linux/drivers/misc/genwqe/card_utils.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/**
   3 * IBM Accelerator Family 'GenWQE'
   4 *
   5 * (C) Copyright IBM Corp. 2013
   6 *
   7 * Author: Frank Haverkamp <haver@linux.vnet.ibm.com>
   8 * Author: Joerg-Stephan Vogt <jsvogt@de.ibm.com>
   9 * Author: Michael Jung <mijung@gmx.net>
  10 * Author: Michael Ruettger <michael@ibmra.de>
  11 */
  12
  13/*
  14 * Miscelanous functionality used in the other GenWQE driver parts.
  15 */
  16
  17#include <linux/kernel.h>
  18#include <linux/sched.h>
  19#include <linux/vmalloc.h>
  20#include <linux/page-flags.h>
  21#include <linux/scatterlist.h>
  22#include <linux/hugetlb.h>
  23#include <linux/iommu.h>
  24#include <linux/pci.h>
  25#include <linux/dma-mapping.h>
  26#include <linux/ctype.h>
  27#include <linux/module.h>
  28#include <linux/platform_device.h>
  29#include <linux/delay.h>
  30#include <asm/pgtable.h>
  31
  32#include "genwqe_driver.h"
  33#include "card_base.h"
  34#include "card_ddcb.h"
  35
  36/**
  37 * __genwqe_writeq() - Write 64-bit register
  38 * @cd:         genwqe device descriptor
  39 * @byte_offs:  byte offset within BAR
  40 * @val:        64-bit value
  41 *
  42 * Return: 0 if success; < 0 if error
  43 */
  44int __genwqe_writeq(struct genwqe_dev *cd, u64 byte_offs, u64 val)
  45{
  46        struct pci_dev *pci_dev = cd->pci_dev;
  47
  48        if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
  49                return -EIO;
  50
  51        if (cd->mmio == NULL)
  52                return -EIO;
  53
  54        if (pci_channel_offline(pci_dev))
  55                return -EIO;
  56
  57        __raw_writeq((__force u64)cpu_to_be64(val), cd->mmio + byte_offs);
  58        return 0;
  59}
  60
  61/**
  62 * __genwqe_readq() - Read 64-bit register
  63 * @cd:         genwqe device descriptor
  64 * @byte_offs:  offset within BAR
  65 *
  66 * Return: value from register
  67 */
  68u64 __genwqe_readq(struct genwqe_dev *cd, u64 byte_offs)
  69{
  70        if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
  71                return 0xffffffffffffffffull;
  72
  73        if ((cd->err_inject & GENWQE_INJECT_GFIR_FATAL) &&
  74            (byte_offs == IO_SLC_CFGREG_GFIR))
  75                return 0x000000000000ffffull;
  76
  77        if ((cd->err_inject & GENWQE_INJECT_GFIR_INFO) &&
  78            (byte_offs == IO_SLC_CFGREG_GFIR))
  79                return 0x00000000ffff0000ull;
  80
  81        if (cd->mmio == NULL)
  82                return 0xffffffffffffffffull;
  83
  84        return be64_to_cpu((__force __be64)__raw_readq(cd->mmio + byte_offs));
  85}
  86
  87/**
  88 * __genwqe_writel() - Write 32-bit register
  89 * @cd:         genwqe device descriptor
  90 * @byte_offs:  byte offset within BAR
  91 * @val:        32-bit value
  92 *
  93 * Return: 0 if success; < 0 if error
  94 */
  95int __genwqe_writel(struct genwqe_dev *cd, u64 byte_offs, u32 val)
  96{
  97        struct pci_dev *pci_dev = cd->pci_dev;
  98
  99        if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
 100                return -EIO;
 101
 102        if (cd->mmio == NULL)
 103                return -EIO;
 104
 105        if (pci_channel_offline(pci_dev))
 106                return -EIO;
 107
 108        __raw_writel((__force u32)cpu_to_be32(val), cd->mmio + byte_offs);
 109        return 0;
 110}
 111
 112/**
 113 * __genwqe_readl() - Read 32-bit register
 114 * @cd:         genwqe device descriptor
 115 * @byte_offs:  offset within BAR
 116 *
 117 * Return: Value from register
 118 */
 119u32 __genwqe_readl(struct genwqe_dev *cd, u64 byte_offs)
 120{
 121        if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
 122                return 0xffffffff;
 123
 124        if (cd->mmio == NULL)
 125                return 0xffffffff;
 126
 127        return be32_to_cpu((__force __be32)__raw_readl(cd->mmio + byte_offs));
 128}
 129
 130/**
 131 * genwqe_read_app_id() - Extract app_id
 132 *
 133 * app_unitcfg need to be filled with valid data first
 134 */
 135int genwqe_read_app_id(struct genwqe_dev *cd, char *app_name, int len)
 136{
 137        int i, j;
 138        u32 app_id = (u32)cd->app_unitcfg;
 139
 140        memset(app_name, 0, len);
 141        for (i = 0, j = 0; j < min(len, 4); j++) {
 142                char ch = (char)((app_id >> (24 - j*8)) & 0xff);
 143
 144                if (ch == ' ')
 145                        continue;
 146                app_name[i++] = isprint(ch) ? ch : 'X';
 147        }
 148        return i;
 149}
 150
 151/**
 152 * genwqe_init_crc32() - Prepare a lookup table for fast crc32 calculations
 153 *
 154 * Existing kernel functions seem to use a different polynom,
 155 * therefore we could not use them here.
 156 *
 157 * Genwqe's Polynomial = 0x20044009
 158 */
 159#define CRC32_POLYNOMIAL        0x20044009
 160static u32 crc32_tab[256];      /* crc32 lookup table */
 161
 162void genwqe_init_crc32(void)
 163{
 164        int i, j;
 165        u32 crc;
 166
 167        for (i = 0;  i < 256;  i++) {
 168                crc = i << 24;
 169                for (j = 0;  j < 8;  j++) {
 170                        if (crc & 0x80000000)
 171                                crc = (crc << 1) ^ CRC32_POLYNOMIAL;
 172                        else
 173                                crc = (crc << 1);
 174                }
 175                crc32_tab[i] = crc;
 176        }
 177}
 178
 179/**
 180 * genwqe_crc32() - Generate 32-bit crc as required for DDCBs
 181 * @buff:       pointer to data buffer
 182 * @len:        length of data for calculation
 183 * @init:       initial crc (0xffffffff at start)
 184 *
 185 * polynomial = x^32 * + x^29 + x^18 + x^14 + x^3 + 1 (0x20044009)
 186
 187 * Example: 4 bytes 0x01 0x02 0x03 0x04 with init=0xffffffff should
 188 * result in a crc32 of 0xf33cb7d3.
 189 *
 190 * The existing kernel crc functions did not cover this polynom yet.
 191 *
 192 * Return: crc32 checksum.
 193 */
 194u32 genwqe_crc32(u8 *buff, size_t len, u32 init)
 195{
 196        int i;
 197        u32 crc;
 198
 199        crc = init;
 200        while (len--) {
 201                i = ((crc >> 24) ^ *buff++) & 0xFF;
 202                crc = (crc << 8) ^ crc32_tab[i];
 203        }
 204        return crc;
 205}
 206
 207void *__genwqe_alloc_consistent(struct genwqe_dev *cd, size_t size,
 208                               dma_addr_t *dma_handle)
 209{
 210        if (get_order(size) >= MAX_ORDER)
 211                return NULL;
 212
 213        return dma_alloc_coherent(&cd->pci_dev->dev, size, dma_handle,
 214                                  GFP_KERNEL);
 215}
 216
 217void __genwqe_free_consistent(struct genwqe_dev *cd, size_t size,
 218                             void *vaddr, dma_addr_t dma_handle)
 219{
 220        if (vaddr == NULL)
 221                return;
 222
 223        dma_free_coherent(&cd->pci_dev->dev, size, vaddr, dma_handle);
 224}
 225
 226static void genwqe_unmap_pages(struct genwqe_dev *cd, dma_addr_t *dma_list,
 227                              int num_pages)
 228{
 229        int i;
 230        struct pci_dev *pci_dev = cd->pci_dev;
 231
 232        for (i = 0; (i < num_pages) && (dma_list[i] != 0x0); i++) {
 233                pci_unmap_page(pci_dev, dma_list[i],
 234                               PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
 235                dma_list[i] = 0x0;
 236        }
 237}
 238
 239static int genwqe_map_pages(struct genwqe_dev *cd,
 240                           struct page **page_list, int num_pages,
 241                           dma_addr_t *dma_list)
 242{
 243        int i;
 244        struct pci_dev *pci_dev = cd->pci_dev;
 245
 246        /* establish DMA mapping for requested pages */
 247        for (i = 0; i < num_pages; i++) {
 248                dma_addr_t daddr;
 249
 250                dma_list[i] = 0x0;
 251                daddr = pci_map_page(pci_dev, page_list[i],
 252                                     0,  /* map_offs */
 253                                     PAGE_SIZE,
 254                                     PCI_DMA_BIDIRECTIONAL);  /* FIXME rd/rw */
 255
 256                if (pci_dma_mapping_error(pci_dev, daddr)) {
 257                        dev_err(&pci_dev->dev,
 258                                "[%s] err: no dma addr daddr=%016llx!\n",
 259                                __func__, (long long)daddr);
 260                        goto err;
 261                }
 262
 263                dma_list[i] = daddr;
 264        }
 265        return 0;
 266
 267 err:
 268        genwqe_unmap_pages(cd, dma_list, num_pages);
 269        return -EIO;
 270}
 271
 272static int genwqe_sgl_size(int num_pages)
 273{
 274        int len, num_tlb = num_pages / 7;
 275
 276        len = sizeof(struct sg_entry) * (num_pages+num_tlb + 1);
 277        return roundup(len, PAGE_SIZE);
 278}
 279
 280/**
 281 * genwqe_alloc_sync_sgl() - Allocate memory for sgl and overlapping pages
 282 *
 283 * Allocates memory for sgl and overlapping pages. Pages which might
 284 * overlap other user-space memory blocks are being cached for DMAs,
 285 * such that we do not run into syncronization issues. Data is copied
 286 * from user-space into the cached pages.
 287 */
 288int genwqe_alloc_sync_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl,
 289                          void __user *user_addr, size_t user_size, int write)
 290{
 291        int ret = -ENOMEM;
 292        struct pci_dev *pci_dev = cd->pci_dev;
 293
 294        sgl->fpage_offs = offset_in_page((unsigned long)user_addr);
 295        sgl->fpage_size = min_t(size_t, PAGE_SIZE-sgl->fpage_offs, user_size);
 296        sgl->nr_pages = DIV_ROUND_UP(sgl->fpage_offs + user_size, PAGE_SIZE);
 297        sgl->lpage_size = (user_size - sgl->fpage_size) % PAGE_SIZE;
 298
 299        dev_dbg(&pci_dev->dev, "[%s] uaddr=%p usize=%8ld nr_pages=%ld fpage_offs=%lx fpage_size=%ld lpage_size=%ld\n",
 300                __func__, user_addr, user_size, sgl->nr_pages,
 301                sgl->fpage_offs, sgl->fpage_size, sgl->lpage_size);
 302
 303        sgl->user_addr = user_addr;
 304        sgl->user_size = user_size;
 305        sgl->write = write;
 306        sgl->sgl_size = genwqe_sgl_size(sgl->nr_pages);
 307
 308        if (get_order(sgl->sgl_size) > MAX_ORDER) {
 309                dev_err(&pci_dev->dev,
 310                        "[%s] err: too much memory requested!\n", __func__);
 311                return ret;
 312        }
 313
 314        sgl->sgl = __genwqe_alloc_consistent(cd, sgl->sgl_size,
 315                                             &sgl->sgl_dma_addr);
 316        if (sgl->sgl == NULL) {
 317                dev_err(&pci_dev->dev,
 318                        "[%s] err: no memory available!\n", __func__);
 319                return ret;
 320        }
 321
 322        /* Only use buffering on incomplete pages */
 323        if ((sgl->fpage_size != 0) && (sgl->fpage_size != PAGE_SIZE)) {
 324                sgl->fpage = __genwqe_alloc_consistent(cd, PAGE_SIZE,
 325                                                       &sgl->fpage_dma_addr);
 326                if (sgl->fpage == NULL)
 327                        goto err_out;
 328
 329                /* Sync with user memory */
 330                if (copy_from_user(sgl->fpage + sgl->fpage_offs,
 331                                   user_addr, sgl->fpage_size)) {
 332                        ret = -EFAULT;
 333                        goto err_out;
 334                }
 335        }
 336        if (sgl->lpage_size != 0) {
 337                sgl->lpage = __genwqe_alloc_consistent(cd, PAGE_SIZE,
 338                                                       &sgl->lpage_dma_addr);
 339                if (sgl->lpage == NULL)
 340                        goto err_out1;
 341
 342                /* Sync with user memory */
 343                if (copy_from_user(sgl->lpage, user_addr + user_size -
 344                                   sgl->lpage_size, sgl->lpage_size)) {
 345                        ret = -EFAULT;
 346                        goto err_out2;
 347                }
 348        }
 349        return 0;
 350
 351 err_out2:
 352        __genwqe_free_consistent(cd, PAGE_SIZE, sgl->lpage,
 353                                 sgl->lpage_dma_addr);
 354        sgl->lpage = NULL;
 355        sgl->lpage_dma_addr = 0;
 356 err_out1:
 357        __genwqe_free_consistent(cd, PAGE_SIZE, sgl->fpage,
 358                                 sgl->fpage_dma_addr);
 359        sgl->fpage = NULL;
 360        sgl->fpage_dma_addr = 0;
 361 err_out:
 362        __genwqe_free_consistent(cd, sgl->sgl_size, sgl->sgl,
 363                                 sgl->sgl_dma_addr);
 364        sgl->sgl = NULL;
 365        sgl->sgl_dma_addr = 0;
 366        sgl->sgl_size = 0;
 367
 368        return ret;
 369}
 370
 371int genwqe_setup_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl,
 372                     dma_addr_t *dma_list)
 373{
 374        int i = 0, j = 0, p;
 375        unsigned long dma_offs, map_offs;
 376        dma_addr_t prev_daddr = 0;
 377        struct sg_entry *s, *last_s = NULL;
 378        size_t size = sgl->user_size;
 379
 380        dma_offs = 128;         /* next block if needed/dma_offset */
 381        map_offs = sgl->fpage_offs; /* offset in first page */
 382
 383        s = &sgl->sgl[0];       /* first set of 8 entries */
 384        p = 0;                  /* page */
 385        while (p < sgl->nr_pages) {
 386                dma_addr_t daddr;
 387                unsigned int size_to_map;
 388
 389                /* always write the chaining entry, cleanup is done later */
 390                j = 0;
 391                s[j].target_addr = cpu_to_be64(sgl->sgl_dma_addr + dma_offs);
 392                s[j].len         = cpu_to_be32(128);
 393                s[j].flags       = cpu_to_be32(SG_CHAINED);
 394                j++;
 395
 396                while (j < 8) {
 397                        /* DMA mapping for requested page, offs, size */
 398                        size_to_map = min(size, PAGE_SIZE - map_offs);
 399
 400                        if ((p == 0) && (sgl->fpage != NULL)) {
 401                                daddr = sgl->fpage_dma_addr + map_offs;
 402
 403                        } else if ((p == sgl->nr_pages - 1) &&
 404                                   (sgl->lpage != NULL)) {
 405                                daddr = sgl->lpage_dma_addr;
 406                        } else {
 407                                daddr = dma_list[p] + map_offs;
 408                        }
 409
 410                        size -= size_to_map;
 411                        map_offs = 0;
 412
 413                        if (prev_daddr == daddr) {
 414                                u32 prev_len = be32_to_cpu(last_s->len);
 415
 416                                /* pr_info("daddr combining: "
 417                                        "%016llx/%08x -> %016llx\n",
 418                                        prev_daddr, prev_len, daddr); */
 419
 420                                last_s->len = cpu_to_be32(prev_len +
 421                                                          size_to_map);
 422
 423                                p++; /* process next page */
 424                                if (p == sgl->nr_pages)
 425                                        goto fixup;  /* nothing to do */
 426
 427                                prev_daddr = daddr + size_to_map;
 428                                continue;
 429                        }
 430
 431                        /* start new entry */
 432                        s[j].target_addr = cpu_to_be64(daddr);
 433                        s[j].len         = cpu_to_be32(size_to_map);
 434                        s[j].flags       = cpu_to_be32(SG_DATA);
 435                        prev_daddr = daddr + size_to_map;
 436                        last_s = &s[j];
 437                        j++;
 438
 439                        p++;    /* process next page */
 440                        if (p == sgl->nr_pages)
 441                                goto fixup;  /* nothing to do */
 442                }
 443                dma_offs += 128;
 444                s += 8;         /* continue 8 elements further */
 445        }
 446 fixup:
 447        if (j == 1) {           /* combining happened on last entry! */
 448                s -= 8;         /* full shift needed on previous sgl block */
 449                j =  7;         /* shift all elements */
 450        }
 451
 452        for (i = 0; i < j; i++) /* move elements 1 up */
 453                s[i] = s[i + 1];
 454
 455        s[i].target_addr = cpu_to_be64(0);
 456        s[i].len         = cpu_to_be32(0);
 457        s[i].flags       = cpu_to_be32(SG_END_LIST);
 458        return 0;
 459}
 460
 461/**
 462 * genwqe_free_sync_sgl() - Free memory for sgl and overlapping pages
 463 *
 464 * After the DMA transfer has been completed we free the memory for
 465 * the sgl and the cached pages. Data is being transferred from cached
 466 * pages into user-space buffers.
 467 */
 468int genwqe_free_sync_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl)
 469{
 470        int rc = 0;
 471        size_t offset;
 472        unsigned long res;
 473        struct pci_dev *pci_dev = cd->pci_dev;
 474
 475        if (sgl->fpage) {
 476                if (sgl->write) {
 477                        res = copy_to_user(sgl->user_addr,
 478                                sgl->fpage + sgl->fpage_offs, sgl->fpage_size);
 479                        if (res) {
 480                                dev_err(&pci_dev->dev,
 481                                        "[%s] err: copying fpage! (res=%lu)\n",
 482                                        __func__, res);
 483                                rc = -EFAULT;
 484                        }
 485                }
 486                __genwqe_free_consistent(cd, PAGE_SIZE, sgl->fpage,
 487                                         sgl->fpage_dma_addr);
 488                sgl->fpage = NULL;
 489                sgl->fpage_dma_addr = 0;
 490        }
 491        if (sgl->lpage) {
 492                if (sgl->write) {
 493                        offset = sgl->user_size - sgl->lpage_size;
 494                        res = copy_to_user(sgl->user_addr + offset, sgl->lpage,
 495                                           sgl->lpage_size);
 496                        if (res) {
 497                                dev_err(&pci_dev->dev,
 498                                        "[%s] err: copying lpage! (res=%lu)\n",
 499                                        __func__, res);
 500                                rc = -EFAULT;
 501                        }
 502                }
 503                __genwqe_free_consistent(cd, PAGE_SIZE, sgl->lpage,
 504                                         sgl->lpage_dma_addr);
 505                sgl->lpage = NULL;
 506                sgl->lpage_dma_addr = 0;
 507        }
 508        __genwqe_free_consistent(cd, sgl->sgl_size, sgl->sgl,
 509                                 sgl->sgl_dma_addr);
 510
 511        sgl->sgl = NULL;
 512        sgl->sgl_dma_addr = 0x0;
 513        sgl->sgl_size = 0;
 514        return rc;
 515}
 516
 517/**
 518 * genwqe_free_user_pages() - Give pinned pages back
 519 *
 520 * Documentation of get_user_pages is in mm/gup.c:
 521 *
 522 * If the page is written to, set_page_dirty (or set_page_dirty_lock,
 523 * as appropriate) must be called after the page is finished with, and
 524 * before put_page is called.
 525 */
 526static int genwqe_free_user_pages(struct page **page_list,
 527                        unsigned int nr_pages, int dirty)
 528{
 529        unsigned int i;
 530
 531        for (i = 0; i < nr_pages; i++) {
 532                if (page_list[i] != NULL) {
 533                        if (dirty)
 534                                set_page_dirty_lock(page_list[i]);
 535                        put_page(page_list[i]);
 536                }
 537        }
 538        return 0;
 539}
 540
 541/**
 542 * genwqe_user_vmap() - Map user-space memory to virtual kernel memory
 543 * @cd:         pointer to genwqe device
 544 * @m:          mapping params
 545 * @uaddr:      user virtual address
 546 * @size:       size of memory to be mapped
 547 *
 548 * We need to think about how we could speed this up. Of course it is
 549 * not a good idea to do this over and over again, like we are
 550 * currently doing it. Nevertheless, I am curious where on the path
 551 * the performance is spend. Most probably within the memory
 552 * allocation functions, but maybe also in the DMA mapping code.
 553 *
 554 * Restrictions: The maximum size of the possible mapping currently depends
 555 *               on the amount of memory we can get using kzalloc() for the
 556 *               page_list and pci_alloc_consistent for the sg_list.
 557 *               The sg_list is currently itself not scattered, which could
 558 *               be fixed with some effort. The page_list must be split into
 559 *               PAGE_SIZE chunks too. All that will make the complicated
 560 *               code more complicated.
 561 *
 562 * Return: 0 if success
 563 */
 564int genwqe_user_vmap(struct genwqe_dev *cd, struct dma_mapping *m, void *uaddr,
 565                     unsigned long size)
 566{
 567        int rc = -EINVAL;
 568        unsigned long data, offs;
 569        struct pci_dev *pci_dev = cd->pci_dev;
 570
 571        if ((uaddr == NULL) || (size == 0)) {
 572                m->size = 0;    /* mark unused and not added */
 573                return -EINVAL;
 574        }
 575        m->u_vaddr = uaddr;
 576        m->size    = size;
 577
 578        /* determine space needed for page_list. */
 579        data = (unsigned long)uaddr;
 580        offs = offset_in_page(data);
 581        if (size > ULONG_MAX - PAGE_SIZE - offs) {
 582                m->size = 0;    /* mark unused and not added */
 583                return -EINVAL;
 584        }
 585        m->nr_pages = DIV_ROUND_UP(offs + size, PAGE_SIZE);
 586
 587        m->page_list = kcalloc(m->nr_pages,
 588                               sizeof(struct page *) + sizeof(dma_addr_t),
 589                               GFP_KERNEL);
 590        if (!m->page_list) {
 591                dev_err(&pci_dev->dev, "err: alloc page_list failed\n");
 592                m->nr_pages = 0;
 593                m->u_vaddr = NULL;
 594                m->size = 0;    /* mark unused and not added */
 595                return -ENOMEM;
 596        }
 597        m->dma_list = (dma_addr_t *)(m->page_list + m->nr_pages);
 598
 599        /* pin user pages in memory */
 600        rc = get_user_pages_fast(data & PAGE_MASK, /* page aligned addr */
 601                                 m->nr_pages,
 602                                 m->write ? FOLL_WRITE : 0,     /* readable/writable */
 603                                 m->page_list); /* ptrs to pages */
 604        if (rc < 0)
 605                goto fail_get_user_pages;
 606
 607        /* assumption: get_user_pages can be killed by signals. */
 608        if (rc < m->nr_pages) {
 609                genwqe_free_user_pages(m->page_list, rc, m->write);
 610                rc = -EFAULT;
 611                goto fail_get_user_pages;
 612        }
 613
 614        rc = genwqe_map_pages(cd, m->page_list, m->nr_pages, m->dma_list);
 615        if (rc != 0)
 616                goto fail_free_user_pages;
 617
 618        return 0;
 619
 620 fail_free_user_pages:
 621        genwqe_free_user_pages(m->page_list, m->nr_pages, m->write);
 622
 623 fail_get_user_pages:
 624        kfree(m->page_list);
 625        m->page_list = NULL;
 626        m->dma_list = NULL;
 627        m->nr_pages = 0;
 628        m->u_vaddr = NULL;
 629        m->size = 0;            /* mark unused and not added */
 630        return rc;
 631}
 632
 633/**
 634 * genwqe_user_vunmap() - Undo mapping of user-space mem to virtual kernel
 635 *                        memory
 636 * @cd:         pointer to genwqe device
 637 * @m:          mapping params
 638 */
 639int genwqe_user_vunmap(struct genwqe_dev *cd, struct dma_mapping *m)
 640{
 641        struct pci_dev *pci_dev = cd->pci_dev;
 642
 643        if (!dma_mapping_used(m)) {
 644                dev_err(&pci_dev->dev, "[%s] err: mapping %p not used!\n",
 645                        __func__, m);
 646                return -EINVAL;
 647        }
 648
 649        if (m->dma_list)
 650                genwqe_unmap_pages(cd, m->dma_list, m->nr_pages);
 651
 652        if (m->page_list) {
 653                genwqe_free_user_pages(m->page_list, m->nr_pages, m->write);
 654
 655                kfree(m->page_list);
 656                m->page_list = NULL;
 657                m->dma_list = NULL;
 658                m->nr_pages = 0;
 659        }
 660
 661        m->u_vaddr = NULL;
 662        m->size = 0;            /* mark as unused and not added */
 663        return 0;
 664}
 665
 666/**
 667 * genwqe_card_type() - Get chip type SLU Configuration Register
 668 * @cd:         pointer to the genwqe device descriptor
 669 * Return: 0: Altera Stratix-IV 230
 670 *         1: Altera Stratix-IV 530
 671 *         2: Altera Stratix-V A4
 672 *         3: Altera Stratix-V A7
 673 */
 674u8 genwqe_card_type(struct genwqe_dev *cd)
 675{
 676        u64 card_type = cd->slu_unitcfg;
 677
 678        return (u8)((card_type & IO_SLU_UNITCFG_TYPE_MASK) >> 20);
 679}
 680
 681/**
 682 * genwqe_card_reset() - Reset the card
 683 * @cd:         pointer to the genwqe device descriptor
 684 */
 685int genwqe_card_reset(struct genwqe_dev *cd)
 686{
 687        u64 softrst;
 688        struct pci_dev *pci_dev = cd->pci_dev;
 689
 690        if (!genwqe_is_privileged(cd))
 691                return -ENODEV;
 692
 693        /* new SL */
 694        __genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, 0x1ull);
 695        msleep(1000);
 696        __genwqe_readq(cd, IO_HSU_FIR_CLR);
 697        __genwqe_readq(cd, IO_APP_FIR_CLR);
 698        __genwqe_readq(cd, IO_SLU_FIR_CLR);
 699
 700        /*
 701         * Read-modify-write to preserve the stealth bits
 702         *
 703         * For SL >= 039, Stealth WE bit allows removing
 704         * the read-modify-wrote.
 705         * r-m-w may require a mask 0x3C to avoid hitting hard
 706         * reset again for error reset (should be 0, chicken).
 707         */
 708        softrst = __genwqe_readq(cd, IO_SLC_CFGREG_SOFTRESET) & 0x3cull;
 709        __genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, softrst | 0x2ull);
 710
 711        /* give ERRORRESET some time to finish */
 712        msleep(50);
 713
 714        if (genwqe_need_err_masking(cd)) {
 715                dev_info(&pci_dev->dev,
 716                         "[%s] masking errors for old bitstreams\n", __func__);
 717                __genwqe_writeq(cd, IO_SLC_MISC_DEBUG, 0x0aull);
 718        }
 719        return 0;
 720}
 721
 722int genwqe_read_softreset(struct genwqe_dev *cd)
 723{
 724        u64 bitstream;
 725
 726        if (!genwqe_is_privileged(cd))
 727                return -ENODEV;
 728
 729        bitstream = __genwqe_readq(cd, IO_SLU_BITSTREAM) & 0x1;
 730        cd->softreset = (bitstream == 0) ? 0x8ull : 0xcull;
 731        return 0;
 732}
 733
 734/**
 735 * genwqe_set_interrupt_capability() - Configure MSI capability structure
 736 * @cd:         pointer to the device
 737 * Return: 0 if no error
 738 */
 739int genwqe_set_interrupt_capability(struct genwqe_dev *cd, int count)
 740{
 741        int rc;
 742
 743        rc = pci_alloc_irq_vectors(cd->pci_dev, 1, count, PCI_IRQ_MSI);
 744        if (rc < 0)
 745                return rc;
 746        return 0;
 747}
 748
 749/**
 750 * genwqe_reset_interrupt_capability() - Undo genwqe_set_interrupt_capability()
 751 * @cd:         pointer to the device
 752 */
 753void genwqe_reset_interrupt_capability(struct genwqe_dev *cd)
 754{
 755        pci_free_irq_vectors(cd->pci_dev);
 756}
 757
 758/**
 759 * set_reg_idx() - Fill array with data. Ignore illegal offsets.
 760 * @cd:         card device
 761 * @r:          debug register array
 762 * @i:          index to desired entry
 763 * @m:          maximum possible entries
 764 * @addr:       addr which is read
 765 * @index:      index in debug array
 766 * @val:        read value
 767 */
 768static int set_reg_idx(struct genwqe_dev *cd, struct genwqe_reg *r,
 769                       unsigned int *i, unsigned int m, u32 addr, u32 idx,
 770                       u64 val)
 771{
 772        if (WARN_ON_ONCE(*i >= m))
 773                return -EFAULT;
 774
 775        r[*i].addr = addr;
 776        r[*i].idx = idx;
 777        r[*i].val = val;
 778        ++*i;
 779        return 0;
 780}
 781
 782static int set_reg(struct genwqe_dev *cd, struct genwqe_reg *r,
 783                   unsigned int *i, unsigned int m, u32 addr, u64 val)
 784{
 785        return set_reg_idx(cd, r, i, m, addr, 0, val);
 786}
 787
 788int genwqe_read_ffdc_regs(struct genwqe_dev *cd, struct genwqe_reg *regs,
 789                         unsigned int max_regs, int all)
 790{
 791        unsigned int i, j, idx = 0;
 792        u32 ufir_addr, ufec_addr, sfir_addr, sfec_addr;
 793        u64 gfir, sluid, appid, ufir, ufec, sfir, sfec;
 794
 795        /* Global FIR */
 796        gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
 797        set_reg(cd, regs, &idx, max_regs, IO_SLC_CFGREG_GFIR, gfir);
 798
 799        /* UnitCfg for SLU */
 800        sluid = __genwqe_readq(cd, IO_SLU_UNITCFG); /* 0x00000000 */
 801        set_reg(cd, regs, &idx, max_regs, IO_SLU_UNITCFG, sluid);
 802
 803        /* UnitCfg for APP */
 804        appid = __genwqe_readq(cd, IO_APP_UNITCFG); /* 0x02000000 */
 805        set_reg(cd, regs, &idx, max_regs, IO_APP_UNITCFG, appid);
 806
 807        /* Check all chip Units */
 808        for (i = 0; i < GENWQE_MAX_UNITS; i++) {
 809
 810                /* Unit FIR */
 811                ufir_addr = (i << 24) | 0x008;
 812                ufir = __genwqe_readq(cd, ufir_addr);
 813                set_reg(cd, regs, &idx, max_regs, ufir_addr, ufir);
 814
 815                /* Unit FEC */
 816                ufec_addr = (i << 24) | 0x018;
 817                ufec = __genwqe_readq(cd, ufec_addr);
 818                set_reg(cd, regs, &idx, max_regs, ufec_addr, ufec);
 819
 820                for (j = 0; j < 64; j++) {
 821                        /* wherever there is a primary 1, read the 2ndary */
 822                        if (!all && (!(ufir & (1ull << j))))
 823                                continue;
 824
 825                        sfir_addr = (i << 24) | (0x100 + 8 * j);
 826                        sfir = __genwqe_readq(cd, sfir_addr);
 827                        set_reg(cd, regs, &idx, max_regs, sfir_addr, sfir);
 828
 829                        sfec_addr = (i << 24) | (0x300 + 8 * j);
 830                        sfec = __genwqe_readq(cd, sfec_addr);
 831                        set_reg(cd, regs, &idx, max_regs, sfec_addr, sfec);
 832                }
 833        }
 834
 835        /* fill with invalid data until end */
 836        for (i = idx; i < max_regs; i++) {
 837                regs[i].addr = 0xffffffff;
 838                regs[i].val = 0xffffffffffffffffull;
 839        }
 840        return idx;
 841}
 842
 843/**
 844 * genwqe_ffdc_buff_size() - Calculates the number of dump registers
 845 */
 846int genwqe_ffdc_buff_size(struct genwqe_dev *cd, int uid)
 847{
 848        int entries = 0, ring, traps, traces, trace_entries;
 849        u32 eevptr_addr, l_addr, d_len, d_type;
 850        u64 eevptr, val, addr;
 851
 852        eevptr_addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_ERROR_POINTER;
 853        eevptr = __genwqe_readq(cd, eevptr_addr);
 854
 855        if ((eevptr != 0x0) && (eevptr != -1ull)) {
 856                l_addr = GENWQE_UID_OFFS(uid) | eevptr;
 857
 858                while (1) {
 859                        val = __genwqe_readq(cd, l_addr);
 860
 861                        if ((val == 0x0) || (val == -1ull))
 862                                break;
 863
 864                        /* 38:24 */
 865                        d_len  = (val & 0x0000007fff000000ull) >> 24;
 866
 867                        /* 39 */
 868                        d_type = (val & 0x0000008000000000ull) >> 36;
 869
 870                        if (d_type) {   /* repeat */
 871                                entries += d_len;
 872                        } else {        /* size in bytes! */
 873                                entries += d_len >> 3;
 874                        }
 875
 876                        l_addr += 8;
 877                }
 878        }
 879
 880        for (ring = 0; ring < 8; ring++) {
 881                addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_DIAG_MAP(ring);
 882                val = __genwqe_readq(cd, addr);
 883
 884                if ((val == 0x0ull) || (val == -1ull))
 885                        continue;
 886
 887                traps = (val >> 24) & 0xff;
 888                traces = (val >> 16) & 0xff;
 889                trace_entries = val & 0xffff;
 890
 891                entries += traps + (traces * trace_entries);
 892        }
 893        return entries;
 894}
 895
 896/**
 897 * genwqe_ffdc_buff_read() - Implements LogoutExtendedErrorRegisters procedure
 898 */
 899int genwqe_ffdc_buff_read(struct genwqe_dev *cd, int uid,
 900                          struct genwqe_reg *regs, unsigned int max_regs)
 901{
 902        int i, traps, traces, trace, trace_entries, trace_entry, ring;
 903        unsigned int idx = 0;
 904        u32 eevptr_addr, l_addr, d_addr, d_len, d_type;
 905        u64 eevptr, e, val, addr;
 906
 907        eevptr_addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_ERROR_POINTER;
 908        eevptr = __genwqe_readq(cd, eevptr_addr);
 909
 910        if ((eevptr != 0x0) && (eevptr != 0xffffffffffffffffull)) {
 911                l_addr = GENWQE_UID_OFFS(uid) | eevptr;
 912                while (1) {
 913                        e = __genwqe_readq(cd, l_addr);
 914                        if ((e == 0x0) || (e == 0xffffffffffffffffull))
 915                                break;
 916
 917                        d_addr = (e & 0x0000000000ffffffull);       /* 23:0 */
 918                        d_len  = (e & 0x0000007fff000000ull) >> 24; /* 38:24 */
 919                        d_type = (e & 0x0000008000000000ull) >> 36; /* 39 */
 920                        d_addr |= GENWQE_UID_OFFS(uid);
 921
 922                        if (d_type) {
 923                                for (i = 0; i < (int)d_len; i++) {
 924                                        val = __genwqe_readq(cd, d_addr);
 925                                        set_reg_idx(cd, regs, &idx, max_regs,
 926                                                    d_addr, i, val);
 927                                }
 928                        } else {
 929                                d_len >>= 3; /* Size in bytes! */
 930                                for (i = 0; i < (int)d_len; i++, d_addr += 8) {
 931                                        val = __genwqe_readq(cd, d_addr);
 932                                        set_reg_idx(cd, regs, &idx, max_regs,
 933                                                    d_addr, 0, val);
 934                                }
 935                        }
 936                        l_addr += 8;
 937                }
 938        }
 939
 940        /*
 941         * To save time, there are only 6 traces poplulated on Uid=2,
 942         * Ring=1. each with iters=512.
 943         */
 944        for (ring = 0; ring < 8; ring++) { /* 0 is fls, 1 is fds,
 945                                              2...7 are ASI rings */
 946                addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_DIAG_MAP(ring);
 947                val = __genwqe_readq(cd, addr);
 948
 949                if ((val == 0x0ull) || (val == -1ull))
 950                        continue;
 951
 952                traps = (val >> 24) & 0xff;     /* Number of Traps      */
 953                traces = (val >> 16) & 0xff;    /* Number of Traces     */
 954                trace_entries = val & 0xffff;   /* Entries per trace    */
 955
 956                /* Note: This is a combined loop that dumps both the traps */
 957                /* (for the trace == 0 case) as well as the traces 1 to    */
 958                /* 'traces'.                                               */
 959                for (trace = 0; trace <= traces; trace++) {
 960                        u32 diag_sel =
 961                                GENWQE_EXTENDED_DIAG_SELECTOR(ring, trace);
 962
 963                        addr = (GENWQE_UID_OFFS(uid) |
 964                                IO_EXTENDED_DIAG_SELECTOR);
 965                        __genwqe_writeq(cd, addr, diag_sel);
 966
 967                        for (trace_entry = 0;
 968                             trace_entry < (trace ? trace_entries : traps);
 969                             trace_entry++) {
 970                                addr = (GENWQE_UID_OFFS(uid) |
 971                                        IO_EXTENDED_DIAG_READ_MBX);
 972                                val = __genwqe_readq(cd, addr);
 973                                set_reg_idx(cd, regs, &idx, max_regs, addr,
 974                                            (diag_sel<<16) | trace_entry, val);
 975                        }
 976                }
 977        }
 978        return 0;
 979}
 980
 981/**
 982 * genwqe_write_vreg() - Write register in virtual window
 983 *
 984 * Note, these registers are only accessible to the PF through the
 985 * VF-window. It is not intended for the VF to access.
 986 */
 987int genwqe_write_vreg(struct genwqe_dev *cd, u32 reg, u64 val, int func)
 988{
 989        __genwqe_writeq(cd, IO_PF_SLC_VIRTUAL_WINDOW, func & 0xf);
 990        __genwqe_writeq(cd, reg, val);
 991        return 0;
 992}
 993
 994/**
 995 * genwqe_read_vreg() - Read register in virtual window
 996 *
 997 * Note, these registers are only accessible to the PF through the
 998 * VF-window. It is not intended for the VF to access.
 999 */
1000u64 genwqe_read_vreg(struct genwqe_dev *cd, u32 reg, int func)
1001{
1002        __genwqe_writeq(cd, IO_PF_SLC_VIRTUAL_WINDOW, func & 0xf);
1003        return __genwqe_readq(cd, reg);
1004}
1005
1006/**
1007 * genwqe_base_clock_frequency() - Deteremine base clock frequency of the card
1008 *
1009 * Note: From a design perspective it turned out to be a bad idea to
1010 * use codes here to specifiy the frequency/speed values. An old
1011 * driver cannot understand new codes and is therefore always a
1012 * problem. Better is to measure out the value or put the
1013 * speed/frequency directly into a register which is always a valid
1014 * value for old as well as for new software.
1015 *
1016 * Return: Card clock in MHz
1017 */
1018int genwqe_base_clock_frequency(struct genwqe_dev *cd)
1019{
1020        u16 speed;              /*         MHz  MHz  MHz  MHz */
1021        static const int speed_grade[] = { 250, 200, 166, 175 };
1022
1023        speed = (u16)((cd->slu_unitcfg >> 28) & 0x0full);
1024        if (speed >= ARRAY_SIZE(speed_grade))
1025                return 0;       /* illegal value */
1026
1027        return speed_grade[speed];
1028}
1029
1030/**
1031 * genwqe_stop_traps() - Stop traps
1032 *
1033 * Before reading out the analysis data, we need to stop the traps.
1034 */
1035void genwqe_stop_traps(struct genwqe_dev *cd)
1036{
1037        __genwqe_writeq(cd, IO_SLC_MISC_DEBUG_SET, 0xcull);
1038}
1039
1040/**
1041 * genwqe_start_traps() - Start traps
1042 *
1043 * After having read the data, we can/must enable the traps again.
1044 */
1045void genwqe_start_traps(struct genwqe_dev *cd)
1046{
1047        __genwqe_writeq(cd, IO_SLC_MISC_DEBUG_CLR, 0xcull);
1048
1049        if (genwqe_need_err_masking(cd))
1050                __genwqe_writeq(cd, IO_SLC_MISC_DEBUG, 0x0aull);
1051}
1052