linux/drivers/memory/emif.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * EMIF driver
   4 *
   5 * Copyright (C) 2012 Texas Instruments, Inc.
   6 *
   7 * Aneesh V <aneesh@ti.com>
   8 * Santosh Shilimkar <santosh.shilimkar@ti.com>
   9 */
  10#include <linux/err.h>
  11#include <linux/kernel.h>
  12#include <linux/reboot.h>
  13#include <linux/platform_data/emif_plat.h>
  14#include <linux/io.h>
  15#include <linux/device.h>
  16#include <linux/platform_device.h>
  17#include <linux/interrupt.h>
  18#include <linux/slab.h>
  19#include <linux/of.h>
  20#include <linux/debugfs.h>
  21#include <linux/seq_file.h>
  22#include <linux/module.h>
  23#include <linux/list.h>
  24#include <linux/spinlock.h>
  25#include <linux/pm.h>
  26
  27#include "emif.h"
  28#include "jedec_ddr.h"
  29#include "of_memory.h"
  30
  31/**
  32 * struct emif_data - Per device static data for driver's use
  33 * @duplicate:                  Whether the DDR devices attached to this EMIF
  34 *                              instance are exactly same as that on EMIF1. In
  35 *                              this case we can save some memory and processing
  36 * @temperature_level:          Maximum temperature of LPDDR2 devices attached
  37 *                              to this EMIF - read from MR4 register. If there
  38 *                              are two devices attached to this EMIF, this
  39 *                              value is the maximum of the two temperature
  40 *                              levels.
  41 * @node:                       node in the device list
  42 * @base:                       base address of memory-mapped IO registers.
  43 * @dev:                        device pointer.
  44 * @addressing                  table with addressing information from the spec
  45 * @regs_cache:                 An array of 'struct emif_regs' that stores
  46 *                              calculated register values for different
  47 *                              frequencies, to avoid re-calculating them on
  48 *                              each DVFS transition.
  49 * @curr_regs:                  The set of register values used in the last
  50 *                              frequency change (i.e. corresponding to the
  51 *                              frequency in effect at the moment)
  52 * @plat_data:                  Pointer to saved platform data.
  53 * @debugfs_root:               dentry to the root folder for EMIF in debugfs
  54 * @np_ddr:                     Pointer to ddr device tree node
  55 */
  56struct emif_data {
  57        u8                              duplicate;
  58        u8                              temperature_level;
  59        u8                              lpmode;
  60        struct list_head                node;
  61        unsigned long                   irq_state;
  62        void __iomem                    *base;
  63        struct device                   *dev;
  64        const struct lpddr2_addressing  *addressing;
  65        struct emif_regs                *regs_cache[EMIF_MAX_NUM_FREQUENCIES];
  66        struct emif_regs                *curr_regs;
  67        struct emif_platform_data       *plat_data;
  68        struct dentry                   *debugfs_root;
  69        struct device_node              *np_ddr;
  70};
  71
  72static struct emif_data *emif1;
  73static spinlock_t       emif_lock;
  74static unsigned long    irq_state;
  75static u32              t_ck; /* DDR clock period in ps */
  76static LIST_HEAD(device_list);
  77
  78#ifdef CONFIG_DEBUG_FS
  79static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif,
  80        struct emif_regs *regs)
  81{
  82        u32 type = emif->plat_data->device_info->type;
  83        u32 ip_rev = emif->plat_data->ip_rev;
  84
  85        seq_printf(s, "EMIF register cache dump for %dMHz\n",
  86                regs->freq/1000000);
  87
  88        seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw);
  89        seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw);
  90        seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw);
  91        seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw);
  92
  93        if (ip_rev == EMIF_4D) {
  94                seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n",
  95                        regs->read_idle_ctrl_shdw_normal);
  96                seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n",
  97                        regs->read_idle_ctrl_shdw_volt_ramp);
  98        } else if (ip_rev == EMIF_4D5) {
  99                seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n",
 100                        regs->dll_calib_ctrl_shdw_normal);
 101                seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n",
 102                        regs->dll_calib_ctrl_shdw_volt_ramp);
 103        }
 104
 105        if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
 106                seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n",
 107                        regs->ref_ctrl_shdw_derated);
 108                seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n",
 109                        regs->sdram_tim1_shdw_derated);
 110                seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n",
 111                        regs->sdram_tim3_shdw_derated);
 112        }
 113}
 114
 115static int emif_regdump_show(struct seq_file *s, void *unused)
 116{
 117        struct emif_data        *emif   = s->private;
 118        struct emif_regs        **regs_cache;
 119        int                     i;
 120
 121        if (emif->duplicate)
 122                regs_cache = emif1->regs_cache;
 123        else
 124                regs_cache = emif->regs_cache;
 125
 126        for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
 127                do_emif_regdump_show(s, emif, regs_cache[i]);
 128                seq_putc(s, '\n');
 129        }
 130
 131        return 0;
 132}
 133
 134static int emif_regdump_open(struct inode *inode, struct file *file)
 135{
 136        return single_open(file, emif_regdump_show, inode->i_private);
 137}
 138
 139static const struct file_operations emif_regdump_fops = {
 140        .open                   = emif_regdump_open,
 141        .read                   = seq_read,
 142        .release                = single_release,
 143};
 144
 145static int emif_mr4_show(struct seq_file *s, void *unused)
 146{
 147        struct emif_data *emif = s->private;
 148
 149        seq_printf(s, "MR4=%d\n", emif->temperature_level);
 150        return 0;
 151}
 152
 153static int emif_mr4_open(struct inode *inode, struct file *file)
 154{
 155        return single_open(file, emif_mr4_show, inode->i_private);
 156}
 157
 158static const struct file_operations emif_mr4_fops = {
 159        .open                   = emif_mr4_open,
 160        .read                   = seq_read,
 161        .release                = single_release,
 162};
 163
 164static int __init_or_module emif_debugfs_init(struct emif_data *emif)
 165{
 166        struct dentry   *dentry;
 167        int             ret;
 168
 169        dentry = debugfs_create_dir(dev_name(emif->dev), NULL);
 170        if (!dentry) {
 171                ret = -ENOMEM;
 172                goto err0;
 173        }
 174        emif->debugfs_root = dentry;
 175
 176        dentry = debugfs_create_file("regcache_dump", S_IRUGO,
 177                        emif->debugfs_root, emif, &emif_regdump_fops);
 178        if (!dentry) {
 179                ret = -ENOMEM;
 180                goto err1;
 181        }
 182
 183        dentry = debugfs_create_file("mr4", S_IRUGO,
 184                        emif->debugfs_root, emif, &emif_mr4_fops);
 185        if (!dentry) {
 186                ret = -ENOMEM;
 187                goto err1;
 188        }
 189
 190        return 0;
 191err1:
 192        debugfs_remove_recursive(emif->debugfs_root);
 193err0:
 194        return ret;
 195}
 196
 197static void __exit emif_debugfs_exit(struct emif_data *emif)
 198{
 199        debugfs_remove_recursive(emif->debugfs_root);
 200        emif->debugfs_root = NULL;
 201}
 202#else
 203static inline int __init_or_module emif_debugfs_init(struct emif_data *emif)
 204{
 205        return 0;
 206}
 207
 208static inline void __exit emif_debugfs_exit(struct emif_data *emif)
 209{
 210}
 211#endif
 212
 213/*
 214 * Calculate the period of DDR clock from frequency value
 215 */
 216static void set_ddr_clk_period(u32 freq)
 217{
 218        /* Divide 10^12 by frequency to get period in ps */
 219        t_ck = (u32)DIV_ROUND_UP_ULL(1000000000000ull, freq);
 220}
 221
 222/*
 223 * Get bus width used by EMIF. Note that this may be different from the
 224 * bus width of the DDR devices used. For instance two 16-bit DDR devices
 225 * may be connected to a given CS of EMIF. In this case bus width as far
 226 * as EMIF is concerned is 32, where as the DDR bus width is 16 bits.
 227 */
 228static u32 get_emif_bus_width(struct emif_data *emif)
 229{
 230        u32             width;
 231        void __iomem    *base = emif->base;
 232
 233        width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK)
 234                        >> NARROW_MODE_SHIFT;
 235        width = width == 0 ? 32 : 16;
 236
 237        return width;
 238}
 239
 240/*
 241 * Get the CL from SDRAM_CONFIG register
 242 */
 243static u32 get_cl(struct emif_data *emif)
 244{
 245        u32             cl;
 246        void __iomem    *base = emif->base;
 247
 248        cl = (readl(base + EMIF_SDRAM_CONFIG) & CL_MASK) >> CL_SHIFT;
 249
 250        return cl;
 251}
 252
 253static void set_lpmode(struct emif_data *emif, u8 lpmode)
 254{
 255        u32 temp;
 256        void __iomem *base = emif->base;
 257
 258        /*
 259         * Workaround for errata i743 - LPDDR2 Power-Down State is Not
 260         * Efficient
 261         *
 262         * i743 DESCRIPTION:
 263         * The EMIF supports power-down state for low power. The EMIF
 264         * automatically puts the SDRAM into power-down after the memory is
 265         * not accessed for a defined number of cycles and the
 266         * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set to 0x4.
 267         * As the EMIF supports automatic output impedance calibration, a ZQ
 268         * calibration long command is issued every time it exits active
 269         * power-down and precharge power-down modes. The EMIF waits and
 270         * blocks any other command during this calibration.
 271         * The EMIF does not allow selective disabling of ZQ calibration upon
 272         * exit of power-down mode. Due to very short periods of power-down
 273         * cycles, ZQ calibration overhead creates bandwidth issues and
 274         * increases overall system power consumption. On the other hand,
 275         * issuing ZQ calibration long commands when exiting self-refresh is
 276         * still required.
 277         *
 278         * WORKAROUND
 279         * Because there is no power consumption benefit of the power-down due
 280         * to the calibration and there is a performance risk, the guideline
 281         * is to not allow power-down state and, therefore, to not have set
 282         * the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field to 0x4.
 283         */
 284        if ((emif->plat_data->ip_rev == EMIF_4D) &&
 285            (EMIF_LP_MODE_PWR_DN == lpmode)) {
 286                WARN_ONCE(1,
 287                          "REG_LP_MODE = LP_MODE_PWR_DN(4) is prohibited by"
 288                          "erratum i743 switch to LP_MODE_SELF_REFRESH(2)\n");
 289                /* rollback LP_MODE to Self-refresh mode */
 290                lpmode = EMIF_LP_MODE_SELF_REFRESH;
 291        }
 292
 293        temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL);
 294        temp &= ~LP_MODE_MASK;
 295        temp |= (lpmode << LP_MODE_SHIFT);
 296        writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL);
 297}
 298
 299static void do_freq_update(void)
 300{
 301        struct emif_data *emif;
 302
 303        /*
 304         * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE
 305         *
 306         * i728 DESCRIPTION:
 307         * The EMIF automatically puts the SDRAM into self-refresh mode
 308         * after the EMIF has not performed accesses during
 309         * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles
 310         * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set
 311         * to 0x2. If during a small window the following three events
 312         * occur:
 313         * - The SR_TIMING counter expires
 314         * - And frequency change is requested
 315         * - And OCP access is requested
 316         * Then it causes instable clock on the DDR interface.
 317         *
 318         * WORKAROUND
 319         * To avoid the occurrence of the three events, the workaround
 320         * is to disable the self-refresh when requesting a frequency
 321         * change. Before requesting a frequency change the software must
 322         * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the
 323         * frequency change has been done, the software can reprogram
 324         * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2
 325         */
 326        list_for_each_entry(emif, &device_list, node) {
 327                if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
 328                        set_lpmode(emif, EMIF_LP_MODE_DISABLE);
 329        }
 330
 331        /*
 332         * TODO: Do FREQ_UPDATE here when an API
 333         * is available for this as part of the new
 334         * clock framework
 335         */
 336
 337        list_for_each_entry(emif, &device_list, node) {
 338                if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
 339                        set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
 340        }
 341}
 342
 343/* Find addressing table entry based on the device's type and density */
 344static const struct lpddr2_addressing *get_addressing_table(
 345        const struct ddr_device_info *device_info)
 346{
 347        u32             index, type, density;
 348
 349        type = device_info->type;
 350        density = device_info->density;
 351
 352        switch (type) {
 353        case DDR_TYPE_LPDDR2_S4:
 354                index = density - 1;
 355                break;
 356        case DDR_TYPE_LPDDR2_S2:
 357                switch (density) {
 358                case DDR_DENSITY_1Gb:
 359                case DDR_DENSITY_2Gb:
 360                        index = density + 3;
 361                        break;
 362                default:
 363                        index = density - 1;
 364                }
 365                break;
 366        default:
 367                return NULL;
 368        }
 369
 370        return &lpddr2_jedec_addressing_table[index];
 371}
 372
 373/*
 374 * Find the the right timing table from the array of timing
 375 * tables of the device using DDR clock frequency
 376 */
 377static const struct lpddr2_timings *get_timings_table(struct emif_data *emif,
 378                u32 freq)
 379{
 380        u32                             i, min, max, freq_nearest;
 381        const struct lpddr2_timings     *timings = NULL;
 382        const struct lpddr2_timings     *timings_arr = emif->plat_data->timings;
 383        struct                          device *dev = emif->dev;
 384
 385        /* Start with a very high frequency - 1GHz */
 386        freq_nearest = 1000000000;
 387
 388        /*
 389         * Find the timings table such that:
 390         *  1. the frequency range covers the required frequency(safe) AND
 391         *  2. the max_freq is closest to the required frequency(optimal)
 392         */
 393        for (i = 0; i < emif->plat_data->timings_arr_size; i++) {
 394                max = timings_arr[i].max_freq;
 395                min = timings_arr[i].min_freq;
 396                if ((freq >= min) && (freq <= max) && (max < freq_nearest)) {
 397                        freq_nearest = max;
 398                        timings = &timings_arr[i];
 399                }
 400        }
 401
 402        if (!timings)
 403                dev_err(dev, "%s: couldn't find timings for - %dHz\n",
 404                        __func__, freq);
 405
 406        dev_dbg(dev, "%s: timings table: freq %d, speed bin freq %d\n",
 407                __func__, freq, freq_nearest);
 408
 409        return timings;
 410}
 411
 412static u32 get_sdram_ref_ctrl_shdw(u32 freq,
 413                const struct lpddr2_addressing *addressing)
 414{
 415        u32 ref_ctrl_shdw = 0, val = 0, freq_khz, t_refi;
 416
 417        /* Scale down frequency and t_refi to avoid overflow */
 418        freq_khz = freq / 1000;
 419        t_refi = addressing->tREFI_ns / 100;
 420
 421        /*
 422         * refresh rate to be set is 'tREFI(in us) * freq in MHz
 423         * division by 10000 to account for change in units
 424         */
 425        val = t_refi * freq_khz / 10000;
 426        ref_ctrl_shdw |= val << REFRESH_RATE_SHIFT;
 427
 428        return ref_ctrl_shdw;
 429}
 430
 431static u32 get_sdram_tim_1_shdw(const struct lpddr2_timings *timings,
 432                const struct lpddr2_min_tck *min_tck,
 433                const struct lpddr2_addressing *addressing)
 434{
 435        u32 tim1 = 0, val = 0;
 436
 437        val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
 438        tim1 |= val << T_WTR_SHIFT;
 439
 440        if (addressing->num_banks == B8)
 441                val = DIV_ROUND_UP(timings->tFAW, t_ck*4);
 442        else
 443                val = max(min_tck->tRRD, DIV_ROUND_UP(timings->tRRD, t_ck));
 444        tim1 |= (val - 1) << T_RRD_SHIFT;
 445
 446        val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab, t_ck) - 1;
 447        tim1 |= val << T_RC_SHIFT;
 448
 449        val = max(min_tck->tRASmin, DIV_ROUND_UP(timings->tRAS_min, t_ck));
 450        tim1 |= (val - 1) << T_RAS_SHIFT;
 451
 452        val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
 453        tim1 |= val << T_WR_SHIFT;
 454
 455        val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD, t_ck)) - 1;
 456        tim1 |= val << T_RCD_SHIFT;
 457
 458        val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab, t_ck)) - 1;
 459        tim1 |= val << T_RP_SHIFT;
 460
 461        return tim1;
 462}
 463
 464static u32 get_sdram_tim_1_shdw_derated(const struct lpddr2_timings *timings,
 465                const struct lpddr2_min_tck *min_tck,
 466                const struct lpddr2_addressing *addressing)
 467{
 468        u32 tim1 = 0, val = 0;
 469
 470        val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
 471        tim1 = val << T_WTR_SHIFT;
 472
 473        /*
 474         * tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps
 475         * to tFAW for de-rating
 476         */
 477        if (addressing->num_banks == B8) {
 478                val = DIV_ROUND_UP(timings->tFAW + 7500, 4 * t_ck) - 1;
 479        } else {
 480                val = DIV_ROUND_UP(timings->tRRD + 1875, t_ck);
 481                val = max(min_tck->tRRD, val) - 1;
 482        }
 483        tim1 |= val << T_RRD_SHIFT;
 484
 485        val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab + 1875, t_ck);
 486        tim1 |= (val - 1) << T_RC_SHIFT;
 487
 488        val = DIV_ROUND_UP(timings->tRAS_min + 1875, t_ck);
 489        val = max(min_tck->tRASmin, val) - 1;
 490        tim1 |= val << T_RAS_SHIFT;
 491
 492        val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
 493        tim1 |= val << T_WR_SHIFT;
 494
 495        val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD + 1875, t_ck));
 496        tim1 |= (val - 1) << T_RCD_SHIFT;
 497
 498        val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab + 1875, t_ck));
 499        tim1 |= (val - 1) << T_RP_SHIFT;
 500
 501        return tim1;
 502}
 503
 504static u32 get_sdram_tim_2_shdw(const struct lpddr2_timings *timings,
 505                const struct lpddr2_min_tck *min_tck,
 506                const struct lpddr2_addressing *addressing,
 507                u32 type)
 508{
 509        u32 tim2 = 0, val = 0;
 510
 511        val = min_tck->tCKE - 1;
 512        tim2 |= val << T_CKE_SHIFT;
 513
 514        val = max(min_tck->tRTP, DIV_ROUND_UP(timings->tRTP, t_ck)) - 1;
 515        tim2 |= val << T_RTP_SHIFT;
 516
 517        /* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */
 518        val = DIV_ROUND_UP(addressing->tRFCab_ps + 10000, t_ck) - 1;
 519        tim2 |= val << T_XSNR_SHIFT;
 520
 521        /* XSRD same as XSNR for LPDDR2 */
 522        tim2 |= val << T_XSRD_SHIFT;
 523
 524        val = max(min_tck->tXP, DIV_ROUND_UP(timings->tXP, t_ck)) - 1;
 525        tim2 |= val << T_XP_SHIFT;
 526
 527        return tim2;
 528}
 529
 530static u32 get_sdram_tim_3_shdw(const struct lpddr2_timings *timings,
 531                const struct lpddr2_min_tck *min_tck,
 532                const struct lpddr2_addressing *addressing,
 533                u32 type, u32 ip_rev, u32 derated)
 534{
 535        u32 tim3 = 0, val = 0, t_dqsck;
 536
 537        val = timings->tRAS_max_ns / addressing->tREFI_ns - 1;
 538        val = val > 0xF ? 0xF : val;
 539        tim3 |= val << T_RAS_MAX_SHIFT;
 540
 541        val = DIV_ROUND_UP(addressing->tRFCab_ps, t_ck) - 1;
 542        tim3 |= val << T_RFC_SHIFT;
 543
 544        t_dqsck = (derated == EMIF_DERATED_TIMINGS) ?
 545                timings->tDQSCK_max_derated : timings->tDQSCK_max;
 546        if (ip_rev == EMIF_4D5)
 547                val = DIV_ROUND_UP(t_dqsck + 1000, t_ck) - 1;
 548        else
 549                val = DIV_ROUND_UP(t_dqsck, t_ck) - 1;
 550
 551        tim3 |= val << T_TDQSCKMAX_SHIFT;
 552
 553        val = DIV_ROUND_UP(timings->tZQCS, t_ck) - 1;
 554        tim3 |= val << ZQ_ZQCS_SHIFT;
 555
 556        val = DIV_ROUND_UP(timings->tCKESR, t_ck);
 557        val = max(min_tck->tCKESR, val) - 1;
 558        tim3 |= val << T_CKESR_SHIFT;
 559
 560        if (ip_rev == EMIF_4D5) {
 561                tim3 |= (EMIF_T_CSTA - 1) << T_CSTA_SHIFT;
 562
 563                val = DIV_ROUND_UP(EMIF_T_PDLL_UL, 128) - 1;
 564                tim3 |= val << T_PDLL_UL_SHIFT;
 565        }
 566
 567        return tim3;
 568}
 569
 570static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing,
 571                bool cs1_used, bool cal_resistors_per_cs)
 572{
 573        u32 zq = 0, val = 0;
 574
 575        val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns;
 576        zq |= val << ZQ_REFINTERVAL_SHIFT;
 577
 578        val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1;
 579        zq |= val << ZQ_ZQCL_MULT_SHIFT;
 580
 581        val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1;
 582        zq |= val << ZQ_ZQINIT_MULT_SHIFT;
 583
 584        zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT;
 585
 586        if (cal_resistors_per_cs)
 587                zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT;
 588        else
 589                zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT;
 590
 591        zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */
 592
 593        val = cs1_used ? 1 : 0;
 594        zq |= val << ZQ_CS1EN_SHIFT;
 595
 596        return zq;
 597}
 598
 599static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing,
 600                const struct emif_custom_configs *custom_configs, bool cs1_used,
 601                u32 sdram_io_width, u32 emif_bus_width)
 602{
 603        u32 alert = 0, interval, devcnt;
 604
 605        if (custom_configs && (custom_configs->mask &
 606                                EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL))
 607                interval = custom_configs->temp_alert_poll_interval_ms;
 608        else
 609                interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS;
 610
 611        interval *= 1000000;                    /* Convert to ns */
 612        interval /= addressing->tREFI_ns;       /* Convert to refresh cycles */
 613        alert |= (interval << TA_REFINTERVAL_SHIFT);
 614
 615        /*
 616         * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width
 617         * also to this form and subtract to get TA_DEVCNT, which is
 618         * in log2(x) form.
 619         */
 620        emif_bus_width = __fls(emif_bus_width) - 1;
 621        devcnt = emif_bus_width - sdram_io_width;
 622        alert |= devcnt << TA_DEVCNT_SHIFT;
 623
 624        /* DEVWDT is in 'log2(x) - 3' form */
 625        alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT;
 626
 627        alert |= 1 << TA_SFEXITEN_SHIFT;
 628        alert |= 1 << TA_CS0EN_SHIFT;
 629        alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT;
 630
 631        return alert;
 632}
 633
 634static u32 get_read_idle_ctrl_shdw(u8 volt_ramp)
 635{
 636        u32 idle = 0, val = 0;
 637
 638        /*
 639         * Maximum value in normal conditions and increased frequency
 640         * when voltage is ramping
 641         */
 642        if (volt_ramp)
 643                val = READ_IDLE_INTERVAL_DVFS / t_ck / 64 - 1;
 644        else
 645                val = 0x1FF;
 646
 647        /*
 648         * READ_IDLE_CTRL register in EMIF4D has same offset and fields
 649         * as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts
 650         */
 651        idle |= val << DLL_CALIB_INTERVAL_SHIFT;
 652        idle |= EMIF_READ_IDLE_LEN_VAL << ACK_WAIT_SHIFT;
 653
 654        return idle;
 655}
 656
 657static u32 get_dll_calib_ctrl_shdw(u8 volt_ramp)
 658{
 659        u32 calib = 0, val = 0;
 660
 661        if (volt_ramp == DDR_VOLTAGE_RAMPING)
 662                val = DLL_CALIB_INTERVAL_DVFS / t_ck / 16 - 1;
 663        else
 664                val = 0; /* Disabled when voltage is stable */
 665
 666        calib |= val << DLL_CALIB_INTERVAL_SHIFT;
 667        calib |= DLL_CALIB_ACK_WAIT_VAL << ACK_WAIT_SHIFT;
 668
 669        return calib;
 670}
 671
 672static u32 get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings *timings,
 673        u32 freq, u8 RL)
 674{
 675        u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY, val = 0;
 676
 677        val = RL + DIV_ROUND_UP(timings->tDQSCK_max, t_ck) - 1;
 678        phy |= val << READ_LATENCY_SHIFT_4D;
 679
 680        if (freq <= 100000000)
 681                val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY;
 682        else if (freq <= 200000000)
 683                val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY;
 684        else
 685                val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY;
 686
 687        phy |= val << DLL_SLAVE_DLY_CTRL_SHIFT_4D;
 688
 689        return phy;
 690}
 691
 692static u32 get_phy_ctrl_1_intelliphy_4d5(u32 freq, u8 cl)
 693{
 694        u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY, half_delay;
 695
 696        /*
 697         * DLL operates at 266 MHz. If DDR frequency is near 266 MHz,
 698         * half-delay is not needed else set half-delay
 699         */
 700        if (freq >= 265000000 && freq < 267000000)
 701                half_delay = 0;
 702        else
 703                half_delay = 1;
 704
 705        phy |= half_delay << DLL_HALF_DELAY_SHIFT_4D5;
 706        phy |= ((cl + DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS,
 707                        t_ck) - 1) << READ_LATENCY_SHIFT_4D5);
 708
 709        return phy;
 710}
 711
 712static u32 get_ext_phy_ctrl_2_intelliphy_4d5(void)
 713{
 714        u32 fifo_we_slave_ratio;
 715
 716        fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
 717                EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
 718
 719        return fifo_we_slave_ratio | fifo_we_slave_ratio << 11 |
 720                fifo_we_slave_ratio << 22;
 721}
 722
 723static u32 get_ext_phy_ctrl_3_intelliphy_4d5(void)
 724{
 725        u32 fifo_we_slave_ratio;
 726
 727        fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
 728                EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
 729
 730        return fifo_we_slave_ratio >> 10 | fifo_we_slave_ratio << 1 |
 731                fifo_we_slave_ratio << 12 | fifo_we_slave_ratio << 23;
 732}
 733
 734static u32 get_ext_phy_ctrl_4_intelliphy_4d5(void)
 735{
 736        u32 fifo_we_slave_ratio;
 737
 738        fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
 739                EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
 740
 741        return fifo_we_slave_ratio >> 9 | fifo_we_slave_ratio << 2 |
 742                fifo_we_slave_ratio << 13;
 743}
 744
 745static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev)
 746{
 747        u32 pwr_mgmt_ctrl       = 0, timeout;
 748        u32 lpmode              = EMIF_LP_MODE_SELF_REFRESH;
 749        u32 timeout_perf        = EMIF_LP_MODE_TIMEOUT_PERFORMANCE;
 750        u32 timeout_pwr         = EMIF_LP_MODE_TIMEOUT_POWER;
 751        u32 freq_threshold      = EMIF_LP_MODE_FREQ_THRESHOLD;
 752        u32 mask;
 753        u8 shift;
 754
 755        struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs;
 756
 757        if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) {
 758                lpmode          = cust_cfgs->lpmode;
 759                timeout_perf    = cust_cfgs->lpmode_timeout_performance;
 760                timeout_pwr     = cust_cfgs->lpmode_timeout_power;
 761                freq_threshold  = cust_cfgs->lpmode_freq_threshold;
 762        }
 763
 764        /* Timeout based on DDR frequency */
 765        timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr;
 766
 767        /*
 768         * The value to be set in register is "log2(timeout) - 3"
 769         * if timeout < 16 load 0 in register
 770         * if timeout is not a power of 2, round to next highest power of 2
 771         */
 772        if (timeout < 16) {
 773                timeout = 0;
 774        } else {
 775                if (timeout & (timeout - 1))
 776                        timeout <<= 1;
 777                timeout = __fls(timeout) - 3;
 778        }
 779
 780        switch (lpmode) {
 781        case EMIF_LP_MODE_CLOCK_STOP:
 782                shift = CS_TIM_SHIFT;
 783                mask = CS_TIM_MASK;
 784                break;
 785        case EMIF_LP_MODE_SELF_REFRESH:
 786                /* Workaround for errata i735 */
 787                if (timeout < 6)
 788                        timeout = 6;
 789
 790                shift = SR_TIM_SHIFT;
 791                mask = SR_TIM_MASK;
 792                break;
 793        case EMIF_LP_MODE_PWR_DN:
 794                shift = PD_TIM_SHIFT;
 795                mask = PD_TIM_MASK;
 796                break;
 797        case EMIF_LP_MODE_DISABLE:
 798        default:
 799                mask = 0;
 800                shift = 0;
 801                break;
 802        }
 803        /* Round to maximum in case of overflow, BUT warn! */
 804        if (lpmode != EMIF_LP_MODE_DISABLE && timeout > mask >> shift) {
 805                pr_err("TIMEOUT Overflow - lpmode=%d perf=%d pwr=%d freq=%d\n",
 806                       lpmode,
 807                       timeout_perf,
 808                       timeout_pwr,
 809                       freq_threshold);
 810                WARN(1, "timeout=0x%02x greater than 0x%02x. Using max\n",
 811                     timeout, mask >> shift);
 812                timeout = mask >> shift;
 813        }
 814
 815        /* Setup required timing */
 816        pwr_mgmt_ctrl = (timeout << shift) & mask;
 817        /* setup a default mask for rest of the modes */
 818        pwr_mgmt_ctrl |= (SR_TIM_MASK | CS_TIM_MASK | PD_TIM_MASK) &
 819                          ~mask;
 820
 821        /* No CS_TIM in EMIF_4D5 */
 822        if (ip_rev == EMIF_4D5)
 823                pwr_mgmt_ctrl &= ~CS_TIM_MASK;
 824
 825        pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT;
 826
 827        return pwr_mgmt_ctrl;
 828}
 829
 830/*
 831 * Get the temperature level of the EMIF instance:
 832 * Reads the MR4 register of attached SDRAM parts to find out the temperature
 833 * level. If there are two parts attached(one on each CS), then the temperature
 834 * level for the EMIF instance is the higher of the two temperatures.
 835 */
 836static void get_temperature_level(struct emif_data *emif)
 837{
 838        u32             temp, temperature_level;
 839        void __iomem    *base;
 840
 841        base = emif->base;
 842
 843        /* Read mode register 4 */
 844        writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG);
 845        temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
 846        temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >>
 847                                MR4_SDRAM_REF_RATE_SHIFT;
 848
 849        if (emif->plat_data->device_info->cs1_used) {
 850                writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG);
 851                temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
 852                temp = (temp & MR4_SDRAM_REF_RATE_MASK)
 853                                >> MR4_SDRAM_REF_RATE_SHIFT;
 854                temperature_level = max(temp, temperature_level);
 855        }
 856
 857        /* treat everything less than nominal(3) in MR4 as nominal */
 858        if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL))
 859                temperature_level = SDRAM_TEMP_NOMINAL;
 860
 861        /* if we get reserved value in MR4 persist with the existing value */
 862        if (likely(temperature_level != SDRAM_TEMP_RESERVED_4))
 863                emif->temperature_level = temperature_level;
 864}
 865
 866/*
 867 * Program EMIF shadow registers that are not dependent on temperature
 868 * or voltage
 869 */
 870static void setup_registers(struct emif_data *emif, struct emif_regs *regs)
 871{
 872        void __iomem    *base = emif->base;
 873
 874        writel(regs->sdram_tim2_shdw, base + EMIF_SDRAM_TIMING_2_SHDW);
 875        writel(regs->phy_ctrl_1_shdw, base + EMIF_DDR_PHY_CTRL_1_SHDW);
 876        writel(regs->pwr_mgmt_ctrl_shdw,
 877               base + EMIF_POWER_MANAGEMENT_CTRL_SHDW);
 878
 879        /* Settings specific for EMIF4D5 */
 880        if (emif->plat_data->ip_rev != EMIF_4D5)
 881                return;
 882        writel(regs->ext_phy_ctrl_2_shdw, base + EMIF_EXT_PHY_CTRL_2_SHDW);
 883        writel(regs->ext_phy_ctrl_3_shdw, base + EMIF_EXT_PHY_CTRL_3_SHDW);
 884        writel(regs->ext_phy_ctrl_4_shdw, base + EMIF_EXT_PHY_CTRL_4_SHDW);
 885}
 886
 887/*
 888 * When voltage ramps dll calibration and forced read idle should
 889 * happen more often
 890 */
 891static void setup_volt_sensitive_regs(struct emif_data *emif,
 892                struct emif_regs *regs, u32 volt_state)
 893{
 894        u32             calib_ctrl;
 895        void __iomem    *base = emif->base;
 896
 897        /*
 898         * EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as
 899         * EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_*
 900         * is an alias of the respective read_idle_ctrl_shdw_* (members of
 901         * a union). So, the below code takes care of both cases
 902         */
 903        if (volt_state == DDR_VOLTAGE_RAMPING)
 904                calib_ctrl = regs->dll_calib_ctrl_shdw_volt_ramp;
 905        else
 906                calib_ctrl = regs->dll_calib_ctrl_shdw_normal;
 907
 908        writel(calib_ctrl, base + EMIF_DLL_CALIB_CTRL_SHDW);
 909}
 910
 911/*
 912 * setup_temperature_sensitive_regs() - set the timings for temperature
 913 * sensitive registers. This happens once at initialisation time based
 914 * on the temperature at boot time and subsequently based on the temperature
 915 * alert interrupt. Temperature alert can happen when the temperature
 916 * increases or drops. So this function can have the effect of either
 917 * derating the timings or going back to nominal values.
 918 */
 919static void setup_temperature_sensitive_regs(struct emif_data *emif,
 920                struct emif_regs *regs)
 921{
 922        u32             tim1, tim3, ref_ctrl, type;
 923        void __iomem    *base = emif->base;
 924        u32             temperature;
 925
 926        type = emif->plat_data->device_info->type;
 927
 928        tim1 = regs->sdram_tim1_shdw;
 929        tim3 = regs->sdram_tim3_shdw;
 930        ref_ctrl = regs->ref_ctrl_shdw;
 931
 932        /* No de-rating for non-lpddr2 devices */
 933        if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4)
 934                goto out;
 935
 936        temperature = emif->temperature_level;
 937        if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) {
 938                ref_ctrl = regs->ref_ctrl_shdw_derated;
 939        } else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) {
 940                tim1 = regs->sdram_tim1_shdw_derated;
 941                tim3 = regs->sdram_tim3_shdw_derated;
 942                ref_ctrl = regs->ref_ctrl_shdw_derated;
 943        }
 944
 945out:
 946        writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW);
 947        writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW);
 948        writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW);
 949}
 950
 951static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif)
 952{
 953        u32             old_temp_level;
 954        irqreturn_t     ret = IRQ_HANDLED;
 955        struct emif_custom_configs *custom_configs;
 956
 957        spin_lock_irqsave(&emif_lock, irq_state);
 958        old_temp_level = emif->temperature_level;
 959        get_temperature_level(emif);
 960
 961        if (unlikely(emif->temperature_level == old_temp_level)) {
 962                goto out;
 963        } else if (!emif->curr_regs) {
 964                dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
 965                goto out;
 966        }
 967
 968        custom_configs = emif->plat_data->custom_configs;
 969
 970        /*
 971         * IF we detect higher than "nominal rating" from DDR sensor
 972         * on an unsupported DDR part, shutdown system
 973         */
 974        if (custom_configs && !(custom_configs->mask &
 975                                EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART)) {
 976                if (emif->temperature_level >= SDRAM_TEMP_HIGH_DERATE_REFRESH) {
 977                        dev_err(emif->dev,
 978                                "%s:NOT Extended temperature capable memory."
 979                                "Converting MR4=0x%02x as shutdown event\n",
 980                                __func__, emif->temperature_level);
 981                        /*
 982                         * Temperature far too high - do kernel_power_off()
 983                         * from thread context
 984                         */
 985                        emif->temperature_level = SDRAM_TEMP_VERY_HIGH_SHUTDOWN;
 986                        ret = IRQ_WAKE_THREAD;
 987                        goto out;
 988                }
 989        }
 990
 991        if (emif->temperature_level < old_temp_level ||
 992                emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
 993                /*
 994                 * Temperature coming down - defer handling to thread OR
 995                 * Temperature far too high - do kernel_power_off() from
 996                 * thread context
 997                 */
 998                ret = IRQ_WAKE_THREAD;
 999        } else {
1000                /* Temperature is going up - handle immediately */
1001                setup_temperature_sensitive_regs(emif, emif->curr_regs);
1002                do_freq_update();
1003        }
1004
1005out:
1006        spin_unlock_irqrestore(&emif_lock, irq_state);
1007        return ret;
1008}
1009
1010static irqreturn_t emif_interrupt_handler(int irq, void *dev_id)
1011{
1012        u32                     interrupts;
1013        struct emif_data        *emif = dev_id;
1014        void __iomem            *base = emif->base;
1015        struct device           *dev = emif->dev;
1016        irqreturn_t             ret = IRQ_HANDLED;
1017
1018        /* Save the status and clear it */
1019        interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
1020        writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
1021
1022        /*
1023         * Handle temperature alert
1024         * Temperature alert should be same for all ports
1025         * So, it's enough to process it only for one of the ports
1026         */
1027        if (interrupts & TA_SYS_MASK)
1028                ret = handle_temp_alert(base, emif);
1029
1030        if (interrupts & ERR_SYS_MASK)
1031                dev_err(dev, "Access error from SYS port - %x\n", interrupts);
1032
1033        if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
1034                /* Save the status and clear it */
1035                interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS);
1036                writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS);
1037
1038                if (interrupts & ERR_LL_MASK)
1039                        dev_err(dev, "Access error from LL port - %x\n",
1040                                interrupts);
1041        }
1042
1043        return ret;
1044}
1045
1046static irqreturn_t emif_threaded_isr(int irq, void *dev_id)
1047{
1048        struct emif_data        *emif = dev_id;
1049
1050        if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
1051                dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1052
1053                /* If we have Power OFF ability, use it, else try restarting */
1054                if (pm_power_off) {
1055                        kernel_power_off();
1056                } else {
1057                        WARN(1, "FIXME: NO pm_power_off!!! trying restart\n");
1058                        kernel_restart("SDRAM Over-temp Emergency restart");
1059                }
1060                return IRQ_HANDLED;
1061        }
1062
1063        spin_lock_irqsave(&emif_lock, irq_state);
1064
1065        if (emif->curr_regs) {
1066                setup_temperature_sensitive_regs(emif, emif->curr_regs);
1067                do_freq_update();
1068        } else {
1069                dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
1070        }
1071
1072        spin_unlock_irqrestore(&emif_lock, irq_state);
1073
1074        return IRQ_HANDLED;
1075}
1076
1077static void clear_all_interrupts(struct emif_data *emif)
1078{
1079        void __iomem    *base = emif->base;
1080
1081        writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS),
1082                base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
1083        if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
1084                writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS),
1085                        base + EMIF_LL_OCP_INTERRUPT_STATUS);
1086}
1087
1088static void disable_and_clear_all_interrupts(struct emif_data *emif)
1089{
1090        void __iomem            *base = emif->base;
1091
1092        /* Disable all interrupts */
1093        writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET),
1094                base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR);
1095        if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
1096                writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET),
1097                        base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR);
1098
1099        /* Clear all interrupts */
1100        clear_all_interrupts(emif);
1101}
1102
1103static int __init_or_module setup_interrupts(struct emif_data *emif, u32 irq)
1104{
1105        u32             interrupts, type;
1106        void __iomem    *base = emif->base;
1107
1108        type = emif->plat_data->device_info->type;
1109
1110        clear_all_interrupts(emif);
1111
1112        /* Enable interrupts for SYS interface */
1113        interrupts = EN_ERR_SYS_MASK;
1114        if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4)
1115                interrupts |= EN_TA_SYS_MASK;
1116        writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET);
1117
1118        /* Enable interrupts for LL interface */
1119        if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
1120                /* TA need not be enabled for LL */
1121                interrupts = EN_ERR_LL_MASK;
1122                writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET);
1123        }
1124
1125        /* setup IRQ handlers */
1126        return devm_request_threaded_irq(emif->dev, irq,
1127                                    emif_interrupt_handler,
1128                                    emif_threaded_isr,
1129                                    0, dev_name(emif->dev),
1130                                    emif);
1131
1132}
1133
1134static void __init_or_module emif_onetime_settings(struct emif_data *emif)
1135{
1136        u32                             pwr_mgmt_ctrl, zq, temp_alert_cfg;
1137        void __iomem                    *base = emif->base;
1138        const struct lpddr2_addressing  *addressing;
1139        const struct ddr_device_info    *device_info;
1140
1141        device_info = emif->plat_data->device_info;
1142        addressing = get_addressing_table(device_info);
1143
1144        /*
1145         * Init power management settings
1146         * We don't know the frequency yet. Use a high frequency
1147         * value for a conservative timeout setting
1148         */
1149        pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif,
1150                        emif->plat_data->ip_rev);
1151        emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT;
1152        writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL);
1153
1154        /* Init ZQ calibration settings */
1155        zq = get_zq_config_reg(addressing, device_info->cs1_used,
1156                device_info->cal_resistors_per_cs);
1157        writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG);
1158
1159        /* Check temperature level temperature level*/
1160        get_temperature_level(emif);
1161        if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN)
1162                dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1163
1164        /* Init temperature polling */
1165        temp_alert_cfg = get_temp_alert_config(addressing,
1166                emif->plat_data->custom_configs, device_info->cs1_used,
1167                device_info->io_width, get_emif_bus_width(emif));
1168        writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG);
1169
1170        /*
1171         * Program external PHY control registers that are not frequency
1172         * dependent
1173         */
1174        if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY)
1175                return;
1176        writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW);
1177        writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW);
1178        writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW);
1179        writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW);
1180        writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW);
1181        writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW);
1182        writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW);
1183        writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW);
1184        writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW);
1185        writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW);
1186        writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW);
1187        writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW);
1188        writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW);
1189        writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW);
1190        writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW);
1191        writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW);
1192        writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW);
1193        writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW);
1194        writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW);
1195        writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW);
1196        writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW);
1197}
1198
1199static void get_default_timings(struct emif_data *emif)
1200{
1201        struct emif_platform_data *pd = emif->plat_data;
1202
1203        pd->timings             = lpddr2_jedec_timings;
1204        pd->timings_arr_size    = ARRAY_SIZE(lpddr2_jedec_timings);
1205
1206        dev_warn(emif->dev, "%s: using default timings\n", __func__);
1207}
1208
1209static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type,
1210                u32 ip_rev, struct device *dev)
1211{
1212        int valid;
1213
1214        valid = (type == DDR_TYPE_LPDDR2_S4 ||
1215                        type == DDR_TYPE_LPDDR2_S2)
1216                && (density >= DDR_DENSITY_64Mb
1217                        && density <= DDR_DENSITY_8Gb)
1218                && (io_width >= DDR_IO_WIDTH_8
1219                        && io_width <= DDR_IO_WIDTH_32);
1220
1221        /* Combinations of EMIF and PHY revisions that we support today */
1222        switch (ip_rev) {
1223        case EMIF_4D:
1224                valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY);
1225                break;
1226        case EMIF_4D5:
1227                valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY);
1228                break;
1229        default:
1230                valid = 0;
1231        }
1232
1233        if (!valid)
1234                dev_err(dev, "%s: invalid DDR details\n", __func__);
1235        return valid;
1236}
1237
1238static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs,
1239                struct device *dev)
1240{
1241        int valid = 1;
1242
1243        if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) &&
1244                (cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE))
1245                valid = cust_cfgs->lpmode_freq_threshold &&
1246                        cust_cfgs->lpmode_timeout_performance &&
1247                        cust_cfgs->lpmode_timeout_power;
1248
1249        if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)
1250                valid = valid && cust_cfgs->temp_alert_poll_interval_ms;
1251
1252        if (!valid)
1253                dev_warn(dev, "%s: invalid custom configs\n", __func__);
1254
1255        return valid;
1256}
1257
1258#if defined(CONFIG_OF)
1259static void __init_or_module of_get_custom_configs(struct device_node *np_emif,
1260                struct emif_data *emif)
1261{
1262        struct emif_custom_configs      *cust_cfgs = NULL;
1263        int                             len;
1264        const __be32                    *lpmode, *poll_intvl;
1265
1266        lpmode = of_get_property(np_emif, "low-power-mode", &len);
1267        poll_intvl = of_get_property(np_emif, "temp-alert-poll-interval", &len);
1268
1269        if (lpmode || poll_intvl)
1270                cust_cfgs = devm_kzalloc(emif->dev, sizeof(*cust_cfgs),
1271                        GFP_KERNEL);
1272
1273        if (!cust_cfgs)
1274                return;
1275
1276        if (lpmode) {
1277                cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_LPMODE;
1278                cust_cfgs->lpmode = be32_to_cpup(lpmode);
1279                of_property_read_u32(np_emif,
1280                                "low-power-mode-timeout-performance",
1281                                &cust_cfgs->lpmode_timeout_performance);
1282                of_property_read_u32(np_emif,
1283                                "low-power-mode-timeout-power",
1284                                &cust_cfgs->lpmode_timeout_power);
1285                of_property_read_u32(np_emif,
1286                                "low-power-mode-freq-threshold",
1287                                &cust_cfgs->lpmode_freq_threshold);
1288        }
1289
1290        if (poll_intvl) {
1291                cust_cfgs->mask |=
1292                                EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL;
1293                cust_cfgs->temp_alert_poll_interval_ms =
1294                                                be32_to_cpup(poll_intvl);
1295        }
1296
1297        if (of_find_property(np_emif, "extended-temp-part", &len))
1298                cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART;
1299
1300        if (!is_custom_config_valid(cust_cfgs, emif->dev)) {
1301                devm_kfree(emif->dev, cust_cfgs);
1302                return;
1303        }
1304
1305        emif->plat_data->custom_configs = cust_cfgs;
1306}
1307
1308static void __init_or_module of_get_ddr_info(struct device_node *np_emif,
1309                struct device_node *np_ddr,
1310                struct ddr_device_info *dev_info)
1311{
1312        u32 density = 0, io_width = 0;
1313        int len;
1314
1315        if (of_find_property(np_emif, "cs1-used", &len))
1316                dev_info->cs1_used = true;
1317
1318        if (of_find_property(np_emif, "cal-resistor-per-cs", &len))
1319                dev_info->cal_resistors_per_cs = true;
1320
1321        if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s4"))
1322                dev_info->type = DDR_TYPE_LPDDR2_S4;
1323        else if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s2"))
1324                dev_info->type = DDR_TYPE_LPDDR2_S2;
1325
1326        of_property_read_u32(np_ddr, "density", &density);
1327        of_property_read_u32(np_ddr, "io-width", &io_width);
1328
1329        /* Convert from density in Mb to the density encoding in jedc_ddr.h */
1330        if (density & (density - 1))
1331                dev_info->density = 0;
1332        else
1333                dev_info->density = __fls(density) - 5;
1334
1335        /* Convert from io_width in bits to io_width encoding in jedc_ddr.h */
1336        if (io_width & (io_width - 1))
1337                dev_info->io_width = 0;
1338        else
1339                dev_info->io_width = __fls(io_width) - 1;
1340}
1341
1342static struct emif_data * __init_or_module of_get_memory_device_details(
1343                struct device_node *np_emif, struct device *dev)
1344{
1345        struct emif_data                *emif = NULL;
1346        struct ddr_device_info          *dev_info = NULL;
1347        struct emif_platform_data       *pd = NULL;
1348        struct device_node              *np_ddr;
1349        int                             len;
1350
1351        np_ddr = of_parse_phandle(np_emif, "device-handle", 0);
1352        if (!np_ddr)
1353                goto error;
1354        emif    = devm_kzalloc(dev, sizeof(struct emif_data), GFP_KERNEL);
1355        pd      = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1356        dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1357
1358        if (!emif || !pd || !dev_info) {
1359                dev_err(dev, "%s: Out of memory!!\n",
1360                        __func__);
1361                goto error;
1362        }
1363
1364        emif->plat_data         = pd;
1365        pd->device_info         = dev_info;
1366        emif->dev               = dev;
1367        emif->np_ddr            = np_ddr;
1368        emif->temperature_level = SDRAM_TEMP_NOMINAL;
1369
1370        if (of_device_is_compatible(np_emif, "ti,emif-4d"))
1371                emif->plat_data->ip_rev = EMIF_4D;
1372        else if (of_device_is_compatible(np_emif, "ti,emif-4d5"))
1373                emif->plat_data->ip_rev = EMIF_4D5;
1374
1375        of_property_read_u32(np_emif, "phy-type", &pd->phy_type);
1376
1377        if (of_find_property(np_emif, "hw-caps-ll-interface", &len))
1378                pd->hw_caps |= EMIF_HW_CAPS_LL_INTERFACE;
1379
1380        of_get_ddr_info(np_emif, np_ddr, dev_info);
1381        if (!is_dev_data_valid(pd->device_info->type, pd->device_info->density,
1382                        pd->device_info->io_width, pd->phy_type, pd->ip_rev,
1383                        emif->dev)) {
1384                dev_err(dev, "%s: invalid device data!!\n", __func__);
1385                goto error;
1386        }
1387        /*
1388         * For EMIF instances other than EMIF1 see if the devices connected
1389         * are exactly same as on EMIF1(which is typically the case). If so,
1390         * mark it as a duplicate of EMIF1. This will save some memory and
1391         * computation.
1392         */
1393        if (emif1 && emif1->np_ddr == np_ddr) {
1394                emif->duplicate = true;
1395                goto out;
1396        } else if (emif1) {
1397                dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1398                        __func__);
1399        }
1400
1401        of_get_custom_configs(np_emif, emif);
1402        emif->plat_data->timings = of_get_ddr_timings(np_ddr, emif->dev,
1403                                        emif->plat_data->device_info->type,
1404                                        &emif->plat_data->timings_arr_size);
1405
1406        emif->plat_data->min_tck = of_get_min_tck(np_ddr, emif->dev);
1407        goto out;
1408
1409error:
1410        return NULL;
1411out:
1412        return emif;
1413}
1414
1415#else
1416
1417static struct emif_data * __init_or_module of_get_memory_device_details(
1418                struct device_node *np_emif, struct device *dev)
1419{
1420        return NULL;
1421}
1422#endif
1423
1424static struct emif_data *__init_or_module get_device_details(
1425                struct platform_device *pdev)
1426{
1427        u32                             size;
1428        struct emif_data                *emif = NULL;
1429        struct ddr_device_info          *dev_info;
1430        struct emif_custom_configs      *cust_cfgs;
1431        struct emif_platform_data       *pd;
1432        struct device                   *dev;
1433        void                            *temp;
1434
1435        pd = pdev->dev.platform_data;
1436        dev = &pdev->dev;
1437
1438        if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type,
1439                        pd->device_info->density, pd->device_info->io_width,
1440                        pd->phy_type, pd->ip_rev, dev))) {
1441                dev_err(dev, "%s: invalid device data\n", __func__);
1442                goto error;
1443        }
1444
1445        emif    = devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL);
1446        temp    = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1447        dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1448
1449        if (!emif || !pd || !dev_info) {
1450                dev_err(dev, "%s:%d: allocation error\n", __func__, __LINE__);
1451                goto error;
1452        }
1453
1454        memcpy(temp, pd, sizeof(*pd));
1455        pd = temp;
1456        memcpy(dev_info, pd->device_info, sizeof(*dev_info));
1457
1458        pd->device_info         = dev_info;
1459        emif->plat_data         = pd;
1460        emif->dev               = dev;
1461        emif->temperature_level = SDRAM_TEMP_NOMINAL;
1462
1463        /*
1464         * For EMIF instances other than EMIF1 see if the devices connected
1465         * are exactly same as on EMIF1(which is typically the case). If so,
1466         * mark it as a duplicate of EMIF1 and skip copying timings data.
1467         * This will save some memory and some computation later.
1468         */
1469        emif->duplicate = emif1 && (memcmp(dev_info,
1470                emif1->plat_data->device_info,
1471                sizeof(struct ddr_device_info)) == 0);
1472
1473        if (emif->duplicate) {
1474                pd->timings = NULL;
1475                pd->min_tck = NULL;
1476                goto out;
1477        } else if (emif1) {
1478                dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1479                        __func__);
1480        }
1481
1482        /*
1483         * Copy custom configs - ignore allocation error, if any, as
1484         * custom_configs is not very critical
1485         */
1486        cust_cfgs = pd->custom_configs;
1487        if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) {
1488                temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL);
1489                if (temp)
1490                        memcpy(temp, cust_cfgs, sizeof(*cust_cfgs));
1491                else
1492                        dev_warn(dev, "%s:%d: allocation error\n", __func__,
1493                                __LINE__);
1494                pd->custom_configs = temp;
1495        }
1496
1497        /*
1498         * Copy timings and min-tck values from platform data. If it is not
1499         * available or if memory allocation fails, use JEDEC defaults
1500         */
1501        size = sizeof(struct lpddr2_timings) * pd->timings_arr_size;
1502        if (pd->timings) {
1503                temp = devm_kzalloc(dev, size, GFP_KERNEL);
1504                if (temp) {
1505                        memcpy(temp, pd->timings, size);
1506                        pd->timings = temp;
1507                } else {
1508                        dev_warn(dev, "%s:%d: allocation error\n", __func__,
1509                                __LINE__);
1510                        get_default_timings(emif);
1511                }
1512        } else {
1513                get_default_timings(emif);
1514        }
1515
1516        if (pd->min_tck) {
1517                temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL);
1518                if (temp) {
1519                        memcpy(temp, pd->min_tck, sizeof(*pd->min_tck));
1520                        pd->min_tck = temp;
1521                } else {
1522                        dev_warn(dev, "%s:%d: allocation error\n", __func__,
1523                                __LINE__);
1524                        pd->min_tck = &lpddr2_jedec_min_tck;
1525                }
1526        } else {
1527                pd->min_tck = &lpddr2_jedec_min_tck;
1528        }
1529
1530out:
1531        return emif;
1532
1533error:
1534        return NULL;
1535}
1536
1537static int __init_or_module emif_probe(struct platform_device *pdev)
1538{
1539        struct emif_data        *emif;
1540        struct resource         *res;
1541        int                     irq;
1542
1543        if (pdev->dev.of_node)
1544                emif = of_get_memory_device_details(pdev->dev.of_node, &pdev->dev);
1545        else
1546                emif = get_device_details(pdev);
1547
1548        if (!emif) {
1549                pr_err("%s: error getting device data\n", __func__);
1550                goto error;
1551        }
1552
1553        list_add(&emif->node, &device_list);
1554        emif->addressing = get_addressing_table(emif->plat_data->device_info);
1555
1556        /* Save pointers to each other in emif and device structures */
1557        emif->dev = &pdev->dev;
1558        platform_set_drvdata(pdev, emif);
1559
1560        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1561        emif->base = devm_ioremap_resource(emif->dev, res);
1562        if (IS_ERR(emif->base))
1563                goto error;
1564
1565        irq = platform_get_irq(pdev, 0);
1566        if (irq < 0) {
1567                dev_err(emif->dev, "%s: error getting IRQ resource - %d\n",
1568                        __func__, irq);
1569                goto error;
1570        }
1571
1572        emif_onetime_settings(emif);
1573        emif_debugfs_init(emif);
1574        disable_and_clear_all_interrupts(emif);
1575        setup_interrupts(emif, irq);
1576
1577        /* One-time actions taken on probing the first device */
1578        if (!emif1) {
1579                emif1 = emif;
1580                spin_lock_init(&emif_lock);
1581
1582                /*
1583                 * TODO: register notifiers for frequency and voltage
1584                 * change here once the respective frameworks are
1585                 * available
1586                 */
1587        }
1588
1589        dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n",
1590                __func__, emif->base, irq);
1591
1592        return 0;
1593error:
1594        return -ENODEV;
1595}
1596
1597static int __exit emif_remove(struct platform_device *pdev)
1598{
1599        struct emif_data *emif = platform_get_drvdata(pdev);
1600
1601        emif_debugfs_exit(emif);
1602
1603        return 0;
1604}
1605
1606static void emif_shutdown(struct platform_device *pdev)
1607{
1608        struct emif_data        *emif = platform_get_drvdata(pdev);
1609
1610        disable_and_clear_all_interrupts(emif);
1611}
1612
1613static int get_emif_reg_values(struct emif_data *emif, u32 freq,
1614                struct emif_regs *regs)
1615{
1616        u32                             cs1_used, ip_rev, phy_type;
1617        u32                             cl, type;
1618        const struct lpddr2_timings     *timings;
1619        const struct lpddr2_min_tck     *min_tck;
1620        const struct ddr_device_info    *device_info;
1621        const struct lpddr2_addressing  *addressing;
1622        struct emif_data                *emif_for_calc;
1623        struct device                   *dev;
1624        const struct emif_custom_configs *custom_configs;
1625
1626        dev = emif->dev;
1627        /*
1628         * If the devices on this EMIF instance is duplicate of EMIF1,
1629         * use EMIF1 details for the calculation
1630         */
1631        emif_for_calc   = emif->duplicate ? emif1 : emif;
1632        timings         = get_timings_table(emif_for_calc, freq);
1633        addressing      = emif_for_calc->addressing;
1634        if (!timings || !addressing) {
1635                dev_err(dev, "%s: not enough data available for %dHz",
1636                        __func__, freq);
1637                return -1;
1638        }
1639
1640        device_info     = emif_for_calc->plat_data->device_info;
1641        type            = device_info->type;
1642        cs1_used        = device_info->cs1_used;
1643        ip_rev          = emif_for_calc->plat_data->ip_rev;
1644        phy_type        = emif_for_calc->plat_data->phy_type;
1645
1646        min_tck         = emif_for_calc->plat_data->min_tck;
1647        custom_configs  = emif_for_calc->plat_data->custom_configs;
1648
1649        set_ddr_clk_period(freq);
1650
1651        regs->ref_ctrl_shdw = get_sdram_ref_ctrl_shdw(freq, addressing);
1652        regs->sdram_tim1_shdw = get_sdram_tim_1_shdw(timings, min_tck,
1653                        addressing);
1654        regs->sdram_tim2_shdw = get_sdram_tim_2_shdw(timings, min_tck,
1655                        addressing, type);
1656        regs->sdram_tim3_shdw = get_sdram_tim_3_shdw(timings, min_tck,
1657                addressing, type, ip_rev, EMIF_NORMAL_TIMINGS);
1658
1659        cl = get_cl(emif);
1660
1661        if (phy_type == EMIF_PHY_TYPE_ATTILAPHY && ip_rev == EMIF_4D) {
1662                regs->phy_ctrl_1_shdw = get_ddr_phy_ctrl_1_attilaphy_4d(
1663                        timings, freq, cl);
1664        } else if (phy_type == EMIF_PHY_TYPE_INTELLIPHY && ip_rev == EMIF_4D5) {
1665                regs->phy_ctrl_1_shdw = get_phy_ctrl_1_intelliphy_4d5(freq, cl);
1666                regs->ext_phy_ctrl_2_shdw = get_ext_phy_ctrl_2_intelliphy_4d5();
1667                regs->ext_phy_ctrl_3_shdw = get_ext_phy_ctrl_3_intelliphy_4d5();
1668                regs->ext_phy_ctrl_4_shdw = get_ext_phy_ctrl_4_intelliphy_4d5();
1669        } else {
1670                return -1;
1671        }
1672
1673        /* Only timeout values in pwr_mgmt_ctrl_shdw register */
1674        regs->pwr_mgmt_ctrl_shdw =
1675                get_pwr_mgmt_ctrl(freq, emif_for_calc, ip_rev) &
1676                (CS_TIM_MASK | SR_TIM_MASK | PD_TIM_MASK);
1677
1678        if (ip_rev & EMIF_4D) {
1679                regs->read_idle_ctrl_shdw_normal =
1680                        get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE);
1681
1682                regs->read_idle_ctrl_shdw_volt_ramp =
1683                        get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1684        } else if (ip_rev & EMIF_4D5) {
1685                regs->dll_calib_ctrl_shdw_normal =
1686                        get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE);
1687
1688                regs->dll_calib_ctrl_shdw_volt_ramp =
1689                        get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1690        }
1691
1692        if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
1693                regs->ref_ctrl_shdw_derated = get_sdram_ref_ctrl_shdw(freq / 4,
1694                        addressing);
1695
1696                regs->sdram_tim1_shdw_derated =
1697                        get_sdram_tim_1_shdw_derated(timings, min_tck,
1698                                addressing);
1699
1700                regs->sdram_tim3_shdw_derated = get_sdram_tim_3_shdw(timings,
1701                        min_tck, addressing, type, ip_rev,
1702                        EMIF_DERATED_TIMINGS);
1703        }
1704
1705        regs->freq = freq;
1706
1707        return 0;
1708}
1709
1710/*
1711 * get_regs() - gets the cached emif_regs structure for a given EMIF instance
1712 * given frequency(freq):
1713 *
1714 * As an optimisation, every EMIF instance other than EMIF1 shares the
1715 * register cache with EMIF1 if the devices connected on this instance
1716 * are same as that on EMIF1(indicated by the duplicate flag)
1717 *
1718 * If we do not have an entry corresponding to the frequency given, we
1719 * allocate a new entry and calculate the values
1720 *
1721 * Upon finding the right reg dump, save it in curr_regs. It can be
1722 * directly used for thermal de-rating and voltage ramping changes.
1723 */
1724static struct emif_regs *get_regs(struct emif_data *emif, u32 freq)
1725{
1726        int                     i;
1727        struct emif_regs        **regs_cache;
1728        struct emif_regs        *regs = NULL;
1729        struct device           *dev;
1730
1731        dev = emif->dev;
1732        if (emif->curr_regs && emif->curr_regs->freq == freq) {
1733                dev_dbg(dev, "%s: using curr_regs - %u Hz", __func__, freq);
1734                return emif->curr_regs;
1735        }
1736
1737        if (emif->duplicate)
1738                regs_cache = emif1->regs_cache;
1739        else
1740                regs_cache = emif->regs_cache;
1741
1742        for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
1743                if (regs_cache[i]->freq == freq) {
1744                        regs = regs_cache[i];
1745                        dev_dbg(dev,
1746                                "%s: reg dump found in reg cache for %u Hz\n",
1747                                __func__, freq);
1748                        break;
1749                }
1750        }
1751
1752        /*
1753         * If we don't have an entry for this frequency in the cache create one
1754         * and calculate the values
1755         */
1756        if (!regs) {
1757                regs = devm_kzalloc(emif->dev, sizeof(*regs), GFP_ATOMIC);
1758                if (!regs)
1759                        return NULL;
1760
1761                if (get_emif_reg_values(emif, freq, regs)) {
1762                        devm_kfree(emif->dev, regs);
1763                        return NULL;
1764                }
1765
1766                /*
1767                 * Now look for an un-used entry in the cache and save the
1768                 * newly created struct. If there are no free entries
1769                 * over-write the last entry
1770                 */
1771                for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++)
1772                        ;
1773
1774                if (i >= EMIF_MAX_NUM_FREQUENCIES) {
1775                        dev_warn(dev, "%s: regs_cache full - reusing a slot!!\n",
1776                                __func__);
1777                        i = EMIF_MAX_NUM_FREQUENCIES - 1;
1778                        devm_kfree(emif->dev, regs_cache[i]);
1779                }
1780                regs_cache[i] = regs;
1781        }
1782
1783        return regs;
1784}
1785
1786static void do_volt_notify_handling(struct emif_data *emif, u32 volt_state)
1787{
1788        dev_dbg(emif->dev, "%s: voltage notification : %d", __func__,
1789                volt_state);
1790
1791        if (!emif->curr_regs) {
1792                dev_err(emif->dev,
1793                        "%s: volt-notify before registers are ready: %d\n",
1794                        __func__, volt_state);
1795                return;
1796        }
1797
1798        setup_volt_sensitive_regs(emif, emif->curr_regs, volt_state);
1799}
1800
1801/*
1802 * TODO: voltage notify handling should be hooked up to
1803 * regulator framework as soon as the necessary support
1804 * is available in mainline kernel. This function is un-used
1805 * right now.
1806 */
1807static void __attribute__((unused)) volt_notify_handling(u32 volt_state)
1808{
1809        struct emif_data *emif;
1810
1811        spin_lock_irqsave(&emif_lock, irq_state);
1812
1813        list_for_each_entry(emif, &device_list, node)
1814                do_volt_notify_handling(emif, volt_state);
1815        do_freq_update();
1816
1817        spin_unlock_irqrestore(&emif_lock, irq_state);
1818}
1819
1820static void do_freq_pre_notify_handling(struct emif_data *emif, u32 new_freq)
1821{
1822        struct emif_regs *regs;
1823
1824        regs = get_regs(emif, new_freq);
1825        if (!regs)
1826                return;
1827
1828        emif->curr_regs = regs;
1829
1830        /*
1831         * Update the shadow registers:
1832         * Temperature and voltage-ramp sensitive settings are also configured
1833         * in terms of DDR cycles. So, we need to update them too when there
1834         * is a freq change
1835         */
1836        dev_dbg(emif->dev, "%s: setting up shadow registers for %uHz",
1837                __func__, new_freq);
1838        setup_registers(emif, regs);
1839        setup_temperature_sensitive_regs(emif, regs);
1840        setup_volt_sensitive_regs(emif, regs, DDR_VOLTAGE_STABLE);
1841
1842        /*
1843         * Part of workaround for errata i728. See do_freq_update()
1844         * for more details
1845         */
1846        if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1847                set_lpmode(emif, EMIF_LP_MODE_DISABLE);
1848}
1849
1850/*
1851 * TODO: frequency notify handling should be hooked up to
1852 * clock framework as soon as the necessary support is
1853 * available in mainline kernel. This function is un-used
1854 * right now.
1855 */
1856static void __attribute__((unused)) freq_pre_notify_handling(u32 new_freq)
1857{
1858        struct emif_data *emif;
1859
1860        /*
1861         * NOTE: we are taking the spin-lock here and releases it
1862         * only in post-notifier. This doesn't look good and
1863         * Sparse complains about it, but this seems to be
1864         * un-avoidable. We need to lock a sequence of events
1865         * that is split between EMIF and clock framework.
1866         *
1867         * 1. EMIF driver updates EMIF timings in shadow registers in the
1868         *    frequency pre-notify callback from clock framework
1869         * 2. clock framework sets up the registers for the new frequency
1870         * 3. clock framework initiates a hw-sequence that updates
1871         *    the frequency EMIF timings synchronously.
1872         *
1873         * All these 3 steps should be performed as an atomic operation
1874         * vis-a-vis similar sequence in the EMIF interrupt handler
1875         * for temperature events. Otherwise, there could be race
1876         * conditions that could result in incorrect EMIF timings for
1877         * a given frequency
1878         */
1879        spin_lock_irqsave(&emif_lock, irq_state);
1880
1881        list_for_each_entry(emif, &device_list, node)
1882                do_freq_pre_notify_handling(emif, new_freq);
1883}
1884
1885static void do_freq_post_notify_handling(struct emif_data *emif)
1886{
1887        /*
1888         * Part of workaround for errata i728. See do_freq_update()
1889         * for more details
1890         */
1891        if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1892                set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
1893}
1894
1895/*
1896 * TODO: frequency notify handling should be hooked up to
1897 * clock framework as soon as the necessary support is
1898 * available in mainline kernel. This function is un-used
1899 * right now.
1900 */
1901static void __attribute__((unused)) freq_post_notify_handling(void)
1902{
1903        struct emif_data *emif;
1904
1905        list_for_each_entry(emif, &device_list, node)
1906                do_freq_post_notify_handling(emif);
1907
1908        /*
1909         * Lock is done in pre-notify handler. See freq_pre_notify_handling()
1910         * for more details
1911         */
1912        spin_unlock_irqrestore(&emif_lock, irq_state);
1913}
1914
1915#if defined(CONFIG_OF)
1916static const struct of_device_id emif_of_match[] = {
1917                { .compatible = "ti,emif-4d" },
1918                { .compatible = "ti,emif-4d5" },
1919                {},
1920};
1921MODULE_DEVICE_TABLE(of, emif_of_match);
1922#endif
1923
1924static struct platform_driver emif_driver = {
1925        .remove         = __exit_p(emif_remove),
1926        .shutdown       = emif_shutdown,
1927        .driver = {
1928                .name = "emif",
1929                .of_match_table = of_match_ptr(emif_of_match),
1930        },
1931};
1932
1933module_platform_driver_probe(emif_driver, emif_probe);
1934
1935MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver");
1936MODULE_LICENSE("GPL");
1937MODULE_ALIAS("platform:emif");
1938MODULE_AUTHOR("Texas Instruments Inc");
1939