        }
4676
4677        if (clear_batch_ready(sh) ) {
4678                clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4679                return;
4680        }
4681
4682        if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4683                break_stripe_batch_list(sh, 0);
4684
4685        if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4686                spin_lock(&sh->stripe_lock);
4687                /*
4688                 * Cannot process 'sync' concurrently with 'discard'.
4689                 * Flush data in r5cache before 'sync'.
4690                 */
4691                if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4692                    !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4693                    !test_bit(STRIPE_DISCARD, &sh->state) &&
4694                    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4695                        set_bit(STRIPE_SYNCING, &sh->state);
4696                        clear_bit(STRIPE_INSYNC, &sh->state);
4697                        clear_bit(STRIPE_REPLACED, &sh->state);
4698                }
4699                spin_unlock(&sh->stripe_lock);
4700        }
4701        clear_bit(STRIPE_DELAYED, &sh->state);
4702
4703        pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4704                "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4705               (unsigned long long)sh->sector, sh->state,
4706               atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4707               sh->check_state, sh->reconstruct_state);
4708
4709        analyse_stripe(sh, &s);
4710
4711        if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4712                goto finish;
4713
4714        if (s.handle_bad_blocks ||
4715            test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4716                set_bit(STRIPE_HANDLE, &sh->state);
4717                goto finish;
4718        }
4719
4720        if (unlikely(s.blocked_rdev)) {
4721                if (s.syncing || s.expanding || s.expanded ||
4722                    s.replacing || s.to_write || s.written) {
4723                        set_bit(STRIPE_HANDLE, &sh->state);
4724                        goto finish;
4725                }
4726                /* There is nothing for the blocked_rdev to block */
4727                rdev_dec_pending(s.blocked_rdev, conf->mddev);
4728                s.blocked_rdev = NULL;
4729        }
4730
4731        if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4732                set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4733                set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4734        }
4735
4736        pr_debug("locked=%d uptodate=%d to_read=%d"
4737               " to_write=%d failed=%d failed_num=%d,%d\n",
4738               s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4739               s.failed_num[0], s.failed_num[1]);
4740        /*
4741         * check if the array has lost more than max_degraded devices and,
4742         * if so, some requests might need to be failed.
4743         *
4744         * When journal device failed (log_failed), we will only process
4745         * the stripe if there is data need write to raid disks
4746         */
4747        if (s.failed > conf->max_degraded ||
4748            (s.log_failed && s.injournal == 0)) {
4749                sh->check_state = 0;
4750                sh->reconstruct_state = 0;
4751                break_stripe_batch_list(sh, 0);
4752                if (s.to_read+s.to_write+s.written)
4753                        handle_failed_stripe(conf, sh, &s, disks);
4754                if (s.syncing + s.replacing)
4755                        handle_failed_sync(conf, sh, &s);
4756        }
4757
4758        /* Now we check to see if any write operations have recently
4759         * completed
4760         */
4761        prexor = 0;
4762        if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4763                prexor = 1;
4764        if (sh->reconstruct_state == reconstruct_state_drain_result ||
4765            sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4766                sh->reconstruct_state = reconstruct_state_idle;
4767
4768                /* All the 'written' buffers and the parity block are ready to
4769                 * be written back to disk
4770                 */
4771                BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4772                       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4773                BUG_ON(sh->qd_idx >= 0 &&
4774                       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4775                       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4776                for (i = disks; i--; ) {
4777                        struct r5dev *dev = &sh->dev[i];
4778                        if (test_bit(R5_LOCKED, &dev->flags) &&
4779                                (i == sh->pd_idx || i == sh->qd_idx ||
4780                                 dev->written || test_bit(R5_InJournal,
4781                                                          &dev->flags))) {
4782                                pr_debug("Writing block %d\n", i);
4783                                set_bit(R5_Wantwrite, &dev->flags);
4784                                if (prexor)
4785                                        continue;
4786                                if (s.failed > 1)
4787                                        continue;
4788                                if (!test_bit(R5_Insync, &dev->flags) ||
4789                                    ((i == sh->pd_idx || i == sh->qd_idx)  &&
4790                                     s.failed == 0))
4791                                        set_bit(STRIPE_INSYNC, &sh->state);
4792                        }
4793                }
4794                if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4795                        s.dec_preread_active = 1;
4796        }
4797
4798        /*
4799         * might be able to return some write requests if the parity blocks
4800         * are safe, or on a failed drive
4801         */
4802        pdev = &sh->dev[sh->pd_idx];
4803        s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4804                || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4805        qdev = &sh->dev[sh->qd_idx];
4806        s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4807                || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4808                || conf->level < 6;
4809
4810        if (s.written &&
4811            (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4812                             && !test_bit(R5_LOCKED, &pdev->flags)
4813                             && (test_bit(R5_UPTODATE, &pdev->flags) ||
4814                                 test_bit(R5_Discard, &pdev->flags))))) &&
4815            (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4816                             && !test_bit(R5_LOCKED, &qdev->flags)
4817                             && (test_bit(R5_UPTODATE, &qdev->flags) ||
4818                                 test_bit(R5_Discard, &qdev->flags))))))
4819                handle_stripe_clean_event(conf, sh, disks);
4820
4821        if (s.just_cached)
4822                r5c_handle_cached_data_endio(conf, sh, disks);
4823        log_stripe_write_finished(sh);
4824
4825        /* Now we might consider reading some blocks, either to check/generate
4826         * parity, or to satisfy requests
4827         * or to load a block that is being partially written.
4828         */
4829        if (s.to_read || s.non_overwrite
4830            || (conf->level == 6 && s.to_write && s.failed)
4831            || (s.syncing && (s.uptodate + s.compute < disks))
4832            || s.replacing
4833            || s.expanding)
4834                handle_stripe_fill(sh, &s, disks);
4835
4836        /*
4837         * When the stripe finishes full journal write cycle (write to journal
4838         * and raid disk), this is the clean up procedure so it is ready for
4839         * next operation.
4840         */
4841        r5c_finish_stripe_write_out(conf, sh, &s);
4842
4843        /*
4844         * Now to consider new write requests, cache write back and what else,
4845         * if anything should be read.  We do not handle new writes when:
4846         * 1/ A 'write' operation (copy+xor) is already in flight.
4847         * 2/ A 'check' operation is in flight, as it may clobber the parity
4848         *    block.
4849         * 3/ A r5c cache log write is in flight.
4850         */
4851
4852        if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
4853                if (!r5c_is_writeback(conf->log)) {
4854                        if (s.to_write)
4855                                handle_stripe_dirtying(conf, sh, &s, disks);
4856                } else { /* write back cache */
4857                        int ret = 0;
4858
4859                        /* First, try handle writes in caching phase */
4860                        if (s.to_write)
4861                                ret = r5c_try_caching_write(conf, sh, &s,
4862                                                            disks);
4863                        /*
4864                         * If caching phase failed: ret == -EAGAIN
4865                         *    OR
4866                         * stripe under reclaim: !caching && injournal
4867                         *
4868                         * fall back to handle_stripe_dirtying()
4869                         */
4870                        if (ret == -EAGAIN ||
4871                            /* stripe under reclaim: !caching && injournal */
4872                            (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
4873                             s.injournal > 0)) {
4874                                ret = handle_stripe_dirtying(conf, sh, &s,
4875                                                             disks);
4876                                if (ret == -EAGAIN)
4877                                        goto finish;
4878                        }
4879                }
4880        }
4881
4882        /* maybe we need to check and possibly fix the parity for this stripe
4883         * Any reads will already have been scheduled, so we just see if enough
4884         * data is available.  The parity check is held off while parity
4885         * dependent operations are in flight.
4886         */
4887        if (sh->check_state ||
4888            (s.syncing && s.locked == 0 &&
4889             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4890             !test_bit(STRIPE_INSYNC, &sh->state))) {
4891                if (conf->level == 6)
4892                        handle_parity_checks6(conf, sh, &s, disks);
4893                else
4894                        handle_parity_checks5(conf, sh, &s, disks);
4895        }
4896
4897        if ((s.replacing || s.syncing) && s.locked == 0
4898            && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4899            && !test_bit(STRIPE_REPLACED, &sh->state)) {
4900                /* Write out to replacement devices where possible */
4901                for (i = 0; i < conf->raid_disks; i++)
4902                        if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4903                                WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4904                                set_bit(R5_WantReplace, &sh->dev[i].flags);
4905                                set_bit(R5_LOCKED, &sh->dev[i].flags);
4906                                s.locked++;
4907                        }
4908                if (s.replacing)
4909                        set_bit(STRIPE_INSYNC, &sh->state);
4910                set_bit(STRIPE_REPLACED, &sh->state);
4911        }
4912        if ((s.syncing || s.replacing) && s.locked == 0 &&
4913            !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4914            test_bit(STRIPE_INSYNC, &sh->state)) {
4915                md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4916                clear_bit(STRIPE_SYNCING, &sh->state);
4917                if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4918                        wake_up(&conf->wait_for_overlap);
4919        }
4920
4921        /* If the failed drives are just a ReadError, then we might need
4922         * to progress the repair/check process
4923         */
4924        if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4925                for (i = 0; i < s.failed; i++) {
4926                        struct r5dev *dev = &sh->dev[s.failed_num[i]];
4927                        if (test_bit(R5_ReadError, &dev->flags)
4928                            && !test_bit(R5_LOCKED, &dev->flags)
4929                            && test_bit(R5_UPTODATE, &dev->flags)
4930                                ) {
4931                                if (!test_bit(R5_ReWrite, &dev->flags)) {
4932                                        set_bit(R5_Wantwrite, &dev->flags);
4933                                        set_bit(R5_ReWrite, &dev->flags);
4934                                        set_bit(R5_LOCKED, &dev->flags);
4935                                        s.locked++;
4936                                } else {
4937                                        /* let's read it back */
4938                                        set_bit(R5_Wantread, &dev->flags);
4939                                        set_bit(R5_LOCKED, &dev->flags);
4940                                        s.locked++;
4941                                }
4942                        }
4943                }
4944
4945        /* Finish reconstruct operations initiated by the expansion process */
4946        if (sh->reconstruct_state == reconstruct_state_result) {
4947                struct stripe_head *sh_src
4948                        = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4949                if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4950                        /* sh cannot be written until sh_src has been read.
4951                         * so arrange for sh to be delayed a little
4952                         */
4953                        set_bit(STRIPE_DELAYED, &sh->state);
4954                        set_bit(STRIPE_HANDLE, &sh->state);
4955                        if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4956                                              &sh_src->state))
4957                                atomic_inc(&conf->preread_active_stripes);
4958                        raid5_release_stripe(sh_src);
4959                        goto finish;
4960                }
4961                if (sh_src)
4962                        raid5_release_stripe(sh_src);
4963
4964                sh->reconstruct_state = reconstruct_state_idle;
4965                clear_bit(STRIPE_EXPANDING, &sh->state);
4966                for (i = conf->raid_disks; i--; ) {
4967                        set_bit(R5_Wantwrite, &sh->dev[i].flags);
4968                        set_bit(R5_LOCKED, &sh->dev[i].flags);
4969                        s.locked++;
4970                }
4971        }
4972
4973        if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4974            !sh->reconstruct_state) {
4975                /* Need to write out all blocks after computing parity */
4976                sh->disks = conf->raid_disks;
4977                stripe_set_idx(sh->sector, conf, 0, sh);
4978                schedule_reconstruction(sh, &s, 1, 1);
4979        } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4980                clear_bit(STRIPE_EXPAND_READY, &sh->state);
4981                atomic_dec(&conf->reshape_stripes);
4982                wake_up(&conf->wait_for_overlap);
4983                md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4984        }
4985
4986        if (s.expanding && s.locked == 0 &&
4987            !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4988                handle_stripe_expansion(conf, sh);
4989
4990finish:
4991        /* wait for this device to become unblocked */
4992        if (unlikely(s.blocked_rdev)) {
4993                if (conf->mddev->external)
4994                        md_wait_for_blocked_rdev(s.blocked_rdev,
4995                                                 conf->mddev);
4996                else
4997                        /* Internal metadata will immediately
4998                         * be written by raid5d, so we don't
4999                         * need to wait here.
5000                         */
5001                        rdev_dec_pending(s.blocked_rdev,
5002                                         conf->mddev);
5003        }
5004
5005        if (s.handle_bad_blocks)
5006                for (i = disks; i--; ) {
5007                        struct md_rdev *rdev;
5008                        struct r5dev *dev = &sh->dev[i];
5009                        if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5010                                /* We own a safe reference to the rdev */
5011                                rdev = conf->disks[i].rdev;
5012                                if (!rdev_set_badblocks(rdev, sh->sector,
5013                                                        STRIPE_SECTORS, 0))
5014                                        md_error(conf->mddev, rdev);
5015                                rdev_dec_pending(rdev, conf->mddev);
5016                        }
5017                        if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5018                                rdev = conf->disks[i].rdev;
5019                                rdev_clear_badblocks(rdev, sh->sector,
5020                                                     STRIPE_SECTORS, 0);
5021                                rdev_dec_pending(rdev, conf->mddev);
5022                        }
5023                        if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5024                                rdev = conf->disks[i].replacement;
5025                                if (!rdev)
5026                                        /* rdev have been moved down */
5027                                        rdev = conf->disks[i].rdev;
5028                                rdev_clear_badblocks(rdev, sh->sector,
5029                                                     STRIPE_SECTORS, 0);
5030                                rdev_dec_pending(rdev, conf->mddev);
5031                        }
5032                }
5033
5034        if (s.ops_request)
5035                raid_run_ops(sh, s.ops_request);
5036
5037        ops_run_io(sh, &s);
5038
5039        if (s.dec_preread_active) {
5040                /* We delay this until after ops_run_io so that if make_request
5041                 * is waiting on a flush, it won't continue until the writes
5042                 * have actually been submitted.
5043                 */
5044                atomic_dec(&conf->preread_active_stripes);
5045                if (atomic_read(&conf->preread_active_stripes) <
5046                    IO_THRESHOLD)
5047                        md_wakeup_thread(conf->mddev->thread);
5048        }
5049
5050        clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5051}
5052
5053static void raid5_activate_delayed(struct r5conf *conf)
5054{
5055        if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5056                while (!list_empty(&conf->delayed_list)) {
5057                        struct list_head *l = conf->delayed_list.next;
5058                        struct stripe_head *sh;
5059                        sh = list_entry(l, struct stripe_head, lru);
5060                        list_del_init(l);
5061                        clear_bit(STRIPE_DELAYED, &sh->state);
5062                        if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5063                                atomic_inc(&conf->preread_active_stripes);
5064                        list_add_tail(&sh->lru, &conf->hold_list);
5065                        raid5_wakeup_stripe_thread(sh);
5066                }
5067        }
5068}
5069
5070static void activate_bit_delay(struct r5conf *conf,
5071        struct list_head *temp_inactive_list)
5072{
5073        /* device_lock is held */
5074        struct list_head head;
5075        list_add(&head, &conf->bitmap_list);
5076        list_del_init(&conf->bitmap_list);
5077        while (!list_empty(&head)) {
5078                struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5079                int hash;
5080                list_del_init(&sh->lru);
5081                atomic_inc(&sh->count);
5082                hash = sh->hash_lock_index;
5083                __release_stripe(conf, sh, &temp_inactive_list[hash]);
5084        }
5085}
5086
5087static int raid5_congested(struct mddev *mddev, int bits)
5088{
5089        struct r5conf *conf = mddev->private;
5090
5091        /* No difference between reads and writes.  Just check
5092         * how busy the stripe_cache is
5093         */
5094
5095        if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
5096                return 1;
5097
5098        /* Also checks whether there is pressure on r5cache log space */
5099        if (test_bit(R5C_LOG_TIGHT, &conf->cache_state))
5100                return 1;
5101        if (conf->quiesce)
5102                return 1;
5103        if (atomic_read(&conf->empty_inactive_list_nr))
5104                return 1;
5105
5106        return 0;
5107}
5108
5109static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5110{
5111        struct r5conf *conf = mddev->private;
5112        sector_t sector = bio->bi_iter.bi_sector;
5113        unsigned int chunk_sectors;
5114        unsigned int bio_sectors = bio_sectors(bio);
5115
5116        WARN_ON_ONCE(bio->bi_partno);
5117
5118        chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5119        return  chunk_sectors >=
5120                ((sector & (chunk_sectors - 1)) + bio_sectors);
5121}
5122
5123/*
5124 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
5125 *  later sampled by raid5d.
5126 */
5127static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5128{
5129        unsigned long flags;
5130
5131        spin_lock_irqsave(&conf->device_lock, flags);
5132
5133        bi->bi_next = conf->retry_read_aligned_list;
5134        conf->retry_read_aligned_list = bi;
5135
5136        spin_unlock_irqrestore(&conf->device_lock, flags);
5137        md_wakeup_thread(conf->mddev->thread);
5138}
5139
5140static struct bio *remove_bio_from_retry(struct r5conf *conf,
5141                                         unsigned int *offset)
5142{
5143        struct bio *bi;
5144
5145        bi = conf->retry_read_aligned;
5146        if (bi) {
5147                *offset = conf->retry_read_offset;
5148                conf->retry_read_aligned = NULL;
5149                return bi;
5150        }
5151        bi = conf->retry_read_aligned_list;
5152        if(bi) {
5153                conf->retry_read_aligned_list = bi->bi_next;
5154                bi->bi_next = NULL;
5155                *offset = 0;
5156        }
5157
5158        return bi;
5159}
5160
5161/*
5162 *  The "raid5_align_endio" should check if the read succeeded and if it
5163 *  did, call bio_endio on the original bio (having bio_put the new bio
5164 *  first).
5165 *  If the read failed..
5166 */
5167static void raid5_align_endio(struct bio *bi)
5168{
5169        struct bio* raid_bi  = bi->bi_private;
5170        struct mddev *mddev;
5171        struct r5conf *conf;
5172        struct md_rdev *rdev;
5173        blk_status_t error = bi->bi_status;
5174
5175        bio_put(bi);
5176
5177        rdev = (void*)raid_bi->bi_next;
5178        raid_bi->bi_next = NULL;
5179        mddev = rdev->mddev;
5180        conf = mddev->private;
5181
5182        rdev_dec_pending(rdev, conf->mddev);
5183
5184        if (!error) {
5185                bio_endio(raid_bi);
5186                if (atomic_dec_and_test(&conf->active_aligned_reads))
5187                        wake_up(&conf->wait_for_quiescent);
5188                return;
5189        }
5190
5191        pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5192
5193        add_bio_to_retry(raid_bi, conf);
5194}
5195
5196static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5197{
5198        struct r5conf *conf = mddev->private;
5199        int dd_idx;
5200        struct bio* align_bi;
5201        struct md_rdev *rdev;
5202        sector_t end_sector;
5203
5204        if (!in_chunk_boundary(mddev, raid_bio)) {
5205                pr_debug("%s: non aligned\n", __func__);
5206                return 0;
5207        }
5208        /*
5209         * use bio_clone_fast to make a copy of the bio
5210         */
5211        align_bi = bio_clone_fast(raid_bio, GFP_NOIO, &mddev->bio_set);
5212        if (!align_bi)
5213                return 0;
5214        /*
5215         *   set bi_end_io to a new function, and set bi_private to the
5216         *     original bio.
5217         */
5218        align_bi->bi_end_io  = raid5_align_endio;
5219        align_bi->bi_private = raid_bio;
5220        /*
5221         *      compute position
5222         */
5223        align_bi->bi_iter.bi_sector =
5224                raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
5225                                     0, &dd_idx, NULL);
5226
5227        end_sector = bio_end_sector(align_bi);
5228        rcu_read_lock();
5229        rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5230        if (!rdev || test_bit(Faulty, &rdev->flags) ||
5231            rdev->recovery_offset < end_sector) {
5232                rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5233                if (rdev &&
5234                    (test_bit(Faulty, &rdev->flags) ||
5235                    !(test_bit(In_sync, &rdev->flags) ||
5236                      rdev->recovery_offset >= end_sector)))
5237                        rdev = NULL;
5238        }
5239
5240        if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) {
5241                rcu_read_unlock();
5242                bio_put(align_bi);
5243                return 0;
5244        }
5245
5246        if (rdev) {
5247                sector_t first_bad;
5248                int bad_sectors;
5249
5250                atomic_inc(&rdev->nr_pending);
5251                rcu_read_unlock();
5252                raid_bio->bi_next = (void*)rdev;
5253                bio_set_dev(align_bi, rdev->bdev);
5254
5255                if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
5256                                bio_sectors(align_bi),
5257                                &first_bad, &bad_sectors)) {
5258                        bio_put(align_bi);
5259                        rdev_dec_pending(rdev, mddev);
5260                        return 0;
5261                }
5262
5263                /* No reshape active, so we can trust rdev->data_offset */
5264                align_bi->bi_iter.bi_sector += rdev->data_offset;
5265
5266                spin_lock_irq(&conf->device_lock);
5267                wait_event_lock_irq(conf->wait_for_quiescent,
5268                                    conf->quiesce == 0,
5269                                    conf->device_lock);
5270                atomic_inc(&conf->active_aligned_reads);
5271                spin_unlock_irq(&conf->device_lock);
5272
5273                if (mddev->gendisk)
5274                        trace_block_bio_remap(align_bi->bi_disk->queue,
5275                                              align_bi, disk_devt(mddev->gendisk),
5276                                              raid_bio->bi_iter.bi_sector);
5277                generic_make_request(align_bi);
5278                return 1;
5279        } else {
5280                rcu_read_unlock();
5281                bio_put(align_bi);
5282                return 0;
5283        }
5284}
5285
5286static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5287{
5288        struct bio *split;
5289        sector_t sector = raid_bio->bi_iter.bi_sector;
5290        unsigned chunk_sects = mddev->chunk_sectors;
5291        unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5292
5293        if (sectors < bio_sectors(raid_bio)) {
5294                struct r5conf *conf = mddev->private;
5295                split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
5296                bio_chain(split, raid_bio);
5297                generic_make_request(raid_bio);
5298                raid_bio = split;
5299        }
5300
5301        if (!raid5_read_one_chunk(mddev, raid_bio))
5302                return raid_bio;
5303
5304        return NULL;
5305}
5306
5307/* __get_priority_stripe - get the next stripe to process
5308 *
5309 * Full stripe writes are allowed to pass preread active stripes up until
5310 * the bypass_threshold is exceeded.  In general the bypass_count
5311 * increments when the handle_list is handled before the hold_list; however, it
5312 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5313 * stripe with in flight i/o.  The bypass_count will be reset when the
5314 * head of the hold_list has changed, i.e. the head was promoted to the
5315 * handle_list.
5316 */
5317static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5318{
5319        struct stripe_head *sh, *tmp;
5320        struct list_head *handle_list = NULL;
5321        struct r5worker_group *wg;
5322        bool second_try = !r5c_is_writeback(conf->log) &&
5323                !r5l_log_disk_error(conf);
5324        bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5325                r5l_log_disk_error(conf);
5326
5327again:
5328        wg = NULL;
5329        sh = NULL;
5330        if (conf->worker_cnt_per_group == 0) {
5331                handle_list = try_loprio ? &conf->loprio_list :
5332                                        &conf->handle_list;
5333        } else if (group != ANY_GROUP) {
5334                handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5335                                &conf->worker_groups[group].handle_list;
5336                wg = &conf->worker_groups[group];
5337        } else {
5338                int i;
5339                for (i = 0; i < conf->group_cnt; i++) {
5340                        handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5341                                &conf->worker_groups[i].handle_list;
5342                        wg = &conf->worker_groups[i];
5343                        if (!list_empty(handle_list))
5344                                break;
5345                }
5346        }
5347
5348        pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5349                  __func__,
5350                  list_empty(handle_list) ? "empty" : "busy",
5351                  list_empty(&conf->hold_list) ? "empty" : "busy",
5352                  atomic_read(&conf->pending_full_writes), conf->bypass_count);
5353
5354        if (!list_empty(handle_list)) {
5355                sh = list_entry(handle_list->next, typeof(*sh), lru);
5356
5357                if (list_empty(&conf->hold_list))
5358                        conf->bypass_count = 0;
5359                else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5360                        if (conf->hold_list.next == conf->last_hold)
5361                                conf->bypass_count++;
5362                        else {
5363                                conf->last_hold = conf->hold_list.next;
5364                                conf->bypass_count -= conf->bypass_threshold;
5365                                if (conf->bypass_count < 0)
5366                                        conf->bypass_count = 0;
5367                        }
5368                }
5369        } else if (!list_empty(&conf->hold_list) &&
5370                   ((conf->bypass_threshold &&
5371                     conf->bypass_count > conf->bypass_threshold) ||
5372                    atomic_read(&conf->pending_full_writes) == 0)) {
5373
5374                list_for_each_entry(tmp, &conf->hold_list,  lru) {
5375                        if (conf->worker_cnt_per_group == 0 ||
5376                            group == ANY_GROUP ||
5377                            !cpu_online(tmp->cpu) ||
5378                            cpu_to_group(tmp->cpu) == group) {
5379                                sh = tmp;
5380                                break;
5381                        }
5382                }
5383
5384                if (sh) {
5385                        conf->bypass_count -= conf->bypass_threshold;
5386                        if (conf->bypass_count < 0)
5387                                conf->bypass_count = 0;
5388                }
5389                wg = NULL;
5390        }
5391
5392        if (!sh) {
5393                if (second_try)
5394                        return NULL;
5395                second_try = true;
5396                try_loprio = !try_loprio;
5397                goto again;
5398        }
5399
5400        if (wg) {
5401                wg->stripes_cnt--;
5402                sh->group = NULL;
5403        }
5404        list_del_init(&sh->lru);
5405        BUG_ON(atomic_inc_return(&sh->count) != 1);
5406        return sh;
5407}
5408
5409struct raid5_plug_cb {
5410        struct blk_plug_cb      cb;
5411        struct list_head        list;
5412        struct list_head        temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5413};
5414
5415static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5416{
5417        struct raid5_plug_cb *cb = container_of(
5418                blk_cb, struct raid5_plug_cb, cb);
5419        struct stripe_head *sh;
5420        struct mddev *mddev = cb->cb.data;
5421        struct r5conf *conf = mddev->private;
5422        int cnt = 0;
5423        int hash;
5424
5425        if (cb->list.next && !list_empty(&cb->list)) {
5426                spin_lock_irq(&conf->device_lock);
5427                while (!list_empty(&cb->list)) {
5428                        sh = list_first_entry(&cb->list, struct stripe_head, lru);
5429                        list_del_init(&sh->lru);
5430                        /*
5431                         * avoid race release_stripe_plug() sees
5432                         * STRIPE_ON_UNPLUG_LIST clear but the stripe
5433                         * is still in our list
5434                         */
5435                        smp_mb__before_atomic();
5436                        clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5437                        /*
5438                         * STRIPE_ON_RELEASE_LIST could be set here. In that
5439                         * case, the count is always > 1 here
5440                         */
5441                        hash = sh->hash_lock_index;
5442                        __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5443                        cnt++;
5444                }
5445                spin_unlock_irq(&conf->device_lock);
5446        }
5447        release_inactive_stripe_list(conf, cb->temp_inactive_list,
5448                                     NR_STRIPE_HASH_LOCKS);
5449        if (mddev->queue)
5450                trace_block_unplug(mddev->queue, cnt, !from_schedule);
5451        kfree(cb);
5452}
5453
5454static void release_stripe_plug(struct mddev *mddev,
5455                                struct stripe_head *sh)
5456{
5457        struct blk_plug_cb *blk_cb = blk_check_plugged(
5458                raid5_unplug, mddev,
5459                sizeof(struct raid5_plug_cb));
5460        struct raid5_plug_cb *cb;
5461
5462        if (!blk_cb) {
5463                raid5_release_stripe(sh);
5464                return;
5465        }
5466
5467        cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5468
5469        if (cb->list.next == NULL) {
5470                int i;
5471                INIT_LIST_HEAD(&cb->list);
5472                for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5473                        INIT_LIST_HEAD(cb->temp_inactive_list + i);
5474        }
5475
5476        if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5477                list_add_tail(&sh->lru, &cb->list);
5478        else
5479                raid5_release_stripe(sh);
5480}
5481
5482static void make_discard_request(struct mddev *mddev, struct bio *bi)
5483{
5484        struct r5conf *conf = mddev->private;
5485        sector_t logical_sector, last_sector;
5486        struct stripe_head *sh;
5487        int stripe_sectors;
5488
5489        if (mddev->reshape_position != MaxSector)
5490                /* Skip discard while reshape is happening */
5491                return;
5492
5493        logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5494        last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5495
5496        bi->bi_next = NULL;
5497
5498        stripe_sectors = conf->chunk_sectors *
5499                (conf->raid_disks - conf->max_degraded);
5500        logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5501                                               stripe_sectors);
5502        sector_div(last_sector, stripe_sectors);
5503
5504        logical_sector *= conf->chunk_sectors;
5505        last_sector *= conf->chunk_sectors;
5506
5507        for (; logical_sector < last_sector;
5508             logical_sector += STRIPE_SECTORS) {
5509                DEFINE_WAIT(w);
5510                int d;
5511        again:
5512                sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5513                prepare_to_wait(&conf->wait_for_overlap, &w,
5514                                TASK_UNINTERRUPTIBLE);
5515                set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5516                if (test_bit(STRIPE_SYNCING, &sh->state)) {
5517                        raid5_release_stripe(sh);
5518                        schedule();
5519                        goto again;
5520                }
5521                clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5522                spin_lock_irq(&sh->stripe_lock);
5523                for (d = 0; d < conf->raid_disks; d++) {
5524                        if (d == sh->pd_idx || d == sh->qd_idx)
5525                                continue;
5526                        if (sh->dev[d].towrite || sh->dev[d].toread) {
5527                                set_bit(R5_Overlap, &sh->dev[d].flags);
5528                                spin_unlock_irq(&sh->stripe_lock);
5529                                raid5_release_stripe(sh);
5530                                schedule();
5531                                goto again;
5532                        }
5533                }
5534                set_bit(STRIPE_DISCARD, &sh->state);
5535                finish_wait(&conf->wait_for_overlap, &w);
5536                sh->overwrite_disks = 0;
5537                for (d = 0; d < conf->raid_disks; d++) {
5538                        if (d == sh->pd_idx || d == sh->qd_idx)
5539                                continue;
5540                        sh->dev[d].towrite = bi;
5541                        set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5542                        bio_inc_remaining(bi);
5543                        md_write_inc(mddev, bi);
5544                        sh->overwrite_disks++;
5545                }
5546                spin_unlock_irq(&sh->stripe_lock);
5547                if (conf->mddev->bitmap) {
5548                        for (d = 0;
5549                             d < conf->raid_disks - conf->max_degraded;
5550                             d++)
5551                                md_bitmap_startwrite(mddev->bitmap,
5552                                                     sh->sector,
5553                                                     STRIPE_SECTORS,
5554                                                     0);
5555                        sh->bm_seq = conf->seq_flush + 1;
5556                        set_bit(STRIPE_BIT_DELAY, &sh->state);
5557                }
5558
5559                set_bit(STRIPE_HANDLE, &sh->state);
5560                clear_bit(STRIPE_DELAYED, &sh->state);
5561                if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5562                        atomic_inc(&conf->preread_active_stripes);
5563                release_stripe_plug(mddev, sh);
5564        }
5565
5566        bio_endio(bi);
5567}
5568
5569static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
5570{
5571        struct r5conf *conf = mddev->private;
5572        int dd_idx;
5573        sector_t new_sector;
5574        sector_t logical_sector, last_sector;
5575        struct stripe_head *sh;
5576        const int rw = bio_data_dir(bi);
5577        DEFINE_WAIT(w);
5578        bool do_prepare;
5579        bool do_flush = false;
5580
5581        if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5582                int ret = log_handle_flush_request(conf, bi);
5583
5584                if (ret == 0)
5585                        return true;
5586                if (ret == -ENODEV) {
5587                        md_flush_request(mddev, bi);
5588                        return true;
5589                }
5590                /* ret == -EAGAIN, fallback */
5591                /*
5592                 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5593                 * we need to flush journal device
5594                 */
5595                do_flush = bi->bi_opf & REQ_PREFLUSH;
5596        }
5597
5598        if (!md_write_start(mddev, bi))
5599                return false;
5600        /*
5601         * If array is degraded, better not do chunk aligned read because
5602         * later we might have to read it again in order to reconstruct
5603         * data on failed drives.
5604         */
5605        if (rw == READ && mddev->degraded == 0 &&
5606            mddev->reshape_position == MaxSector) {
5607                bi = chunk_aligned_read(mddev, bi);
5608                if (!bi)
5609                        return true;
5610        }
5611
5612        if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5613                make_discard_request(mddev, bi);
5614                md_write_end(mddev);
5615                return true;
5616        }
5617
5618        logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5619        last_sector = bio_end_sector(bi);
5620        bi->bi_next = NULL;
5621
5622        prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5623        for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5624                int previous;
5625                int seq;
5626
5627                do_prepare = false;
5628        retry:
5629                seq = read_seqcount_begin(&conf->gen_lock);
5630                previous = 0;
5631                if (do_prepare)
5632                        prepare_to_wait(&conf->wait_for_overlap, &w,
5633                                TASK_UNINTERRUPTIBLE);
5634                if (unlikely(conf->reshape_progress != MaxSector)) {
5635                        /* spinlock is needed as reshape_progress may be
5636                         * 64bit on a 32bit platform, and so it might be
5637                         * possible to see a half-updated value
5638                         * Of course reshape_progress could change after
5639                         * the lock is dropped, so once we get a reference
5640                         * to the stripe that we think it is, we will have
5641                         * to check again.
5642                         */
5643                        spin_lock_irq(&conf->device_lock);
5644                        if (mddev->reshape_backwards
5645                            ? logical_sector < conf->reshape_progress
5646                            : logical_sector >= conf->reshape_progress) {
5647                                previous = 1;
5648                        } else {
5649                                if (mddev->reshape_backwards
5650                                    ? logical_sector < conf->reshape_safe
5651                                    : logical_sector >= conf->reshape_safe) {
5652                                        spin_unlock_irq(&conf->device_lock);
5653                                        schedule();
5654                                        do_prepare = true;
5655                                        goto retry;
5656                                }
5657                        }
5658                        spin_unlock_irq(&conf->device_lock);
5659                }
5660
5661                new_sector = raid5_compute_sector(conf, logical_sector,
5662                                                  previous,
5663                                                  &dd_idx, NULL);
5664                pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5665                        (unsigned long long)new_sector,
5666                        (unsigned long long)logical_sector);
5667
5668                sh = raid5_get_active_stripe(conf, new_sector, previous,
5669                                       (bi->bi_opf & REQ_RAHEAD), 0);
5670                if (sh) {
5671                        if (unlikely(previous)) {
5672                                /* expansion might have moved on while waiting for a
5673                                 * stripe, so we must do the range check again.
5674                                 * Expansion could still move past after this
5675                                 * test, but as we are holding a reference to
5676                                 * 'sh', we know that if that happens,
5677                                 *  STRIPE_EXPANDING will get set and the expansion
5678                                 * won't proceed until we finish with the stripe.
5679                                 */
5680                                int must_retry = 0;
5681                                spin_lock_irq(&conf->device_lock);
5682                                if (mddev->reshape_backwards
5683                                    ? logical_sector >= conf->reshape_progress
5684                                    : logical_sector < conf->reshape_progress)
5685                                        /* mismatch, need to try again */
5686                                        must_retry = 1;
5687                                spin_unlock_irq(&conf->device_lock);
5688                                if (must_retry) {
5689                                        raid5_release_stripe(sh);
5690                                        schedule();
5691                                        do_prepare = true;
5692                                        goto retry;
5693                                }
5694                        }
5695                        if (read_seqcount_retry(&conf->gen_lock, seq)) {
5696                                /* Might have got the wrong stripe_head
5697                                 * by accident
5698                                 */
5699                                raid5_release_stripe(sh);
5700                                goto retry;
5701                        }
5702
5703                        if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5704                            !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5705                                /* Stripe is busy expanding or
5706                                 * add failed due to overlap.  Flush everything
5707                                 * and wait a while
5708                                 */
5709                                md_wakeup_thread(mddev->thread);
5710                                raid5_release_stripe(sh);
5711                                schedule();
5712                                do_prepare = true;
5713                                goto retry;
5714                        }
5715                        if (do_flush) {
5716                                set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5717                                /* we only need flush for one stripe */
5718                                do_flush = false;
5719                        }
5720
5721                        set_bit(STRIPE_HANDLE, &sh->state);
5722                        clear_bit(STRIPE_DELAYED, &sh->state);
5723                        if ((!sh->batch_head || sh == sh->batch_head) &&
5724                            (bi->bi_opf & REQ_SYNC) &&
5725                            !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5726                                atomic_inc(&conf->preread_active_stripes);
5727                        release_stripe_plug(mddev, sh);
5728                } else {
5729                        /* cannot get stripe for read-ahead, just give-up */
5730                        bi->bi_status = BLK_STS_IOERR;
5731                        break;
5732                }
5733        }
5734        finish_wait(&conf->wait_for_overlap, &w);
5735
5736        if (rw == WRITE)
5737                md_write_end(mddev);
5738        bio_endio(bi);
5739        return true;
5740}
5741
5742static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5743
5744static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5745{
5746        /* reshaping is quite different to recovery/resync so it is
5747         * handled quite separately ... here.
5748         *
5749         * On each call to sync_request, we gather one chunk worth of
5750         * destination stripes and flag them as expanding.
5751         * Then we find all the source stripes and request reads.
5752         * As the reads complete, handle_stripe will copy the data
5753         * into the destination stripe and release that stripe.
5754         */
5755        struct r5conf *conf = mddev->private;
5756        struct stripe_head *sh;
5757        struct md_rdev *rdev;
5758        sector_t first_sector, last_sector;
5759        int raid_disks = conf->previous_raid_disks;
5760        int data_disks = raid_disks - conf->max_degraded;
5761        int new_data_disks = conf->raid_disks - conf->max_degraded;
5762        int i;
5763        int dd_idx;
5764        sector_t writepos, readpos, safepos;
5765        sector_t stripe_addr;
5766        int reshape_sectors;
5767        struct list_head stripes;
5768        sector_t retn;
5769
5770        if (sector_nr == 0) {
5771                /* If restarting in the middle, skip the initial sectors */
5772                if (mddev->reshape_backwards &&
5773                    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5774                        sector_nr = raid5_size(mddev, 0, 0)
5775                                - conf->reshape_progress;
5776                } else if (mddev->reshape_backwards &&
5777                           conf->reshape_progress == MaxSector) {
5778                        /* shouldn't happen, but just in case, finish up.*/
5779                        sector_nr = MaxSector;
5780                } else if (!mddev->reshape_backwards &&
5781                           conf->reshape_progress > 0)
5782                        sector_nr = conf->reshape_progress;
5783                sector_div(sector_nr, new_data_disks);
5784                if (sector_nr) {
5785                        mddev->curr_resync_completed = sector_nr;
5786                        sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5787                        *skipped = 1;
5788                        retn = sector_nr;
5789                        goto finish;
5790                }
5791        }
5792
5793        /* We need to process a full chunk at a time.
5794         * If old and new chunk sizes differ, we need to process the
5795         * largest of these
5796         */
5797
5798        reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5799
5800        /* We update the metadata at least every 10 seconds, or when
5801         * the data about to be copied would over-write the source of
5802         * the data at the front of the range.  i.e. one new_stripe
5803         * along from reshape_progress new_maps to after where
5804         * reshape_safe old_maps to
5805         */
5806        writepos = conf->reshape_progress;
5807        sector_div(writepos, new_data_disks);
5808        readpos = conf->reshape_progress;
5809        sector_div(readpos, data_disks);
5810        safepos = conf->reshape_safe;
5811        sector_div(safepos, data_disks);
5812        if (mddev->reshape_backwards) {
5813                BUG_ON(writepos < reshape_sectors);
5814                writepos -= reshape_sectors;
5815                readpos += reshape_sectors;
5816                safepos += reshape_sectors;
5817        } else {
5818                writepos += reshape_sectors;
5819                /* readpos and safepos are worst-case calculations.
5820                 * A negative number is overly pessimistic, and causes
5821                 * obvious problems for unsigned storage.  So clip to 0.
5822                 */
5823                readpos -= min_t(sector_t, reshape_sectors, readpos);
5824                safepos -= min_t(sector_t, reshape_sectors, safepos);
5825        }
5826
5827        /* Having calculated the 'writepos' possibly use it
5828         * to set 'stripe_addr' which is where we will write to.
5829         */
5830        if (mddev->reshape_backwards) {
5831                BUG_ON(conf->reshape_progress == 0);
5832                stripe_addr = writepos;
5833                BUG_ON((mddev->dev_sectors &
5834                        ~((sector_t)reshape_sectors - 1))
5835                       - reshape_sectors - stripe_addr
5836                       != sector_nr);
5837        } else {
5838                BUG_ON(writepos != sector_nr + reshape_sectors);
5839                stripe_addr = sector_nr;
5840        }
5841
5842        /* 'writepos' is the most advanced device address we might write.
5843         * 'readpos' is the least advanced device address we might read.
5844         * 'safepos' is the least address recorded in the metadata as having
5845         *     been reshaped.
5846         * If there is a min_offset_diff, these are adjusted either by
5847         * increasing the safepos/readpos if diff is negative, or
5848         * increasing writepos if diff is positive.
5849         * If 'readpos' is then behind 'writepos', there is no way that we can
5850         * ensure safety in the face of a crash - that must be done by userspace
5851         * making a backup of the data.  So in that case there is no particular
5852         * rush to update metadata.
5853         * Otherwise if 'safepos' is behind 'writepos', then we really need to
5854         * update the metadata to advance 'safepos' to match 'readpos' so that
5855         * we can be safe in the event of a crash.
5856         * So we insist on updating metadata if safepos is behind writepos and
5857         * readpos is beyond writepos.
5858         * In any case, update the metadata every 10 seconds.
5859         * Maybe that number should be configurable, but I'm not sure it is
5860         * worth it.... maybe it could be a multiple of safemode_delay???
5861         */
5862        if (conf->min_offset_diff < 0) {
5863                safepos += -conf->min_offset_diff;
5864                readpos += -conf->min_offset_diff;
5865        } else
5866                writepos += conf->min_offset_diff;
5867
5868        if ((mddev->reshape_backwards
5869             ? (safepos > writepos && readpos < writepos)
5870             : (safepos < writepos && readpos > writepos)) ||
5871            time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5872                /* Cannot proceed until we've updated the superblock... */
5873                wait_event(conf->wait_for_overlap,
5874                           atomic_read(&conf->reshape_stripes)==0
5875                           || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5876                if (atomic_read(&conf->reshape_stripes) != 0)
5877                        return 0;
5878                mddev->reshape_position = conf->reshape_progress;
5879                mddev->curr_resync_completed = sector_nr;
5880                if (!mddev->reshape_backwards)
5881                        /* Can update recovery_offset */
5882                        rdev_for_each(rdev, mddev)
5883                                if (rdev->raid_disk >= 0 &&
5884                                    !test_bit(Journal, &rdev->flags) &&
5885                                    !test_bit(In_sync, &rdev->flags) &&
5886                                    rdev->recovery_offset < sector_nr)
5887                                        rdev->recovery_offset = sector_nr;
5888
5889                conf->reshape_checkpoint = jiffies;
5890                set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5891                md_wakeup_thread(mddev->thread);
5892                wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
5893                           test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5894                if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5895                        return 0;
5896                spin_lock_irq(&conf->device_lock);
5897                conf->reshape_safe = mddev->reshape_position;
5898                spin_unlock_irq(&conf->device_lock);
5899                wake_up(&conf->wait_for_overlap);
5900                sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5901        }
5902
5903        INIT_LIST_HEAD(&stripes);
5904        for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5905                int j;
5906                int skipped_disk = 0;
5907                sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5908                set_bit(STRIPE_EXPANDING, &sh->state);
5909                atomic_inc(&conf->reshape_stripes);
5910                /* If any of this stripe is beyond the end of the old
5911                 * array, then we need to zero those blocks
5912                 */
5913                for (j=sh->disks; j--;) {
5914                        sector_t s;
5915                        if (j == sh->pd_idx)
5916                                continue;
5917                        if (conf->level == 6 &&
5918                            j == sh->qd_idx)
5919                                continue;
5920                        s = raid5_compute_blocknr(sh, j, 0);
5921                        if (s < raid5_size(mddev, 0, 0)) {
5922                                skipped_disk = 1;
5923                                continue;
5924                        }
5925                        memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5926                        set_bit(R5_Expanded, &sh->dev[j].flags);
5927                        set_bit(R5_UPTODATE, &sh->dev[j].flags);
5928                }
5929                if (!skipped_disk) {
5930                        set_bit(STRIPE_EXPAND_READY, &sh->state);
5931                        set_bit(STRIPE_HANDLE, &sh->state);
5932                }
5933                list_add(&sh->lru, &stripes);
5934        }
5935        spin_lock_irq(&conf->device_lock);
5936        if (mddev->reshape_backwards)
5937                conf->reshape_progress -= reshape_sectors * new_data_disks;
5938        else
5939                conf->reshape_progress += reshape_sectors * new_data_disks;
5940        spin_unlock_irq(&conf->device_lock);
5941        /* Ok, those stripe are ready. We can start scheduling
5942         * reads on the source stripes.
5943         * The source stripes are determined by mapping the first and last
5944         * block on the destination stripes.
5945         */
5946        first_sector =
5947                raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5948                                     1, &dd_idx, NULL);
5949        last_sector =
5950                raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5951                                            * new_data_disks - 1),
5952                                     1, &dd_idx, NULL);
5953        if (last_sector >= mddev->dev_sectors)
5954                last_sector = mddev->dev_sectors - 1;
5955        while (first_sector <= last_sector) {
5956                sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5957                set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5958                set_bit(STRIPE_HANDLE, &sh->state);
5959                raid5_release_stripe(sh);
5960                first_sector += STRIPE_SECTORS;
5961        }
5962        /* Now that the sources are clearly marked, we can release
5963         * the destination stripes
5964         */
5965        while (!list_empty(&stripes)) {
5966                sh = list_entry(stripes.next, struct stripe_head, lru);
5967                list_del_init(&sh->lru);
5968                raid5_release_stripe(sh);
5969        }
5970        /* If this takes us to the resync_max point where we have to pause,
5971         * then we need to write out the superblock.
5972         */
5973        sector_nr += reshape_sectors;
5974        retn = reshape_sectors;
5975finish:
5976        if (mddev->curr_resync_completed > mddev->resync_max ||
5977            (sector_nr - mddev->curr_resync_completed) * 2
5978            >= mddev->resync_max - mddev->curr_resync_completed) {
5979                /* Cannot proceed until we've updated the superblock... */
5980                wait_event(conf->wait_for_overlap,
5981                           atomic_read(&conf->reshape_stripes) == 0
5982                           || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5983                if (atomic_read(&conf->reshape_stripes) != 0)
5984                        goto ret;
5985                mddev->reshape_position = conf->reshape_progress;
5986                mddev->curr_resync_completed = sector_nr;
5987                if (!mddev->reshape_backwards)
5988                        /* Can update recovery_offset */
5989                        rdev_for_each(rdev, mddev)
5990                                if (rdev->raid_disk >= 0 &&
5991                                    !test_bit(Journal, &rdev->flags) &&
5992                                    !test_bit(In_sync, &rdev->flags) &&
5993                                    rdev->recovery_offset < sector_nr)
5994                                        rdev->recovery_offset = sector_nr;
5995                conf->reshape_checkpoint = jiffies;
5996                set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5997                md_wakeup_thread(mddev->thread);
5998                wait_event(mddev->sb_wait,
5999                           !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
6000                           || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6001                if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6002                        goto ret;
6003                spin_lock_irq(&conf->device_lock);
6004                conf->reshape_safe = mddev->reshape_position;
6005                spin_unlock_irq(&conf->device_lock);
6006                wake_up(&conf->wait_for_overlap);
6007                sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6008        }
6009ret:
6010        return retn;
6011}
6012
6013static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6014                                          int *skipped)
6015{
6016        struct r5conf *conf = mddev->private;
6017        struct stripe_head *sh;
6018        sector_t max_sector = mddev->dev_sectors;
6019        sector_t sync_blocks;
6020        int still_degraded = 0;
6021        int i;
6022
6023        if (sector_nr >= max_sector) {
6024                /* just being told to finish up .. nothing much to do */
6025
6026                if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6027                        end_reshape(conf);
6028                        return 0;
6029                }
6030
6031                if (mddev->curr_resync < max_sector) /* aborted */
6032                        md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6033                                           &sync_blocks, 1);
6034                else /* completed sync */
6035                        conf->fullsync = 0;
6036                md_bitmap_close_sync(mddev->bitmap);
6037
6038                return 0;
6039        }
6040
6041        /* Allow raid5_quiesce to complete */
6042        wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6043
6044        if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6045                return reshape_request(mddev, sector_nr, skipped);
6046
6047        /* No need to check resync_max as we never do more than one
6048         * stripe, and as resync_max will always be on a chunk boundary,
6049         * if the check in md_do_sync didn't fire, there is no chance
6050         * of overstepping resync_max here
6051         */
6052
6053        /* if there is too many failed drives and we are trying
6054         * to resync, then assert that we are finished, because there is
6055         * nothing we can do.
6056         */
6057        if (mddev->degraded >= conf->max_degraded &&
6058            test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6059                sector_t rv = mddev->dev_sectors - sector_nr;
6060                *skipped = 1;
6061                return rv;
6062        }
6063        if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6064            !conf->fullsync &&
6065            !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6066            sync_blocks >= STRIPE_SECTORS) {
6067                /* we can skip this block, and probably more */
6068                sync_blocks /= STRIPE_SECTORS;
6069                *skipped = 1;
6070                return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
6071        }
6072
6073        md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6074
6075        sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
6076        if (sh == NULL) {
6077                sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
6078                /* make sure we don't swamp the stripe cache if someone else
6079                 * is trying to get access
6080                 */
6081                schedule_timeout_uninterruptible(1);
6082        }
6083        /* Need to check if array will still be degraded after recovery/resync
6084         * Note in case of > 1 drive failures it's possible we're rebuilding
6085         * one drive while leaving another faulty drive in array.
6086         */
6087        rcu_read_lock();
6088        for (i = 0; i < conf->raid_disks; i++) {
6089                struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
6090
6091                if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6092                        still_degraded = 1;
6093        }
6094        rcu_read_unlock();
6095
6096        md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6097
6098        set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6099        set_bit(STRIPE_HANDLE, &sh->state);
6100
6101        raid5_release_stripe(sh);
6102
6103        return STRIPE_SECTORS;
6104}
6105
6106static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6107                               unsigned int offset)
6108{
6109        /* We may not be able to submit a whole bio at once as there
6110         * may not be enough stripe_heads available.
6111         * We cannot pre-allocate enough stripe_heads as we may need
6112         * more than exist in the cache (if we allow ever large chunks).
6113         * So we do one stripe head at a time and record in
6114         * ->bi_hw_segments how many have been done.
6115         *
6116         * We *know* that this entire raid_bio is in one chunk, so
6117         * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6118         */
6119        struct stripe_head *sh;
6120        int dd_idx;
6121        sector_t sector, logical_sector, last_sector;
6122        int scnt = 0;
6123        int handled = 0;
6124
6125        logical_sector = raid_bio->bi_iter.bi_sector &
6126                ~((sector_t)STRIPE_SECTORS-1);
6127        sector = raid5_compute_sector(conf, logical_sector,
6128                                      0, &dd_idx, NULL);
6129        last_sector = bio_end_sector(raid_bio);
6130
6131        for (; logical_sector < last_sector;
6132             logical_sector += STRIPE_SECTORS,
6133                     sector += STRIPE_SECTORS,
6134                     scnt++) {
6135
6136                if (scnt < offset)
6137                        /* already done this stripe */
6138                        continue;
6139
6140                sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
6141
6142                if (!sh) {
6143                        /* failed to get a stripe - must wait */
6144                        conf->retry_read_aligned = raid_bio;
6145                        conf->retry_read_offset = scnt;
6146                        return handled;
6147                }
6148
6149                if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6150                        raid5_release_stripe(sh);
6151                        conf->retry_read_aligned = raid_bio;
6152                        conf->retry_read_offset = scnt;
6153                        return handled;
6154                }
6155
6156                set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6157                handle_stripe(sh);
6158                raid5_release_stripe(sh);
6159                handled++;
6160        }
6161
6162        bio_endio(raid_bio);
6163
6164        if (atomic_dec_and_test(&conf->active_aligned_reads))
6165                wake_up(&conf->wait_for_quiescent);
6166        return handled;
6167}
6168
6169static int handle_active_stripes(struct r5conf *conf, int group,
6170                                 struct r5worker *worker,
6171                                 struct list_head *temp_inactive_list)
6172                __releases(&conf->device_lock)
6173                __acquires(&conf->device_lock)
6174{
6175        struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6176        int i, batch_size = 0, hash;
6177        bool release_inactive = false;
6178
6179        while (batch_size < MAX_STRIPE_BATCH &&
6180                        (sh = __get_priority_stripe(conf, group)) != NULL)
6181                batch[batch_size++] = sh;
6182
6183        if (batch_size == 0) {
6184                for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6185                        if (!list_empty(temp_inactive_list + i))
6186                                break;
6187                if (i == NR_STRIPE_HASH_LOCKS) {
6188                        spin_unlock_irq(&conf->device_lock);
6189                        log_flush_stripe_to_raid(conf);
6190                        spin_lock_irq(&conf->device_lock);
6191                        return batch_size;
6192                }
6193                release_inactive = true;
6194        }
6195        spin_unlock_irq(&conf->device_lock);
6196
6197        release_inactive_stripe_list(conf, temp_inactive_list,
6198                                     NR_STRIPE_HASH_LOCKS);
6199
6200        r5l_flush_stripe_to_raid(conf->log);
6201        if (release_inactive) {
6202                spin_lock_irq(&conf->device_lock);
6203                return 0;
6204        }
6205
6206        for (i = 0; i < batch_size; i++)
6207                handle_stripe(batch[i]);
6208        log_write_stripe_run(conf);
6209
6210        cond_resched();
6211
6212        spin_lock_irq(&conf->device_lock);
6213        for (i = 0; i < batch_size; i++) {
6214                hash = batch[i]->hash_lock_index;
6215                __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6216        }
6217        return batch_size;
6218}
6219
6220static void raid5_do_work(struct work_struct *work)
6221{
6222        struct r5worker *worker = container_of(work, struct r5worker, work);
6223        struct r5worker_group *group = worker->group;
6224        struct r5conf *conf = group->conf;
6225        struct mddev *mddev = conf->mddev;
6226        int group_id = group - conf->worker_groups;
6227        int handled;
6228        struct blk_plug plug;
6229
6230        pr_debug("+++ raid5worker active\n");
6231
6232        blk_start_plug(&plug);
6233        handled = 0;
6234        spin_lock_irq(&conf->device_lock);
6235        while (1) {
6236                int batch_size, released;
6237
6238                released = release_stripe_list(conf, worker->temp_inactive_list);
6239
6240                batch_size = handle_active_stripes(conf, group_id, worker,
6241                                                   worker->temp_inactive_list);
6242                worker->working = false;
6243                if (!batch_size && !released)
6244                        break;
6245                handled += batch_size;
6246                wait_event_lock_irq(mddev->sb_wait,
6247                        !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6248                        conf->device_lock);
6249        }
6250        pr_debug("%d stripes handled\n", handled);
6251
6252        spin_unlock_irq(&conf->device_lock);
6253
6254        flush_deferred_bios(conf);
6255
6256        r5l_flush_stripe_to_raid(conf->log);
6257
6258        async_tx_issue_pending_all();
6259        blk_finish_plug(&plug);
6260
6261        pr_debug("--- raid5worker inactive\n");
6262}
6263
6264/*
6265 * This is our raid5 kernel thread.
6266 *
6267 * We scan the hash table for stripes which can be handled now.
6268 * During the scan, completed stripes are saved for us by the interrupt
6269 * handler, so that they will not have to wait for our next wakeup.
6270 */
6271static void raid5d(struct md_thread *thread)
6272{
6273        struct mddev *mddev = thread->mddev;
6274        struct r5conf *conf = mddev->private;
6275        int handled;
6276        struct blk_plug plug;
6277
6278        pr_debug("+++ raid5d active\n");
6279
6280        md_check_recovery(mddev);
6281
6282        blk_start_plug(&plug);
6283        handled = 0;
6284        spin_lock_irq(&conf->device_lock);
6285        while (1) {
6286                struct bio *bio;
6287                int batch_size, released;
6288                unsigned int offset;
6289
6290                released = release_stripe_list(conf, conf->temp_inactive_list);
6291                if (released)
6292                        clear_bit(R5_DID_ALLOC, &conf->cache_state);
6293
6294                if (
6295                    !list_empty(&conf->bitmap_list)) {
6296                        /* Now is a good time to flush some bitmap updates */
6297                        conf->seq_flush++;
6298                        spin_unlock_irq(&conf->device_lock);
6299                        md_bitmap_unplug(mddev->bitmap);
6300                        spin_lock_irq(&conf->device_lock);
6301                        conf->seq_write = conf->seq_flush;
6302                        activate_bit_delay(conf, conf->temp_inactive_list);
6303                }
6304                raid5_activate_delayed(conf);
6305
6306                while ((bio = remove_bio_from_retry(conf, &offset))) {
6307                        int ok;
6308                        spin_unlock_irq(&conf->device_lock);
6309                        ok = retry_aligned_read(conf, bio, offset);
6310                        spin_lock_irq(&conf->device_lock);
6311                        if (!ok)
6312                                break;
6313                        handled++;
6314                }
6315
6316                batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6317                                                   conf->temp_inactive_list);
6318                if (!batch_size && !released)
6319                        break;
6320                handled += batch_size;
6321
6322                if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6323                        spin_unlock_irq(&conf->device_lock);
6324                        md_check_recovery(mddev);
6325                        spin_lock_irq(&conf->device_lock);
6326                }
6327        }
6328        pr_debug("%d stripes handled\n", handled);
6329
6330        spin_unlock_irq(&conf->device_lock);
6331        if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6332            mutex_trylock(&conf->cache_size_mutex)) {
6333                grow_one_stripe(conf, __GFP_NOWARN);
6334                /* Set flag even if allocation failed.  This helps
6335                 * slow down allocation requests when mem is short
6336                 */
6337                set_bit(R5_DID_ALLOC, &conf->cache_state);
6338                mutex_unlock(&conf->cache_size_mutex);
6339        }
6340
6341        flush_deferred_bios(conf);
6342
6343        r5l_flush_stripe_to_raid(conf->log);
6344
6345        async_tx_issue_pending_all();
6346        blk_finish_plug(&plug);
6347
6348        pr_debug("--- raid5d inactive\n");
6349}
6350
6351static ssize_t
6352raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6353{
6354        struct r5conf *conf;
6355        int ret = 0;
6356        spin_lock(&mddev->lock);
6357        conf = mddev->private;
6358        if (conf)
6359                ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6360        spin_unlock(&mddev->lock);
6361        return ret;
6362}
6363
6364int
6365raid5_set_cache_size(struct mddev *mddev, int size)
6366{
6367        int result = 0;
6368        struct r5conf *conf = mddev->private;
6369
6370        if (size <= 16 || size > 32768)
6371                return -EINVAL;
6372
6373        conf->min_nr_stripes = size;
6374        mutex_lock(&conf->cache_size_mutex);
6375        while (size < conf->max_nr_stripes &&
6376               drop_one_stripe(conf))
6377                ;
6378        mutex_unlock(&conf->cache_size_mutex);
6379
6380        md_allow_write(mddev);
6381
6382        mutex_lock(&conf->cache_size_mutex);
6383        while (size > conf->max_nr_stripes)
6384                if (!grow_one_stripe(conf, GFP_KERNEL)) {
6385                        conf->min_nr_stripes = conf->max_nr_stripes;
6386                        result = -ENOMEM;
6387                        break;
6388                }
6389        mutex_unlock(&conf->cache_size_mutex);
6390
6391        return result;
6392}
6393EXPORT_SYMBOL(raid5_set_cache_size);
6394
6395static ssize_t
6396raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6397{
6398        struct r5conf *conf;
6399        unsigned long new;
6400        int err;
6401
6402        if (len >= PAGE_SIZE)
6403                return -EINVAL;
6404        if (kstrtoul(page, 10, &new))
6405                return -EINVAL;
6406        err = mddev_lock(mddev);
6407        if (err)
6408                return err;
6409        conf = mddev->private;
6410        if (!conf)
6411                err = -ENODEV;
6412        else
6413                err = raid5_set_cache_size(mddev, new);
6414        mddev_unlock(mddev);
6415
6416        return err ?: len;
6417}
6418
6419static struct md_sysfs_entry
6420raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6421                                raid5_show_stripe_cache_size,
6422                                raid5_store_stripe_cache_size);
6423
6424static ssize_t
6425raid5_show_rmw_level(struct mddev  *mddev, char *page)
6426{
6427        struct r5conf *conf = mddev->private;
6428        if (conf)
6429                return sprintf(page, "%d\n", conf->rmw_level);
6430        else
6431                return 0;
6432}
6433
6434static ssize_t
6435raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6436{
6437        struct r5conf *conf = mddev->private;
6438        unsigned long new;
6439
6440        if (!conf)
6441                return -ENODEV;
6442
6443        if (len >= PAGE_SIZE)
6444                return -EINVAL;
6445
6446        if (kstrtoul(page, 10, &new))
6447                return -EINVAL;
6448
6449        if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6450                return -EINVAL;
6451
6452        if (new != PARITY_DISABLE_RMW &&
6453            new != PARITY_ENABLE_RMW &&
6454            new != PARITY_PREFER_RMW)
6455                return -EINVAL;
6456
6457        conf->rmw_level = new;
6458        return len;
6459}
6460
6461static struct md_sysfs_entry
6462raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6463                         raid5_show_rmw_level,
6464                         raid5_store_rmw_level);
6465
6466
6467static ssize_t
6468raid5_show_preread_threshold(struct mddev *mddev, char *page)
6469{
6470        struct r5conf *conf;
6471        int ret = 0;
6472        spin_lock(&mddev->lock);
6473        conf = mddev->private;
6474        if (conf)
6475                ret = sprintf(page, "%d\n", conf->bypass_threshold);
6476        spin_unlock(&mddev->lock);
6477        return ret;
6478}
6479
6480static ssize_t
6481raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6482{
6483        struct r5conf *conf;
6484        unsigned long new;
6485        int err;
6486
6487        if (len >= PAGE_SIZE)
6488                return -EINVAL;
6489        if (kstrtoul(page, 10, &new))
6490                return -EINVAL;
6491
6492        err = mddev_lock(mddev);
6493        if (err)
6494                return err;
6495        conf = mddev->private;
6496        if (!conf)
6497                err = -ENODEV;
6498        else if (new > conf->min_nr_stripes)
6499                err = -EINVAL;
6500        else
6501                conf->bypass_threshold = new;
6502        mddev_unlock(mddev);
6503        return err ?: len;
6504}
6505
6506static struct md_sysfs_entry
6507raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6508                                        S_IRUGO | S_IWUSR,
6509                                        raid5_show_preread_threshold,
6510                                        raid5_store_preread_threshold);
6511
6512static ssize_t
6513raid5_show_skip_copy(struct mddev *mddev, char *page)
6514{
6515        struct r5conf *conf;
6516        int ret = 0;
6517        spin_lock(&mddev->lock);
6518        conf = mddev->private;
6519        if (conf)
6520                ret = sprintf(page, "%d\n", conf->skip_copy);
6521        spin_unlock(&mddev->lock);
6522        return ret;
6523}
6524
6525static ssize_t
6526raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6527{
6528        struct r5conf *conf;
6529        unsigned long new;
6530        int err;
6531
6532        if (len >= PAGE_SIZE)
6533                return -EINVAL;
6534        if (kstrtoul(page, 10, &new))
6535                return -EINVAL;
6536        new = !!new;
6537
6538        err = mddev_lock(mddev);
6539        if (err)
6540                return err;
6541        conf = mddev->private;
6542        if (!conf)
6543                err = -ENODEV;
6544        else if (new != conf->skip_copy) {
6545                mddev_suspend(mddev);
6546                conf->skip_copy = new;
6547                if (new)
6548                        mddev->queue->backing_dev_info->capabilities |=
6549                                BDI_CAP_STABLE_WRITES;
6550                else
6551                        mddev->queue->backing_dev_info->capabilities &=
6552                                ~BDI_CAP_STABLE_WRITES;
6553                mddev_resume(mddev);
6554        }
6555        mddev_unlock(mddev);
6556        return err ?: len;
6557}
6558
6559static struct md_sysfs_entry
6560raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6561                                        raid5_show_skip_copy,
6562                                        raid5_store_skip_copy);
6563
6564static ssize_t
6565stripe_cache_active_show(struct mddev *mddev, char *page)
6566{
6567        struct r5conf *conf = mddev->private;
6568        if (conf)
6569                return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6570        else
6571                return 0;
6572}
6573
6574static struct md_sysfs_entry
6575raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6576
6577static ssize_t
6578raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6579{
6580        struct r5conf *conf;
6581        int ret = 0;
6582        spin_lock(&mddev->lock);
6583        conf = mddev->private;
6584        if (conf)
6585                ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6586        spin_unlock(&mddev->lock);
6587        return ret;
6588}
6589
6590static int alloc_thread_groups(struct r5conf *conf, int cnt,
6591                               int *group_cnt,
6592                               int *worker_cnt_per_group,
6593                               struct r5worker_group **worker_groups);
6594static ssize_t
6595raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6596{
6597        struct r5conf *conf;
6598        unsigned int new;
6599        int err;
6600        struct r5worker_group *new_groups, *old_groups;
6601        int group_cnt, worker_cnt_per_group;
6602
6603        if (len >= PAGE_SIZE)
6604                return -EINVAL;
6605        if (kstrtouint(page, 10, &new))
6606                return -EINVAL;
6607        /* 8192 should be big enough */
6608        if (new > 8192)
6609                return -EINVAL;
6610
6611        err = mddev_lock(mddev);
6612        if (err)
6613                return err;
6614        conf = mddev->private;
6615        if (!conf)
6616                err = -ENODEV;
6617        else if (new != conf->worker_cnt_per_group) {
6618                mddev_suspend(mddev);
6619
6620                old_groups = conf->worker_groups;
6621                if (old_groups)
6622                        flush_workqueue(raid5_wq);
6623
6624                err = alloc_thread_groups(conf, new,
6625                                          &group_cnt, &worker_cnt_per_group,
6626                                          &new_groups);
6627                if (!err) {
6628                        spin_lock_irq(&conf->device_lock);
6629                        conf->group_cnt = group_cnt;
6630                        conf->worker_cnt_per_group = worker_cnt_per_group;
6631                        conf->worker_groups = new_groups;
6632                        spin_unlock_irq(&conf->device_lock);
6633
6634                        if (old_groups)
6635                                kfree(old_groups[0].workers);
6636                        kfree(old_groups);
6637                }
6638                mddev_resume(mddev);
6639        }
6640        mddev_unlock(mddev);
6641
6642        return err ?: len;
6643}
6644
6645static struct md_sysfs_entry
6646raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6647                                raid5_show_group_thread_cnt,
6648                                raid5_store_group_thread_cnt);
6649
6650static struct attribute *raid5_attrs[] =  {
6651        &raid5_stripecache_size.attr,
6652        &raid5_stripecache_active.attr,
6653        &raid5_preread_bypass_threshold.attr,
6654        &raid5_group_thread_cnt.attr,
6655        &raid5_skip_copy.attr,
6656        &raid5_rmw_level.attr,
6657        &r5c_journal_mode.attr,
6658        &ppl_write_hint.attr,
6659        NULL,
6660};
6661static struct attribute_group raid5_attrs_group = {
6662        .name = NULL,
6663        .attrs = raid5_attrs,
6664};
6665
6666static int alloc_thread_groups(struct r5conf *conf, int cnt,
6667                               int *group_cnt,
6668                               int *worker_cnt_per_group,
6669                               struct r5worker_group **worker_groups)
6670{
6671        int i, j, k;
6672        ssize_t size;
6673        struct r5worker *workers;
6674
6675        *worker_cnt_per_group = cnt;
6676        if (cnt == 0) {
6677                *group_cnt = 0;
6678                *worker_groups = NULL;
6679                return 0;
6680        }
6681        *group_cnt = num_possible_nodes();
6682        size = sizeof(struct r5worker) * cnt;
6683        workers = kcalloc(size, *group_cnt, GFP_NOIO);
6684        *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
6685                                 GFP_NOIO);
6686        if (!*worker_groups || !workers) {
6687                kfree(workers);
6688                kfree(*worker_groups);
6689                return -ENOMEM;
6690        }
6691
6692        for (i = 0; i < *group_cnt; i++) {
6693                struct r5worker_group *group;
6694
6695                group = &(*worker_groups)[i];
6696                INIT_LIST_HEAD(&group->handle_list);
6697                INIT_LIST_HEAD(&group->loprio_list);
6698                group->conf = conf;
6699                group->workers = workers + i * cnt;
6700
6701                for (j = 0; j < cnt; j++) {
6702                        struct r5worker *worker = group->workers + j;
6703                        worker->group = group;
6704                        INIT_WORK(&worker->work, raid5_do_work);
6705
6706                        for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6707                                INIT_LIST_HEAD(worker->temp_inactive_list + k);
6708                }
6709        }
6710
6711        return 0;
6712}
6713
6714static void free_thread_groups(struct r5conf *conf)
6715{
6716        if (conf->worker_groups)
6717                kfree(conf->worker_groups[0].workers);
6718        kfree(conf->worker_groups);
6719        conf->worker_groups = NULL;
6720}
6721
6722static sector_t
6723raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6724{
6725        struct r5conf *conf = mddev->private;
6726
6727        if (!sectors)
6728                sectors = mddev->dev_sectors;
6729        if (!raid_disks)
6730                /* size is defined by the smallest of previous and new size */
6731                raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6732
6733        sectors &= ~((sector_t)conf->chunk_sectors - 1);
6734        sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6735        return sectors * (raid_disks - conf->max_degraded);
6736}
6737
6738static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6739{
6740        safe_put_page(percpu->spare_page);
6741        percpu->spare_page = NULL;
6742        kvfree(percpu->scribble);
6743        percpu->scribble = NULL;
6744}
6745
6746static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6747{
6748        if (conf->level == 6 && !percpu->spare_page) {
6749                percpu->spare_page = alloc_page(GFP_KERNEL);
6750                if (!percpu->spare_page)
6751                        return -ENOMEM;
6752        }
6753
6754        if (scribble_alloc(percpu,
6755                           max(conf->raid_disks,
6756                               conf->previous_raid_disks),
6757                           max(conf->chunk_sectors,
6758                               conf->prev_chunk_sectors)
6759                           / STRIPE_SECTORS,
6760                           GFP_KERNEL)) {
6761                free_scratch_buffer(conf, percpu);
6762                return -ENOMEM;
6763        }
6764
6765        return 0;
6766}
6767
6768static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
6769{
6770        struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6771
6772        free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6773        return 0;
6774}
6775
6776static void raid5_free_percpu(struct r5conf *conf)
6777{
6778        if (!conf->percpu)
6779                return;
6780
6781        cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6782        free_percpu(conf->percpu);
6783}
6784
6785static void free_conf(struct r5conf *conf)
6786{
6787        int i;
6788
6789        log_exit(conf);
6790
6791        unregister_shrinker(&conf->shrinker);
6792        free_thread_groups(conf);
6793        shrink_stripes(conf);
6794        raid5_free_percpu(conf);
6795        for (i = 0; i < conf->pool_size; i++)
6796                if (conf->disks[i].extra_page)
6797                        put_page(conf->disks[i].extra_page);
6798        kfree(conf->disks);
6799        bioset_exit(&conf->bio_split);
6800        kfree(conf->stripe_hashtbl);
6801        kfree(conf->pending_data);
6802        kfree(conf);
6803}
6804
6805static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
6806{
6807        struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6808        struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6809
6810        if (alloc_scratch_buffer(conf, percpu)) {
6811                pr_warn("%s: failed memory allocation for cpu%u\n",
6812                        __func__, cpu);
6813                return -ENOMEM;
6814        }
6815        return 0;
6816}
6817
6818static int raid5_alloc_percpu(struct r5conf *conf)
6819{
6820        int err = 0;
6821
6822        conf->percpu = alloc_percpu(struct raid5_percpu);
6823        if (!conf->percpu)
6824                return -ENOMEM;
6825
6826        err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6827        if (!err) {
6828                conf->scribble_disks = max(conf->raid_disks,
6829                        conf->previous_raid_disks);
6830                conf->scribble_sectors = max(conf->chunk_sectors,
6831                        conf->prev_chunk_sectors);
6832        }
6833        return err;
6834}
6835
6836static unsigned long raid5_cache_scan(struct shrinker *shrink,
6837                                      struct shrink_control *sc)
6838{
6839        struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6840        unsigned long ret = SHRINK_STOP;
6841
6842        if (mutex_trylock(&conf->cache_size_mutex)) {
6843                ret= 0;
6844                while (ret < sc->nr_to_scan &&
6845                       conf->max_nr_stripes > conf->min_nr_stripes) {
6846                        if (drop_one_stripe(conf) == 0) {
6847                                ret = SHRINK_STOP;
6848                                break;
6849                        }
6850                        ret++;
6851                }
6852                mutex_unlock(&conf->cache_size_mutex);
6853        }
6854        return ret;
6855}
6856
6857static unsigned long raid5_cache_count(struct shrinker *shrink,
6858                                       struct shrink_control *sc)
6859{
6860        struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6861
6862        if (conf->max_nr_stripes < conf->min_nr_stripes)
6863                /* unlikely, but not impossible */
6864                return 0;
6865        return conf->max_nr_stripes - conf->min_nr_stripes;
6866}
6867
6868static struct r5conf *setup_conf(struct mddev *mddev)
6869{
6870        struct r5conf *conf;
6871        int raid_disk, memory, max_disks;
6872        struct md_rdev *rdev;
6873        struct disk_info *disk;
6874        char pers_name[6];
6875        int i;
6876        int group_cnt, worker_cnt_per_group;
6877        struct r5worker_group *new_group;
6878        int ret;
6879
6880        if (mddev->new_level != 5
6881            && mddev->new_level != 4
6882            && mddev->new_level != 6) {
6883                pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6884                        mdname(mddev), mddev->new_level);
6885                return ERR_PTR(-EIO);
6886        }
6887        if ((mddev->new_level == 5
6888             && !algorithm_valid_raid5(mddev->new_layout)) ||
6889            (mddev->new_level == 6
6890             && !algorithm_valid_raid6(mddev->new_layout))) {
6891                pr_warn("md/raid:%s: layout %d not supported\n",
6892                        mdname(mddev), mddev->new_layout);
6893                return ERR_PTR(-EIO);
6894        }
6895        if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6896                pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6897                        mdname(mddev), mddev->raid_disks);
6898                return ERR_PTR(-EINVAL);
6899        }
6900
6901        if (!mddev->new_chunk_sectors ||
6902            (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6903            !is_power_of_2(mddev->new_chunk_sectors)) {
6904                pr_warn("md/raid:%s: invalid chunk size %d\n",
6905                        mdname(mddev), mddev->new_chunk_sectors << 9);
6906                return ERR_PTR(-EINVAL);
6907        }
6908
6909        conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6910        if (conf == NULL)
6911                goto abort;
6912        INIT_LIST_HEAD(&conf->free_list);
6913        INIT_LIST_HEAD(&conf->pending_list);
6914        conf->pending_data = kcalloc(PENDING_IO_MAX,
6915                                     sizeof(struct r5pending_data),
6916                                     GFP_KERNEL);
6917        if (!conf->pending_data)
6918                goto abort;
6919        for (i = 0; i < PENDING_IO_MAX; i++)
6920                list_add(&conf->pending_data[i].sibling, &conf->free_list);
6921        /* Don't enable multi-threading by default*/
6922        if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6923                                 &new_group)) {
6924                conf->group_cnt = group_cnt;
6925                conf->worker_cnt_per_group = worker_cnt_per_group;
6926                conf->worker_groups = new_group;
6927        } else
6928                goto abort;
6929        spin_lock_init(&conf->device_lock);
6930        seqcount_init(&conf->gen_lock);
6931        mutex_init(&conf->cache_size_mutex);
6932        init_waitqueue_head(&conf->wait_for_quiescent);
6933        init_waitqueue_head(&conf->wait_for_stripe);
6934        init_waitqueue_head(&conf->wait_for_overlap);
6935        INIT_LIST_HEAD(&conf->handle_list);
6936        INIT_LIST_HEAD(&conf->loprio_list);
6937        INIT_LIST_HEAD(&conf->hold_list);
6938        INIT_LIST_HEAD(&conf->delayed_list);
6939        INIT_LIST_HEAD(&conf->bitmap_list);
6940        init_llist_head(&conf->released_stripes);
6941        atomic_set(&conf->active_stripes, 0);
6942        atomic_set(&conf->preread_active_stripes, 0);
6943        atomic_set(&conf->active_aligned_reads, 0);
6944        spin_lock_init(&conf->pending_bios_lock);
6945        conf->batch_bio_dispatch = true;
6946        rdev_for_each(rdev, mddev) {
6947                if (test_bit(Journal, &rdev->flags))
6948                        continue;
6949                if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6950                        conf->batch_bio_dispatch = false;
6951                        break;
6952                }
6953        }
6954
6955        conf->bypass_threshold = BYPASS_THRESHOLD;
6956        conf->recovery_disabled = mddev->recovery_disabled - 1;
6957
6958        conf->raid_disks = mddev->raid_disks;
6959        if (mddev->reshape_position == MaxSector)
6960                conf->previous_raid_disks = mddev->raid_disks;
6961        else
6962                conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6963        max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6964
6965        conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
6966                              GFP_KERNEL);
6967
6968        if (!conf->disks)
6969                goto abort;
6970
6971        for (i = 0; i < max_disks; i++) {
6972                conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
6973                if (!conf->disks[i].extra_page)
6974                        goto abort;
6975        }
6976
6977        ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
6978        if (ret)
6979                goto abort;
6980        conf->mddev = mddev;
6981
6982        if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6983                goto abort;
6984
6985        /* We init hash_locks[0] separately to that it can be used
6986         * as the reference lock in the spin_lock_nest_lock() call
6987         * in lock_all_device_hash_locks_irq in order to convince
6988         * lockdep that we know what we are doing.
6989         */
6990        spin_lock_init(conf->hash_locks);
6991        for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6992                spin_lock_init(conf->hash_locks + i);
6993
6994        for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6995                INIT_LIST_HEAD(conf->inactive_list + i);
6996
6997        for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6998                INIT_LIST_HEAD(conf->temp_inactive_list + i);
6999
7000        atomic_set(&conf->r5c_cached_full_stripes, 0);
7001        INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
7002        atomic_set(&conf->r5c_cached_partial_stripes, 0);
7003        INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
7004        atomic_set(&conf->r5c_flushing_full_stripes, 0);
7005        atomic_set(&conf->r5c_flushing_partial_stripes, 0);
7006
7007        conf->level = mddev->new_level;
7008        conf->chunk_sectors = mddev->new_chunk_sectors;
7009        if (raid5_alloc_percpu(conf) != 0)
7010                goto abort;
7011
7012        pr_debug("raid456: run(%s) called.\n", mdname(mddev));
7013
7014        rdev_for_each(rdev, mddev) {
7015                raid_disk = rdev->raid_disk;
7016                if (raid_disk >= max_disks
7017                    || raid_disk < 0 || test_bit(Journal, &rdev->flags))
7018                        continue;
7019                disk = conf->disks + raid_disk;
7020
7021                if (test_bit(Replacement, &rdev->flags)) {
7022                        if (disk->replacement)
7023                                goto abort;
7024                        disk->replacement = rdev;
7025                } else {
7026                        if (disk->rdev)
7027                                goto abort;
7028                        disk->rdev = rdev;
7029                }
7030
7031                if (test_bit(In_sync, &rdev->flags)) {
7032                        char b[BDEVNAME_SIZE];
7033                        pr_info("md/raid:%s: device %s operational as raid disk %d\n",
7034                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
7035                } else if (rdev->saved_raid_disk != raid_disk)
7036                        /* Cannot rely on bitmap to complete recovery */
7037                        conf->fullsync = 1;
7038        }
7039
7040        conf->level = mddev->new_level;
7041        if (conf->level == 6) {
7042                conf->max_degraded = 2;
7043                if (raid6_call.xor_syndrome)
7044                        conf->rmw_level = PARITY_ENABLE_RMW;
7045                else
7046                        conf->rmw_level = PARITY_DISABLE_RMW;
7047        } else {
7048                conf->max_degraded = 1;
7049                conf->rmw_level = PARITY_ENABLE_RMW;
7050        }
7051        conf->algorithm = mddev->new_layout;
7052        conf->reshape_progress = mddev->reshape_position;
7053        if (conf->reshape_progress != MaxSector) {
7054                conf->prev_chunk_sectors = mddev->chunk_sectors;
7055                conf->prev_algo = mddev->layout;
7056        } else {
7057                conf->prev_chunk_sectors = conf->chunk_sectors;
7058                conf->prev_algo = conf->algorithm;
7059        }
7060
7061        conf->min_nr_stripes = NR_STRIPES;
7062        if (mddev->reshape_position != MaxSector) {
7063                int stripes = max_t(int,
7064                        ((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
7065                        ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
7066                conf->min_nr_stripes = max(NR_STRIPES, stripes);
7067                if (conf->min_nr_stripes != NR_STRIPES)
7068                        pr_info("md/raid:%s: force stripe size %d for reshape\n",
7069                                mdname(mddev), conf->min_nr_stripes);
7070        }
7071        memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7072                 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7073        atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7074        if (grow_stripes(conf, conf->min_nr_stripes)) {
7075                pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7076                        mdname(mddev), memory);
7077                goto abort;
7078        } else
7079                pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7080        /*
7081         * Losing a stripe head costs more than the time to refill it,
7082         * it reduces the queue depth and so can hurt throughput.
7083         * So set it rather large, scaled by number of devices.
7084         */
7085        conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7086        conf->shrinker.scan_objects = raid5_cache_scan;
7087        conf->shrinker.count_objects = raid5_cache_count;
7088        conf->shrinker.batch = 128;
7089        conf->shrinker.flags = 0;
7090        if (register_shrinker(&conf->shrinker)) {
7091                pr_warn("md/raid:%s: couldn't register shrinker.\n",
7092                        mdname(mddev));
7093                goto abort;
7094        }
7095
7096        sprintf(pers_name, "raid%d", mddev->new_level);
7097        conf->thread = md_register_thread(raid5d, mddev, pers_name);
7098        if (!conf->thread) {
7099                pr_warn("md/raid:%s: couldn't allocate thread.\n",
7100                        mdname(mddev));
7101                goto abort;
7102        }
7103
7104        return conf;
7105
7106 abort:
7107        if (conf) {
7108                free_conf(conf);
7109                return ERR_PTR(-EIO);
7110        } else
7111                return ERR_PTR(-ENOMEM);
7112}
7113
7114static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7115{
7116        switch (algo) {
7117        case ALGORITHM_PARITY_0:
7118                if (raid_disk < max_degraded)
7119                        return 1;
7120                break;
7121        case ALGORITHM_PARITY_N:
7122                if (raid_disk >= raid_disks - max_degraded)
7123                        return 1;
7124                break;
7125        case ALGORITHM_PARITY_0_6:
7126                if (raid_disk == 0 ||
7127                    raid_disk == raid_disks - 1)
7128                        return 1;
7129                break;
7130        case ALGORITHM_LEFT_ASYMMETRIC_6:
7131        case ALGORITHM_RIGHT_ASYMMETRIC_6:
7132        case ALGORITHM_LEFT_SYMMETRIC_6:
7133        case ALGORITHM_RIGHT_SYMMETRIC_6:
7134                if (raid_disk == raid_disks - 1)
7135                        return 1;
7136        }
7137        return 0;
7138}
7139
7140static int raid5_run(struct mddev *mddev)
7141{
7142        struct r5conf *conf;
7143        int working_disks = 0;
7144        int dirty_parity_disks = 0;
7145        struct md_rdev *rdev;
7146        struct md_rdev *journal_dev = NULL;
7147        sector_t reshape_offset = 0;
7148        int i;
7149        long long min_offset_diff = 0;
7150        int first = 1;
7151
7152        if (mddev_init_writes_pending(mddev) < 0)
7153                return -ENOMEM;
7154
7155        if (mddev->recovery_cp != MaxSector)
7156                pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7157                          mdname(mddev));
7158
7159        rdev_for_each(rdev, mddev) {
7160                long long diff;
7161
7162                if (test_bit(Journal, &rdev->flags)) {
7163                        journal_dev = rdev;
7164                        continue;
7165                }
7166                if (rdev->raid_disk < 0)
7167                        continue;
7168                diff = (rdev->new_data_offset - rdev->data_offset);
7169                if (first) {
7170                        min_offset_diff = diff;
7171                        first = 0;
7172                } else if (mddev->reshape_backwards &&
7173                         diff < min_offset_diff)
7174                        min_offset_diff = diff;
7175                else if (!mddev->reshape_backwards &&
7176                         diff > min_offset_diff)
7177                        min_offset_diff = diff;
7178        }
7179
7180        if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7181            (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7182                pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7183                          mdname(mddev));
7184                return -EINVAL;
7185        }
7186
7187        if (mddev->reshape_position != MaxSector) {
7188                /* Check that we can continue the reshape.
7189                 * Difficulties arise if the stripe we would write to
7190                 * next is at or after the stripe we would read from next.
7191                 * For a reshape that changes the number of devices, this
7192                 * is only possible for a very short time, and mdadm makes
7193                 * sure that time appears to have past before assembling
7194                 * the array.  So we fail if that time hasn't passed.
7195                 * For a reshape that keeps the number of devices the same
7196                 * mdadm must be monitoring the reshape can keeping the
7197                 * critical areas read-only and backed up.  It will start
7198                 * the array in read-only mode, so we check for that.
7199                 */
7200                sector_t here_new, here_old;
7201                int old_disks;
7202                int max_degraded = (mddev->level == 6 ? 2 : 1);
7203                int chunk_sectors;
7204                int new_data_disks;
7205
7206                if (journal_dev) {
7207                        pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7208                                mdname(mddev));
7209                        return -EINVAL;
7210                }
7211
7212                if (mddev->new_level != mddev->level) {
7213                        pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7214                                mdname(mddev));
7215                        return -EINVAL;
7216                }
7217                old_disks = mddev->raid_disks - mddev->delta_disks;
7218                /* reshape_position must be on a new-stripe boundary, and one
7219                 * further up in new geometry must map after here in old
7220                 * geometry.
7221                 * If the chunk sizes are different, then as we perform reshape
7222                 * in units of the largest of the two, reshape_position needs
7223                 * be a multiple of the largest chunk size times new data disks.
7224                 */
7225                here_new = mddev->reshape_position;
7226                chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7227                new_data_disks = mddev->raid_disks - max_degraded;
7228                if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7229                        pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7230                                mdname(mddev));
7231                        return -EINVAL;
7232                }
7233                reshape_offset = here_new * chunk_sectors;
7234                /* here_new is the stripe we will write to */
7235                here_old = mddev->reshape_position;
7236                sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7237                /* here_old is the first stripe that we might need to read
7238                 * from */
7239                if (mddev->delta_disks == 0) {
7240                        /* We cannot be sure it is safe to start an in-place
7241                         * reshape.  It is only safe if user-space is monitoring
7242                         * and taking constant backups.
7243                         * mdadm always starts a situation like this in
7244                         * readonly mode so it can take control before
7245                         * allowing any writes.  So just check for that.
7246                         */
7247                        if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7248                            abs(min_offset_diff) >= mddev->new_chunk_sectors)
7249                                /* not really in-place - so OK */;
7250                        else if (mddev->ro == 0) {
7251                                pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7252                                        mdname(mddev));
7253                                return -EINVAL;
7254                        }
7255                } else if (mddev->reshape_backwards
7256                    ? (here_new * chunk_sectors + min_offset_diff <=
7257                       here_old * chunk_sectors)
7258                    : (here_new * chunk_sectors >=
7259                       here_old * chunk_sectors + (-min_offset_diff))) {
7260                        /* Reading from the same stripe as writing to - bad */
7261                        pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7262                                mdname(mddev));
7263                        return -EINVAL;
7264                }
7265                pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7266                /* OK, we should be able to continue; */
7267        } else {
7268                BUG_ON(mddev->level != mddev->new_level);
7269                BUG_ON(mddev->layout != mddev->new_layout);
7270                BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7271                BUG_ON(mddev->delta_disks != 0);
7272        }
7273
7274        if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7275            test_bit(MD_HAS_PPL, &mddev->flags)) {
7276                pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7277                        mdname(mddev));
7278                clear_bit(MD_HAS_PPL, &mddev->flags);
7279                clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7280        }
7281
7282        if (mddev->private == NULL)
7283                conf = setup_conf(mddev);
7284        else
7285                conf = mddev->private;
7286
7287        if (IS_ERR(conf))
7288                return PTR_ERR(conf);
7289
7290        if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7291                if (!journal_dev) {
7292                        pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7293                                mdname(mddev));
7294                        mddev->ro = 1;
7295                        set_disk_ro(mddev->gendisk, 1);
7296                } else if (mddev->recovery_cp == MaxSector)
7297                        set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7298        }
7299
7300        conf->min_offset_diff = min_offset_diff;
7301        mddev->thread = conf->thread;
7302        conf->thread = NULL;
7303        mddev->private = conf;
7304
7305        for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7306             i++) {
7307                rdev = conf->disks[i].rdev;
7308                if (!rdev && conf->disks[i].replacement) {
7309                        /* The replacement is all we have yet */
7310                        rdev = conf->disks[i].replacement;
7311                        conf->disks[i].replacement = NULL;
7312                        clear_bit(Replacement, &rdev->flags);
7313                        conf->disks[i].rdev = rdev;
7314                }
7315                if (!rdev)
7316                        continue;
7317                if (conf->disks[i].replacement &&
7318                    conf->reshape_progress != MaxSector) {
7319                        /* replacements and reshape simply do not mix. */
7320                        pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7321                        goto abort;
7322                }
7323                if (test_bit(In_sync, &rdev->flags)) {
7324                        working_disks++;
7325                        continue;
7326                }
7327                /* This disc is not fully in-sync.  However if it
7328                 * just stored parity (beyond the recovery_offset),
7329                 * when we don't need to be concerned about the
7330                 * array being dirty.
7331                 * When reshape goes 'backwards', we never have
7332                 * partially completed devices, so we only need
7333                 * to worry about reshape going forwards.
7334                 */
7335                /* Hack because v0.91 doesn't store recovery_offset properly. */
7336                if (mddev->major_version == 0 &&
7337                    mddev->minor_version > 90)
7338                        rdev->recovery_offset = reshape_offset;
7339
7340                if (rdev->recovery_offset < reshape_offset) {
7341                        /* We need to check old and new layout */
7342                        if (!only_parity(rdev->raid_disk,
7343                                         conf->algorithm,
7344                                         conf->raid_disks,
7345                                         conf->max_degraded))
7346                                continue;
7347                }
7348                if (!only_parity(rdev->raid_disk,
7349                                 conf->prev_algo,
7350                                 conf->previous_raid_disks,
7351                                 conf->max_degraded))
7352                        continue;
7353                dirty_parity_disks++;
7354        }
7355
7356        /*
7357         * 0 for a fully functional array, 1 or 2 for a degraded array.
7358         */
7359        mddev->degraded = raid5_calc_degraded(conf);
7360
7361        if (has_failed(conf)) {
7362                pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7363                        mdname(mddev), mddev->degraded, conf->raid_disks);
7364                goto abort;
7365        }
7366
7367        /* device size must be a multiple of chunk size */
7368        mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
7369        mddev->resync_max_sectors = mddev->dev_sectors;
7370
7371        if (mddev->degraded > dirty_parity_disks &&
7372            mddev->recovery_cp != MaxSector) {
7373                if (test_bit(MD_HAS_PPL, &mddev->flags))
7374                        pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7375                                mdname(mddev));
7376                else if (mddev->ok_start_degraded)
7377                        pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7378                                mdname(mddev));
7379                else {
7380                        pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7381                                mdname(mddev));
7382                        goto abort;
7383                }
7384        }
7385
7386        pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7387                mdname(mddev), conf->level,
7388                mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7389                mddev->new_layout);
7390
7391        print_raid5_conf(conf);
7392
7393        if (conf->reshape_progress != MaxSector) {
7394                conf->reshape_safe = conf->reshape_progress;
7395                atomic_set(&conf->reshape_stripes, 0);
7396                clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7397                clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7398                set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7399                set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7400                mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7401                                                        "reshape");
7402                if (!mddev->sync_thread)
7403                        goto abort;
7404        }
7405
7406        /* Ok, everything is just fine now */
7407        if (mddev->to_remove == &raid5_attrs_group)
7408                mddev->to_remove = NULL;
7409        else if (mddev->kobj.sd &&
7410            sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7411                pr_warn("raid5: failed to create sysfs attributes for %s\n",
7412                        mdname(mddev));
7413        md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7414
7415        if (mddev->queue) {
7416                int chunk_size;
7417                /* read-ahead size must cover two whole stripes, which
7418                 * is 2 * (datadisks) * chunksize where 'n' is the
7419                 * number of raid devices
7420                 */
7421                int data_disks = conf->previous_raid_disks - conf->max_degraded;
7422                int stripe = data_disks *
7423                        ((mddev->chunk_sectors << 9) / PAGE_SIZE);
7424                if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7425                        mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7426
7427                chunk_size = mddev->chunk_sectors << 9;
7428                blk_queue_io_min(mddev->queue, chunk_size);
7429                blk_queue_io_opt(mddev->queue, chunk_size *
7430                                 (conf->raid_disks - conf->max_degraded));
7431                mddev->queue->limits.raid_partial_stripes_expensive = 1;
7432                /*
7433                 * We can only discard a whole stripe. It doesn't make sense to
7434                 * discard data disk but write parity disk
7435                 */
7436                stripe = stripe * PAGE_SIZE;
7437                /* Round up to power of 2, as discard handling
7438                 * currently assumes that */
7439                while ((stripe-1) & stripe)
7440                        stripe = (stripe | (stripe-1)) + 1;
7441                mddev->queue->limits.discard_alignment = stripe;
7442                mddev->queue->limits.discard_granularity = stripe;
7443
7444                blk_queue_max_write_same_sectors(mddev->queue, 0);
7445                blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
7446
7447                rdev_for_each(rdev, mddev) {
7448                        disk_stack_limits(mddev->gendisk, rdev->bdev,
7449                                          rdev->data_offset << 9);
7450                        disk_stack_limits(mddev->gendisk, rdev->bdev,
7451                                          rdev->new_data_offset << 9);
7452                }
7453
7454                /*
7455                 * zeroing is required, otherwise data
7456                 * could be lost. Consider a scenario: discard a stripe
7457                 * (the stripe could be inconsistent if
7458                 * discard_zeroes_data is 0); write one disk of the
7459                 * stripe (the stripe could be inconsistent again
7460                 * depending on which disks are used to calculate
7461                 * parity); the disk is broken; The stripe data of this
7462                 * disk is lost.
7463                 *
7464                 * We only allow DISCARD if the sysadmin has confirmed that
7465                 * only safe devices are in use by setting a module parameter.
7466                 * A better idea might be to turn DISCARD into WRITE_ZEROES
7467                 * requests, as that is required to be safe.
7468                 */
7469                if (devices_handle_discard_safely &&
7470                    mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7471                    mddev->queue->limits.discard_granularity >= stripe)
7472                        blk_queue_flag_set(QUEUE_FLAG_DISCARD,
7473                                                mddev->queue);
7474                else
7475                        blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
7476                                                mddev->queue);
7477
7478                blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7479        }
7480
7481        if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
7482                goto abort;
7483
7484        return 0;
7485abort:
7486        md_unregister_thread(&mddev->thread);
7487        print_raid5_conf(conf);
7488        free_conf(conf);
7489        mddev->private = NULL;
7490        pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7491        return -EIO;
7492}
7493
7494static void raid5_free(struct mddev *mddev, void *priv)
7495{
7496        struct r5conf *conf = priv;
7497
7498        free_conf(conf);
7499        mddev->to_remove = &raid5_attrs_group;
7500}
7501
7502static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7503{
7504        struct r5conf *conf = mddev->private;
7505        int i;
7506
7507        seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7508                conf->chunk_sectors / 2, mddev->layout);
7509        seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7510        rcu_read_lock();
7511        for (i = 0; i < conf->raid_disks; i++) {
7512                struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7513                seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7514        }
7515        rcu_read_unlock();
7516        seq_printf (seq, "]");
7517}
7518
7519static void print_raid5_conf (struct r5conf *conf)
7520{
7521        int i;
7522        struct disk_info *tmp;
7523
7524        pr_debug("RAID conf printout:\n");
7525        if (!conf) {
7526                pr_debug("(conf==NULL)\n");
7527                return;
7528        }
7529        pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7530               conf->raid_disks,
7531               conf->raid_disks - conf->mddev->degraded);
7532
7533        for (i = 0; i < conf->raid_disks; i++) {
7534                char b[BDEVNAME_SIZE];
7535                tmp = conf->disks + i;
7536                if (tmp->rdev)
7537                        pr_debug(" disk %d, o:%d, dev:%s\n",
7538                               i, !test_bit(Faulty, &tmp->rdev->flags),
7539                               bdevname(tmp->rdev->bdev, b));
7540        }
7541}
7542
7543static int raid5_spare_active(struct mddev *mddev)
7544{
7545        int i;
7546        struct r5conf *conf = mddev->private;
7547        struct disk_info *tmp;
7548        int count = 0;
7549        unsigned long flags;
7550
7551        for (i = 0; i < conf->raid_disks; i++) {
7552                tmp = conf->disks + i;
7553                if (tmp->replacement
7554                    && tmp->replacement->recovery_offset == MaxSector
7555                    && !test_bit(Faulty, &tmp->replacement->flags)
7556                    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7557                        /* Replacement has just become active. */
7558                        if (!tmp->rdev
7559                            || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7560                                count++;
7561                        if (tmp->rdev) {
7562                                /* Replaced device not technically faulty,
7563                                 * but we need to be sure it gets removed
7564                                 * and never re-added.
7565                                 */
7566                                set_bit(Faulty, &tmp->rdev->flags);
7567                                sysfs_notify_dirent_safe(
7568                                        tmp->rdev->sysfs_state);
7569                        }
7570                        sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7571                } else if (tmp->rdev
7572                    && tmp->rdev->recovery_offset == MaxSector
7573                    && !test_bit(Faulty, &tmp->rdev->flags)
7574                    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7575                        count++;
7576                        sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7577                }
7578        }
7579        spin_lock_irqsave(&conf->device_lock, flags);
7580        mddev->degraded = raid5_calc_degraded(conf);
7581        spin_unlock_irqrestore(&conf->device_lock, flags);
7582        print_raid5_conf(conf);
7583        return count;
7584}
7585
7586static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7587{
7588        struct r5conf *conf = mddev->private;
7589        int err = 0;
7590        int number = rdev->raid_disk;
7591        struct md_rdev **rdevp;
7592        struct disk_info *p = conf->disks + number;
7593
7594        print_raid5_conf(conf);
7595        if (test_bit(Journal, &rdev->flags) && conf->log) {
7596                /*
7597                 * we can't wait pending write here, as this is called in
7598                 * raid5d, wait will deadlock.
7599                 * neilb: there is no locking about new writes here,
7600                 * so this cannot be safe.
7601                 */
7602                if (atomic_read(&conf->active_stripes) ||
7603                    atomic_read(&conf->r5c_cached_full_stripes) ||
7604                    atomic_read(&conf->r5c_cached_partial_stripes)) {
7605                        return -EBUSY;
7606                }
7607                log_exit(conf);
7608                return 0;
7609        }
7610        if (rdev == p->rdev)
7611                rdevp = &p->rdev;
7612        else if (rdev == p->replacement)
7613                rdevp = &p->replacement;
7614        else
7615                return 0;
7616
7617        if (number >= conf->raid_disks &&
7618            conf->reshape_progress == MaxSector)
7619                clear_bit(In_sync, &rdev->flags);
7620
7621        if (test_bit(In_sync, &rdev->flags) ||
7622            atomic_read(&rdev->nr_pending)) {
7623                err = -EBUSY;
7624                goto abort;
7625        }
7626        /* Only remove non-faulty devices if recovery
7627         * isn't possible.
7628         */
7629        if (!test_bit(Faulty, &rdev->flags) &&
7630            mddev->recovery_disabled != conf->recovery_disabled &&
7631            !has_failed(conf) &&
7632            (!p->replacement || p->replacement == rdev) &&
7633            number < conf->raid_disks) {
7634                err = -EBUSY;
7635                goto abort;
7636        }
7637        *rdevp = NULL;
7638        if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7639                synchronize_rcu();
7640                if (atomic_read(&rdev->nr_pending)) {
7641                        /* lost the race, try later */
7642                        err = -EBUSY;
7643                        *rdevp = rdev;
7644                }
7645        }
7646        if (!err) {
7647                err = log_modify(conf, rdev, false);
7648                if (err)
7649                        goto abort;
7650        }
7651        if (p->replacement) {
7652                /* We must have just cleared 'rdev' */
7653                p->rdev = p->replacement;
7654                clear_bit(Replacement, &p->replacement->flags);
7655                smp_mb(); /* Make sure other CPUs may see both as identical
7656                           * but will never see neither - if they are careful
7657                           */
7658                p->replacement = NULL;
7659
7660                if (!err)
7661                        err = log_modify(conf, p->rdev, true);
7662        }
7663
7664        clear_bit(WantReplacement, &rdev->flags);
7665abort:
7666
7667        print_raid5_conf(conf);
7668        return err;
7669}
7670
7671static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7672{
7673        struct r5conf *conf = mddev->private;
7674        int ret, err = -EEXIST;
7675        int disk;
7676        struct disk_info *p;
7677        int first = 0;
7678        int last = conf->raid_disks - 1;
7679
7680        if (test_bit(Journal, &rdev->flags)) {
7681                if (conf->log)
7682                        return -EBUSY;
7683
7684                rdev->raid_disk = 0;
7685                /*
7686                 * The array is in readonly mode if journal is missing, so no
7687                 * write requests running. We should be safe
7688                 */
7689                ret = log_init(conf, rdev, false);
7690                if (ret)
7691                        return ret;
7692
7693                ret = r5l_start(conf->log);
7694                if (ret)
7695                        return ret;
7696
7697                return 0;
7698        }
7699        if (mddev->recovery_disabled == conf->recovery_disabled)
7700                return -EBUSY;
7701
7702        if (rdev->saved_raid_disk < 0 && has_failed(conf))
7703                /* no point adding a device */
7704                return -EINVAL;
7705
7706        if (rdev->raid_disk >= 0)
7707                first = last = rdev->raid_disk;
7708
7709        /*
7710         * find the disk ... but prefer rdev->saved_raid_disk
7711         * if possible.
7712         */
7713        if (rdev->saved_raid_disk >= 0 &&
7714            rdev->saved_raid_disk >= first &&
7715            conf->disks[rdev->saved_raid_disk].rdev == NULL)
7716                first = rdev->saved_raid_disk;
7717
7718        for (disk = first; disk <= last; disk++) {
7719                p = conf->disks + disk;
7720                if (p->rdev == NULL) {
7721                        clear_bit(In_sync, &rdev->flags);
7722                        rdev->raid_disk = disk;
7723                        if (rdev->saved_raid_disk != disk)
7724                                conf->fullsync = 1;
7725                        rcu_assign_pointer(p->rdev, rdev);
7726
7727                        err = log_modify(conf, rdev, true);
7728
7729                        goto out;
7730                }
7731        }
7732        for (disk = first; disk <= last; disk++) {
7733                p = conf->disks + disk;
7734                if (test_bit(WantReplacement, &p->rdev->flags) &&
7735                    p->replacement == NULL) {
7736                        clear_bit(In_sync, &rdev->flags);
7737                        set_bit(Replacement, &rdev->flags);
7738                        rdev->raid_disk = disk;
7739                        err = 0;
7740                        conf->fullsync = 1;
7741                        rcu_assign_pointer(p->replacement, rdev);
7742                        break;
7743                }
7744        }
7745out:
7746        print_raid5_conf(conf);
7747        return err;
7748}
7749
7750static int raid5_resize(struct mddev *mddev, sector_t sectors)
7751{
7752        /* no resync is happening, and there is enough space
7753         * on all devices, so we can resize.
7754         * We need to make sure resync covers any new space.
7755         * If the array is shrinking we should possibly wait until
7756         * any io in the removed space completes, but it hardly seems
7757         * worth it.
7758         */
7759        sector_t newsize;
7760        struct r5conf *conf = mddev->private;
7761
7762        if (raid5_has_log(conf) || raid5_has_ppl(conf))
7763                return -EINVAL;
7764        sectors &= ~((sector_t)conf->chunk_sectors - 1);
7765        newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7766        if (mddev->external_size &&
7767            mddev->array_sectors > newsize)
7768                return -EINVAL;
7769        if (mddev->bitmap) {
7770                int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0);
7771                if (ret)
7772                        return ret;
7773        }
7774        md_set_array_sectors(mddev, newsize);
7775        if (sectors > mddev->dev_sectors &&
7776            mddev->recovery_cp > mddev->dev_sectors) {
7777                mddev->recovery_cp = mddev->dev_sectors;
7778                set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7779        }
7780        mddev->dev_sectors = sectors;
7781        mddev->resync_max_sectors = sectors;
7782        return 0;
7783}
7784
7785static int check_stripe_cache(struct mddev *mddev)
7786{
7787        /* Can only proceed if there are plenty of stripe_heads.
7788         * We need a minimum of one full stripe,, and for sensible progress
7789         * it is best to have about 4 times that.
7790         * If we require 4 times, then the default 256 4K stripe_heads will
7791         * allow for chunk sizes up to 256K, which is probably OK.
7792         * If the chunk size is greater, user-space should request more
7793         * stripe_heads first.
7794         */
7795        struct r5conf *conf = mddev->private;
7796        if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7797            > conf->min_nr_stripes ||
7798            ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7799            > conf->min_nr_stripes) {
7800                pr_warn("md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7801                        mdname(mddev),
7802                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7803                         / STRIPE_SIZE)*4);
7804                return 0;
7805        }
7806        return 1;
7807}
7808
7809static int check_reshape(struct mddev *mddev)
7810{
7811        struct r5conf *conf = mddev->private;
7812
7813        if (raid5_has_log(conf) || raid5_has_ppl(conf))
7814                return -EINVAL;
7815        if (mddev->delta_disks == 0 &&
7816            mddev->new_layout == mddev->layout &&
7817            mddev->new_chunk_sectors == mddev->chunk_sectors)
7818                return 0; /* nothing to do */
7819        if (has_failed(conf))
7820                return -EINVAL;
7821        if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7822                /* We might be able to shrink, but the devices must
7823                 * be made bigger first.
7824                 * For raid6, 4 is the minimum size.
7825                 * Otherwise 2 is the minimum
7826                 */
7827                int min = 2;
7828                if (mddev->level == 6)
7829                        min = 4;
7830                if (mddev->raid_disks + mddev->delta_disks < min)
7831                        return -EINVAL;
7832        }
7833
7834        if (!check_stripe_cache(mddev))
7835                return -ENOSPC;
7836
7837        if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7838            mddev->delta_disks > 0)
7839                if (resize_chunks(conf,
7840                                  conf->previous_raid_disks
7841                                  + max(0, mddev->delta_disks),
7842                                  max(mddev->new_chunk_sectors,
7843                                      mddev->chunk_sectors)
7844                            ) < 0)
7845                        return -ENOMEM;
7846
7847        if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
7848                return 0; /* never bother to shrink */
7849        return resize_stripes(conf, (conf->previous_raid_disks
7850                                     + mddev->delta_disks));
7851}
7852
7853static int raid5_start_reshape(struct mddev *mddev)
7854{
7855        struct r5conf *conf = mddev->private;
7856        struct md_rdev *rdev;
7857        int spares = 0;
7858        unsigned long flags;
7859
7860        if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7861                return -EBUSY;
7862
7863        if (!check_stripe_cache(mddev))
7864                return -ENOSPC;
7865
7866        if (has_failed(conf))
7867                return -EINVAL;
7868
7869        rdev_for_each(rdev, mddev) {
7870                if (!test_bit(In_sync, &rdev->flags)
7871                    && !test_bit(Faulty, &rdev->flags))
7872                        spares++;
7873        }
7874
7875        if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7876                /* Not enough devices even to make a degraded array
7877                 * of that size
7878                 */
7879                return -EINVAL;
7880
7881        /* Refuse to reduce size of the array.  Any reductions in
7882         * array size must be through explicit setting of array_size
7883         * attribute.
7884         */
7885        if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7886            < mddev->array_sectors) {
7887                pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7888                        mdname(mddev));
7889                return -EINVAL;
7890        }
7891
7892        atomic_set(&conf->reshape_stripes, 0);
7893        spin_lock_irq(&conf->device_lock);
7894        write_seqcount_begin(&conf->gen_lock);
7895        conf->previous_raid_disks = conf->raid_disks;
7896        conf->raid_disks += mddev->delta_disks;
7897        conf->prev_chunk_sectors = conf->chunk_sectors;
7898        conf->chunk_sectors = mddev->new_chunk_sectors;
7899        conf->prev_algo = conf->algorithm;
7900        conf->algorithm = mddev->new_layout;
7901        conf->generation++;
7902        /* Code that selects data_offset needs to see the generation update
7903         * if reshape_progress has been set - so a memory barrier needed.
7904         */
7905        smp_mb();
7906        if (mddev->reshape_backwards)
7907                conf->reshape_progress = raid5_size(mddev, 0, 0);
7908        else
7909                conf->reshape_progress = 0;
7910        conf->reshape_safe = conf->reshape_progress;
7911        write_seqcount_end(&conf->gen_lock);
7912        spin_unlock_irq(&conf->device_lock);
7913
7914        /* Now make sure any requests that proceeded on the assumption
7915         * the reshape wasn't running - like Discard or Read - have
7916         * completed.
7917         */
7918        mddev_suspend(mddev);
7919        mddev_resume(mddev);
7920
7921        /* Add some new drives, as many as will fit.
7922         * We know there are enough to make the newly sized array work.
7923         * Don't add devices if we are reducing the number of
7924         * devices in the array.  This is because it is not possible
7925         * to correctly record the "partially reconstructed" state of
7926         * such devices during the reshape and confusion could result.
7927         */
7928        if (mddev->delta_disks >= 0) {
7929                rdev_for_each(rdev, mddev)
7930                        if (rdev->raid_disk < 0 &&
7931                            !test_bit(Faulty, &rdev->flags)) {
7932                                if (raid5_add_disk(mddev, rdev) == 0) {
7933                                        if (rdev->raid_disk
7934                                            >= conf->previous_raid_disks)
7935                                                set_bit(In_sync, &rdev->flags);
7936                                        else
7937                                                rdev->recovery_offset = 0;
7938
7939                                        if (sysfs_link_rdev(mddev, rdev))
7940                                                /* Failure here is OK */;
7941                                }
7942                        } else if (rdev->raid_disk >= conf->previous_raid_disks
7943                                   && !test_bit(Faulty, &rdev->flags)) {
7944                                /* This is a spare that was manually added */
7945                                set_bit(In_sync, &rdev->flags);
7946                        }
7947
7948                /* When a reshape changes the number of devices,
7949                 * ->degraded is measured against the larger of the
7950                 * pre and post number of devices.
7951                 */
7952                spin_lock_irqsave(&conf->device_lock, flags);
7953                mddev->degraded = raid5_calc_degraded(conf);
7954                spin_unlock_irqrestore(&conf->device_lock, flags);
7955        }
7956        mddev->raid_disks = conf->raid_disks;
7957        mddev->reshape_position = conf->reshape_progress;
7958        set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7959
7960        clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7961        clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7962        clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7963        set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7964        set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7965        mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7966                                                "reshape");
7967        if (!mddev->sync_thread) {
7968                mddev->recovery = 0;
7969                spin_lock_irq(&conf->device_lock);
7970                write_seqcount_begin(&conf->gen_lock);
7971                mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7972                mddev->new_chunk_sectors =
7973                        conf->chunk_sectors = conf->prev_chunk_sectors;
7974                mddev->new_layout = conf->algorithm = conf->prev_algo;
7975                rdev_for_each(rdev, mddev)
7976                        rdev->new_data_offset = rdev->data_offset;
7977                smp_wmb();
7978                conf->generation --;
7979                conf->reshape_progress = MaxSector;
7980                mddev->reshape_position = MaxSector;
7981                write_seqcount_end(&conf->gen_lock);
7982                spin_unlock_irq(&conf->device_lock);
7983                return -EAGAIN;
7984        }
7985        conf->reshape_checkpoint = jiffies;
7986        md_wakeup_thread(mddev->sync_thread);
7987        md_new_event(mddev);
7988        return 0;
7989}
7990
7991/* This is called from the reshape thread and should make any
7992 * changes needed in 'conf'
7993 */
7994static void end_reshape(struct r5conf *conf)
7995{
7996
7997        if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7998                struct md_rdev *rdev;
7999
8000                spin_lock_irq(&conf->device_lock);
8001                conf->previous_raid_disks = conf->raid_disks;
8002                md_finish_reshape(conf->mddev);
8003                smp_wmb();
8004                conf->reshape_progress = MaxSector;
8005                conf->mddev->reshape_position = MaxSector;
8006                rdev_for_each(rdev, conf->mddev)
8007                        if (rdev->raid_disk >= 0 &&
8008                            !test_bit(Journal, &rdev->flags) &&
8009                            !test_bit(In_sync, &rdev->flags))
8010                                rdev->recovery_offset = MaxSector;
8011                spin_unlock_irq(&conf->device_lock);
8012                wake_up(&conf->wait_for_overlap);
8013
8014                /* read-ahead size must cover two whole stripes, which is
8015                 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
8016                 */
8017                if (conf->mddev->queue) {
8018                        int data_disks = conf->raid_disks - conf->max_degraded;
8019                        int stripe = data_disks * ((conf->chunk_sectors << 9)
8020                                                   / PAGE_SIZE);
8021                        if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
8022                                conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
8023                }
8024        }
8025}
8026
8027/* This is called from the raid5d thread with mddev_lock held.
8028 * It makes config changes to the device.
8029 */
8030static void raid5_finish_reshape(struct mddev *mddev)
8031{
8032        struct r5conf *conf = mddev->private;
8033
8034        if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8035
8036                if (mddev->delta_disks <= 0) {
8037                        int d;
8038                        spin_lock_irq(&conf->device_lock);
8039                        mddev->degraded = raid5_calc_degraded(conf);
8040                        spin_unlock_irq(&conf->device_lock);
8041                        for (d = conf->raid_disks ;
8042                             d < conf->raid_disks - mddev->delta_disks;
8043                             d++) {
8044                                struct md_rdev *rdev = conf->disks[d].rdev;
8045                                if (rdev)
8046                                        clear_bit(In_sync, &rdev->flags);
8047                                rdev = conf->disks[d].replacement;
8048                                if (rdev)
8049                                        clear_bit(In_sync, &rdev->flags);
8050                        }
8051                }
8052                mddev->layout = conf->algorithm;
8053                mddev->chunk_sectors = conf->chunk_sectors;
8054                mddev->reshape_position = MaxSector;
8055                mddev->delta_disks = 0;
8056                mddev->reshape_backwards = 0;
8057        }
8058}
8059
8060static void raid5_quiesce(struct mddev *mddev, int quiesce)
8061{
8062        struct r5conf *conf = mddev->private;
8063
8064        if (quiesce) {
8065                /* stop all writes */
8066                lock_all_device_hash_locks_irq(conf);
8067                /* '2' tells resync/reshape to pause so that all
8068                 * active stripes can drain
8069                 */
8070                r5c_flush_cache(conf, INT_MAX);
8071                conf->quiesce = 2;
8072                wait_event_cmd(conf->wait_for_quiescent,
8073                                    atomic_read(&conf->active_stripes) == 0 &&
8074                                    atomic_read(&conf->active_aligned_reads) == 0,
8075                                    unlock_all_device_hash_locks_irq(conf),
8076                                    lock_all_device_hash_locks_irq(conf));
8077                conf->quiesce = 1;
8078                unlock_all_device_hash_locks_irq(conf);
8079                /* allow reshape to continue */
8080                wake_up(&conf->wait_for_overlap);
8081        } else {
8082                /* re-enable writes */
8083                lock_all_device_hash_locks_irq(conf);
8084                conf->quiesce = 0;
8085                wake_up(&conf->wait_for_quiescent);
8086                wake_up(&conf->wait_for_overlap);
8087                unlock_all_device_hash_locks_irq(conf);
8088        }
8089        log_quiesce(conf, quiesce);
8090}
8091
8092static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8093{
8094        struct r0conf *raid0_conf = mddev->private;
8095        sector_t sectors;
8096
8097        /* for raid0 takeover only one zone is supported */
8098        if (raid0_conf->nr_strip_zones > 1) {
8099                pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8100                        mdname(mddev));
8101                return ERR_PTR(-EINVAL);
8102        }
8103
8104        sectors = raid0_conf->strip_zone[0].zone_end;
8105        sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8106        mddev->dev_sectors = sectors;
8107        mddev->new_level = level;
8108        mddev->new_layout = ALGORITHM_PARITY_N;
8109        mddev->new_chunk_sectors = mddev->chunk_sectors;
8110        mddev->raid_disks += 1;
8111        mddev->delta_disks = 1;
8112        /* make sure it will be not marked as dirty */
8113        mddev->recovery_cp = MaxSector;
8114
8115        return setup_conf(mddev);
8116}
8117
8118static void *raid5_takeover_raid1(struct mddev *mddev)
8119{
8120        int chunksect;
8121        void *ret;
8122
8123        if (mddev->raid_disks != 2 ||
8124            mddev->degraded > 1)
8125                return ERR_PTR(-EINVAL);
8126
8127        /* Should check if there are write-behind devices? */
8128
8129        chunksect = 64*2; /* 64K by default */
8130
8131        /* The array must be an exact multiple of chunksize */
8132        while (chunksect && (mddev->array_sectors & (chunksect-1)))
8133                chunksect >>= 1;
8134
8135        if ((chunksect<<9) < STRIPE_SIZE)
8136                /* array size does not allow a suitable chunk size */
8137                return ERR_PTR(-EINVAL);
8138
8139        mddev->new_level = 5;
8140        mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8141        mddev->new_chunk_sectors = chunksect;
8142
8143        ret = setup_conf(mddev);
8144        if (!IS_ERR(ret))
8145                mddev_clear_unsupported_flags(mddev,
8146                        UNSUPPORTED_MDDEV_FLAGS);
8147        return ret;
8148}
8149
8150static void *raid5_takeover_raid6(struct mddev *mddev)
8151{
8152        int new_layout;
8153
8154        switch (mddev->layout) {
8155        case ALGORITHM_LEFT_ASYMMETRIC_6:
8156                new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8157                break;
8158        case ALGORITHM_RIGHT_ASYMMETRIC_6:
8159                new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8160                break;
8161        case ALGORITHM_LEFT_SYMMETRIC_6:
8162                new_layout = ALGORITHM_LEFT_SYMMETRIC;
8163                break;
8164        case ALGORITHM_RIGHT_SYMMETRIC_6:
8165                new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8166                break;
8167        case ALGORITHM_PARITY_0_6:
8168                new_layout = ALGORITHM_PARITY_0;
8169                break;
8170        case ALGORITHM_PARITY_N:
8171                new_layout = ALGORITHM_PARITY_N;
8172                break;
8173        default:
8174                return ERR_PTR(-EINVAL);
8175        }
8176        mddev->new_level = 5;
8177        mddev->new_layout = new_layout;
8178        mddev->delta_disks = -1;
8179        mddev->raid_disks -= 1;
8180        return setup_conf(mddev);
8181}
8182
8183static int raid5_check_reshape(struct mddev *mddev)
8184{
8185        /* For a 2-drive array, the layout and chunk size can be changed
8186         * immediately as not restriping is needed.
8187         * For larger arrays we record the new value - after validation
8188         * to be used by a reshape pass.
8189         */
8190        struct r5conf *conf = mddev->private;
8191        int new_chunk = mddev->new_chunk_sectors;
8192
8193        if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8194                return -EINVAL;
8195        if (new_chunk > 0) {
8196                if (!is_power_of_2(new_chunk))
8197                        return -EINVAL;
8198                if (new_chunk < (PAGE_SIZE>>9))
8199                        return -EINVAL;
8200                if (mddev->array_sectors & (new_chunk-1))
8201                        /* not factor of array size */
8202                        return -EINVAL;
8203        }
8204
8205        /* They look valid */
8206
8207        if (mddev->raid_disks == 2) {
8208                /* can make the change immediately */
8209                if (mddev->new_layout >= 0) {
8210                        conf->algorithm = mddev->new_layout;
8211                        mddev->layout = mddev->new_layout;
8212                }
8213                if (new_chunk > 0) {
8214                        conf->chunk_sectors = new_chunk ;
8215                        mddev->chunk_sectors = new_chunk;
8216                }
8217                set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8218                md_wakeup_thread(mddev->thread);
8219        }
8220        return check_reshape(mddev);
8221}
8222
8223static int raid6_check_reshape(struct mddev *mddev)
8224{
8225        int new_chunk = mddev->new_chunk_sectors;
8226
8227        if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8228                return -EINVAL;
8229        if (new_chunk > 0) {
8230                if (!is_power_of_2(new_chunk))
8231                        return -EINVAL;
8232                if (new_chunk < (PAGE_SIZE >> 9))
8233                        return -EINVAL;
8234                if (mddev->array_sectors & (new_chunk-1))
8235                        /* not factor of array size */
8236                        return -EINVAL;
8237        }
8238
8239        /* They look valid */
8240        return check_reshape(mddev);
8241}
8242
8243static void *raid5_takeover(struct mddev *mddev)
8244{
8245        /* raid5 can take over:
8246         *  raid0 - if there is only one strip zone - make it a raid4 layout
8247         *  raid1 - if there are two drives.  We need to know the chunk size
8248         *  raid4 - trivial - just use a raid4 layout.
8249         *  raid6 - Providing it is a *_6 layout
8250         */
8251        if (mddev->level == 0)
8252                return raid45_takeover_raid0(mddev, 5);
8253        if (mddev->level == 1)
8254                return raid5_takeover_raid1(mddev);
8255        if (mddev->level == 4) {
8256                mddev->new_layout = ALGORITHM_PARITY_N;
8257                mddev->new_level = 5;
8258                return setup_conf(mddev);
8259        }
8260        if (mddev->level == 6)
8261                return raid5_takeover_raid6(mddev);
8262
8263        return ERR_PTR(-EINVAL);
8264}
8265
8266static void *raid4_takeover(struct mddev *mddev)
8267{
8268        /* raid4 can take over:
8269         *  raid0 - if there is only one strip zone
8270         *  raid5 - if layout is right
8271         */
8272        if (mddev->level == 0)
8273                return raid45_takeover_raid0(mddev, 4);
8274        if (mddev->level == 5 &&
8275            mddev->layout == ALGORITHM_PARITY_N) {
8276                mddev->new_layout = 0;
8277                mddev->new_level = 4;
8278                return setup_conf(mddev);
8279        }
8280        return ERR_PTR(-EINVAL);
8281}
8282
8283static struct md_personality raid5_personality;
8284
8285static void *raid6_takeover(struct mddev *mddev)
8286{
8287        /* Currently can only take over a raid5.  We map the
8288         * personality to an equivalent raid6 personality
8289         * with the Q block at the end.
8290         */
8291        int new_layout;
8292
8293        if (mddev->pers != &raid5_personality)
8294                return ERR_PTR(-EINVAL);
8295        if (mddev->degraded > 1)
8296                return ERR_PTR(-EINVAL);
8297        if (mddev->raid_disks > 253)
8298                return ERR_PTR(-EINVAL);
8299        if (mddev->raid_disks < 3)
8300                return ERR_PTR(-EINVAL);
8301
8302        switch (mddev->layout) {
8303        case ALGORITHM_LEFT_ASYMMETRIC:
8304                new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8305                break;
8306        case ALGORITHM_RIGHT_ASYMMETRIC:
8307                new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8308                break;
8309        case ALGORITHM_LEFT_SYMMETRIC:
8310                new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8311                break;
8312        case ALGORITHM_RIGHT_SYMMETRIC:
8313                new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8314                break;
8315        case ALGORITHM_PARITY_0:
8316                new_layout = ALGORITHM_PARITY_0_6;
8317                break;
8318        case ALGORITHM_PARITY_N:
8319                new_layout = ALGORITHM_PARITY_N;
8320                break;
8321        default:
8322                return ERR_PTR(-EINVAL);
8323        }
8324        mddev->new_level = 6;
8325        mddev->new_layout = new_layout;
8326        mddev->delta_disks = 1;
8327        mddev->raid_disks += 1;
8328        return setup_conf(mddev);
8329}
8330
8331static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8332{
8333        struct r5conf *conf;
8334        int err;
8335
8336        err = mddev_lock(mddev);
8337        if (err)
8338                return err;
8339        conf = mddev->private;
8340        if (!conf) {
8341                mddev_unlock(mddev);
8342                return -ENODEV;
8343        }
8344
8345        if (strncmp(buf, "ppl", 3) == 0) {
8346                /* ppl only works with RAID 5 */
8347                if (!raid5_has_ppl(conf) && conf->level == 5) {
8348                        err = log_init(conf, NULL, true);
8349                        if (!err) {
8350                                err = resize_stripes(conf, conf->pool_size);
8351                                if (err)
8352                                        log_exit(conf);
8353                        }
8354                } else
8355                        err = -EINVAL;
8356        } else if (strncmp(buf, "resync", 6) == 0) {
8357                if (raid5_has_ppl(conf)) {
8358                        mddev_suspend(mddev);
8359                        log_exit(conf);
8360                        mddev_resume(mddev);
8361                        err = resize_stripes(conf, conf->pool_size);
8362                } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8363                           r5l_log_disk_error(conf)) {
8364                        bool journal_dev_exists = false;
8365                        struct md_rdev *rdev;
8366
8367                        rdev_for_each(rdev, mddev)
8368                                if (test_bit(Journal, &rdev->flags)) {
8369                                        journal_dev_exists = true;
8370                                        break;
8371                                }
8372
8373                        if (!journal_dev_exists) {
8374                                mddev_suspend(mddev);
8375                                clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8376                                mddev_resume(mddev);
8377                        } else  /* need remove journal device first */
8378                                err = -EBUSY;
8379                } else
8380                        err = -EINVAL;
8381        } else {
8382                err = -EINVAL;
8383        }
8384
8385        if (!err)
8386                md_update_sb(mddev, 1);
8387
8388        mddev_unlock(mddev);
8389
8390        return err;
8391}
8392
8393static int raid5_start(struct mddev *mddev)
8394{
8395        struct r5conf *conf = mddev->private;
8396
8397        return r5l_start(conf->log);
8398}
8399
8400static struct md_personality raid6_personality =
8401{
8402        .name           = "raid6",
8403        .level          = 6,
8404        .owner          = THIS_MODULE,
8405        .make_request   = raid5_make_request,
8406        .run            = raid5_run,
8407        .start          = raid5_start,
8408        .free           = raid5_free,
8409        .status         = raid5_status,
8410        .error_handler  = raid5_error,
8411        .hot_add_disk   = raid5_add_disk,
8412        .hot_remove_disk= raid5_remove_disk,
8413        .spare_active   = raid5_spare_active,
8414        .sync_request   = raid5_sync_request,
8415        .resize         = raid5_resize,
8416        .size           = raid5_size,
8417        .check_reshape  = raid6_check_reshape,
8418        .start_reshape  = raid5_start_reshape,
8419        .finish_reshape = raid5_finish_reshape,
8420        .quiesce        = raid5_quiesce,
8421        .takeover       = raid6_takeover,
8422        .congested      = raid5_congested,
8423        .change_consistency_policy = raid5_change_consistency_policy,
8424};
8425static struct md_personality raid5_personality =
8426{
8427        .name           = "raid5",
8428        .level          = 5,
8429        .owner          = THIS_MODULE,
8430        .make_request   = raid5_make_request,
8431        .run            = raid5_run,
8432        .start          = raid5_start,
8433        .free           = raid5_free,
8434        .status         = raid5_status,
8435        .error_handler  = raid5_error,
8436        .hot_add_disk   = raid5_add_disk,
8437        .hot_remove_disk= raid5_remove_disk,
8438        .spare_active   = raid5_spare_active,
8439        .sync_request   = raid5_sync_request,
8440        .resize         = raid5_resize,
8441        .size           = raid5_size,
8442        .check_reshape  = raid5_check_reshape,
8443        .start_reshape  = raid5_start_reshape,
8444        .finish_reshape = raid5_finish_reshape,
8445        .quiesce        = raid5_quiesce,
8446        .takeover       = raid5_takeover,
8447        .congested      = raid5_congested,
8448        .change_consistency_policy = raid5_change_consistency_policy,
8449};
8450
8451static struct md_personality raid4_personality =
8452{
8453        .name           = "raid4",
8454        .level          = 4,
8455        .owner          = THIS_MODULE,
8456        .make_request   = raid5_make_request,
8457        .run            = raid5_run,
8458        .start          = raid5_start,
8459        .free           = raid5_free,
8460        .status         = raid5_status,
8461        .error_handler  = raid5_error,
8462        .hot_add_disk   = raid5_add_disk,
8463        .hot_remove_disk= raid5_remove_disk,
8464        .spare_active   = raid5_spare_active,
8465        .sync_request   = raid5_sync_request,
8466        .resize         = raid5_resize,
8467        .size           = raid5_size,
8468        .check_reshape  = raid5_check_reshape,
8469        .start_reshape  = raid5_start_reshape,
8470        .finish_reshape = raid5_finish_reshape,
8471        .quiesce        = raid5_quiesce,
8472        .takeover       = raid4_takeover,
8473        .congested      = raid5_congested,
8474        .change_consistency_policy = raid5_change_consistency_policy,
8475};
8476
8477static int __init raid5_init(void)
8478{
8479        int ret;
8480
8481        raid5_wq = alloc_workqueue("raid5wq",
8482                WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8483        if (!raid5_wq)
8484                return -ENOMEM;
8485
8486        ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8487                                      "md/raid5:prepare",
8488                                      raid456_cpu_up_prepare,
8489                                      raid456_cpu_dead);
8490        if (ret) {
8491                destroy_workqueue(raid5_wq);
8492                return ret;
8493        }
8494        register_md_personality(&raid6_personality);
8495        register_md_personality(&raid5_personality);
8496        register_md_personality(&raid4_personality);
8497        return 0;
8498}
8499
8500static void raid5_exit(void)
8501{
8502        unregister_md_personality(&raid6_personality);
8503        unregister_md_personality(&raid5_personality);
8504        unregister_md_personality(&raid4_personality);
8505        cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8506        destroy_workqueue(raid5_wq);
8507}
8508
8509module_init(raid5_init);
8510module_exit(raid5_exit);
8511MODULE_LICENSE("GPL");
8512MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8513MODULE_ALIAS("md-personality-4"); /* RAID5 */
8514MODULE_ALIAS("md-raid5");
8515MODULE_ALIAS("md-raid4");
8516MODULE_ALIAS("md-level-5");
8517MODULE_ALIAS("md-level-4");
8518MODULE_ALIAS("md-personality-8"); /* RAID6 */
8519MODULE_ALIAS("md-raid6");
8520MODULE_ALIAS("md-level-6");
8521
8522/* This used to be two separate modules, they were: */
8523MODULE_ALIAS("raid5");
8524MODULE_ALIAS("raid6");
8525