linux/drivers/media/i2c/smiapp/smiapp-core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * drivers/media/i2c/smiapp/smiapp-core.c
   4 *
   5 * Generic driver for SMIA/SMIA++ compliant camera modules
   6 *
   7 * Copyright (C) 2010--2012 Nokia Corporation
   8 * Contact: Sakari Ailus <sakari.ailus@iki.fi>
   9 *
  10 * Based on smiapp driver by Vimarsh Zutshi
  11 * Based on jt8ev1.c by Vimarsh Zutshi
  12 * Based on smia-sensor.c by Tuukka Toivonen <tuukkat76@gmail.com>
  13 */
  14
  15#include <linux/clk.h>
  16#include <linux/delay.h>
  17#include <linux/device.h>
  18#include <linux/gpio.h>
  19#include <linux/gpio/consumer.h>
  20#include <linux/module.h>
  21#include <linux/pm_runtime.h>
  22#include <linux/property.h>
  23#include <linux/regulator/consumer.h>
  24#include <linux/slab.h>
  25#include <linux/smiapp.h>
  26#include <linux/v4l2-mediabus.h>
  27#include <media/v4l2-fwnode.h>
  28#include <media/v4l2-device.h>
  29
  30#include "smiapp.h"
  31
  32#define SMIAPP_ALIGN_DIM(dim, flags)    \
  33        ((flags) & V4L2_SEL_FLAG_GE     \
  34         ? ALIGN((dim), 2)              \
  35         : (dim) & ~1)
  36
  37/*
  38 * smiapp_module_idents - supported camera modules
  39 */
  40static const struct smiapp_module_ident smiapp_module_idents[] = {
  41        SMIAPP_IDENT_L(0x01, 0x022b, -1, "vs6555"),
  42        SMIAPP_IDENT_L(0x01, 0x022e, -1, "vw6558"),
  43        SMIAPP_IDENT_L(0x07, 0x7698, -1, "ovm7698"),
  44        SMIAPP_IDENT_L(0x0b, 0x4242, -1, "smiapp-003"),
  45        SMIAPP_IDENT_L(0x0c, 0x208a, -1, "tcm8330md"),
  46        SMIAPP_IDENT_LQ(0x0c, 0x2134, -1, "tcm8500md", &smiapp_tcm8500md_quirk),
  47        SMIAPP_IDENT_L(0x0c, 0x213e, -1, "et8en2"),
  48        SMIAPP_IDENT_L(0x0c, 0x2184, -1, "tcm8580md"),
  49        SMIAPP_IDENT_LQ(0x0c, 0x560f, -1, "jt8ew9", &smiapp_jt8ew9_quirk),
  50        SMIAPP_IDENT_LQ(0x10, 0x4141, -1, "jt8ev1", &smiapp_jt8ev1_quirk),
  51        SMIAPP_IDENT_LQ(0x10, 0x4241, -1, "imx125es", &smiapp_imx125es_quirk),
  52};
  53
  54/*
  55 *
  56 * Dynamic Capability Identification
  57 *
  58 */
  59
  60static int smiapp_read_frame_fmt(struct smiapp_sensor *sensor)
  61{
  62        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
  63        u32 fmt_model_type, fmt_model_subtype, ncol_desc, nrow_desc;
  64        unsigned int i;
  65        int pixel_count = 0;
  66        int line_count = 0;
  67        int rval;
  68
  69        rval = smiapp_read(sensor, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_TYPE,
  70                           &fmt_model_type);
  71        if (rval)
  72                return rval;
  73
  74        rval = smiapp_read(sensor, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_SUBTYPE,
  75                           &fmt_model_subtype);
  76        if (rval)
  77                return rval;
  78
  79        ncol_desc = (fmt_model_subtype
  80                     & SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_MASK)
  81                >> SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_SHIFT;
  82        nrow_desc = fmt_model_subtype
  83                & SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NROWS_MASK;
  84
  85        dev_dbg(&client->dev, "format_model_type %s\n",
  86                fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE
  87                ? "2 byte" :
  88                fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE
  89                ? "4 byte" : "is simply bad");
  90
  91        for (i = 0; i < ncol_desc + nrow_desc; i++) {
  92                u32 desc;
  93                u32 pixelcode;
  94                u32 pixels;
  95                char *which;
  96                char *what;
  97                u32 reg;
  98
  99                if (fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE) {
 100                        reg = SMIAPP_REG_U16_FRAME_FORMAT_DESCRIPTOR_2(i);
 101                        rval = smiapp_read(sensor, reg, &desc);
 102                        if (rval)
 103                                return rval;
 104
 105                        pixelcode =
 106                                (desc
 107                                 & SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_MASK)
 108                                >> SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_SHIFT;
 109                        pixels = desc & SMIAPP_FRAME_FORMAT_DESC_2_PIXELS_MASK;
 110                } else if (fmt_model_type
 111                           == SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE) {
 112                        reg = SMIAPP_REG_U32_FRAME_FORMAT_DESCRIPTOR_4(i);
 113                        rval = smiapp_read(sensor, reg, &desc);
 114                        if (rval)
 115                                return rval;
 116
 117                        pixelcode =
 118                                (desc
 119                                 & SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_MASK)
 120                                >> SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_SHIFT;
 121                        pixels = desc & SMIAPP_FRAME_FORMAT_DESC_4_PIXELS_MASK;
 122                } else {
 123                        dev_dbg(&client->dev,
 124                                "invalid frame format model type %d\n",
 125                                fmt_model_type);
 126                        return -EINVAL;
 127                }
 128
 129                if (i < ncol_desc)
 130                        which = "columns";
 131                else
 132                        which = "rows";
 133
 134                switch (pixelcode) {
 135                case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED:
 136                        what = "embedded";
 137                        break;
 138                case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DUMMY:
 139                        what = "dummy";
 140                        break;
 141                case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_BLACK:
 142                        what = "black";
 143                        break;
 144                case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DARK:
 145                        what = "dark";
 146                        break;
 147                case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE:
 148                        what = "visible";
 149                        break;
 150                default:
 151                        what = "invalid";
 152                        break;
 153                }
 154
 155                dev_dbg(&client->dev,
 156                        "0x%8.8x %s pixels: %d %s (pixelcode %u)\n", reg,
 157                        what, pixels, which, pixelcode);
 158
 159                if (i < ncol_desc) {
 160                        if (pixelcode ==
 161                            SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE)
 162                                sensor->visible_pixel_start = pixel_count;
 163                        pixel_count += pixels;
 164                        continue;
 165                }
 166
 167                /* Handle row descriptors */
 168                switch (pixelcode) {
 169                case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED:
 170                        if (sensor->embedded_end)
 171                                break;
 172                        sensor->embedded_start = line_count;
 173                        sensor->embedded_end = line_count + pixels;
 174                        break;
 175                case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE:
 176                        sensor->image_start = line_count;
 177                        break;
 178                }
 179                line_count += pixels;
 180        }
 181
 182        if (sensor->embedded_end > sensor->image_start) {
 183                dev_dbg(&client->dev,
 184                        "adjusting image start line to %u (was %u)\n",
 185                        sensor->embedded_end, sensor->image_start);
 186                sensor->image_start = sensor->embedded_end;
 187        }
 188
 189        dev_dbg(&client->dev, "embedded data from lines %d to %d\n",
 190                sensor->embedded_start, sensor->embedded_end);
 191        dev_dbg(&client->dev, "image data starts at line %d\n",
 192                sensor->image_start);
 193
 194        return 0;
 195}
 196
 197static int smiapp_pll_configure(struct smiapp_sensor *sensor)
 198{
 199        struct smiapp_pll *pll = &sensor->pll;
 200        int rval;
 201
 202        rval = smiapp_write(
 203                sensor, SMIAPP_REG_U16_VT_PIX_CLK_DIV, pll->vt.pix_clk_div);
 204        if (rval < 0)
 205                return rval;
 206
 207        rval = smiapp_write(
 208                sensor, SMIAPP_REG_U16_VT_SYS_CLK_DIV, pll->vt.sys_clk_div);
 209        if (rval < 0)
 210                return rval;
 211
 212        rval = smiapp_write(
 213                sensor, SMIAPP_REG_U16_PRE_PLL_CLK_DIV, pll->pre_pll_clk_div);
 214        if (rval < 0)
 215                return rval;
 216
 217        rval = smiapp_write(
 218                sensor, SMIAPP_REG_U16_PLL_MULTIPLIER, pll->pll_multiplier);
 219        if (rval < 0)
 220                return rval;
 221
 222        /* Lane op clock ratio does not apply here. */
 223        rval = smiapp_write(
 224                sensor, SMIAPP_REG_U32_REQUESTED_LINK_BIT_RATE_MBPS,
 225                DIV_ROUND_UP(pll->op.sys_clk_freq_hz, 1000000 / 256 / 256));
 226        if (rval < 0 || sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0)
 227                return rval;
 228
 229        rval = smiapp_write(
 230                sensor, SMIAPP_REG_U16_OP_PIX_CLK_DIV, pll->op.pix_clk_div);
 231        if (rval < 0)
 232                return rval;
 233
 234        return smiapp_write(
 235                sensor, SMIAPP_REG_U16_OP_SYS_CLK_DIV, pll->op.sys_clk_div);
 236}
 237
 238static int smiapp_pll_try(struct smiapp_sensor *sensor,
 239                          struct smiapp_pll *pll)
 240{
 241        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
 242        struct smiapp_pll_limits lim = {
 243                .min_pre_pll_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_PRE_PLL_CLK_DIV],
 244                .max_pre_pll_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_PRE_PLL_CLK_DIV],
 245                .min_pll_ip_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_PLL_IP_FREQ_HZ],
 246                .max_pll_ip_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_PLL_IP_FREQ_HZ],
 247                .min_pll_multiplier = sensor->limits[SMIAPP_LIMIT_MIN_PLL_MULTIPLIER],
 248                .max_pll_multiplier = sensor->limits[SMIAPP_LIMIT_MAX_PLL_MULTIPLIER],
 249                .min_pll_op_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_PLL_OP_FREQ_HZ],
 250                .max_pll_op_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_PLL_OP_FREQ_HZ],
 251
 252                .op.min_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_DIV],
 253                .op.max_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_DIV],
 254                .op.min_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_DIV],
 255                .op.max_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_DIV],
 256                .op.min_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_FREQ_HZ],
 257                .op.max_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_FREQ_HZ],
 258                .op.min_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_FREQ_HZ],
 259                .op.max_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_FREQ_HZ],
 260
 261                .vt.min_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_VT_SYS_CLK_DIV],
 262                .vt.max_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_VT_SYS_CLK_DIV],
 263                .vt.min_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_VT_PIX_CLK_DIV],
 264                .vt.max_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_VT_PIX_CLK_DIV],
 265                .vt.min_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_VT_SYS_CLK_FREQ_HZ],
 266                .vt.max_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_VT_SYS_CLK_FREQ_HZ],
 267                .vt.min_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_VT_PIX_CLK_FREQ_HZ],
 268                .vt.max_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_VT_PIX_CLK_FREQ_HZ],
 269
 270                .min_line_length_pck_bin = sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN],
 271                .min_line_length_pck = sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK],
 272        };
 273
 274        return smiapp_pll_calculate(&client->dev, &lim, pll);
 275}
 276
 277static int smiapp_pll_update(struct smiapp_sensor *sensor)
 278{
 279        struct smiapp_pll *pll = &sensor->pll;
 280        int rval;
 281
 282        pll->binning_horizontal = sensor->binning_horizontal;
 283        pll->binning_vertical = sensor->binning_vertical;
 284        pll->link_freq =
 285                sensor->link_freq->qmenu_int[sensor->link_freq->val];
 286        pll->scale_m = sensor->scale_m;
 287        pll->bits_per_pixel = sensor->csi_format->compressed;
 288
 289        rval = smiapp_pll_try(sensor, pll);
 290        if (rval < 0)
 291                return rval;
 292
 293        __v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_parray,
 294                                 pll->pixel_rate_pixel_array);
 295        __v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_csi, pll->pixel_rate_csi);
 296
 297        return 0;
 298}
 299
 300
 301/*
 302 *
 303 * V4L2 Controls handling
 304 *
 305 */
 306
 307static void __smiapp_update_exposure_limits(struct smiapp_sensor *sensor)
 308{
 309        struct v4l2_ctrl *ctrl = sensor->exposure;
 310        int max;
 311
 312        max = sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
 313                + sensor->vblank->val
 314                - sensor->limits[SMIAPP_LIMIT_COARSE_INTEGRATION_TIME_MAX_MARGIN];
 315
 316        __v4l2_ctrl_modify_range(ctrl, ctrl->minimum, max, ctrl->step, max);
 317}
 318
 319/*
 320 * Order matters.
 321 *
 322 * 1. Bits-per-pixel, descending.
 323 * 2. Bits-per-pixel compressed, descending.
 324 * 3. Pixel order, same as in pixel_order_str. Formats for all four pixel
 325 *    orders must be defined.
 326 */
 327static const struct smiapp_csi_data_format smiapp_csi_data_formats[] = {
 328        { MEDIA_BUS_FMT_SGRBG16_1X16, 16, 16, SMIAPP_PIXEL_ORDER_GRBG, },
 329        { MEDIA_BUS_FMT_SRGGB16_1X16, 16, 16, SMIAPP_PIXEL_ORDER_RGGB, },
 330        { MEDIA_BUS_FMT_SBGGR16_1X16, 16, 16, SMIAPP_PIXEL_ORDER_BGGR, },
 331        { MEDIA_BUS_FMT_SGBRG16_1X16, 16, 16, SMIAPP_PIXEL_ORDER_GBRG, },
 332        { MEDIA_BUS_FMT_SGRBG14_1X14, 14, 14, SMIAPP_PIXEL_ORDER_GRBG, },
 333        { MEDIA_BUS_FMT_SRGGB14_1X14, 14, 14, SMIAPP_PIXEL_ORDER_RGGB, },
 334        { MEDIA_BUS_FMT_SBGGR14_1X14, 14, 14, SMIAPP_PIXEL_ORDER_BGGR, },
 335        { MEDIA_BUS_FMT_SGBRG14_1X14, 14, 14, SMIAPP_PIXEL_ORDER_GBRG, },
 336        { MEDIA_BUS_FMT_SGRBG12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_GRBG, },
 337        { MEDIA_BUS_FMT_SRGGB12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_RGGB, },
 338        { MEDIA_BUS_FMT_SBGGR12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_BGGR, },
 339        { MEDIA_BUS_FMT_SGBRG12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_GBRG, },
 340        { MEDIA_BUS_FMT_SGRBG10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_GRBG, },
 341        { MEDIA_BUS_FMT_SRGGB10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_RGGB, },
 342        { MEDIA_BUS_FMT_SBGGR10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_BGGR, },
 343        { MEDIA_BUS_FMT_SGBRG10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_GBRG, },
 344        { MEDIA_BUS_FMT_SGRBG10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_GRBG, },
 345        { MEDIA_BUS_FMT_SRGGB10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_RGGB, },
 346        { MEDIA_BUS_FMT_SBGGR10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_BGGR, },
 347        { MEDIA_BUS_FMT_SGBRG10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_GBRG, },
 348        { MEDIA_BUS_FMT_SGRBG8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_GRBG, },
 349        { MEDIA_BUS_FMT_SRGGB8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_RGGB, },
 350        { MEDIA_BUS_FMT_SBGGR8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_BGGR, },
 351        { MEDIA_BUS_FMT_SGBRG8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_GBRG, },
 352};
 353
 354static const char *pixel_order_str[] = { "GRBG", "RGGB", "BGGR", "GBRG" };
 355
 356#define to_csi_format_idx(fmt) (((unsigned long)(fmt)                   \
 357                                 - (unsigned long)smiapp_csi_data_formats) \
 358                                / sizeof(*smiapp_csi_data_formats))
 359
 360static u32 smiapp_pixel_order(struct smiapp_sensor *sensor)
 361{
 362        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
 363        int flip = 0;
 364
 365        if (sensor->hflip) {
 366                if (sensor->hflip->val)
 367                        flip |= SMIAPP_IMAGE_ORIENTATION_HFLIP;
 368
 369                if (sensor->vflip->val)
 370                        flip |= SMIAPP_IMAGE_ORIENTATION_VFLIP;
 371        }
 372
 373        flip ^= sensor->hvflip_inv_mask;
 374
 375        dev_dbg(&client->dev, "flip %d\n", flip);
 376        return sensor->default_pixel_order ^ flip;
 377}
 378
 379static void smiapp_update_mbus_formats(struct smiapp_sensor *sensor)
 380{
 381        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
 382        unsigned int csi_format_idx =
 383                to_csi_format_idx(sensor->csi_format) & ~3;
 384        unsigned int internal_csi_format_idx =
 385                to_csi_format_idx(sensor->internal_csi_format) & ~3;
 386        unsigned int pixel_order = smiapp_pixel_order(sensor);
 387
 388        sensor->mbus_frame_fmts =
 389                sensor->default_mbus_frame_fmts << pixel_order;
 390        sensor->csi_format =
 391                &smiapp_csi_data_formats[csi_format_idx + pixel_order];
 392        sensor->internal_csi_format =
 393                &smiapp_csi_data_formats[internal_csi_format_idx
 394                                         + pixel_order];
 395
 396        BUG_ON(max(internal_csi_format_idx, csi_format_idx) + pixel_order
 397               >= ARRAY_SIZE(smiapp_csi_data_formats));
 398
 399        dev_dbg(&client->dev, "new pixel order %s\n",
 400                pixel_order_str[pixel_order]);
 401}
 402
 403static const char * const smiapp_test_patterns[] = {
 404        "Disabled",
 405        "Solid Colour",
 406        "Eight Vertical Colour Bars",
 407        "Colour Bars With Fade to Grey",
 408        "Pseudorandom Sequence (PN9)",
 409};
 410
 411static int smiapp_set_ctrl(struct v4l2_ctrl *ctrl)
 412{
 413        struct smiapp_sensor *sensor =
 414                container_of(ctrl->handler, struct smiapp_subdev, ctrl_handler)
 415                        ->sensor;
 416        u32 orient = 0;
 417        int exposure;
 418        int rval;
 419
 420        switch (ctrl->id) {
 421        case V4L2_CID_ANALOGUE_GAIN:
 422                return smiapp_write(
 423                        sensor,
 424                        SMIAPP_REG_U16_ANALOGUE_GAIN_CODE_GLOBAL, ctrl->val);
 425
 426        case V4L2_CID_EXPOSURE:
 427                return smiapp_write(
 428                        sensor,
 429                        SMIAPP_REG_U16_COARSE_INTEGRATION_TIME, ctrl->val);
 430
 431        case V4L2_CID_HFLIP:
 432        case V4L2_CID_VFLIP:
 433                if (sensor->streaming)
 434                        return -EBUSY;
 435
 436                if (sensor->hflip->val)
 437                        orient |= SMIAPP_IMAGE_ORIENTATION_HFLIP;
 438
 439                if (sensor->vflip->val)
 440                        orient |= SMIAPP_IMAGE_ORIENTATION_VFLIP;
 441
 442                orient ^= sensor->hvflip_inv_mask;
 443                rval = smiapp_write(sensor, SMIAPP_REG_U8_IMAGE_ORIENTATION,
 444                                    orient);
 445                if (rval < 0)
 446                        return rval;
 447
 448                smiapp_update_mbus_formats(sensor);
 449
 450                return 0;
 451
 452        case V4L2_CID_VBLANK:
 453                exposure = sensor->exposure->val;
 454
 455                __smiapp_update_exposure_limits(sensor);
 456
 457                if (exposure > sensor->exposure->maximum) {
 458                        sensor->exposure->val = sensor->exposure->maximum;
 459                        rval = smiapp_set_ctrl(sensor->exposure);
 460                        if (rval < 0)
 461                                return rval;
 462                }
 463
 464                return smiapp_write(
 465                        sensor, SMIAPP_REG_U16_FRAME_LENGTH_LINES,
 466                        sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
 467                        + ctrl->val);
 468
 469        case V4L2_CID_HBLANK:
 470                return smiapp_write(
 471                        sensor, SMIAPP_REG_U16_LINE_LENGTH_PCK,
 472                        sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width
 473                        + ctrl->val);
 474
 475        case V4L2_CID_LINK_FREQ:
 476                if (sensor->streaming)
 477                        return -EBUSY;
 478
 479                return smiapp_pll_update(sensor);
 480
 481        case V4L2_CID_TEST_PATTERN: {
 482                unsigned int i;
 483
 484                for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
 485                        v4l2_ctrl_activate(
 486                                sensor->test_data[i],
 487                                ctrl->val ==
 488                                V4L2_SMIAPP_TEST_PATTERN_MODE_SOLID_COLOUR);
 489
 490                return smiapp_write(
 491                        sensor, SMIAPP_REG_U16_TEST_PATTERN_MODE, ctrl->val);
 492        }
 493
 494        case V4L2_CID_TEST_PATTERN_RED:
 495                return smiapp_write(
 496                        sensor, SMIAPP_REG_U16_TEST_DATA_RED, ctrl->val);
 497
 498        case V4L2_CID_TEST_PATTERN_GREENR:
 499                return smiapp_write(
 500                        sensor, SMIAPP_REG_U16_TEST_DATA_GREENR, ctrl->val);
 501
 502        case V4L2_CID_TEST_PATTERN_BLUE:
 503                return smiapp_write(
 504                        sensor, SMIAPP_REG_U16_TEST_DATA_BLUE, ctrl->val);
 505
 506        case V4L2_CID_TEST_PATTERN_GREENB:
 507                return smiapp_write(
 508                        sensor, SMIAPP_REG_U16_TEST_DATA_GREENB, ctrl->val);
 509
 510        case V4L2_CID_PIXEL_RATE:
 511                /* For v4l2_ctrl_s_ctrl_int64() used internally. */
 512                return 0;
 513
 514        default:
 515                return -EINVAL;
 516        }
 517}
 518
 519static const struct v4l2_ctrl_ops smiapp_ctrl_ops = {
 520        .s_ctrl = smiapp_set_ctrl,
 521};
 522
 523static int smiapp_init_controls(struct smiapp_sensor *sensor)
 524{
 525        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
 526        int rval;
 527
 528        rval = v4l2_ctrl_handler_init(&sensor->pixel_array->ctrl_handler, 12);
 529        if (rval)
 530                return rval;
 531
 532        sensor->pixel_array->ctrl_handler.lock = &sensor->mutex;
 533
 534        sensor->analog_gain = v4l2_ctrl_new_std(
 535                &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
 536                V4L2_CID_ANALOGUE_GAIN,
 537                sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MIN],
 538                sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MAX],
 539                max(sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_STEP], 1U),
 540                sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MIN]);
 541
 542        /* Exposure limits will be updated soon, use just something here. */
 543        sensor->exposure = v4l2_ctrl_new_std(
 544                &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
 545                V4L2_CID_EXPOSURE, 0, 0, 1, 0);
 546
 547        sensor->hflip = v4l2_ctrl_new_std(
 548                &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
 549                V4L2_CID_HFLIP, 0, 1, 1, 0);
 550        sensor->vflip = v4l2_ctrl_new_std(
 551                &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
 552                V4L2_CID_VFLIP, 0, 1, 1, 0);
 553
 554        sensor->vblank = v4l2_ctrl_new_std(
 555                &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
 556                V4L2_CID_VBLANK, 0, 1, 1, 0);
 557
 558        if (sensor->vblank)
 559                sensor->vblank->flags |= V4L2_CTRL_FLAG_UPDATE;
 560
 561        sensor->hblank = v4l2_ctrl_new_std(
 562                &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
 563                V4L2_CID_HBLANK, 0, 1, 1, 0);
 564
 565        if (sensor->hblank)
 566                sensor->hblank->flags |= V4L2_CTRL_FLAG_UPDATE;
 567
 568        sensor->pixel_rate_parray = v4l2_ctrl_new_std(
 569                &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
 570                V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1);
 571
 572        v4l2_ctrl_new_std_menu_items(&sensor->pixel_array->ctrl_handler,
 573                                     &smiapp_ctrl_ops, V4L2_CID_TEST_PATTERN,
 574                                     ARRAY_SIZE(smiapp_test_patterns) - 1,
 575                                     0, 0, smiapp_test_patterns);
 576
 577        if (sensor->pixel_array->ctrl_handler.error) {
 578                dev_err(&client->dev,
 579                        "pixel array controls initialization failed (%d)\n",
 580                        sensor->pixel_array->ctrl_handler.error);
 581                return sensor->pixel_array->ctrl_handler.error;
 582        }
 583
 584        sensor->pixel_array->sd.ctrl_handler =
 585                &sensor->pixel_array->ctrl_handler;
 586
 587        v4l2_ctrl_cluster(2, &sensor->hflip);
 588
 589        rval = v4l2_ctrl_handler_init(&sensor->src->ctrl_handler, 0);
 590        if (rval)
 591                return rval;
 592
 593        sensor->src->ctrl_handler.lock = &sensor->mutex;
 594
 595        sensor->pixel_rate_csi = v4l2_ctrl_new_std(
 596                &sensor->src->ctrl_handler, &smiapp_ctrl_ops,
 597                V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1);
 598
 599        if (sensor->src->ctrl_handler.error) {
 600                dev_err(&client->dev,
 601                        "src controls initialization failed (%d)\n",
 602                        sensor->src->ctrl_handler.error);
 603                return sensor->src->ctrl_handler.error;
 604        }
 605
 606        sensor->src->sd.ctrl_handler = &sensor->src->ctrl_handler;
 607
 608        return 0;
 609}
 610
 611/*
 612 * For controls that require information on available media bus codes
 613 * and linke frequencies.
 614 */
 615static int smiapp_init_late_controls(struct smiapp_sensor *sensor)
 616{
 617        unsigned long *valid_link_freqs = &sensor->valid_link_freqs[
 618                sensor->csi_format->compressed - sensor->compressed_min_bpp];
 619        unsigned int i;
 620
 621        for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++) {
 622                int max_value = (1 << sensor->csi_format->width) - 1;
 623
 624                sensor->test_data[i] = v4l2_ctrl_new_std(
 625                                &sensor->pixel_array->ctrl_handler,
 626                                &smiapp_ctrl_ops, V4L2_CID_TEST_PATTERN_RED + i,
 627                                0, max_value, 1, max_value);
 628        }
 629
 630        sensor->link_freq = v4l2_ctrl_new_int_menu(
 631                &sensor->src->ctrl_handler, &smiapp_ctrl_ops,
 632                V4L2_CID_LINK_FREQ, __fls(*valid_link_freqs),
 633                __ffs(*valid_link_freqs), sensor->hwcfg->op_sys_clock);
 634
 635        return sensor->src->ctrl_handler.error;
 636}
 637
 638static void smiapp_free_controls(struct smiapp_sensor *sensor)
 639{
 640        unsigned int i;
 641
 642        for (i = 0; i < sensor->ssds_used; i++)
 643                v4l2_ctrl_handler_free(&sensor->ssds[i].ctrl_handler);
 644}
 645
 646static int smiapp_get_limits(struct smiapp_sensor *sensor, int const *limit,
 647                             unsigned int n)
 648{
 649        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
 650        unsigned int i;
 651        u32 val;
 652        int rval;
 653
 654        for (i = 0; i < n; i++) {
 655                rval = smiapp_read(
 656                        sensor, smiapp_reg_limits[limit[i]].addr, &val);
 657                if (rval)
 658                        return rval;
 659                sensor->limits[limit[i]] = val;
 660                dev_dbg(&client->dev, "0x%8.8x \"%s\" = %u, 0x%x\n",
 661                        smiapp_reg_limits[limit[i]].addr,
 662                        smiapp_reg_limits[limit[i]].what, val, val);
 663        }
 664
 665        return 0;
 666}
 667
 668static int smiapp_get_all_limits(struct smiapp_sensor *sensor)
 669{
 670        unsigned int i;
 671        int rval;
 672
 673        for (i = 0; i < SMIAPP_LIMIT_LAST; i++) {
 674                rval = smiapp_get_limits(sensor, &i, 1);
 675                if (rval < 0)
 676                        return rval;
 677        }
 678
 679        if (sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] == 0)
 680                smiapp_replace_limit(sensor, SMIAPP_LIMIT_SCALER_N_MIN, 16);
 681
 682        return 0;
 683}
 684
 685static int smiapp_get_limits_binning(struct smiapp_sensor *sensor)
 686{
 687        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
 688        static u32 const limits[] = {
 689                SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN,
 690                SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES_BIN,
 691                SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN,
 692                SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK_BIN,
 693                SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN,
 694                SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MIN_BIN,
 695                SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MAX_MARGIN_BIN,
 696        };
 697        static u32 const limits_replace[] = {
 698                SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES,
 699                SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES,
 700                SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK,
 701                SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK,
 702                SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK,
 703                SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MIN,
 704                SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MAX_MARGIN,
 705        };
 706        unsigned int i;
 707        int rval;
 708
 709        if (sensor->limits[SMIAPP_LIMIT_BINNING_CAPABILITY] ==
 710            SMIAPP_BINNING_CAPABILITY_NO) {
 711                for (i = 0; i < ARRAY_SIZE(limits); i++)
 712                        sensor->limits[limits[i]] =
 713                                sensor->limits[limits_replace[i]];
 714
 715                return 0;
 716        }
 717
 718        rval = smiapp_get_limits(sensor, limits, ARRAY_SIZE(limits));
 719        if (rval < 0)
 720                return rval;
 721
 722        /*
 723         * Sanity check whether the binning limits are valid. If not,
 724         * use the non-binning ones.
 725         */
 726        if (sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN]
 727            && sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN]
 728            && sensor->limits[SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN])
 729                return 0;
 730
 731        for (i = 0; i < ARRAY_SIZE(limits); i++) {
 732                dev_dbg(&client->dev,
 733                        "replace limit 0x%8.8x \"%s\" = %d, 0x%x\n",
 734                        smiapp_reg_limits[limits[i]].addr,
 735                        smiapp_reg_limits[limits[i]].what,
 736                        sensor->limits[limits_replace[i]],
 737                        sensor->limits[limits_replace[i]]);
 738                sensor->limits[limits[i]] =
 739                        sensor->limits[limits_replace[i]];
 740        }
 741
 742        return 0;
 743}
 744
 745static int smiapp_get_mbus_formats(struct smiapp_sensor *sensor)
 746{
 747        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
 748        struct smiapp_pll *pll = &sensor->pll;
 749        u8 compressed_max_bpp = 0;
 750        unsigned int type, n;
 751        unsigned int i, pixel_order;
 752        int rval;
 753
 754        rval = smiapp_read(
 755                sensor, SMIAPP_REG_U8_DATA_FORMAT_MODEL_TYPE, &type);
 756        if (rval)
 757                return rval;
 758
 759        dev_dbg(&client->dev, "data_format_model_type %d\n", type);
 760
 761        rval = smiapp_read(sensor, SMIAPP_REG_U8_PIXEL_ORDER,
 762                           &pixel_order);
 763        if (rval)
 764                return rval;
 765
 766        if (pixel_order >= ARRAY_SIZE(pixel_order_str)) {
 767                dev_dbg(&client->dev, "bad pixel order %d\n", pixel_order);
 768                return -EINVAL;
 769        }
 770
 771        dev_dbg(&client->dev, "pixel order %d (%s)\n", pixel_order,
 772                pixel_order_str[pixel_order]);
 773
 774        switch (type) {
 775        case SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL:
 776                n = SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL_N;
 777                break;
 778        case SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED:
 779                n = SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED_N;
 780                break;
 781        default:
 782                return -EINVAL;
 783        }
 784
 785        sensor->default_pixel_order = pixel_order;
 786        sensor->mbus_frame_fmts = 0;
 787
 788        for (i = 0; i < n; i++) {
 789                unsigned int fmt, j;
 790
 791                rval = smiapp_read(
 792                        sensor,
 793                        SMIAPP_REG_U16_DATA_FORMAT_DESCRIPTOR(i), &fmt);
 794                if (rval)
 795                        return rval;
 796
 797                dev_dbg(&client->dev, "%u: bpp %u, compressed %u\n",
 798                        i, fmt >> 8, (u8)fmt);
 799
 800                for (j = 0; j < ARRAY_SIZE(smiapp_csi_data_formats); j++) {
 801                        const struct smiapp_csi_data_format *f =
 802                                &smiapp_csi_data_formats[j];
 803
 804                        if (f->pixel_order != SMIAPP_PIXEL_ORDER_GRBG)
 805                                continue;
 806
 807                        if (f->width != fmt >> 8 || f->compressed != (u8)fmt)
 808                                continue;
 809
 810                        dev_dbg(&client->dev, "jolly good! %d\n", j);
 811
 812                        sensor->default_mbus_frame_fmts |= 1 << j;
 813                }
 814        }
 815
 816        /* Figure out which BPP values can be used with which formats. */
 817        pll->binning_horizontal = 1;
 818        pll->binning_vertical = 1;
 819        pll->scale_m = sensor->scale_m;
 820
 821        for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
 822                sensor->compressed_min_bpp =
 823                        min(smiapp_csi_data_formats[i].compressed,
 824                            sensor->compressed_min_bpp);
 825                compressed_max_bpp =
 826                        max(smiapp_csi_data_formats[i].compressed,
 827                            compressed_max_bpp);
 828        }
 829
 830        sensor->valid_link_freqs = devm_kcalloc(
 831                &client->dev,
 832                compressed_max_bpp - sensor->compressed_min_bpp + 1,
 833                sizeof(*sensor->valid_link_freqs), GFP_KERNEL);
 834        if (!sensor->valid_link_freqs)
 835                return -ENOMEM;
 836
 837        for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
 838                const struct smiapp_csi_data_format *f =
 839                        &smiapp_csi_data_formats[i];
 840                unsigned long *valid_link_freqs =
 841                        &sensor->valid_link_freqs[
 842                                f->compressed - sensor->compressed_min_bpp];
 843                unsigned int j;
 844
 845                if (!(sensor->default_mbus_frame_fmts & 1 << i))
 846                        continue;
 847
 848                pll->bits_per_pixel = f->compressed;
 849
 850                for (j = 0; sensor->hwcfg->op_sys_clock[j]; j++) {
 851                        pll->link_freq = sensor->hwcfg->op_sys_clock[j];
 852
 853                        rval = smiapp_pll_try(sensor, pll);
 854                        dev_dbg(&client->dev, "link freq %u Hz, bpp %u %s\n",
 855                                pll->link_freq, pll->bits_per_pixel,
 856                                rval ? "not ok" : "ok");
 857                        if (rval)
 858                                continue;
 859
 860                        set_bit(j, valid_link_freqs);
 861                }
 862
 863                if (!*valid_link_freqs) {
 864                        dev_info(&client->dev,
 865                                 "no valid link frequencies for %u bpp\n",
 866                                 f->compressed);
 867                        sensor->default_mbus_frame_fmts &= ~BIT(i);
 868                        continue;
 869                }
 870
 871                if (!sensor->csi_format
 872                    || f->width > sensor->csi_format->width
 873                    || (f->width == sensor->csi_format->width
 874                        && f->compressed > sensor->csi_format->compressed)) {
 875                        sensor->csi_format = f;
 876                        sensor->internal_csi_format = f;
 877                }
 878        }
 879
 880        if (!sensor->csi_format) {
 881                dev_err(&client->dev, "no supported mbus code found\n");
 882                return -EINVAL;
 883        }
 884
 885        smiapp_update_mbus_formats(sensor);
 886
 887        return 0;
 888}
 889
 890static void smiapp_update_blanking(struct smiapp_sensor *sensor)
 891{
 892        struct v4l2_ctrl *vblank = sensor->vblank;
 893        struct v4l2_ctrl *hblank = sensor->hblank;
 894        int min, max;
 895
 896        min = max_t(int,
 897                    sensor->limits[SMIAPP_LIMIT_MIN_FRAME_BLANKING_LINES],
 898                    sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN] -
 899                    sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height);
 900        max = sensor->limits[SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES_BIN] -
 901                sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height;
 902
 903        __v4l2_ctrl_modify_range(vblank, min, max, vblank->step, min);
 904
 905        min = max_t(int,
 906                    sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN] -
 907                    sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width,
 908                    sensor->limits[SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN]);
 909        max = sensor->limits[SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK_BIN] -
 910                sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width;
 911
 912        __v4l2_ctrl_modify_range(hblank, min, max, hblank->step, min);
 913
 914        __smiapp_update_exposure_limits(sensor);
 915}
 916
 917static int smiapp_update_mode(struct smiapp_sensor *sensor)
 918{
 919        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
 920        unsigned int binning_mode;
 921        int rval;
 922
 923        /* Binning has to be set up here; it affects limits */
 924        if (sensor->binning_horizontal == 1 &&
 925            sensor->binning_vertical == 1) {
 926                binning_mode = 0;
 927        } else {
 928                u8 binning_type =
 929                        (sensor->binning_horizontal << 4)
 930                        | sensor->binning_vertical;
 931
 932                rval = smiapp_write(
 933                        sensor, SMIAPP_REG_U8_BINNING_TYPE, binning_type);
 934                if (rval < 0)
 935                        return rval;
 936
 937                binning_mode = 1;
 938        }
 939        rval = smiapp_write(sensor, SMIAPP_REG_U8_BINNING_MODE, binning_mode);
 940        if (rval < 0)
 941                return rval;
 942
 943        /* Get updated limits due to binning */
 944        rval = smiapp_get_limits_binning(sensor);
 945        if (rval < 0)
 946                return rval;
 947
 948        rval = smiapp_pll_update(sensor);
 949        if (rval < 0)
 950                return rval;
 951
 952        /* Output from pixel array, including blanking */
 953        smiapp_update_blanking(sensor);
 954
 955        dev_dbg(&client->dev, "vblank\t\t%d\n", sensor->vblank->val);
 956        dev_dbg(&client->dev, "hblank\t\t%d\n", sensor->hblank->val);
 957
 958        dev_dbg(&client->dev, "real timeperframe\t100/%d\n",
 959                sensor->pll.pixel_rate_pixel_array /
 960                ((sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width
 961                  + sensor->hblank->val) *
 962                 (sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
 963                  + sensor->vblank->val) / 100));
 964
 965        return 0;
 966}
 967
 968/*
 969 *
 970 * SMIA++ NVM handling
 971 *
 972 */
 973static int smiapp_read_nvm(struct smiapp_sensor *sensor,
 974                           unsigned char *nvm)
 975{
 976        u32 i, s, p, np, v;
 977        int rval = 0, rval2;
 978
 979        np = sensor->nvm_size / SMIAPP_NVM_PAGE_SIZE;
 980        for (p = 0; p < np; p++) {
 981                rval = smiapp_write(
 982                        sensor,
 983                        SMIAPP_REG_U8_DATA_TRANSFER_IF_1_PAGE_SELECT, p);
 984                if (rval)
 985                        goto out;
 986
 987                rval = smiapp_write(sensor,
 988                                    SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL,
 989                                    SMIAPP_DATA_TRANSFER_IF_1_CTRL_EN |
 990                                    SMIAPP_DATA_TRANSFER_IF_1_CTRL_RD_EN);
 991                if (rval)
 992                        goto out;
 993
 994                for (i = 1000; i > 0; i--) {
 995                        rval = smiapp_read(
 996                                sensor,
 997                                SMIAPP_REG_U8_DATA_TRANSFER_IF_1_STATUS, &s);
 998
 999                        if (rval)
1000                                goto out;
1001
1002                        if (s & SMIAPP_DATA_TRANSFER_IF_1_STATUS_RD_READY)
1003                                break;
1004
1005                }
1006                if (!i) {
1007                        rval = -ETIMEDOUT;
1008                        goto out;
1009                }
1010
1011                for (i = 0; i < SMIAPP_NVM_PAGE_SIZE; i++) {
1012                        rval = smiapp_read(
1013                                sensor,
1014                                SMIAPP_REG_U8_DATA_TRANSFER_IF_1_DATA_0 + i,
1015                                &v);
1016                        if (rval)
1017                                goto out;
1018
1019                        *nvm++ = v;
1020                }
1021        }
1022
1023out:
1024        rval2 = smiapp_write(sensor, SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL, 0);
1025        if (rval < 0)
1026                return rval;
1027        else
1028                return rval2;
1029}
1030
1031/*
1032 *
1033 * SMIA++ CCI address control
1034 *
1035 */
1036static int smiapp_change_cci_addr(struct smiapp_sensor *sensor)
1037{
1038        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1039        int rval;
1040        u32 val;
1041
1042        client->addr = sensor->hwcfg->i2c_addr_dfl;
1043
1044        rval = smiapp_write(sensor,
1045                            SMIAPP_REG_U8_CCI_ADDRESS_CONTROL,
1046                            sensor->hwcfg->i2c_addr_alt << 1);
1047        if (rval)
1048                return rval;
1049
1050        client->addr = sensor->hwcfg->i2c_addr_alt;
1051
1052        /* verify addr change went ok */
1053        rval = smiapp_read(sensor, SMIAPP_REG_U8_CCI_ADDRESS_CONTROL, &val);
1054        if (rval)
1055                return rval;
1056
1057        if (val != sensor->hwcfg->i2c_addr_alt << 1)
1058                return -ENODEV;
1059
1060        return 0;
1061}
1062
1063/*
1064 *
1065 * SMIA++ Mode Control
1066 *
1067 */
1068static int smiapp_setup_flash_strobe(struct smiapp_sensor *sensor)
1069{
1070        struct smiapp_flash_strobe_parms *strobe_setup;
1071        unsigned int ext_freq = sensor->hwcfg->ext_clk;
1072        u32 tmp;
1073        u32 strobe_adjustment;
1074        u32 strobe_width_high_rs;
1075        int rval;
1076
1077        strobe_setup = sensor->hwcfg->strobe_setup;
1078
1079        /*
1080         * How to calculate registers related to strobe length. Please
1081         * do not change, or if you do at least know what you're
1082         * doing. :-)
1083         *
1084         * Sakari Ailus <sakari.ailus@iki.fi> 2010-10-25
1085         *
1086         * flash_strobe_length [us] / 10^6 = (tFlash_strobe_width_ctrl
1087         *      / EXTCLK freq [Hz]) * flash_strobe_adjustment
1088         *
1089         * tFlash_strobe_width_ctrl E N, [1 - 0xffff]
1090         * flash_strobe_adjustment E N, [1 - 0xff]
1091         *
1092         * The formula above is written as below to keep it on one
1093         * line:
1094         *
1095         * l / 10^6 = w / e * a
1096         *
1097         * Let's mark w * a by x:
1098         *
1099         * x = w * a
1100         *
1101         * Thus, we get:
1102         *
1103         * x = l * e / 10^6
1104         *
1105         * The strobe width must be at least as long as requested,
1106         * thus rounding upwards is needed.
1107         *
1108         * x = (l * e + 10^6 - 1) / 10^6
1109         * -----------------------------
1110         *
1111         * Maximum possible accuracy is wanted at all times. Thus keep
1112         * a as small as possible.
1113         *
1114         * Calculate a, assuming maximum w, with rounding upwards:
1115         *
1116         * a = (x + (2^16 - 1) - 1) / (2^16 - 1)
1117         * -------------------------------------
1118         *
1119         * Thus, we also get w, with that a, with rounding upwards:
1120         *
1121         * w = (x + a - 1) / a
1122         * -------------------
1123         *
1124         * To get limits:
1125         *
1126         * x E [1, (2^16 - 1) * (2^8 - 1)]
1127         *
1128         * Substituting maximum x to the original formula (with rounding),
1129         * the maximum l is thus
1130         *
1131         * (2^16 - 1) * (2^8 - 1) * 10^6 = l * e + 10^6 - 1
1132         *
1133         * l = (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / e
1134         * --------------------------------------------------
1135         *
1136         * flash_strobe_length must be clamped between 1 and
1137         * (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / EXTCLK freq.
1138         *
1139         * Then,
1140         *
1141         * flash_strobe_adjustment = ((flash_strobe_length *
1142         *      EXTCLK freq + 10^6 - 1) / 10^6 + (2^16 - 1) - 1) / (2^16 - 1)
1143         *
1144         * tFlash_strobe_width_ctrl = ((flash_strobe_length *
1145         *      EXTCLK freq + 10^6 - 1) / 10^6 +
1146         *      flash_strobe_adjustment - 1) / flash_strobe_adjustment
1147         */
1148        tmp = div_u64(1000000ULL * ((1 << 16) - 1) * ((1 << 8) - 1) -
1149                      1000000 + 1, ext_freq);
1150        strobe_setup->strobe_width_high_us =
1151                clamp_t(u32, strobe_setup->strobe_width_high_us, 1, tmp);
1152
1153        tmp = div_u64(((u64)strobe_setup->strobe_width_high_us * (u64)ext_freq +
1154                        1000000 - 1), 1000000ULL);
1155        strobe_adjustment = (tmp + (1 << 16) - 1 - 1) / ((1 << 16) - 1);
1156        strobe_width_high_rs = (tmp + strobe_adjustment - 1) /
1157                                strobe_adjustment;
1158
1159        rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_MODE_RS,
1160                            strobe_setup->mode);
1161        if (rval < 0)
1162                goto out;
1163
1164        rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_STROBE_ADJUSTMENT,
1165                            strobe_adjustment);
1166        if (rval < 0)
1167                goto out;
1168
1169        rval = smiapp_write(
1170                sensor, SMIAPP_REG_U16_TFLASH_STROBE_WIDTH_HIGH_RS_CTRL,
1171                strobe_width_high_rs);
1172        if (rval < 0)
1173                goto out;
1174
1175        rval = smiapp_write(sensor, SMIAPP_REG_U16_TFLASH_STROBE_DELAY_RS_CTRL,
1176                            strobe_setup->strobe_delay);
1177        if (rval < 0)
1178                goto out;
1179
1180        rval = smiapp_write(sensor, SMIAPP_REG_U16_FLASH_STROBE_START_POINT,
1181                            strobe_setup->stobe_start_point);
1182        if (rval < 0)
1183                goto out;
1184
1185        rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_TRIGGER_RS,
1186                            strobe_setup->trigger);
1187
1188out:
1189        sensor->hwcfg->strobe_setup->trigger = 0;
1190
1191        return rval;
1192}
1193
1194/* -----------------------------------------------------------------------------
1195 * Power management
1196 */
1197
1198static int smiapp_power_on(struct device *dev)
1199{
1200        struct i2c_client *client = to_i2c_client(dev);
1201        struct v4l2_subdev *subdev = i2c_get_clientdata(client);
1202        struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1203        /*
1204         * The sub-device related to the I2C device is always the
1205         * source one, i.e. ssds[0].
1206         */
1207        struct smiapp_sensor *sensor =
1208                container_of(ssd, struct smiapp_sensor, ssds[0]);
1209        unsigned int sleep;
1210        int rval;
1211
1212        rval = regulator_enable(sensor->vana);
1213        if (rval) {
1214                dev_err(&client->dev, "failed to enable vana regulator\n");
1215                return rval;
1216        }
1217        usleep_range(1000, 1000);
1218
1219        rval = clk_prepare_enable(sensor->ext_clk);
1220        if (rval < 0) {
1221                dev_dbg(&client->dev, "failed to enable xclk\n");
1222                goto out_xclk_fail;
1223        }
1224        usleep_range(1000, 1000);
1225
1226        gpiod_set_value(sensor->xshutdown, 1);
1227
1228        sleep = SMIAPP_RESET_DELAY(sensor->hwcfg->ext_clk);
1229        usleep_range(sleep, sleep);
1230
1231        mutex_lock(&sensor->mutex);
1232
1233        sensor->active = true;
1234
1235        /*
1236         * Failures to respond to the address change command have been noticed.
1237         * Those failures seem to be caused by the sensor requiring a longer
1238         * boot time than advertised. An additional 10ms delay seems to work
1239         * around the issue, but the SMIA++ I2C write retry hack makes the delay
1240         * unnecessary. The failures need to be investigated to find a proper
1241         * fix, and a delay will likely need to be added here if the I2C write
1242         * retry hack is reverted before the root cause of the boot time issue
1243         * is found.
1244         */
1245
1246        if (sensor->hwcfg->i2c_addr_alt) {
1247                rval = smiapp_change_cci_addr(sensor);
1248                if (rval) {
1249                        dev_err(&client->dev, "cci address change error\n");
1250                        goto out_cci_addr_fail;
1251                }
1252        }
1253
1254        rval = smiapp_write(sensor, SMIAPP_REG_U8_SOFTWARE_RESET,
1255                            SMIAPP_SOFTWARE_RESET);
1256        if (rval < 0) {
1257                dev_err(&client->dev, "software reset failed\n");
1258                goto out_cci_addr_fail;
1259        }
1260
1261        if (sensor->hwcfg->i2c_addr_alt) {
1262                rval = smiapp_change_cci_addr(sensor);
1263                if (rval) {
1264                        dev_err(&client->dev, "cci address change error\n");
1265                        goto out_cci_addr_fail;
1266                }
1267        }
1268
1269        rval = smiapp_write(sensor, SMIAPP_REG_U16_COMPRESSION_MODE,
1270                            SMIAPP_COMPRESSION_MODE_SIMPLE_PREDICTOR);
1271        if (rval) {
1272                dev_err(&client->dev, "compression mode set failed\n");
1273                goto out_cci_addr_fail;
1274        }
1275
1276        rval = smiapp_write(
1277                sensor, SMIAPP_REG_U16_EXTCLK_FREQUENCY_MHZ,
1278                sensor->hwcfg->ext_clk / (1000000 / (1 << 8)));
1279        if (rval) {
1280                dev_err(&client->dev, "extclk frequency set failed\n");
1281                goto out_cci_addr_fail;
1282        }
1283
1284        rval = smiapp_write(sensor, SMIAPP_REG_U8_CSI_LANE_MODE,
1285                            sensor->hwcfg->lanes - 1);
1286        if (rval) {
1287                dev_err(&client->dev, "csi lane mode set failed\n");
1288                goto out_cci_addr_fail;
1289        }
1290
1291        rval = smiapp_write(sensor, SMIAPP_REG_U8_FAST_STANDBY_CTRL,
1292                            SMIAPP_FAST_STANDBY_CTRL_IMMEDIATE);
1293        if (rval) {
1294                dev_err(&client->dev, "fast standby set failed\n");
1295                goto out_cci_addr_fail;
1296        }
1297
1298        rval = smiapp_write(sensor, SMIAPP_REG_U8_CSI_SIGNALLING_MODE,
1299                            sensor->hwcfg->csi_signalling_mode);
1300        if (rval) {
1301                dev_err(&client->dev, "csi signalling mode set failed\n");
1302                goto out_cci_addr_fail;
1303        }
1304
1305        /* DPHY control done by sensor based on requested link rate */
1306        rval = smiapp_write(sensor, SMIAPP_REG_U8_DPHY_CTRL,
1307                            SMIAPP_DPHY_CTRL_UI);
1308        if (rval < 0)
1309                goto out_cci_addr_fail;
1310
1311        rval = smiapp_call_quirk(sensor, post_poweron);
1312        if (rval) {
1313                dev_err(&client->dev, "post_poweron quirks failed\n");
1314                goto out_cci_addr_fail;
1315        }
1316
1317        /* Are we still initialising...? If not, proceed with control setup. */
1318        if (sensor->pixel_array) {
1319                rval = __v4l2_ctrl_handler_setup(
1320                        &sensor->pixel_array->ctrl_handler);
1321                if (rval)
1322                        goto out_cci_addr_fail;
1323
1324                rval = __v4l2_ctrl_handler_setup(&sensor->src->ctrl_handler);
1325                if (rval)
1326                        goto out_cci_addr_fail;
1327
1328                rval = smiapp_update_mode(sensor);
1329                if (rval < 0)
1330                        goto out_cci_addr_fail;
1331        }
1332
1333        mutex_unlock(&sensor->mutex);
1334
1335        return 0;
1336
1337out_cci_addr_fail:
1338        mutex_unlock(&sensor->mutex);
1339        gpiod_set_value(sensor->xshutdown, 0);
1340        clk_disable_unprepare(sensor->ext_clk);
1341
1342out_xclk_fail:
1343        regulator_disable(sensor->vana);
1344
1345        return rval;
1346}
1347
1348static int smiapp_power_off(struct device *dev)
1349{
1350        struct i2c_client *client = to_i2c_client(dev);
1351        struct v4l2_subdev *subdev = i2c_get_clientdata(client);
1352        struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1353        struct smiapp_sensor *sensor =
1354                container_of(ssd, struct smiapp_sensor, ssds[0]);
1355
1356        mutex_lock(&sensor->mutex);
1357
1358        /*
1359         * Currently power/clock to lens are enable/disabled separately
1360         * but they are essentially the same signals. So if the sensor is
1361         * powered off while the lens is powered on the sensor does not
1362         * really see a power off and next time the cci address change
1363         * will fail. So do a soft reset explicitly here.
1364         */
1365        if (sensor->hwcfg->i2c_addr_alt)
1366                smiapp_write(sensor,
1367                             SMIAPP_REG_U8_SOFTWARE_RESET,
1368                             SMIAPP_SOFTWARE_RESET);
1369
1370        sensor->active = false;
1371
1372        mutex_unlock(&sensor->mutex);
1373
1374        gpiod_set_value(sensor->xshutdown, 0);
1375        clk_disable_unprepare(sensor->ext_clk);
1376        usleep_range(5000, 5000);
1377        regulator_disable(sensor->vana);
1378        sensor->streaming = false;
1379
1380        return 0;
1381}
1382
1383/* -----------------------------------------------------------------------------
1384 * Video stream management
1385 */
1386
1387static int smiapp_start_streaming(struct smiapp_sensor *sensor)
1388{
1389        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1390        int rval;
1391
1392        mutex_lock(&sensor->mutex);
1393
1394        rval = smiapp_write(sensor, SMIAPP_REG_U16_CSI_DATA_FORMAT,
1395                            (sensor->csi_format->width << 8) |
1396                            sensor->csi_format->compressed);
1397        if (rval)
1398                goto out;
1399
1400        rval = smiapp_pll_configure(sensor);
1401        if (rval)
1402                goto out;
1403
1404        /* Analog crop start coordinates */
1405        rval = smiapp_write(sensor, SMIAPP_REG_U16_X_ADDR_START,
1406                            sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].left);
1407        if (rval < 0)
1408                goto out;
1409
1410        rval = smiapp_write(sensor, SMIAPP_REG_U16_Y_ADDR_START,
1411                            sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].top);
1412        if (rval < 0)
1413                goto out;
1414
1415        /* Analog crop end coordinates */
1416        rval = smiapp_write(
1417                sensor, SMIAPP_REG_U16_X_ADDR_END,
1418                sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].left
1419                + sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width - 1);
1420        if (rval < 0)
1421                goto out;
1422
1423        rval = smiapp_write(
1424                sensor, SMIAPP_REG_U16_Y_ADDR_END,
1425                sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].top
1426                + sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height - 1);
1427        if (rval < 0)
1428                goto out;
1429
1430        /*
1431         * Output from pixel array, including blanking, is set using
1432         * controls below. No need to set here.
1433         */
1434
1435        /* Digital crop */
1436        if (sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
1437            == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
1438                rval = smiapp_write(
1439                        sensor, SMIAPP_REG_U16_DIGITAL_CROP_X_OFFSET,
1440                        sensor->scaler->crop[SMIAPP_PAD_SINK].left);
1441                if (rval < 0)
1442                        goto out;
1443
1444                rval = smiapp_write(
1445                        sensor, SMIAPP_REG_U16_DIGITAL_CROP_Y_OFFSET,
1446                        sensor->scaler->crop[SMIAPP_PAD_SINK].top);
1447                if (rval < 0)
1448                        goto out;
1449
1450                rval = smiapp_write(
1451                        sensor, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_WIDTH,
1452                        sensor->scaler->crop[SMIAPP_PAD_SINK].width);
1453                if (rval < 0)
1454                        goto out;
1455
1456                rval = smiapp_write(
1457                        sensor, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_HEIGHT,
1458                        sensor->scaler->crop[SMIAPP_PAD_SINK].height);
1459                if (rval < 0)
1460                        goto out;
1461        }
1462
1463        /* Scaling */
1464        if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
1465            != SMIAPP_SCALING_CAPABILITY_NONE) {
1466                rval = smiapp_write(sensor, SMIAPP_REG_U16_SCALING_MODE,
1467                                    sensor->scaling_mode);
1468                if (rval < 0)
1469                        goto out;
1470
1471                rval = smiapp_write(sensor, SMIAPP_REG_U16_SCALE_M,
1472                                    sensor->scale_m);
1473                if (rval < 0)
1474                        goto out;
1475        }
1476
1477        /* Output size from sensor */
1478        rval = smiapp_write(sensor, SMIAPP_REG_U16_X_OUTPUT_SIZE,
1479                            sensor->src->crop[SMIAPP_PAD_SRC].width);
1480        if (rval < 0)
1481                goto out;
1482        rval = smiapp_write(sensor, SMIAPP_REG_U16_Y_OUTPUT_SIZE,
1483                            sensor->src->crop[SMIAPP_PAD_SRC].height);
1484        if (rval < 0)
1485                goto out;
1486
1487        if ((sensor->limits[SMIAPP_LIMIT_FLASH_MODE_CAPABILITY] &
1488             (SMIAPP_FLASH_MODE_CAPABILITY_SINGLE_STROBE |
1489              SMIAPP_FLASH_MODE_CAPABILITY_MULTIPLE_STROBE)) &&
1490            sensor->hwcfg->strobe_setup != NULL &&
1491            sensor->hwcfg->strobe_setup->trigger != 0) {
1492                rval = smiapp_setup_flash_strobe(sensor);
1493                if (rval)
1494                        goto out;
1495        }
1496
1497        rval = smiapp_call_quirk(sensor, pre_streamon);
1498        if (rval) {
1499                dev_err(&client->dev, "pre_streamon quirks failed\n");
1500                goto out;
1501        }
1502
1503        rval = smiapp_write(sensor, SMIAPP_REG_U8_MODE_SELECT,
1504                            SMIAPP_MODE_SELECT_STREAMING);
1505
1506out:
1507        mutex_unlock(&sensor->mutex);
1508
1509        return rval;
1510}
1511
1512static int smiapp_stop_streaming(struct smiapp_sensor *sensor)
1513{
1514        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1515        int rval;
1516
1517        mutex_lock(&sensor->mutex);
1518        rval = smiapp_write(sensor, SMIAPP_REG_U8_MODE_SELECT,
1519                            SMIAPP_MODE_SELECT_SOFTWARE_STANDBY);
1520        if (rval)
1521                goto out;
1522
1523        rval = smiapp_call_quirk(sensor, post_streamoff);
1524        if (rval)
1525                dev_err(&client->dev, "post_streamoff quirks failed\n");
1526
1527out:
1528        mutex_unlock(&sensor->mutex);
1529        return rval;
1530}
1531
1532/* -----------------------------------------------------------------------------
1533 * V4L2 subdev video operations
1534 */
1535
1536static int smiapp_set_stream(struct v4l2_subdev *subdev, int enable)
1537{
1538        struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1539        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1540        int rval;
1541
1542        if (sensor->streaming == enable)
1543                return 0;
1544
1545        if (enable) {
1546                rval = pm_runtime_get_sync(&client->dev);
1547                if (rval < 0) {
1548                        if (rval != -EBUSY && rval != -EAGAIN)
1549                                pm_runtime_set_active(&client->dev);
1550                        pm_runtime_put(&client->dev);
1551                        return rval;
1552                }
1553
1554                sensor->streaming = true;
1555
1556                rval = smiapp_start_streaming(sensor);
1557                if (rval < 0)
1558                        sensor->streaming = false;
1559        } else {
1560                rval = smiapp_stop_streaming(sensor);
1561                sensor->streaming = false;
1562                pm_runtime_mark_last_busy(&client->dev);
1563                pm_runtime_put_autosuspend(&client->dev);
1564        }
1565
1566        return rval;
1567}
1568
1569static int smiapp_enum_mbus_code(struct v4l2_subdev *subdev,
1570                                 struct v4l2_subdev_pad_config *cfg,
1571                                 struct v4l2_subdev_mbus_code_enum *code)
1572{
1573        struct i2c_client *client = v4l2_get_subdevdata(subdev);
1574        struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1575        unsigned int i;
1576        int idx = -1;
1577        int rval = -EINVAL;
1578
1579        mutex_lock(&sensor->mutex);
1580
1581        dev_err(&client->dev, "subdev %s, pad %d, index %d\n",
1582                subdev->name, code->pad, code->index);
1583
1584        if (subdev != &sensor->src->sd || code->pad != SMIAPP_PAD_SRC) {
1585                if (code->index)
1586                        goto out;
1587
1588                code->code = sensor->internal_csi_format->code;
1589                rval = 0;
1590                goto out;
1591        }
1592
1593        for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
1594                if (sensor->mbus_frame_fmts & (1 << i))
1595                        idx++;
1596
1597                if (idx == code->index) {
1598                        code->code = smiapp_csi_data_formats[i].code;
1599                        dev_err(&client->dev, "found index %d, i %d, code %x\n",
1600                                code->index, i, code->code);
1601                        rval = 0;
1602                        break;
1603                }
1604        }
1605
1606out:
1607        mutex_unlock(&sensor->mutex);
1608
1609        return rval;
1610}
1611
1612static u32 __smiapp_get_mbus_code(struct v4l2_subdev *subdev,
1613                                  unsigned int pad)
1614{
1615        struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1616
1617        if (subdev == &sensor->src->sd && pad == SMIAPP_PAD_SRC)
1618                return sensor->csi_format->code;
1619        else
1620                return sensor->internal_csi_format->code;
1621}
1622
1623static int __smiapp_get_format(struct v4l2_subdev *subdev,
1624                               struct v4l2_subdev_pad_config *cfg,
1625                               struct v4l2_subdev_format *fmt)
1626{
1627        struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1628
1629        if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) {
1630                fmt->format = *v4l2_subdev_get_try_format(subdev, cfg,
1631                                                          fmt->pad);
1632        } else {
1633                struct v4l2_rect *r;
1634
1635                if (fmt->pad == ssd->source_pad)
1636                        r = &ssd->crop[ssd->source_pad];
1637                else
1638                        r = &ssd->sink_fmt;
1639
1640                fmt->format.code = __smiapp_get_mbus_code(subdev, fmt->pad);
1641                fmt->format.width = r->width;
1642                fmt->format.height = r->height;
1643                fmt->format.field = V4L2_FIELD_NONE;
1644        }
1645
1646        return 0;
1647}
1648
1649static int smiapp_get_format(struct v4l2_subdev *subdev,
1650                             struct v4l2_subdev_pad_config *cfg,
1651                             struct v4l2_subdev_format *fmt)
1652{
1653        struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1654        int rval;
1655
1656        mutex_lock(&sensor->mutex);
1657        rval = __smiapp_get_format(subdev, cfg, fmt);
1658        mutex_unlock(&sensor->mutex);
1659
1660        return rval;
1661}
1662
1663static void smiapp_get_crop_compose(struct v4l2_subdev *subdev,
1664                                    struct v4l2_subdev_pad_config *cfg,
1665                                    struct v4l2_rect **crops,
1666                                    struct v4l2_rect **comps, int which)
1667{
1668        struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1669        unsigned int i;
1670
1671        if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1672                if (crops)
1673                        for (i = 0; i < subdev->entity.num_pads; i++)
1674                                crops[i] = &ssd->crop[i];
1675                if (comps)
1676                        *comps = &ssd->compose;
1677        } else {
1678                if (crops) {
1679                        for (i = 0; i < subdev->entity.num_pads; i++) {
1680                                crops[i] = v4l2_subdev_get_try_crop(subdev, cfg, i);
1681                                BUG_ON(!crops[i]);
1682                        }
1683                }
1684                if (comps) {
1685                        *comps = v4l2_subdev_get_try_compose(subdev, cfg,
1686                                                             SMIAPP_PAD_SINK);
1687                        BUG_ON(!*comps);
1688                }
1689        }
1690}
1691
1692/* Changes require propagation only on sink pad. */
1693static void smiapp_propagate(struct v4l2_subdev *subdev,
1694                             struct v4l2_subdev_pad_config *cfg, int which,
1695                             int target)
1696{
1697        struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1698        struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1699        struct v4l2_rect *comp, *crops[SMIAPP_PADS];
1700
1701        smiapp_get_crop_compose(subdev, cfg, crops, &comp, which);
1702
1703        switch (target) {
1704        case V4L2_SEL_TGT_CROP:
1705                comp->width = crops[SMIAPP_PAD_SINK]->width;
1706                comp->height = crops[SMIAPP_PAD_SINK]->height;
1707                if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1708                        if (ssd == sensor->scaler) {
1709                                sensor->scale_m =
1710                                        sensor->limits[
1711                                                SMIAPP_LIMIT_SCALER_N_MIN];
1712                                sensor->scaling_mode =
1713                                        SMIAPP_SCALING_MODE_NONE;
1714                        } else if (ssd == sensor->binner) {
1715                                sensor->binning_horizontal = 1;
1716                                sensor->binning_vertical = 1;
1717                        }
1718                }
1719                /* Fall through */
1720        case V4L2_SEL_TGT_COMPOSE:
1721                *crops[SMIAPP_PAD_SRC] = *comp;
1722                break;
1723        default:
1724                BUG();
1725        }
1726}
1727
1728static const struct smiapp_csi_data_format
1729*smiapp_validate_csi_data_format(struct smiapp_sensor *sensor, u32 code)
1730{
1731        unsigned int i;
1732
1733        for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
1734                if (sensor->mbus_frame_fmts & (1 << i)
1735                    && smiapp_csi_data_formats[i].code == code)
1736                        return &smiapp_csi_data_formats[i];
1737        }
1738
1739        return sensor->csi_format;
1740}
1741
1742static int smiapp_set_format_source(struct v4l2_subdev *subdev,
1743                                    struct v4l2_subdev_pad_config *cfg,
1744                                    struct v4l2_subdev_format *fmt)
1745{
1746        struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1747        const struct smiapp_csi_data_format *csi_format,
1748                *old_csi_format = sensor->csi_format;
1749        unsigned long *valid_link_freqs;
1750        u32 code = fmt->format.code;
1751        unsigned int i;
1752        int rval;
1753
1754        rval = __smiapp_get_format(subdev, cfg, fmt);
1755        if (rval)
1756                return rval;
1757
1758        /*
1759         * Media bus code is changeable on src subdev's source pad. On
1760         * other source pads we just get format here.
1761         */
1762        if (subdev != &sensor->src->sd)
1763                return 0;
1764
1765        csi_format = smiapp_validate_csi_data_format(sensor, code);
1766
1767        fmt->format.code = csi_format->code;
1768
1769        if (fmt->which != V4L2_SUBDEV_FORMAT_ACTIVE)
1770                return 0;
1771
1772        sensor->csi_format = csi_format;
1773
1774        if (csi_format->width != old_csi_format->width)
1775                for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
1776                        __v4l2_ctrl_modify_range(
1777                                sensor->test_data[i], 0,
1778                                (1 << csi_format->width) - 1, 1, 0);
1779
1780        if (csi_format->compressed == old_csi_format->compressed)
1781                return 0;
1782
1783        valid_link_freqs =
1784                &sensor->valid_link_freqs[sensor->csi_format->compressed
1785                                          - sensor->compressed_min_bpp];
1786
1787        __v4l2_ctrl_modify_range(
1788                sensor->link_freq, 0,
1789                __fls(*valid_link_freqs), ~*valid_link_freqs,
1790                __ffs(*valid_link_freqs));
1791
1792        return smiapp_pll_update(sensor);
1793}
1794
1795static int smiapp_set_format(struct v4l2_subdev *subdev,
1796                             struct v4l2_subdev_pad_config *cfg,
1797                             struct v4l2_subdev_format *fmt)
1798{
1799        struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1800        struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1801        struct v4l2_rect *crops[SMIAPP_PADS];
1802
1803        mutex_lock(&sensor->mutex);
1804
1805        if (fmt->pad == ssd->source_pad) {
1806                int rval;
1807
1808                rval = smiapp_set_format_source(subdev, cfg, fmt);
1809
1810                mutex_unlock(&sensor->mutex);
1811
1812                return rval;
1813        }
1814
1815        /* Sink pad. Width and height are changeable here. */
1816        fmt->format.code = __smiapp_get_mbus_code(subdev, fmt->pad);
1817        fmt->format.width &= ~1;
1818        fmt->format.height &= ~1;
1819        fmt->format.field = V4L2_FIELD_NONE;
1820
1821        fmt->format.width =
1822                clamp(fmt->format.width,
1823                      sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE],
1824                      sensor->limits[SMIAPP_LIMIT_MAX_X_OUTPUT_SIZE]);
1825        fmt->format.height =
1826                clamp(fmt->format.height,
1827                      sensor->limits[SMIAPP_LIMIT_MIN_Y_OUTPUT_SIZE],
1828                      sensor->limits[SMIAPP_LIMIT_MAX_Y_OUTPUT_SIZE]);
1829
1830        smiapp_get_crop_compose(subdev, cfg, crops, NULL, fmt->which);
1831
1832        crops[ssd->sink_pad]->left = 0;
1833        crops[ssd->sink_pad]->top = 0;
1834        crops[ssd->sink_pad]->width = fmt->format.width;
1835        crops[ssd->sink_pad]->height = fmt->format.height;
1836        if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE)
1837                ssd->sink_fmt = *crops[ssd->sink_pad];
1838        smiapp_propagate(subdev, cfg, fmt->which,
1839                         V4L2_SEL_TGT_CROP);
1840
1841        mutex_unlock(&sensor->mutex);
1842
1843        return 0;
1844}
1845
1846/*
1847 * Calculate goodness of scaled image size compared to expected image
1848 * size and flags provided.
1849 */
1850#define SCALING_GOODNESS                100000
1851#define SCALING_GOODNESS_EXTREME        100000000
1852static int scaling_goodness(struct v4l2_subdev *subdev, int w, int ask_w,
1853                            int h, int ask_h, u32 flags)
1854{
1855        struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1856        struct i2c_client *client = v4l2_get_subdevdata(subdev);
1857        int val = 0;
1858
1859        w &= ~1;
1860        ask_w &= ~1;
1861        h &= ~1;
1862        ask_h &= ~1;
1863
1864        if (flags & V4L2_SEL_FLAG_GE) {
1865                if (w < ask_w)
1866                        val -= SCALING_GOODNESS;
1867                if (h < ask_h)
1868                        val -= SCALING_GOODNESS;
1869        }
1870
1871        if (flags & V4L2_SEL_FLAG_LE) {
1872                if (w > ask_w)
1873                        val -= SCALING_GOODNESS;
1874                if (h > ask_h)
1875                        val -= SCALING_GOODNESS;
1876        }
1877
1878        val -= abs(w - ask_w);
1879        val -= abs(h - ask_h);
1880
1881        if (w < sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE])
1882                val -= SCALING_GOODNESS_EXTREME;
1883
1884        dev_dbg(&client->dev, "w %d ask_w %d h %d ask_h %d goodness %d\n",
1885                w, ask_w, h, ask_h, val);
1886
1887        return val;
1888}
1889
1890static void smiapp_set_compose_binner(struct v4l2_subdev *subdev,
1891                                      struct v4l2_subdev_pad_config *cfg,
1892                                      struct v4l2_subdev_selection *sel,
1893                                      struct v4l2_rect **crops,
1894                                      struct v4l2_rect *comp)
1895{
1896        struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1897        unsigned int i;
1898        unsigned int binh = 1, binv = 1;
1899        int best = scaling_goodness(
1900                subdev,
1901                crops[SMIAPP_PAD_SINK]->width, sel->r.width,
1902                crops[SMIAPP_PAD_SINK]->height, sel->r.height, sel->flags);
1903
1904        for (i = 0; i < sensor->nbinning_subtypes; i++) {
1905                int this = scaling_goodness(
1906                        subdev,
1907                        crops[SMIAPP_PAD_SINK]->width
1908                        / sensor->binning_subtypes[i].horizontal,
1909                        sel->r.width,
1910                        crops[SMIAPP_PAD_SINK]->height
1911                        / sensor->binning_subtypes[i].vertical,
1912                        sel->r.height, sel->flags);
1913
1914                if (this > best) {
1915                        binh = sensor->binning_subtypes[i].horizontal;
1916                        binv = sensor->binning_subtypes[i].vertical;
1917                        best = this;
1918                }
1919        }
1920        if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1921                sensor->binning_vertical = binv;
1922                sensor->binning_horizontal = binh;
1923        }
1924
1925        sel->r.width = (crops[SMIAPP_PAD_SINK]->width / binh) & ~1;
1926        sel->r.height = (crops[SMIAPP_PAD_SINK]->height / binv) & ~1;
1927}
1928
1929/*
1930 * Calculate best scaling ratio and mode for given output resolution.
1931 *
1932 * Try all of these: horizontal ratio, vertical ratio and smallest
1933 * size possible (horizontally).
1934 *
1935 * Also try whether horizontal scaler or full scaler gives a better
1936 * result.
1937 */
1938static void smiapp_set_compose_scaler(struct v4l2_subdev *subdev,
1939                                      struct v4l2_subdev_pad_config *cfg,
1940                                      struct v4l2_subdev_selection *sel,
1941                                      struct v4l2_rect **crops,
1942                                      struct v4l2_rect *comp)
1943{
1944        struct i2c_client *client = v4l2_get_subdevdata(subdev);
1945        struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1946        u32 min, max, a, b, max_m;
1947        u32 scale_m = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
1948        int mode = SMIAPP_SCALING_MODE_HORIZONTAL;
1949        u32 try[4];
1950        u32 ntry = 0;
1951        unsigned int i;
1952        int best = INT_MIN;
1953
1954        sel->r.width = min_t(unsigned int, sel->r.width,
1955                             crops[SMIAPP_PAD_SINK]->width);
1956        sel->r.height = min_t(unsigned int, sel->r.height,
1957                              crops[SMIAPP_PAD_SINK]->height);
1958
1959        a = crops[SMIAPP_PAD_SINK]->width
1960                * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] / sel->r.width;
1961        b = crops[SMIAPP_PAD_SINK]->height
1962                * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] / sel->r.height;
1963        max_m = crops[SMIAPP_PAD_SINK]->width
1964                * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN]
1965                / sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE];
1966
1967        a = clamp(a, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN],
1968                  sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX]);
1969        b = clamp(b, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN],
1970                  sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX]);
1971        max_m = clamp(max_m, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN],
1972                      sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX]);
1973
1974        dev_dbg(&client->dev, "scaling: a %d b %d max_m %d\n", a, b, max_m);
1975
1976        min = min(max_m, min(a, b));
1977        max = min(max_m, max(a, b));
1978
1979        try[ntry] = min;
1980        ntry++;
1981        if (min != max) {
1982                try[ntry] = max;
1983                ntry++;
1984        }
1985        if (max != max_m) {
1986                try[ntry] = min + 1;
1987                ntry++;
1988                if (min != max) {
1989                        try[ntry] = max + 1;
1990                        ntry++;
1991                }
1992        }
1993
1994        for (i = 0; i < ntry; i++) {
1995                int this = scaling_goodness(
1996                        subdev,
1997                        crops[SMIAPP_PAD_SINK]->width
1998                        / try[i]
1999                        * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
2000                        sel->r.width,
2001                        crops[SMIAPP_PAD_SINK]->height,
2002                        sel->r.height,
2003                        sel->flags);
2004
2005                dev_dbg(&client->dev, "trying factor %d (%d)\n", try[i], i);
2006
2007                if (this > best) {
2008                        scale_m = try[i];
2009                        mode = SMIAPP_SCALING_MODE_HORIZONTAL;
2010                        best = this;
2011                }
2012
2013                if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
2014                    == SMIAPP_SCALING_CAPABILITY_HORIZONTAL)
2015                        continue;
2016
2017                this = scaling_goodness(
2018                        subdev, crops[SMIAPP_PAD_SINK]->width
2019                        / try[i]
2020                        * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
2021                        sel->r.width,
2022                        crops[SMIAPP_PAD_SINK]->height
2023                        / try[i]
2024                        * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
2025                        sel->r.height,
2026                        sel->flags);
2027
2028                if (this > best) {
2029                        scale_m = try[i];
2030                        mode = SMIAPP_SCALING_MODE_BOTH;
2031                        best = this;
2032                }
2033        }
2034
2035        sel->r.width =
2036                (crops[SMIAPP_PAD_SINK]->width
2037                 / scale_m
2038                 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN]) & ~1;
2039        if (mode == SMIAPP_SCALING_MODE_BOTH)
2040                sel->r.height =
2041                        (crops[SMIAPP_PAD_SINK]->height
2042                         / scale_m
2043                         * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN])
2044                        & ~1;
2045        else
2046                sel->r.height = crops[SMIAPP_PAD_SINK]->height;
2047
2048        if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2049                sensor->scale_m = scale_m;
2050                sensor->scaling_mode = mode;
2051        }
2052}
2053/* We're only called on source pads. This function sets scaling. */
2054static int smiapp_set_compose(struct v4l2_subdev *subdev,
2055                              struct v4l2_subdev_pad_config *cfg,
2056                              struct v4l2_subdev_selection *sel)
2057{
2058        struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2059        struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
2060        struct v4l2_rect *comp, *crops[SMIAPP_PADS];
2061
2062        smiapp_get_crop_compose(subdev, cfg, crops, &comp, sel->which);
2063
2064        sel->r.top = 0;
2065        sel->r.left = 0;
2066
2067        if (ssd == sensor->binner)
2068                smiapp_set_compose_binner(subdev, cfg, sel, crops, comp);
2069        else
2070                smiapp_set_compose_scaler(subdev, cfg, sel, crops, comp);
2071
2072        *comp = sel->r;
2073        smiapp_propagate(subdev, cfg, sel->which, V4L2_SEL_TGT_COMPOSE);
2074
2075        if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE)
2076                return smiapp_update_mode(sensor);
2077
2078        return 0;
2079}
2080
2081static int __smiapp_sel_supported(struct v4l2_subdev *subdev,
2082                                  struct v4l2_subdev_selection *sel)
2083{
2084        struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2085        struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
2086
2087        /* We only implement crop in three places. */
2088        switch (sel->target) {
2089        case V4L2_SEL_TGT_CROP:
2090        case V4L2_SEL_TGT_CROP_BOUNDS:
2091                if (ssd == sensor->pixel_array
2092                    && sel->pad == SMIAPP_PA_PAD_SRC)
2093                        return 0;
2094                if (ssd == sensor->src
2095                    && sel->pad == SMIAPP_PAD_SRC)
2096                        return 0;
2097                if (ssd == sensor->scaler
2098                    && sel->pad == SMIAPP_PAD_SINK
2099                    && sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
2100                    == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP)
2101                        return 0;
2102                return -EINVAL;
2103        case V4L2_SEL_TGT_NATIVE_SIZE:
2104                if (ssd == sensor->pixel_array
2105                    && sel->pad == SMIAPP_PA_PAD_SRC)
2106                        return 0;
2107                return -EINVAL;
2108        case V4L2_SEL_TGT_COMPOSE:
2109        case V4L2_SEL_TGT_COMPOSE_BOUNDS:
2110                if (sel->pad == ssd->source_pad)
2111                        return -EINVAL;
2112                if (ssd == sensor->binner)
2113                        return 0;
2114                if (ssd == sensor->scaler
2115                    && sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
2116                    != SMIAPP_SCALING_CAPABILITY_NONE)
2117                        return 0;
2118                /* Fall through */
2119        default:
2120                return -EINVAL;
2121        }
2122}
2123
2124static int smiapp_set_crop(struct v4l2_subdev *subdev,
2125                           struct v4l2_subdev_pad_config *cfg,
2126                           struct v4l2_subdev_selection *sel)
2127{
2128        struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2129        struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
2130        struct v4l2_rect *src_size, *crops[SMIAPP_PADS];
2131        struct v4l2_rect _r;
2132
2133        smiapp_get_crop_compose(subdev, cfg, crops, NULL, sel->which);
2134
2135        if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2136                if (sel->pad == ssd->sink_pad)
2137                        src_size = &ssd->sink_fmt;
2138                else
2139                        src_size = &ssd->compose;
2140        } else {
2141                if (sel->pad == ssd->sink_pad) {
2142                        _r.left = 0;
2143                        _r.top = 0;
2144                        _r.width = v4l2_subdev_get_try_format(subdev, cfg, sel->pad)
2145                                ->width;
2146                        _r.height = v4l2_subdev_get_try_format(subdev, cfg, sel->pad)
2147                                ->height;
2148                        src_size = &_r;
2149                } else {
2150                        src_size = v4l2_subdev_get_try_compose(
2151                                subdev, cfg, ssd->sink_pad);
2152                }
2153        }
2154
2155        if (ssd == sensor->src && sel->pad == SMIAPP_PAD_SRC) {
2156                sel->r.left = 0;
2157                sel->r.top = 0;
2158        }
2159
2160        sel->r.width = min(sel->r.width, src_size->width);
2161        sel->r.height = min(sel->r.height, src_size->height);
2162
2163        sel->r.left = min_t(int, sel->r.left, src_size->width - sel->r.width);
2164        sel->r.top = min_t(int, sel->r.top, src_size->height - sel->r.height);
2165
2166        *crops[sel->pad] = sel->r;
2167
2168        if (ssd != sensor->pixel_array && sel->pad == SMIAPP_PAD_SINK)
2169                smiapp_propagate(subdev, cfg, sel->which,
2170                                 V4L2_SEL_TGT_CROP);
2171
2172        return 0;
2173}
2174
2175static void smiapp_get_native_size(struct smiapp_subdev *ssd,
2176                                    struct v4l2_rect *r)
2177{
2178        r->top = 0;
2179        r->left = 0;
2180        r->width = ssd->sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1;
2181        r->height = ssd->sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1;
2182}
2183
2184static int __smiapp_get_selection(struct v4l2_subdev *subdev,
2185                                  struct v4l2_subdev_pad_config *cfg,
2186                                  struct v4l2_subdev_selection *sel)
2187{
2188        struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2189        struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
2190        struct v4l2_rect *comp, *crops[SMIAPP_PADS];
2191        struct v4l2_rect sink_fmt;
2192        int ret;
2193
2194        ret = __smiapp_sel_supported(subdev, sel);
2195        if (ret)
2196                return ret;
2197
2198        smiapp_get_crop_compose(subdev, cfg, crops, &comp, sel->which);
2199
2200        if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2201                sink_fmt = ssd->sink_fmt;
2202        } else {
2203                struct v4l2_mbus_framefmt *fmt =
2204                        v4l2_subdev_get_try_format(subdev, cfg, ssd->sink_pad);
2205
2206                sink_fmt.left = 0;
2207                sink_fmt.top = 0;
2208                sink_fmt.width = fmt->width;
2209                sink_fmt.height = fmt->height;
2210        }
2211
2212        switch (sel->target) {
2213        case V4L2_SEL_TGT_CROP_BOUNDS:
2214        case V4L2_SEL_TGT_NATIVE_SIZE:
2215                if (ssd == sensor->pixel_array)
2216                        smiapp_get_native_size(ssd, &sel->r);
2217                else if (sel->pad == ssd->sink_pad)
2218                        sel->r = sink_fmt;
2219                else
2220                        sel->r = *comp;
2221                break;
2222        case V4L2_SEL_TGT_CROP:
2223        case V4L2_SEL_TGT_COMPOSE_BOUNDS:
2224                sel->r = *crops[sel->pad];
2225                break;
2226        case V4L2_SEL_TGT_COMPOSE:
2227                sel->r = *comp;
2228                break;
2229        }
2230
2231        return 0;
2232}
2233
2234static int smiapp_get_selection(struct v4l2_subdev *subdev,
2235                                struct v4l2_subdev_pad_config *cfg,
2236                                struct v4l2_subdev_selection *sel)
2237{
2238        struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2239        int rval;
2240
2241        mutex_lock(&sensor->mutex);
2242        rval = __smiapp_get_selection(subdev, cfg, sel);
2243        mutex_unlock(&sensor->mutex);
2244
2245        return rval;
2246}
2247static int smiapp_set_selection(struct v4l2_subdev *subdev,
2248                                struct v4l2_subdev_pad_config *cfg,
2249                                struct v4l2_subdev_selection *sel)
2250{
2251        struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2252        int ret;
2253
2254        ret = __smiapp_sel_supported(subdev, sel);
2255        if (ret)
2256                return ret;
2257
2258        mutex_lock(&sensor->mutex);
2259
2260        sel->r.left = max(0, sel->r.left & ~1);
2261        sel->r.top = max(0, sel->r.top & ~1);
2262        sel->r.width = SMIAPP_ALIGN_DIM(sel->r.width, sel->flags);
2263        sel->r.height = SMIAPP_ALIGN_DIM(sel->r.height, sel->flags);
2264
2265        sel->r.width = max_t(unsigned int,
2266                             sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE],
2267                             sel->r.width);
2268        sel->r.height = max_t(unsigned int,
2269                              sensor->limits[SMIAPP_LIMIT_MIN_Y_OUTPUT_SIZE],
2270                              sel->r.height);
2271
2272        switch (sel->target) {
2273        case V4L2_SEL_TGT_CROP:
2274                ret = smiapp_set_crop(subdev, cfg, sel);
2275                break;
2276        case V4L2_SEL_TGT_COMPOSE:
2277                ret = smiapp_set_compose(subdev, cfg, sel);
2278                break;
2279        default:
2280                ret = -EINVAL;
2281        }
2282
2283        mutex_unlock(&sensor->mutex);
2284        return ret;
2285}
2286
2287static int smiapp_get_skip_frames(struct v4l2_subdev *subdev, u32 *frames)
2288{
2289        struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2290
2291        *frames = sensor->frame_skip;
2292        return 0;
2293}
2294
2295static int smiapp_get_skip_top_lines(struct v4l2_subdev *subdev, u32 *lines)
2296{
2297        struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2298
2299        *lines = sensor->image_start;
2300
2301        return 0;
2302}
2303
2304/* -----------------------------------------------------------------------------
2305 * sysfs attributes
2306 */
2307
2308static ssize_t
2309smiapp_sysfs_nvm_read(struct device *dev, struct device_attribute *attr,
2310                      char *buf)
2311{
2312        struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
2313        struct i2c_client *client = v4l2_get_subdevdata(subdev);
2314        struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2315        unsigned int nbytes;
2316
2317        if (!sensor->dev_init_done)
2318                return -EBUSY;
2319
2320        if (!sensor->nvm_size) {
2321                int rval;
2322
2323                /* NVM not read yet - read it now */
2324                sensor->nvm_size = sensor->hwcfg->nvm_size;
2325
2326                rval = pm_runtime_get_sync(&client->dev);
2327                if (rval < 0) {
2328                        if (rval != -EBUSY && rval != -EAGAIN)
2329                                pm_runtime_set_active(&client->dev);
2330                        pm_runtime_put(&client->dev);
2331                        return -ENODEV;
2332                }
2333
2334                if (smiapp_read_nvm(sensor, sensor->nvm)) {
2335                        dev_err(&client->dev, "nvm read failed\n");
2336                        return -ENODEV;
2337                }
2338
2339                pm_runtime_mark_last_busy(&client->dev);
2340                pm_runtime_put_autosuspend(&client->dev);
2341        }
2342        /*
2343         * NVM is still way below a PAGE_SIZE, so we can safely
2344         * assume this for now.
2345         */
2346        nbytes = min_t(unsigned int, sensor->nvm_size, PAGE_SIZE);
2347        memcpy(buf, sensor->nvm, nbytes);
2348
2349        return nbytes;
2350}
2351static DEVICE_ATTR(nvm, S_IRUGO, smiapp_sysfs_nvm_read, NULL);
2352
2353static ssize_t
2354smiapp_sysfs_ident_read(struct device *dev, struct device_attribute *attr,
2355                        char *buf)
2356{
2357        struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
2358        struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2359        struct smiapp_module_info *minfo = &sensor->minfo;
2360
2361        return snprintf(buf, PAGE_SIZE, "%2.2x%4.4x%2.2x\n",
2362                        minfo->manufacturer_id, minfo->model_id,
2363                        minfo->revision_number_major) + 1;
2364}
2365
2366static DEVICE_ATTR(ident, S_IRUGO, smiapp_sysfs_ident_read, NULL);
2367
2368/* -----------------------------------------------------------------------------
2369 * V4L2 subdev core operations
2370 */
2371
2372static int smiapp_identify_module(struct smiapp_sensor *sensor)
2373{
2374        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2375        struct smiapp_module_info *minfo = &sensor->minfo;
2376        unsigned int i;
2377        int rval = 0;
2378
2379        minfo->name = SMIAPP_NAME;
2380
2381        /* Module info */
2382        rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_MANUFACTURER_ID,
2383                                 &minfo->manufacturer_id);
2384        if (!rval)
2385                rval = smiapp_read_8only(sensor, SMIAPP_REG_U16_MODEL_ID,
2386                                         &minfo->model_id);
2387        if (!rval)
2388                rval = smiapp_read_8only(sensor,
2389                                         SMIAPP_REG_U8_REVISION_NUMBER_MAJOR,
2390                                         &minfo->revision_number_major);
2391        if (!rval)
2392                rval = smiapp_read_8only(sensor,
2393                                         SMIAPP_REG_U8_REVISION_NUMBER_MINOR,
2394                                         &minfo->revision_number_minor);
2395        if (!rval)
2396                rval = smiapp_read_8only(sensor,
2397                                         SMIAPP_REG_U8_MODULE_DATE_YEAR,
2398                                         &minfo->module_year);
2399        if (!rval)
2400                rval = smiapp_read_8only(sensor,
2401                                         SMIAPP_REG_U8_MODULE_DATE_MONTH,
2402                                         &minfo->module_month);
2403        if (!rval)
2404                rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_MODULE_DATE_DAY,
2405                                         &minfo->module_day);
2406
2407        /* Sensor info */
2408        if (!rval)
2409                rval = smiapp_read_8only(sensor,
2410                                         SMIAPP_REG_U8_SENSOR_MANUFACTURER_ID,
2411                                         &minfo->sensor_manufacturer_id);
2412        if (!rval)
2413                rval = smiapp_read_8only(sensor,
2414                                         SMIAPP_REG_U16_SENSOR_MODEL_ID,
2415                                         &minfo->sensor_model_id);
2416        if (!rval)
2417                rval = smiapp_read_8only(sensor,
2418                                         SMIAPP_REG_U8_SENSOR_REVISION_NUMBER,
2419                                         &minfo->sensor_revision_number);
2420        if (!rval)
2421                rval = smiapp_read_8only(sensor,
2422                                         SMIAPP_REG_U8_SENSOR_FIRMWARE_VERSION,
2423                                         &minfo->sensor_firmware_version);
2424
2425        /* SMIA */
2426        if (!rval)
2427                rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_SMIA_VERSION,
2428                                         &minfo->smia_version);
2429        if (!rval)
2430                rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_SMIAPP_VERSION,
2431                                         &minfo->smiapp_version);
2432
2433        if (rval) {
2434                dev_err(&client->dev, "sensor detection failed\n");
2435                return -ENODEV;
2436        }
2437
2438        dev_dbg(&client->dev, "module 0x%2.2x-0x%4.4x\n",
2439                minfo->manufacturer_id, minfo->model_id);
2440
2441        dev_dbg(&client->dev,
2442                "module revision 0x%2.2x-0x%2.2x date %2.2d-%2.2d-%2.2d\n",
2443                minfo->revision_number_major, minfo->revision_number_minor,
2444                minfo->module_year, minfo->module_month, minfo->module_day);
2445
2446        dev_dbg(&client->dev, "sensor 0x%2.2x-0x%4.4x\n",
2447                minfo->sensor_manufacturer_id, minfo->sensor_model_id);
2448
2449        dev_dbg(&client->dev,
2450                "sensor revision 0x%2.2x firmware version 0x%2.2x\n",
2451                minfo->sensor_revision_number, minfo->sensor_firmware_version);
2452
2453        dev_dbg(&client->dev, "smia version %2.2d smiapp version %2.2d\n",
2454                minfo->smia_version, minfo->smiapp_version);
2455
2456        /*
2457         * Some modules have bad data in the lvalues below. Hope the
2458         * rvalues have better stuff. The lvalues are module
2459         * parameters whereas the rvalues are sensor parameters.
2460         */
2461        if (!minfo->manufacturer_id && !minfo->model_id) {
2462                minfo->manufacturer_id = minfo->sensor_manufacturer_id;
2463                minfo->model_id = minfo->sensor_model_id;
2464                minfo->revision_number_major = minfo->sensor_revision_number;
2465        }
2466
2467        for (i = 0; i < ARRAY_SIZE(smiapp_module_idents); i++) {
2468                if (smiapp_module_idents[i].manufacturer_id
2469                    != minfo->manufacturer_id)
2470                        continue;
2471                if (smiapp_module_idents[i].model_id != minfo->model_id)
2472                        continue;
2473                if (smiapp_module_idents[i].flags
2474                    & SMIAPP_MODULE_IDENT_FLAG_REV_LE) {
2475                        if (smiapp_module_idents[i].revision_number_major
2476                            < minfo->revision_number_major)
2477                                continue;
2478                } else {
2479                        if (smiapp_module_idents[i].revision_number_major
2480                            != minfo->revision_number_major)
2481                                continue;
2482                }
2483
2484                minfo->name = smiapp_module_idents[i].name;
2485                minfo->quirk = smiapp_module_idents[i].quirk;
2486                break;
2487        }
2488
2489        if (i >= ARRAY_SIZE(smiapp_module_idents))
2490                dev_warn(&client->dev,
2491                         "no quirks for this module; let's hope it's fully compliant\n");
2492
2493        dev_dbg(&client->dev, "the sensor is called %s, ident %2.2x%4.4x%2.2x\n",
2494                minfo->name, minfo->manufacturer_id, minfo->model_id,
2495                minfo->revision_number_major);
2496
2497        return 0;
2498}
2499
2500static const struct v4l2_subdev_ops smiapp_ops;
2501static const struct v4l2_subdev_internal_ops smiapp_internal_ops;
2502static const struct media_entity_operations smiapp_entity_ops;
2503
2504static int smiapp_register_subdev(struct smiapp_sensor *sensor,
2505                                  struct smiapp_subdev *ssd,
2506                                  struct smiapp_subdev *sink_ssd,
2507                                  u16 source_pad, u16 sink_pad, u32 link_flags)
2508{
2509        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2510        int rval;
2511
2512        if (!sink_ssd)
2513                return 0;
2514
2515        rval = media_entity_pads_init(&ssd->sd.entity,
2516                                      ssd->npads, ssd->pads);
2517        if (rval) {
2518                dev_err(&client->dev,
2519                        "media_entity_pads_init failed\n");
2520                return rval;
2521        }
2522
2523        rval = v4l2_device_register_subdev(sensor->src->sd.v4l2_dev,
2524                                           &ssd->sd);
2525        if (rval) {
2526                dev_err(&client->dev,
2527                        "v4l2_device_register_subdev failed\n");
2528                return rval;
2529        }
2530
2531        rval = media_create_pad_link(&ssd->sd.entity, source_pad,
2532                                     &sink_ssd->sd.entity, sink_pad,
2533                                     link_flags);
2534        if (rval) {
2535                dev_err(&client->dev,
2536                        "media_create_pad_link failed\n");
2537                v4l2_device_unregister_subdev(&ssd->sd);
2538                return rval;
2539        }
2540
2541        return 0;
2542}
2543
2544static void smiapp_unregistered(struct v4l2_subdev *subdev)
2545{
2546        struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2547        unsigned int i;
2548
2549        for (i = 1; i < sensor->ssds_used; i++)
2550                v4l2_device_unregister_subdev(&sensor->ssds[i].sd);
2551}
2552
2553static int smiapp_registered(struct v4l2_subdev *subdev)
2554{
2555        struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2556        int rval;
2557
2558        if (sensor->scaler) {
2559                rval = smiapp_register_subdev(
2560                        sensor, sensor->binner, sensor->scaler,
2561                        SMIAPP_PAD_SRC, SMIAPP_PAD_SINK,
2562                        MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
2563                if (rval < 0)
2564                        return rval;
2565        }
2566
2567        rval = smiapp_register_subdev(
2568                sensor, sensor->pixel_array, sensor->binner,
2569                SMIAPP_PA_PAD_SRC, SMIAPP_PAD_SINK,
2570                MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
2571        if (rval)
2572                goto out_err;
2573
2574        return 0;
2575
2576out_err:
2577        smiapp_unregistered(subdev);
2578
2579        return rval;
2580}
2581
2582static void smiapp_cleanup(struct smiapp_sensor *sensor)
2583{
2584        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2585
2586        device_remove_file(&client->dev, &dev_attr_nvm);
2587        device_remove_file(&client->dev, &dev_attr_ident);
2588
2589        smiapp_free_controls(sensor);
2590}
2591
2592static void smiapp_create_subdev(struct smiapp_sensor *sensor,
2593                                 struct smiapp_subdev *ssd, const char *name,
2594                                 unsigned short num_pads)
2595{
2596        struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2597
2598        if (!ssd)
2599                return;
2600
2601        if (ssd != sensor->src)
2602                v4l2_subdev_init(&ssd->sd, &smiapp_ops);
2603
2604        ssd->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
2605        ssd->sensor = sensor;
2606
2607        ssd->npads = num_pads;
2608        ssd->source_pad = num_pads - 1;
2609
2610        v4l2_i2c_subdev_set_name(&ssd->sd, client, sensor->minfo.name, name);
2611
2612        smiapp_get_native_size(ssd, &ssd->sink_fmt);
2613
2614        ssd->compose.width = ssd->sink_fmt.width;
2615        ssd->compose.height = ssd->sink_fmt.height;
2616        ssd->crop[ssd->source_pad] = ssd->compose;
2617        ssd->pads[ssd->source_pad].flags = MEDIA_PAD_FL_SOURCE;
2618        if (ssd != sensor->pixel_array) {
2619                ssd->crop[ssd->sink_pad] = ssd->compose;
2620                ssd->pads[ssd->sink_pad].flags = MEDIA_PAD_FL_SINK;
2621        }
2622
2623        ssd->sd.entity.ops = &smiapp_entity_ops;
2624
2625        if (ssd == sensor->src)
2626                return;
2627
2628        ssd->sd.internal_ops = &smiapp_internal_ops;
2629        ssd->sd.owner = THIS_MODULE;
2630        ssd->sd.dev = &client->dev;
2631        v4l2_set_subdevdata(&ssd->sd, client);
2632}
2633
2634static int smiapp_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
2635{
2636        struct smiapp_subdev *ssd = to_smiapp_subdev(sd);
2637        struct smiapp_sensor *sensor = ssd->sensor;
2638        unsigned int i;
2639
2640        mutex_lock(&sensor->mutex);
2641
2642        for (i = 0; i < ssd->npads; i++) {
2643                struct v4l2_mbus_framefmt *try_fmt =
2644                        v4l2_subdev_get_try_format(sd, fh->pad, i);
2645                struct v4l2_rect *try_crop =
2646                        v4l2_subdev_get_try_crop(sd, fh->pad, i);
2647                struct v4l2_rect *try_comp;
2648
2649                smiapp_get_native_size(ssd, try_crop);
2650
2651                try_fmt->width = try_crop->width;
2652                try_fmt->height = try_crop->height;
2653                try_fmt->code = sensor->internal_csi_format->code;
2654                try_fmt->field = V4L2_FIELD_NONE;
2655
2656                if (ssd != sensor->pixel_array)
2657                        continue;
2658
2659                try_comp = v4l2_subdev_get_try_compose(sd, fh->pad, i);
2660                *try_comp = *try_crop;
2661        }
2662
2663        mutex_unlock(&sensor->mutex);
2664
2665        return 0;
2666}
2667
2668static const struct v4l2_subdev_video_ops smiapp_video_ops = {
2669        .s_stream = smiapp_set_stream,
2670};
2671
2672static const struct v4l2_subdev_pad_ops smiapp_pad_ops = {
2673        .enum_mbus_code = smiapp_enum_mbus_code,
2674        .get_fmt = smiapp_get_format,
2675        .set_fmt = smiapp_set_format,
2676        .get_selection = smiapp_get_selection,
2677        .set_selection = smiapp_set_selection,
2678};
2679
2680static const struct v4l2_subdev_sensor_ops smiapp_sensor_ops = {
2681        .g_skip_frames = smiapp_get_skip_frames,
2682        .g_skip_top_lines = smiapp_get_skip_top_lines,
2683};
2684
2685static const struct v4l2_subdev_ops smiapp_ops = {
2686        .video = &smiapp_video_ops,
2687        .pad = &smiapp_pad_ops,
2688        .sensor = &smiapp_sensor_ops,
2689};
2690
2691static const struct media_entity_operations smiapp_entity_ops = {
2692        .link_validate = v4l2_subdev_link_validate,
2693};
2694
2695static const struct v4l2_subdev_internal_ops smiapp_internal_src_ops = {
2696        .registered = smiapp_registered,
2697        .unregistered = smiapp_unregistered,
2698        .open = smiapp_open,
2699};
2700
2701static const struct v4l2_subdev_internal_ops smiapp_internal_ops = {
2702        .open = smiapp_open,
2703};
2704
2705/* -----------------------------------------------------------------------------
2706 * I2C Driver
2707 */
2708
2709static int __maybe_unused smiapp_suspend(struct device *dev)
2710{
2711        struct i2c_client *client = to_i2c_client(dev);
2712        struct v4l2_subdev *subdev = i2c_get_clientdata(client);
2713        struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2714        bool streaming = sensor->streaming;
2715        int rval;
2716
2717        rval = pm_runtime_get_sync(dev);
2718        if (rval < 0) {
2719                if (rval != -EBUSY && rval != -EAGAIN)
2720                        pm_runtime_set_active(&client->dev);
2721                pm_runtime_put(dev);
2722                return -EAGAIN;
2723        }
2724
2725        if (sensor->streaming)
2726                smiapp_stop_streaming(sensor);
2727
2728        /* save state for resume */
2729        sensor->streaming = streaming;
2730
2731        return 0;
2732}
2733
2734static int __maybe_unused smiapp_resume(struct device *dev)
2735{
2736        struct i2c_client *client = to_i2c_client(dev);
2737        struct v4l2_subdev *subdev = i2c_get_clientdata(client);
2738        struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2739        int rval = 0;
2740
2741        pm_runtime_put(dev);
2742
2743        if (sensor->streaming)
2744                rval = smiapp_start_streaming(sensor);
2745
2746        return rval;
2747}
2748
2749static struct smiapp_hwconfig *smiapp_get_hwconfig(struct device *dev)
2750{
2751        struct smiapp_hwconfig *hwcfg;
2752        struct v4l2_fwnode_endpoint bus_cfg = { .bus_type = 0 };
2753        struct fwnode_handle *ep;
2754        struct fwnode_handle *fwnode = dev_fwnode(dev);
2755        u32 rotation;
2756        int i;
2757        int rval;
2758
2759        if (!fwnode)
2760                return dev->platform_data;
2761
2762        ep = fwnode_graph_get_next_endpoint(fwnode, NULL);
2763        if (!ep)
2764                return NULL;
2765
2766        bus_cfg.bus_type = V4L2_MBUS_CSI2_DPHY;
2767        rval = v4l2_fwnode_endpoint_alloc_parse(ep, &bus_cfg);
2768        if (rval == -ENXIO) {
2769                bus_cfg = (struct v4l2_fwnode_endpoint)
2770                        { .bus_type = V4L2_MBUS_CCP2 };
2771                rval = v4l2_fwnode_endpoint_alloc_parse(ep, &bus_cfg);
2772        }
2773        if (rval)
2774                goto out_err;
2775
2776        hwcfg = devm_kzalloc(dev, sizeof(*hwcfg), GFP_KERNEL);
2777        if (!hwcfg)
2778                goto out_err;
2779
2780        switch (bus_cfg.bus_type) {
2781        case V4L2_MBUS_CSI2_DPHY:
2782                hwcfg->csi_signalling_mode = SMIAPP_CSI_SIGNALLING_MODE_CSI2;
2783                hwcfg->lanes = bus_cfg.bus.mipi_csi2.num_data_lanes;
2784                break;
2785        case V4L2_MBUS_CCP2:
2786                hwcfg->csi_signalling_mode = (bus_cfg.bus.mipi_csi1.strobe) ?
2787                SMIAPP_CSI_SIGNALLING_MODE_CCP2_DATA_STROBE :
2788                SMIAPP_CSI_SIGNALLING_MODE_CCP2_DATA_CLOCK;
2789                hwcfg->lanes = 1;
2790                break;
2791        default:
2792                dev_err(dev, "unsupported bus %u\n", bus_cfg.bus_type);
2793                goto out_err;
2794        }
2795
2796        dev_dbg(dev, "lanes %u\n", hwcfg->lanes);
2797
2798        rval = fwnode_property_read_u32(fwnode, "rotation", &rotation);
2799        if (!rval) {
2800                switch (rotation) {
2801                case 180:
2802                        hwcfg->module_board_orient =
2803                                SMIAPP_MODULE_BOARD_ORIENT_180;
2804                        /* Fall through */
2805                case 0:
2806                        break;
2807                default:
2808                        dev_err(dev, "invalid rotation %u\n", rotation);
2809                        goto out_err;
2810                }
2811        }
2812
2813        /* NVM size is not mandatory */
2814        fwnode_property_read_u32(fwnode, "nokia,nvm-size", &hwcfg->nvm_size);
2815
2816        rval = fwnode_property_read_u32(dev_fwnode(dev), "clock-frequency",
2817                                        &hwcfg->ext_clk);
2818        if (rval)
2819                dev_info(dev, "can't get clock-frequency\n");
2820
2821        dev_dbg(dev, "nvm %d, clk %d, mode %d\n",
2822                hwcfg->nvm_size, hwcfg->ext_clk, hwcfg->csi_signalling_mode);
2823
2824        if (!bus_cfg.nr_of_link_frequencies) {
2825                dev_warn(dev, "no link frequencies defined\n");
2826                goto out_err;
2827        }
2828
2829        hwcfg->op_sys_clock = devm_kcalloc(
2830                dev, bus_cfg.nr_of_link_frequencies + 1 /* guardian */,
2831                sizeof(*hwcfg->op_sys_clock), GFP_KERNEL);
2832        if (!hwcfg->op_sys_clock)
2833                goto out_err;
2834
2835        for (i = 0; i < bus_cfg.nr_of_link_frequencies; i++) {
2836                hwcfg->op_sys_clock[i] = bus_cfg.link_frequencies[i];
2837                dev_dbg(dev, "freq %d: %lld\n", i, hwcfg->op_sys_clock[i]);
2838        }
2839
2840        v4l2_fwnode_endpoint_free(&bus_cfg);
2841        fwnode_handle_put(ep);
2842        return hwcfg;
2843
2844out_err:
2845        v4l2_fwnode_endpoint_free(&bus_cfg);
2846        fwnode_handle_put(ep);
2847        return NULL;
2848}
2849
2850static int smiapp_probe(struct i2c_client *client,
2851                        const struct i2c_device_id *devid)
2852{
2853        struct smiapp_sensor *sensor;
2854        struct smiapp_hwconfig *hwcfg = smiapp_get_hwconfig(&client->dev);
2855        unsigned int i;
2856        int rval;
2857
2858        if (hwcfg == NULL)
2859                return -ENODEV;
2860
2861        sensor = devm_kzalloc(&client->dev, sizeof(*sensor), GFP_KERNEL);
2862        if (sensor == NULL)
2863                return -ENOMEM;
2864
2865        sensor->hwcfg = hwcfg;
2866        mutex_init(&sensor->mutex);
2867        sensor->src = &sensor->ssds[sensor->ssds_used];
2868
2869        v4l2_i2c_subdev_init(&sensor->src->sd, client, &smiapp_ops);
2870        sensor->src->sd.internal_ops = &smiapp_internal_src_ops;
2871
2872        sensor->vana = devm_regulator_get(&client->dev, "vana");
2873        if (IS_ERR(sensor->vana)) {
2874                dev_err(&client->dev, "could not get regulator for vana\n");
2875                return PTR_ERR(sensor->vana);
2876        }
2877
2878        sensor->ext_clk = devm_clk_get(&client->dev, NULL);
2879        if (PTR_ERR(sensor->ext_clk) == -ENOENT) {
2880                dev_info(&client->dev, "no clock defined, continuing...\n");
2881                sensor->ext_clk = NULL;
2882        } else if (IS_ERR(sensor->ext_clk)) {
2883                dev_err(&client->dev, "could not get clock (%ld)\n",
2884                        PTR_ERR(sensor->ext_clk));
2885                return -EPROBE_DEFER;
2886        }
2887
2888        if (sensor->ext_clk) {
2889                if (sensor->hwcfg->ext_clk) {
2890                        unsigned long rate;
2891
2892                        rval = clk_set_rate(sensor->ext_clk,
2893                                            sensor->hwcfg->ext_clk);
2894                        if (rval < 0) {
2895                                dev_err(&client->dev,
2896                                        "unable to set clock freq to %u\n",
2897                                        sensor->hwcfg->ext_clk);
2898                                return rval;
2899                        }
2900
2901                        rate = clk_get_rate(sensor->ext_clk);
2902                        if (rate != sensor->hwcfg->ext_clk) {
2903                                dev_err(&client->dev,
2904                                        "can't set clock freq, asked for %u but got %lu\n",
2905                                        sensor->hwcfg->ext_clk, rate);
2906                                return rval;
2907                        }
2908                } else {
2909                        sensor->hwcfg->ext_clk = clk_get_rate(sensor->ext_clk);
2910                        dev_dbg(&client->dev, "obtained clock freq %u\n",
2911                                sensor->hwcfg->ext_clk);
2912                }
2913        } else if (sensor->hwcfg->ext_clk) {
2914                dev_dbg(&client->dev, "assuming clock freq %u\n",
2915                        sensor->hwcfg->ext_clk);
2916        } else {
2917                dev_err(&client->dev, "unable to obtain clock freq\n");
2918                return -EINVAL;
2919        }
2920
2921        sensor->xshutdown = devm_gpiod_get_optional(&client->dev, "xshutdown",
2922                                                    GPIOD_OUT_LOW);
2923        if (IS_ERR(sensor->xshutdown))
2924                return PTR_ERR(sensor->xshutdown);
2925
2926        rval = smiapp_power_on(&client->dev);
2927        if (rval < 0)
2928                return rval;
2929
2930        rval = smiapp_identify_module(sensor);
2931        if (rval) {
2932                rval = -ENODEV;
2933                goto out_power_off;
2934        }
2935
2936        rval = smiapp_get_all_limits(sensor);
2937        if (rval) {
2938                rval = -ENODEV;
2939                goto out_power_off;
2940        }
2941
2942        rval = smiapp_read_frame_fmt(sensor);
2943        if (rval) {
2944                rval = -ENODEV;
2945                goto out_power_off;
2946        }
2947
2948        /*
2949         * Handle Sensor Module orientation on the board.
2950         *
2951         * The application of H-FLIP and V-FLIP on the sensor is modified by
2952         * the sensor orientation on the board.
2953         *
2954         * For SMIAPP_BOARD_SENSOR_ORIENT_180 the default behaviour is to set
2955         * both H-FLIP and V-FLIP for normal operation which also implies
2956         * that a set/unset operation for user space HFLIP and VFLIP v4l2
2957         * controls will need to be internally inverted.
2958         *
2959         * Rotation also changes the bayer pattern.
2960         */
2961        if (sensor->hwcfg->module_board_orient ==
2962            SMIAPP_MODULE_BOARD_ORIENT_180)
2963                sensor->hvflip_inv_mask = SMIAPP_IMAGE_ORIENTATION_HFLIP |
2964                                          SMIAPP_IMAGE_ORIENTATION_VFLIP;
2965
2966        rval = smiapp_call_quirk(sensor, limits);
2967        if (rval) {
2968                dev_err(&client->dev, "limits quirks failed\n");
2969                goto out_power_off;
2970        }
2971
2972        if (sensor->limits[SMIAPP_LIMIT_BINNING_CAPABILITY]) {
2973                u32 val;
2974
2975                rval = smiapp_read(sensor,
2976                                   SMIAPP_REG_U8_BINNING_SUBTYPES, &val);
2977                if (rval < 0) {
2978                        rval = -ENODEV;
2979                        goto out_power_off;
2980                }
2981                sensor->nbinning_subtypes = min_t(u8, val,
2982                                                  SMIAPP_BINNING_SUBTYPES);
2983
2984                for (i = 0; i < sensor->nbinning_subtypes; i++) {
2985                        rval = smiapp_read(
2986                                sensor, SMIAPP_REG_U8_BINNING_TYPE_n(i), &val);
2987                        if (rval < 0) {
2988                                rval = -ENODEV;
2989                                goto out_power_off;
2990                        }
2991                        sensor->binning_subtypes[i] =
2992                                *(struct smiapp_binning_subtype *)&val;
2993
2994                        dev_dbg(&client->dev, "binning %xx%x\n",
2995                                sensor->binning_subtypes[i].horizontal,
2996                                sensor->binning_subtypes[i].vertical);
2997                }
2998        }
2999        sensor->binning_horizontal = 1;
3000        sensor->binning_vertical = 1;
3001
3002        if (device_create_file(&client->dev, &dev_attr_ident) != 0) {
3003                dev_err(&client->dev, "sysfs ident entry creation failed\n");
3004                rval = -ENOENT;
3005                goto out_power_off;
3006        }
3007        /* SMIA++ NVM initialization - it will be read from the sensor
3008         * when it is first requested by userspace.
3009         */
3010        if (sensor->minfo.smiapp_version && sensor->hwcfg->nvm_size) {
3011                sensor->nvm = devm_kzalloc(&client->dev,
3012                                sensor->hwcfg->nvm_size, GFP_KERNEL);
3013                if (sensor->nvm == NULL) {
3014                        rval = -ENOMEM;
3015                        goto out_cleanup;
3016                }
3017
3018                if (device_create_file(&client->dev, &dev_attr_nvm) != 0) {
3019                        dev_err(&client->dev, "sysfs nvm entry failed\n");
3020                        rval = -EBUSY;
3021                        goto out_cleanup;
3022                }
3023        }
3024
3025        /* We consider this as profile 0 sensor if any of these are zero. */
3026        if (!sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_DIV] ||
3027            !sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_DIV] ||
3028            !sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_DIV] ||
3029            !sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_DIV]) {
3030                sensor->minfo.smiapp_profile = SMIAPP_PROFILE_0;
3031        } else if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
3032                   != SMIAPP_SCALING_CAPABILITY_NONE) {
3033                if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
3034                    == SMIAPP_SCALING_CAPABILITY_HORIZONTAL)
3035                        sensor->minfo.smiapp_profile = SMIAPP_PROFILE_1;
3036                else
3037                        sensor->minfo.smiapp_profile = SMIAPP_PROFILE_2;
3038                sensor->scaler = &sensor->ssds[sensor->ssds_used];
3039                sensor->ssds_used++;
3040        } else if (sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
3041                   == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
3042                sensor->scaler = &sensor->ssds[sensor->ssds_used];
3043                sensor->ssds_used++;
3044        }
3045        sensor->binner = &sensor->ssds[sensor->ssds_used];
3046        sensor->ssds_used++;
3047        sensor->pixel_array = &sensor->ssds[sensor->ssds_used];
3048        sensor->ssds_used++;
3049
3050        sensor->scale_m = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
3051
3052        /* prepare PLL configuration input values */
3053        sensor->pll.bus_type = SMIAPP_PLL_BUS_TYPE_CSI2;
3054        sensor->pll.csi2.lanes = sensor->hwcfg->lanes;
3055        sensor->pll.ext_clk_freq_hz = sensor->hwcfg->ext_clk;
3056        sensor->pll.scale_n = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
3057        /* Profile 0 sensors have no separate OP clock branch. */
3058        if (sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0)
3059                sensor->pll.flags |= SMIAPP_PLL_FLAG_NO_OP_CLOCKS;
3060
3061        smiapp_create_subdev(sensor, sensor->scaler, " scaler", 2);
3062        smiapp_create_subdev(sensor, sensor->binner, " binner", 2);
3063        smiapp_create_subdev(sensor, sensor->pixel_array, " pixel_array", 1);
3064
3065        dev_dbg(&client->dev, "profile %d\n", sensor->minfo.smiapp_profile);
3066
3067        sensor->pixel_array->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR;
3068
3069        rval = smiapp_init_controls(sensor);
3070        if (rval < 0)
3071                goto out_cleanup;
3072
3073        rval = smiapp_call_quirk(sensor, init);
3074        if (rval)
3075                goto out_cleanup;
3076
3077        rval = smiapp_get_mbus_formats(sensor);
3078        if (rval) {
3079                rval = -ENODEV;
3080                goto out_cleanup;
3081        }
3082
3083        rval = smiapp_init_late_controls(sensor);
3084        if (rval) {
3085                rval = -ENODEV;
3086                goto out_cleanup;
3087        }
3088
3089        mutex_lock(&sensor->mutex);
3090        rval = smiapp_update_mode(sensor);
3091        mutex_unlock(&sensor->mutex);
3092        if (rval) {
3093                dev_err(&client->dev, "update mode failed\n");
3094                goto out_cleanup;
3095        }
3096
3097        sensor->streaming = false;
3098        sensor->dev_init_done = true;
3099
3100        rval = media_entity_pads_init(&sensor->src->sd.entity, 2,
3101                                 sensor->src->pads);
3102        if (rval < 0)
3103                goto out_media_entity_cleanup;
3104
3105        rval = v4l2_async_register_subdev_sensor_common(&sensor->src->sd);
3106        if (rval < 0)
3107                goto out_media_entity_cleanup;
3108
3109        pm_runtime_set_active(&client->dev);
3110        pm_runtime_get_noresume(&client->dev);
3111        pm_runtime_enable(&client->dev);
3112        pm_runtime_set_autosuspend_delay(&client->dev, 1000);
3113        pm_runtime_use_autosuspend(&client->dev);
3114        pm_runtime_put_autosuspend(&client->dev);
3115
3116        return 0;
3117
3118out_media_entity_cleanup:
3119        media_entity_cleanup(&sensor->src->sd.entity);
3120
3121out_cleanup:
3122        smiapp_cleanup(sensor);
3123
3124out_power_off:
3125        smiapp_power_off(&client->dev);
3126
3127        return rval;
3128}
3129
3130static int smiapp_remove(struct i2c_client *client)
3131{
3132        struct v4l2_subdev *subdev = i2c_get_clientdata(client);
3133        struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
3134        unsigned int i;
3135
3136        v4l2_async_unregister_subdev(subdev);
3137
3138        pm_runtime_disable(&client->dev);
3139        if (!pm_runtime_status_suspended(&client->dev))
3140                smiapp_power_off(&client->dev);
3141        pm_runtime_set_suspended(&client->dev);
3142
3143        for (i = 0; i < sensor->ssds_used; i++) {
3144                v4l2_device_unregister_subdev(&sensor->ssds[i].sd);
3145                media_entity_cleanup(&sensor->ssds[i].sd.entity);
3146        }
3147        smiapp_cleanup(sensor);
3148
3149        return 0;
3150}
3151
3152static const struct of_device_id smiapp_of_table[] = {
3153        { .compatible = "nokia,smia" },
3154        { },
3155};
3156MODULE_DEVICE_TABLE(of, smiapp_of_table);
3157
3158static const struct i2c_device_id smiapp_id_table[] = {
3159        { SMIAPP_NAME, 0 },
3160        { },
3161};
3162MODULE_DEVICE_TABLE(i2c, smiapp_id_table);
3163
3164static const struct dev_pm_ops smiapp_pm_ops = {
3165        SET_SYSTEM_SLEEP_PM_OPS(smiapp_suspend, smiapp_resume)
3166        SET_RUNTIME_PM_OPS(smiapp_power_off, smiapp_power_on, NULL)
3167};
3168
3169static struct i2c_driver smiapp_i2c_driver = {
3170        .driver = {
3171                .of_match_table = smiapp_of_table,
3172                .name = SMIAPP_NAME,
3173                .pm = &smiapp_pm_ops,
3174        },
3175        .probe  = smiapp_probe,
3176        .remove = smiapp_remove,
3177        .id_table = smiapp_id_table,
3178};
3179
3180module_i2c_driver(smiapp_i2c_driver);
3181
3182MODULE_AUTHOR("Sakari Ailus <sakari.ailus@iki.fi>");
3183MODULE_DESCRIPTION("Generic SMIA/SMIA++ camera module driver");
3184MODULE_LICENSE("GPL v2");
3185