linux/drivers/media/pci/cx23885/cx23885-vbi.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  Driver for the Conexant CX23885 PCIe bridge
   4 *
   5 *  Copyright (c) 2007 Steven Toth <stoth@linuxtv.org>
   6 */
   7
   8#include "cx23885.h"
   9
  10#include <linux/kernel.h>
  11#include <linux/module.h>
  12#include <linux/moduleparam.h>
  13#include <linux/init.h>
  14
  15static unsigned int vbibufs = 4;
  16module_param(vbibufs, int, 0644);
  17MODULE_PARM_DESC(vbibufs, "number of vbi buffers, range 2-32");
  18
  19static unsigned int vbi_debug;
  20module_param(vbi_debug, int, 0644);
  21MODULE_PARM_DESC(vbi_debug, "enable debug messages [vbi]");
  22
  23#define dprintk(level, fmt, arg...)\
  24        do { if (vbi_debug >= level)\
  25                printk(KERN_DEBUG pr_fmt("%s: vbi:" fmt), \
  26                        __func__, ##arg); \
  27        } while (0)
  28
  29/* ------------------------------------------------------------------ */
  30
  31#define VBI_LINE_LENGTH 1440
  32#define VBI_NTSC_LINE_COUNT 12
  33#define VBI_PAL_LINE_COUNT 18
  34
  35
  36int cx23885_vbi_fmt(struct file *file, void *priv,
  37        struct v4l2_format *f)
  38{
  39        struct cx23885_dev *dev = video_drvdata(file);
  40
  41        f->fmt.vbi.sampling_rate = 27000000;
  42        f->fmt.vbi.samples_per_line = VBI_LINE_LENGTH;
  43        f->fmt.vbi.sample_format = V4L2_PIX_FMT_GREY;
  44        f->fmt.vbi.offset = 0;
  45        f->fmt.vbi.flags = 0;
  46        if (dev->tvnorm & V4L2_STD_525_60) {
  47                /* ntsc */
  48                f->fmt.vbi.start[0] = V4L2_VBI_ITU_525_F1_START + 9;
  49                f->fmt.vbi.start[1] = V4L2_VBI_ITU_525_F2_START + 9;
  50                f->fmt.vbi.count[0] = VBI_NTSC_LINE_COUNT;
  51                f->fmt.vbi.count[1] = VBI_NTSC_LINE_COUNT;
  52        } else if (dev->tvnorm & V4L2_STD_625_50) {
  53                /* pal */
  54                f->fmt.vbi.start[0] = V4L2_VBI_ITU_625_F1_START + 5;
  55                f->fmt.vbi.start[1] = V4L2_VBI_ITU_625_F2_START + 5;
  56                f->fmt.vbi.count[0] = VBI_PAL_LINE_COUNT;
  57                f->fmt.vbi.count[1] = VBI_PAL_LINE_COUNT;
  58        }
  59
  60        return 0;
  61}
  62
  63/* We're given the Video Interrupt status register.
  64 * The cx23885_video_irq() func has already validated
  65 * the potential error bits, we just need to
  66 * deal with vbi payload and return indication if
  67 * we actually processed any payload.
  68 */
  69int cx23885_vbi_irq(struct cx23885_dev *dev, u32 status)
  70{
  71        u32 count;
  72        int handled = 0;
  73
  74        if (status & VID_BC_MSK_VBI_RISCI1) {
  75                dprintk(1, "%s() VID_BC_MSK_VBI_RISCI1\n", __func__);
  76                spin_lock(&dev->slock);
  77                count = cx_read(VBI_A_GPCNT);
  78                cx23885_video_wakeup(dev, &dev->vbiq, count);
  79                spin_unlock(&dev->slock);
  80                handled++;
  81        }
  82
  83        return handled;
  84}
  85
  86static int cx23885_start_vbi_dma(struct cx23885_dev    *dev,
  87                         struct cx23885_dmaqueue *q,
  88                         struct cx23885_buffer   *buf)
  89{
  90        dprintk(1, "%s()\n", __func__);
  91
  92        /* setup fifo + format */
  93        cx23885_sram_channel_setup(dev, &dev->sram_channels[SRAM_CH02],
  94                                VBI_LINE_LENGTH, buf->risc.dma);
  95
  96        /* reset counter */
  97        cx_write(VID_A_VBI_CTRL, 3);
  98        cx_write(VBI_A_GPCNT_CTL, 3);
  99        q->count = 0;
 100
 101        /* enable irq */
 102        cx23885_irq_add_enable(dev, 0x01);
 103        cx_set(VID_A_INT_MSK, 0x000022);
 104
 105        /* start dma */
 106        cx_set(DEV_CNTRL2, (1<<5));
 107        cx_set(VID_A_DMA_CTL, 0x22); /* FIFO and RISC enable */
 108
 109        return 0;
 110}
 111
 112/* ------------------------------------------------------------------ */
 113
 114static int queue_setup(struct vb2_queue *q,
 115                           unsigned int *num_buffers, unsigned int *num_planes,
 116                           unsigned int sizes[], struct device *alloc_devs[])
 117{
 118        struct cx23885_dev *dev = q->drv_priv;
 119        unsigned lines = VBI_PAL_LINE_COUNT;
 120
 121        if (dev->tvnorm & V4L2_STD_525_60)
 122                lines = VBI_NTSC_LINE_COUNT;
 123        *num_planes = 1;
 124        sizes[0] = lines * VBI_LINE_LENGTH * 2;
 125        return 0;
 126}
 127
 128static int buffer_prepare(struct vb2_buffer *vb)
 129{
 130        struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
 131        struct cx23885_dev *dev = vb->vb2_queue->drv_priv;
 132        struct cx23885_buffer *buf = container_of(vbuf,
 133                struct cx23885_buffer, vb);
 134        struct sg_table *sgt = vb2_dma_sg_plane_desc(vb, 0);
 135        unsigned lines = VBI_PAL_LINE_COUNT;
 136
 137        if (dev->tvnorm & V4L2_STD_525_60)
 138                lines = VBI_NTSC_LINE_COUNT;
 139
 140        if (vb2_plane_size(vb, 0) < lines * VBI_LINE_LENGTH * 2)
 141                return -EINVAL;
 142        vb2_set_plane_payload(vb, 0, lines * VBI_LINE_LENGTH * 2);
 143
 144        cx23885_risc_vbibuffer(dev->pci, &buf->risc,
 145                         sgt->sgl,
 146                         0, VBI_LINE_LENGTH * lines,
 147                         VBI_LINE_LENGTH, 0,
 148                         lines);
 149        return 0;
 150}
 151
 152static void buffer_finish(struct vb2_buffer *vb)
 153{
 154        struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
 155        struct cx23885_buffer *buf = container_of(vbuf,
 156                struct cx23885_buffer, vb);
 157
 158        cx23885_free_buffer(vb->vb2_queue->drv_priv, buf);
 159}
 160
 161/*
 162 * The risc program for each buffer works as follows: it starts with a simple
 163 * 'JUMP to addr + 12', which is effectively a NOP. Then the code to DMA the
 164 * buffer follows and at the end we have a JUMP back to the start + 12 (skipping
 165 * the initial JUMP).
 166 *
 167 * This is the risc program of the first buffer to be queued if the active list
 168 * is empty and it just keeps DMAing this buffer without generating any
 169 * interrupts.
 170 *
 171 * If a new buffer is added then the initial JUMP in the code for that buffer
 172 * will generate an interrupt which signals that the previous buffer has been
 173 * DMAed successfully and that it can be returned to userspace.
 174 *
 175 * It also sets the final jump of the previous buffer to the start of the new
 176 * buffer, thus chaining the new buffer into the DMA chain. This is a single
 177 * atomic u32 write, so there is no race condition.
 178 *
 179 * The end-result of all this that you only get an interrupt when a buffer
 180 * is ready, so the control flow is very easy.
 181 */
 182static void buffer_queue(struct vb2_buffer *vb)
 183{
 184        struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
 185        struct cx23885_dev *dev = vb->vb2_queue->drv_priv;
 186        struct cx23885_buffer *buf = container_of(vbuf,
 187                        struct cx23885_buffer, vb);
 188        struct cx23885_buffer *prev;
 189        struct cx23885_dmaqueue *q = &dev->vbiq;
 190        unsigned long flags;
 191
 192        buf->risc.cpu[1] = cpu_to_le32(buf->risc.dma + 12);
 193        buf->risc.jmp[0] = cpu_to_le32(RISC_JUMP | RISC_CNT_INC);
 194        buf->risc.jmp[1] = cpu_to_le32(buf->risc.dma + 12);
 195        buf->risc.jmp[2] = cpu_to_le32(0); /* bits 63-32 */
 196
 197        if (list_empty(&q->active)) {
 198                spin_lock_irqsave(&dev->slock, flags);
 199                list_add_tail(&buf->queue, &q->active);
 200                spin_unlock_irqrestore(&dev->slock, flags);
 201                dprintk(2, "[%p/%d] vbi_queue - first active\n",
 202                        buf, buf->vb.vb2_buf.index);
 203
 204        } else {
 205                buf->risc.cpu[0] |= cpu_to_le32(RISC_IRQ1);
 206                prev = list_entry(q->active.prev, struct cx23885_buffer,
 207                        queue);
 208                spin_lock_irqsave(&dev->slock, flags);
 209                list_add_tail(&buf->queue, &q->active);
 210                spin_unlock_irqrestore(&dev->slock, flags);
 211                prev->risc.jmp[1] = cpu_to_le32(buf->risc.dma);
 212                dprintk(2, "[%p/%d] buffer_queue - append to active\n",
 213                        buf, buf->vb.vb2_buf.index);
 214        }
 215}
 216
 217static int cx23885_start_streaming(struct vb2_queue *q, unsigned int count)
 218{
 219        struct cx23885_dev *dev = q->drv_priv;
 220        struct cx23885_dmaqueue *dmaq = &dev->vbiq;
 221        struct cx23885_buffer *buf = list_entry(dmaq->active.next,
 222                        struct cx23885_buffer, queue);
 223
 224        cx23885_start_vbi_dma(dev, dmaq, buf);
 225        return 0;
 226}
 227
 228static void cx23885_stop_streaming(struct vb2_queue *q)
 229{
 230        struct cx23885_dev *dev = q->drv_priv;
 231        struct cx23885_dmaqueue *dmaq = &dev->vbiq;
 232        unsigned long flags;
 233
 234        cx_clear(VID_A_DMA_CTL, 0x22); /* FIFO and RISC enable */
 235        spin_lock_irqsave(&dev->slock, flags);
 236        while (!list_empty(&dmaq->active)) {
 237                struct cx23885_buffer *buf = list_entry(dmaq->active.next,
 238                        struct cx23885_buffer, queue);
 239
 240                list_del(&buf->queue);
 241                vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_ERROR);
 242        }
 243        spin_unlock_irqrestore(&dev->slock, flags);
 244}
 245
 246
 247const struct vb2_ops cx23885_vbi_qops = {
 248        .queue_setup    = queue_setup,
 249        .buf_prepare  = buffer_prepare,
 250        .buf_finish = buffer_finish,
 251        .buf_queue    = buffer_queue,
 252        .wait_prepare = vb2_ops_wait_prepare,
 253        .wait_finish = vb2_ops_wait_finish,
 254        .start_streaming = cx23885_start_streaming,
 255        .stop_streaming = cx23885_stop_streaming,
 256};
 257