linux/drivers/misc/mei/hw-me.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2003-2018, Intel Corporation. All rights reserved.
   4 * Intel Management Engine Interface (Intel MEI) Linux driver
   5 */
   6
   7#include <linux/pci.h>
   8
   9#include <linux/kthread.h>
  10#include <linux/interrupt.h>
  11#include <linux/pm_runtime.h>
  12#include <linux/sizes.h>
  13
  14#include "mei_dev.h"
  15#include "hbm.h"
  16
  17#include "hw-me.h"
  18#include "hw-me-regs.h"
  19
  20#include "mei-trace.h"
  21
  22/**
  23 * mei_me_reg_read - Reads 32bit data from the mei device
  24 *
  25 * @hw: the me hardware structure
  26 * @offset: offset from which to read the data
  27 *
  28 * Return: register value (u32)
  29 */
  30static inline u32 mei_me_reg_read(const struct mei_me_hw *hw,
  31                               unsigned long offset)
  32{
  33        return ioread32(hw->mem_addr + offset);
  34}
  35
  36
  37/**
  38 * mei_me_reg_write - Writes 32bit data to the mei device
  39 *
  40 * @hw: the me hardware structure
  41 * @offset: offset from which to write the data
  42 * @value: register value to write (u32)
  43 */
  44static inline void mei_me_reg_write(const struct mei_me_hw *hw,
  45                                 unsigned long offset, u32 value)
  46{
  47        iowrite32(value, hw->mem_addr + offset);
  48}
  49
  50/**
  51 * mei_me_mecbrw_read - Reads 32bit data from ME circular buffer
  52 *  read window register
  53 *
  54 * @dev: the device structure
  55 *
  56 * Return: ME_CB_RW register value (u32)
  57 */
  58static inline u32 mei_me_mecbrw_read(const struct mei_device *dev)
  59{
  60        return mei_me_reg_read(to_me_hw(dev), ME_CB_RW);
  61}
  62
  63/**
  64 * mei_me_hcbww_write - write 32bit data to the host circular buffer
  65 *
  66 * @dev: the device structure
  67 * @data: 32bit data to be written to the host circular buffer
  68 */
  69static inline void mei_me_hcbww_write(struct mei_device *dev, u32 data)
  70{
  71        mei_me_reg_write(to_me_hw(dev), H_CB_WW, data);
  72}
  73
  74/**
  75 * mei_me_mecsr_read - Reads 32bit data from the ME CSR
  76 *
  77 * @dev: the device structure
  78 *
  79 * Return: ME_CSR_HA register value (u32)
  80 */
  81static inline u32 mei_me_mecsr_read(const struct mei_device *dev)
  82{
  83        u32 reg;
  84
  85        reg = mei_me_reg_read(to_me_hw(dev), ME_CSR_HA);
  86        trace_mei_reg_read(dev->dev, "ME_CSR_HA", ME_CSR_HA, reg);
  87
  88        return reg;
  89}
  90
  91/**
  92 * mei_hcsr_read - Reads 32bit data from the host CSR
  93 *
  94 * @dev: the device structure
  95 *
  96 * Return: H_CSR register value (u32)
  97 */
  98static inline u32 mei_hcsr_read(const struct mei_device *dev)
  99{
 100        u32 reg;
 101
 102        reg = mei_me_reg_read(to_me_hw(dev), H_CSR);
 103        trace_mei_reg_read(dev->dev, "H_CSR", H_CSR, reg);
 104
 105        return reg;
 106}
 107
 108/**
 109 * mei_hcsr_write - writes H_CSR register to the mei device
 110 *
 111 * @dev: the device structure
 112 * @reg: new register value
 113 */
 114static inline void mei_hcsr_write(struct mei_device *dev, u32 reg)
 115{
 116        trace_mei_reg_write(dev->dev, "H_CSR", H_CSR, reg);
 117        mei_me_reg_write(to_me_hw(dev), H_CSR, reg);
 118}
 119
 120/**
 121 * mei_hcsr_set - writes H_CSR register to the mei device,
 122 * and ignores the H_IS bit for it is write-one-to-zero.
 123 *
 124 * @dev: the device structure
 125 * @reg: new register value
 126 */
 127static inline void mei_hcsr_set(struct mei_device *dev, u32 reg)
 128{
 129        reg &= ~H_CSR_IS_MASK;
 130        mei_hcsr_write(dev, reg);
 131}
 132
 133/**
 134 * mei_hcsr_set_hig - set host interrupt (set H_IG)
 135 *
 136 * @dev: the device structure
 137 */
 138static inline void mei_hcsr_set_hig(struct mei_device *dev)
 139{
 140        u32 hcsr;
 141
 142        hcsr = mei_hcsr_read(dev) | H_IG;
 143        mei_hcsr_set(dev, hcsr);
 144}
 145
 146/**
 147 * mei_me_d0i3c_read - Reads 32bit data from the D0I3C register
 148 *
 149 * @dev: the device structure
 150 *
 151 * Return: H_D0I3C register value (u32)
 152 */
 153static inline u32 mei_me_d0i3c_read(const struct mei_device *dev)
 154{
 155        u32 reg;
 156
 157        reg = mei_me_reg_read(to_me_hw(dev), H_D0I3C);
 158        trace_mei_reg_read(dev->dev, "H_D0I3C", H_D0I3C, reg);
 159
 160        return reg;
 161}
 162
 163/**
 164 * mei_me_d0i3c_write - writes H_D0I3C register to device
 165 *
 166 * @dev: the device structure
 167 * @reg: new register value
 168 */
 169static inline void mei_me_d0i3c_write(struct mei_device *dev, u32 reg)
 170{
 171        trace_mei_reg_write(dev->dev, "H_D0I3C", H_D0I3C, reg);
 172        mei_me_reg_write(to_me_hw(dev), H_D0I3C, reg);
 173}
 174
 175/**
 176 * mei_me_fw_status - read fw status register from pci config space
 177 *
 178 * @dev: mei device
 179 * @fw_status: fw status register values
 180 *
 181 * Return: 0 on success, error otherwise
 182 */
 183static int mei_me_fw_status(struct mei_device *dev,
 184                            struct mei_fw_status *fw_status)
 185{
 186        struct pci_dev *pdev = to_pci_dev(dev->dev);
 187        struct mei_me_hw *hw = to_me_hw(dev);
 188        const struct mei_fw_status *fw_src = &hw->cfg->fw_status;
 189        int ret;
 190        int i;
 191
 192        if (!fw_status)
 193                return -EINVAL;
 194
 195        fw_status->count = fw_src->count;
 196        for (i = 0; i < fw_src->count && i < MEI_FW_STATUS_MAX; i++) {
 197                ret = pci_read_config_dword(pdev, fw_src->status[i],
 198                                            &fw_status->status[i]);
 199                trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HSF_X",
 200                                       fw_src->status[i],
 201                                       fw_status->status[i]);
 202                if (ret)
 203                        return ret;
 204        }
 205
 206        return 0;
 207}
 208
 209/**
 210 * mei_me_hw_config - configure hw dependent settings
 211 *
 212 * @dev: mei device
 213 */
 214static void mei_me_hw_config(struct mei_device *dev)
 215{
 216        struct pci_dev *pdev = to_pci_dev(dev->dev);
 217        struct mei_me_hw *hw = to_me_hw(dev);
 218        u32 hcsr, reg;
 219
 220        /* Doesn't change in runtime */
 221        hcsr = mei_hcsr_read(dev);
 222        hw->hbuf_depth = (hcsr & H_CBD) >> 24;
 223
 224        reg = 0;
 225        pci_read_config_dword(pdev, PCI_CFG_HFS_1, &reg);
 226        trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HFS_1", PCI_CFG_HFS_1, reg);
 227        hw->d0i3_supported =
 228                ((reg & PCI_CFG_HFS_1_D0I3_MSK) == PCI_CFG_HFS_1_D0I3_MSK);
 229
 230        hw->pg_state = MEI_PG_OFF;
 231        if (hw->d0i3_supported) {
 232                reg = mei_me_d0i3c_read(dev);
 233                if (reg & H_D0I3C_I3)
 234                        hw->pg_state = MEI_PG_ON;
 235        }
 236}
 237
 238/**
 239 * mei_me_pg_state  - translate internal pg state
 240 *   to the mei power gating state
 241 *
 242 * @dev:  mei device
 243 *
 244 * Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
 245 */
 246static inline enum mei_pg_state mei_me_pg_state(struct mei_device *dev)
 247{
 248        struct mei_me_hw *hw = to_me_hw(dev);
 249
 250        return hw->pg_state;
 251}
 252
 253static inline u32 me_intr_src(u32 hcsr)
 254{
 255        return hcsr & H_CSR_IS_MASK;
 256}
 257
 258/**
 259 * me_intr_disable - disables mei device interrupts
 260 *      using supplied hcsr register value.
 261 *
 262 * @dev: the device structure
 263 * @hcsr: supplied hcsr register value
 264 */
 265static inline void me_intr_disable(struct mei_device *dev, u32 hcsr)
 266{
 267        hcsr &= ~H_CSR_IE_MASK;
 268        mei_hcsr_set(dev, hcsr);
 269}
 270
 271/**
 272 * mei_me_intr_clear - clear and stop interrupts
 273 *
 274 * @dev: the device structure
 275 * @hcsr: supplied hcsr register value
 276 */
 277static inline void me_intr_clear(struct mei_device *dev, u32 hcsr)
 278{
 279        if (me_intr_src(hcsr))
 280                mei_hcsr_write(dev, hcsr);
 281}
 282
 283/**
 284 * mei_me_intr_clear - clear and stop interrupts
 285 *
 286 * @dev: the device structure
 287 */
 288static void mei_me_intr_clear(struct mei_device *dev)
 289{
 290        u32 hcsr = mei_hcsr_read(dev);
 291
 292        me_intr_clear(dev, hcsr);
 293}
 294/**
 295 * mei_me_intr_enable - enables mei device interrupts
 296 *
 297 * @dev: the device structure
 298 */
 299static void mei_me_intr_enable(struct mei_device *dev)
 300{
 301        u32 hcsr = mei_hcsr_read(dev);
 302
 303        hcsr |= H_CSR_IE_MASK;
 304        mei_hcsr_set(dev, hcsr);
 305}
 306
 307/**
 308 * mei_me_intr_disable - disables mei device interrupts
 309 *
 310 * @dev: the device structure
 311 */
 312static void mei_me_intr_disable(struct mei_device *dev)
 313{
 314        u32 hcsr = mei_hcsr_read(dev);
 315
 316        me_intr_disable(dev, hcsr);
 317}
 318
 319/**
 320 * mei_me_synchronize_irq - wait for pending IRQ handlers
 321 *
 322 * @dev: the device structure
 323 */
 324static void mei_me_synchronize_irq(struct mei_device *dev)
 325{
 326        struct pci_dev *pdev = to_pci_dev(dev->dev);
 327
 328        synchronize_irq(pdev->irq);
 329}
 330
 331/**
 332 * mei_me_hw_reset_release - release device from the reset
 333 *
 334 * @dev: the device structure
 335 */
 336static void mei_me_hw_reset_release(struct mei_device *dev)
 337{
 338        u32 hcsr = mei_hcsr_read(dev);
 339
 340        hcsr |= H_IG;
 341        hcsr &= ~H_RST;
 342        mei_hcsr_set(dev, hcsr);
 343}
 344
 345/**
 346 * mei_me_host_set_ready - enable device
 347 *
 348 * @dev: mei device
 349 */
 350static void mei_me_host_set_ready(struct mei_device *dev)
 351{
 352        u32 hcsr = mei_hcsr_read(dev);
 353
 354        hcsr |= H_CSR_IE_MASK | H_IG | H_RDY;
 355        mei_hcsr_set(dev, hcsr);
 356}
 357
 358/**
 359 * mei_me_host_is_ready - check whether the host has turned ready
 360 *
 361 * @dev: mei device
 362 * Return: bool
 363 */
 364static bool mei_me_host_is_ready(struct mei_device *dev)
 365{
 366        u32 hcsr = mei_hcsr_read(dev);
 367
 368        return (hcsr & H_RDY) == H_RDY;
 369}
 370
 371/**
 372 * mei_me_hw_is_ready - check whether the me(hw) has turned ready
 373 *
 374 * @dev: mei device
 375 * Return: bool
 376 */
 377static bool mei_me_hw_is_ready(struct mei_device *dev)
 378{
 379        u32 mecsr = mei_me_mecsr_read(dev);
 380
 381        return (mecsr & ME_RDY_HRA) == ME_RDY_HRA;
 382}
 383
 384/**
 385 * mei_me_hw_is_resetting - check whether the me(hw) is in reset
 386 *
 387 * @dev: mei device
 388 * Return: bool
 389 */
 390static bool mei_me_hw_is_resetting(struct mei_device *dev)
 391{
 392        u32 mecsr = mei_me_mecsr_read(dev);
 393
 394        return (mecsr & ME_RST_HRA) == ME_RST_HRA;
 395}
 396
 397/**
 398 * mei_me_hw_ready_wait - wait until the me(hw) has turned ready
 399 *  or timeout is reached
 400 *
 401 * @dev: mei device
 402 * Return: 0 on success, error otherwise
 403 */
 404static int mei_me_hw_ready_wait(struct mei_device *dev)
 405{
 406        mutex_unlock(&dev->device_lock);
 407        wait_event_timeout(dev->wait_hw_ready,
 408                        dev->recvd_hw_ready,
 409                        mei_secs_to_jiffies(MEI_HW_READY_TIMEOUT));
 410        mutex_lock(&dev->device_lock);
 411        if (!dev->recvd_hw_ready) {
 412                dev_err(dev->dev, "wait hw ready failed\n");
 413                return -ETIME;
 414        }
 415
 416        mei_me_hw_reset_release(dev);
 417        dev->recvd_hw_ready = false;
 418        return 0;
 419}
 420
 421/**
 422 * mei_me_hw_start - hw start routine
 423 *
 424 * @dev: mei device
 425 * Return: 0 on success, error otherwise
 426 */
 427static int mei_me_hw_start(struct mei_device *dev)
 428{
 429        int ret = mei_me_hw_ready_wait(dev);
 430
 431        if (ret)
 432                return ret;
 433        dev_dbg(dev->dev, "hw is ready\n");
 434
 435        mei_me_host_set_ready(dev);
 436        return ret;
 437}
 438
 439
 440/**
 441 * mei_hbuf_filled_slots - gets number of device filled buffer slots
 442 *
 443 * @dev: the device structure
 444 *
 445 * Return: number of filled slots
 446 */
 447static unsigned char mei_hbuf_filled_slots(struct mei_device *dev)
 448{
 449        u32 hcsr;
 450        char read_ptr, write_ptr;
 451
 452        hcsr = mei_hcsr_read(dev);
 453
 454        read_ptr = (char) ((hcsr & H_CBRP) >> 8);
 455        write_ptr = (char) ((hcsr & H_CBWP) >> 16);
 456
 457        return (unsigned char) (write_ptr - read_ptr);
 458}
 459
 460/**
 461 * mei_me_hbuf_is_empty - checks if host buffer is empty.
 462 *
 463 * @dev: the device structure
 464 *
 465 * Return: true if empty, false - otherwise.
 466 */
 467static bool mei_me_hbuf_is_empty(struct mei_device *dev)
 468{
 469        return mei_hbuf_filled_slots(dev) == 0;
 470}
 471
 472/**
 473 * mei_me_hbuf_empty_slots - counts write empty slots.
 474 *
 475 * @dev: the device structure
 476 *
 477 * Return: -EOVERFLOW if overflow, otherwise empty slots count
 478 */
 479static int mei_me_hbuf_empty_slots(struct mei_device *dev)
 480{
 481        struct mei_me_hw *hw = to_me_hw(dev);
 482        unsigned char filled_slots, empty_slots;
 483
 484        filled_slots = mei_hbuf_filled_slots(dev);
 485        empty_slots = hw->hbuf_depth - filled_slots;
 486
 487        /* check for overflow */
 488        if (filled_slots > hw->hbuf_depth)
 489                return -EOVERFLOW;
 490
 491        return empty_slots;
 492}
 493
 494/**
 495 * mei_me_hbuf_depth - returns depth of the hw buffer.
 496 *
 497 * @dev: the device structure
 498 *
 499 * Return: size of hw buffer in slots
 500 */
 501static u32 mei_me_hbuf_depth(const struct mei_device *dev)
 502{
 503        struct mei_me_hw *hw = to_me_hw(dev);
 504
 505        return hw->hbuf_depth;
 506}
 507
 508/**
 509 * mei_me_hbuf_write - writes a message to host hw buffer.
 510 *
 511 * @dev: the device structure
 512 * @hdr: header of message
 513 * @hdr_len: header length in bytes: must be multiplication of a slot (4bytes)
 514 * @data: payload
 515 * @data_len: payload length in bytes
 516 *
 517 * Return: 0 if success, < 0 - otherwise.
 518 */
 519static int mei_me_hbuf_write(struct mei_device *dev,
 520                             const void *hdr, size_t hdr_len,
 521                             const void *data, size_t data_len)
 522{
 523        unsigned long rem;
 524        unsigned long i;
 525        const u32 *reg_buf;
 526        u32 dw_cnt;
 527        int empty_slots;
 528
 529        if (WARN_ON(!hdr || !data || hdr_len & 0x3))
 530                return -EINVAL;
 531
 532        dev_dbg(dev->dev, MEI_HDR_FMT, MEI_HDR_PRM((struct mei_msg_hdr *)hdr));
 533
 534        empty_slots = mei_hbuf_empty_slots(dev);
 535        dev_dbg(dev->dev, "empty slots = %hu.\n", empty_slots);
 536
 537        if (empty_slots < 0)
 538                return -EOVERFLOW;
 539
 540        dw_cnt = mei_data2slots(hdr_len + data_len);
 541        if (dw_cnt > (u32)empty_slots)
 542                return -EMSGSIZE;
 543
 544        reg_buf = hdr;
 545        for (i = 0; i < hdr_len / MEI_SLOT_SIZE; i++)
 546                mei_me_hcbww_write(dev, reg_buf[i]);
 547
 548        reg_buf = data;
 549        for (i = 0; i < data_len / MEI_SLOT_SIZE; i++)
 550                mei_me_hcbww_write(dev, reg_buf[i]);
 551
 552        rem = data_len & 0x3;
 553        if (rem > 0) {
 554                u32 reg = 0;
 555
 556                memcpy(&reg, (const u8 *)data + data_len - rem, rem);
 557                mei_me_hcbww_write(dev, reg);
 558        }
 559
 560        mei_hcsr_set_hig(dev);
 561        if (!mei_me_hw_is_ready(dev))
 562                return -EIO;
 563
 564        return 0;
 565}
 566
 567/**
 568 * mei_me_count_full_read_slots - counts read full slots.
 569 *
 570 * @dev: the device structure
 571 *
 572 * Return: -EOVERFLOW if overflow, otherwise filled slots count
 573 */
 574static int mei_me_count_full_read_slots(struct mei_device *dev)
 575{
 576        u32 me_csr;
 577        char read_ptr, write_ptr;
 578        unsigned char buffer_depth, filled_slots;
 579
 580        me_csr = mei_me_mecsr_read(dev);
 581        buffer_depth = (unsigned char)((me_csr & ME_CBD_HRA) >> 24);
 582        read_ptr = (char) ((me_csr & ME_CBRP_HRA) >> 8);
 583        write_ptr = (char) ((me_csr & ME_CBWP_HRA) >> 16);
 584        filled_slots = (unsigned char) (write_ptr - read_ptr);
 585
 586        /* check for overflow */
 587        if (filled_slots > buffer_depth)
 588                return -EOVERFLOW;
 589
 590        dev_dbg(dev->dev, "filled_slots =%08x\n", filled_slots);
 591        return (int)filled_slots;
 592}
 593
 594/**
 595 * mei_me_read_slots - reads a message from mei device.
 596 *
 597 * @dev: the device structure
 598 * @buffer: message buffer will be written
 599 * @buffer_length: message size will be read
 600 *
 601 * Return: always 0
 602 */
 603static int mei_me_read_slots(struct mei_device *dev, unsigned char *buffer,
 604                             unsigned long buffer_length)
 605{
 606        u32 *reg_buf = (u32 *)buffer;
 607
 608        for (; buffer_length >= MEI_SLOT_SIZE; buffer_length -= MEI_SLOT_SIZE)
 609                *reg_buf++ = mei_me_mecbrw_read(dev);
 610
 611        if (buffer_length > 0) {
 612                u32 reg = mei_me_mecbrw_read(dev);
 613
 614                memcpy(reg_buf, &reg, buffer_length);
 615        }
 616
 617        mei_hcsr_set_hig(dev);
 618        return 0;
 619}
 620
 621/**
 622 * mei_me_pg_set - write pg enter register
 623 *
 624 * @dev: the device structure
 625 */
 626static void mei_me_pg_set(struct mei_device *dev)
 627{
 628        struct mei_me_hw *hw = to_me_hw(dev);
 629        u32 reg;
 630
 631        reg = mei_me_reg_read(hw, H_HPG_CSR);
 632        trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
 633
 634        reg |= H_HPG_CSR_PGI;
 635
 636        trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
 637        mei_me_reg_write(hw, H_HPG_CSR, reg);
 638}
 639
 640/**
 641 * mei_me_pg_unset - write pg exit register
 642 *
 643 * @dev: the device structure
 644 */
 645static void mei_me_pg_unset(struct mei_device *dev)
 646{
 647        struct mei_me_hw *hw = to_me_hw(dev);
 648        u32 reg;
 649
 650        reg = mei_me_reg_read(hw, H_HPG_CSR);
 651        trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
 652
 653        WARN(!(reg & H_HPG_CSR_PGI), "PGI is not set\n");
 654
 655        reg |= H_HPG_CSR_PGIHEXR;
 656
 657        trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
 658        mei_me_reg_write(hw, H_HPG_CSR, reg);
 659}
 660
 661/**
 662 * mei_me_pg_legacy_enter_sync - perform legacy pg entry procedure
 663 *
 664 * @dev: the device structure
 665 *
 666 * Return: 0 on success an error code otherwise
 667 */
 668static int mei_me_pg_legacy_enter_sync(struct mei_device *dev)
 669{
 670        struct mei_me_hw *hw = to_me_hw(dev);
 671        unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
 672        int ret;
 673
 674        dev->pg_event = MEI_PG_EVENT_WAIT;
 675
 676        ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
 677        if (ret)
 678                return ret;
 679
 680        mutex_unlock(&dev->device_lock);
 681        wait_event_timeout(dev->wait_pg,
 682                dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
 683        mutex_lock(&dev->device_lock);
 684
 685        if (dev->pg_event == MEI_PG_EVENT_RECEIVED) {
 686                mei_me_pg_set(dev);
 687                ret = 0;
 688        } else {
 689                ret = -ETIME;
 690        }
 691
 692        dev->pg_event = MEI_PG_EVENT_IDLE;
 693        hw->pg_state = MEI_PG_ON;
 694
 695        return ret;
 696}
 697
 698/**
 699 * mei_me_pg_legacy_exit_sync - perform legacy pg exit procedure
 700 *
 701 * @dev: the device structure
 702 *
 703 * Return: 0 on success an error code otherwise
 704 */
 705static int mei_me_pg_legacy_exit_sync(struct mei_device *dev)
 706{
 707        struct mei_me_hw *hw = to_me_hw(dev);
 708        unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
 709        int ret;
 710
 711        if (dev->pg_event == MEI_PG_EVENT_RECEIVED)
 712                goto reply;
 713
 714        dev->pg_event = MEI_PG_EVENT_WAIT;
 715
 716        mei_me_pg_unset(dev);
 717
 718        mutex_unlock(&dev->device_lock);
 719        wait_event_timeout(dev->wait_pg,
 720                dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
 721        mutex_lock(&dev->device_lock);
 722
 723reply:
 724        if (dev->pg_event != MEI_PG_EVENT_RECEIVED) {
 725                ret = -ETIME;
 726                goto out;
 727        }
 728
 729        dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
 730        ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_EXIT_RES_CMD);
 731        if (ret)
 732                return ret;
 733
 734        mutex_unlock(&dev->device_lock);
 735        wait_event_timeout(dev->wait_pg,
 736                dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, timeout);
 737        mutex_lock(&dev->device_lock);
 738
 739        if (dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED)
 740                ret = 0;
 741        else
 742                ret = -ETIME;
 743
 744out:
 745        dev->pg_event = MEI_PG_EVENT_IDLE;
 746        hw->pg_state = MEI_PG_OFF;
 747
 748        return ret;
 749}
 750
 751/**
 752 * mei_me_pg_in_transition - is device now in pg transition
 753 *
 754 * @dev: the device structure
 755 *
 756 * Return: true if in pg transition, false otherwise
 757 */
 758static bool mei_me_pg_in_transition(struct mei_device *dev)
 759{
 760        return dev->pg_event >= MEI_PG_EVENT_WAIT &&
 761               dev->pg_event <= MEI_PG_EVENT_INTR_WAIT;
 762}
 763
 764/**
 765 * mei_me_pg_is_enabled - detect if PG is supported by HW
 766 *
 767 * @dev: the device structure
 768 *
 769 * Return: true is pg supported, false otherwise
 770 */
 771static bool mei_me_pg_is_enabled(struct mei_device *dev)
 772{
 773        struct mei_me_hw *hw = to_me_hw(dev);
 774        u32 reg = mei_me_mecsr_read(dev);
 775
 776        if (hw->d0i3_supported)
 777                return true;
 778
 779        if ((reg & ME_PGIC_HRA) == 0)
 780                goto notsupported;
 781
 782        if (!dev->hbm_f_pg_supported)
 783                goto notsupported;
 784
 785        return true;
 786
 787notsupported:
 788        dev_dbg(dev->dev, "pg: not supported: d0i3 = %d HGP = %d hbm version %d.%d ?= %d.%d\n",
 789                hw->d0i3_supported,
 790                !!(reg & ME_PGIC_HRA),
 791                dev->version.major_version,
 792                dev->version.minor_version,
 793                HBM_MAJOR_VERSION_PGI,
 794                HBM_MINOR_VERSION_PGI);
 795
 796        return false;
 797}
 798
 799/**
 800 * mei_me_d0i3_set - write d0i3 register bit on mei device.
 801 *
 802 * @dev: the device structure
 803 * @intr: ask for interrupt
 804 *
 805 * Return: D0I3C register value
 806 */
 807static u32 mei_me_d0i3_set(struct mei_device *dev, bool intr)
 808{
 809        u32 reg = mei_me_d0i3c_read(dev);
 810
 811        reg |= H_D0I3C_I3;
 812        if (intr)
 813                reg |= H_D0I3C_IR;
 814        else
 815                reg &= ~H_D0I3C_IR;
 816        mei_me_d0i3c_write(dev, reg);
 817        /* read it to ensure HW consistency */
 818        reg = mei_me_d0i3c_read(dev);
 819        return reg;
 820}
 821
 822/**
 823 * mei_me_d0i3_unset - clean d0i3 register bit on mei device.
 824 *
 825 * @dev: the device structure
 826 *
 827 * Return: D0I3C register value
 828 */
 829static u32 mei_me_d0i3_unset(struct mei_device *dev)
 830{
 831        u32 reg = mei_me_d0i3c_read(dev);
 832
 833        reg &= ~H_D0I3C_I3;
 834        reg |= H_D0I3C_IR;
 835        mei_me_d0i3c_write(dev, reg);
 836        /* read it to ensure HW consistency */
 837        reg = mei_me_d0i3c_read(dev);
 838        return reg;
 839}
 840
 841/**
 842 * mei_me_d0i3_enter_sync - perform d0i3 entry procedure
 843 *
 844 * @dev: the device structure
 845 *
 846 * Return: 0 on success an error code otherwise
 847 */
 848static int mei_me_d0i3_enter_sync(struct mei_device *dev)
 849{
 850        struct mei_me_hw *hw = to_me_hw(dev);
 851        unsigned long d0i3_timeout = mei_secs_to_jiffies(MEI_D0I3_TIMEOUT);
 852        unsigned long pgi_timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
 853        int ret;
 854        u32 reg;
 855
 856        reg = mei_me_d0i3c_read(dev);
 857        if (reg & H_D0I3C_I3) {
 858                /* we are in d0i3, nothing to do */
 859                dev_dbg(dev->dev, "d0i3 set not needed\n");
 860                ret = 0;
 861                goto on;
 862        }
 863
 864        /* PGI entry procedure */
 865        dev->pg_event = MEI_PG_EVENT_WAIT;
 866
 867        ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
 868        if (ret)
 869                /* FIXME: should we reset here? */
 870                goto out;
 871
 872        mutex_unlock(&dev->device_lock);
 873        wait_event_timeout(dev->wait_pg,
 874                dev->pg_event == MEI_PG_EVENT_RECEIVED, pgi_timeout);
 875        mutex_lock(&dev->device_lock);
 876
 877        if (dev->pg_event != MEI_PG_EVENT_RECEIVED) {
 878                ret = -ETIME;
 879                goto out;
 880        }
 881        /* end PGI entry procedure */
 882
 883        dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
 884
 885        reg = mei_me_d0i3_set(dev, true);
 886        if (!(reg & H_D0I3C_CIP)) {
 887                dev_dbg(dev->dev, "d0i3 enter wait not needed\n");
 888                ret = 0;
 889                goto on;
 890        }
 891
 892        mutex_unlock(&dev->device_lock);
 893        wait_event_timeout(dev->wait_pg,
 894                dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, d0i3_timeout);
 895        mutex_lock(&dev->device_lock);
 896
 897        if (dev->pg_event != MEI_PG_EVENT_INTR_RECEIVED) {
 898                reg = mei_me_d0i3c_read(dev);
 899                if (!(reg & H_D0I3C_I3)) {
 900                        ret = -ETIME;
 901                        goto out;
 902                }
 903        }
 904
 905        ret = 0;
 906on:
 907        hw->pg_state = MEI_PG_ON;
 908out:
 909        dev->pg_event = MEI_PG_EVENT_IDLE;
 910        dev_dbg(dev->dev, "d0i3 enter ret = %d\n", ret);
 911        return ret;
 912}
 913
 914/**
 915 * mei_me_d0i3_enter - perform d0i3 entry procedure
 916 *   no hbm PG handshake
 917 *   no waiting for confirmation; runs with interrupts
 918 *   disabled
 919 *
 920 * @dev: the device structure
 921 *
 922 * Return: 0 on success an error code otherwise
 923 */
 924static int mei_me_d0i3_enter(struct mei_device *dev)
 925{
 926        struct mei_me_hw *hw = to_me_hw(dev);
 927        u32 reg;
 928
 929        reg = mei_me_d0i3c_read(dev);
 930        if (reg & H_D0I3C_I3) {
 931                /* we are in d0i3, nothing to do */
 932                dev_dbg(dev->dev, "already d0i3 : set not needed\n");
 933                goto on;
 934        }
 935
 936        mei_me_d0i3_set(dev, false);
 937on:
 938        hw->pg_state = MEI_PG_ON;
 939        dev->pg_event = MEI_PG_EVENT_IDLE;
 940        dev_dbg(dev->dev, "d0i3 enter\n");
 941        return 0;
 942}
 943
 944/**
 945 * mei_me_d0i3_exit_sync - perform d0i3 exit procedure
 946 *
 947 * @dev: the device structure
 948 *
 949 * Return: 0 on success an error code otherwise
 950 */
 951static int mei_me_d0i3_exit_sync(struct mei_device *dev)
 952{
 953        struct mei_me_hw *hw = to_me_hw(dev);
 954        unsigned long timeout = mei_secs_to_jiffies(MEI_D0I3_TIMEOUT);
 955        int ret;
 956        u32 reg;
 957
 958        dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
 959
 960        reg = mei_me_d0i3c_read(dev);
 961        if (!(reg & H_D0I3C_I3)) {
 962                /* we are not in d0i3, nothing to do */
 963                dev_dbg(dev->dev, "d0i3 exit not needed\n");
 964                ret = 0;
 965                goto off;
 966        }
 967
 968        reg = mei_me_d0i3_unset(dev);
 969        if (!(reg & H_D0I3C_CIP)) {
 970                dev_dbg(dev->dev, "d0i3 exit wait not needed\n");
 971                ret = 0;
 972                goto off;
 973        }
 974
 975        mutex_unlock(&dev->device_lock);
 976        wait_event_timeout(dev->wait_pg,
 977                dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, timeout);
 978        mutex_lock(&dev->device_lock);
 979
 980        if (dev->pg_event != MEI_PG_EVENT_INTR_RECEIVED) {
 981                reg = mei_me_d0i3c_read(dev);
 982                if (reg & H_D0I3C_I3) {
 983                        ret = -ETIME;
 984                        goto out;
 985                }
 986        }
 987
 988        ret = 0;
 989off:
 990        hw->pg_state = MEI_PG_OFF;
 991out:
 992        dev->pg_event = MEI_PG_EVENT_IDLE;
 993
 994        dev_dbg(dev->dev, "d0i3 exit ret = %d\n", ret);
 995        return ret;
 996}
 997
 998/**
 999 * mei_me_pg_legacy_intr - perform legacy pg processing
1000 *                         in interrupt thread handler
1001 *
1002 * @dev: the device structure
1003 */
1004static void mei_me_pg_legacy_intr(struct mei_device *dev)
1005{
1006        struct mei_me_hw *hw = to_me_hw(dev);
1007
1008        if (dev->pg_event != MEI_PG_EVENT_INTR_WAIT)
1009                return;
1010
1011        dev->pg_event = MEI_PG_EVENT_INTR_RECEIVED;
1012        hw->pg_state = MEI_PG_OFF;
1013        if (waitqueue_active(&dev->wait_pg))
1014                wake_up(&dev->wait_pg);
1015}
1016
1017/**
1018 * mei_me_d0i3_intr - perform d0i3 processing in interrupt thread handler
1019 *
1020 * @dev: the device structure
1021 * @intr_source: interrupt source
1022 */
1023static void mei_me_d0i3_intr(struct mei_device *dev, u32 intr_source)
1024{
1025        struct mei_me_hw *hw = to_me_hw(dev);
1026
1027        if (dev->pg_event == MEI_PG_EVENT_INTR_WAIT &&
1028            (intr_source & H_D0I3C_IS)) {
1029                dev->pg_event = MEI_PG_EVENT_INTR_RECEIVED;
1030                if (hw->pg_state == MEI_PG_ON) {
1031                        hw->pg_state = MEI_PG_OFF;
1032                        if (dev->hbm_state != MEI_HBM_IDLE) {
1033                                /*
1034                                 * force H_RDY because it could be
1035                                 * wiped off during PG
1036                                 */
1037                                dev_dbg(dev->dev, "d0i3 set host ready\n");
1038                                mei_me_host_set_ready(dev);
1039                        }
1040                } else {
1041                        hw->pg_state = MEI_PG_ON;
1042                }
1043
1044                wake_up(&dev->wait_pg);
1045        }
1046
1047        if (hw->pg_state == MEI_PG_ON && (intr_source & H_IS)) {
1048                /*
1049                 * HW sent some data and we are in D0i3, so
1050                 * we got here because of HW initiated exit from D0i3.
1051                 * Start runtime pm resume sequence to exit low power state.
1052                 */
1053                dev_dbg(dev->dev, "d0i3 want resume\n");
1054                mei_hbm_pg_resume(dev);
1055        }
1056}
1057
1058/**
1059 * mei_me_pg_intr - perform pg processing in interrupt thread handler
1060 *
1061 * @dev: the device structure
1062 * @intr_source: interrupt source
1063 */
1064static void mei_me_pg_intr(struct mei_device *dev, u32 intr_source)
1065{
1066        struct mei_me_hw *hw = to_me_hw(dev);
1067
1068        if (hw->d0i3_supported)
1069                mei_me_d0i3_intr(dev, intr_source);
1070        else
1071                mei_me_pg_legacy_intr(dev);
1072}
1073
1074/**
1075 * mei_me_pg_enter_sync - perform runtime pm entry procedure
1076 *
1077 * @dev: the device structure
1078 *
1079 * Return: 0 on success an error code otherwise
1080 */
1081int mei_me_pg_enter_sync(struct mei_device *dev)
1082{
1083        struct mei_me_hw *hw = to_me_hw(dev);
1084
1085        if (hw->d0i3_supported)
1086                return mei_me_d0i3_enter_sync(dev);
1087        else
1088                return mei_me_pg_legacy_enter_sync(dev);
1089}
1090
1091/**
1092 * mei_me_pg_exit_sync - perform runtime pm exit procedure
1093 *
1094 * @dev: the device structure
1095 *
1096 * Return: 0 on success an error code otherwise
1097 */
1098int mei_me_pg_exit_sync(struct mei_device *dev)
1099{
1100        struct mei_me_hw *hw = to_me_hw(dev);
1101
1102        if (hw->d0i3_supported)
1103                return mei_me_d0i3_exit_sync(dev);
1104        else
1105                return mei_me_pg_legacy_exit_sync(dev);
1106}
1107
1108/**
1109 * mei_me_hw_reset - resets fw via mei csr register.
1110 *
1111 * @dev: the device structure
1112 * @intr_enable: if interrupt should be enabled after reset.
1113 *
1114 * Return: 0 on success an error code otherwise
1115 */
1116static int mei_me_hw_reset(struct mei_device *dev, bool intr_enable)
1117{
1118        struct mei_me_hw *hw = to_me_hw(dev);
1119        int ret;
1120        u32 hcsr;
1121
1122        if (intr_enable) {
1123                mei_me_intr_enable(dev);
1124                if (hw->d0i3_supported) {
1125                        ret = mei_me_d0i3_exit_sync(dev);
1126                        if (ret)
1127                                return ret;
1128                }
1129        }
1130
1131        pm_runtime_set_active(dev->dev);
1132
1133        hcsr = mei_hcsr_read(dev);
1134        /* H_RST may be found lit before reset is started,
1135         * for example if preceding reset flow hasn't completed.
1136         * In that case asserting H_RST will be ignored, therefore
1137         * we need to clean H_RST bit to start a successful reset sequence.
1138         */
1139        if ((hcsr & H_RST) == H_RST) {
1140                dev_warn(dev->dev, "H_RST is set = 0x%08X", hcsr);
1141                hcsr &= ~H_RST;
1142                mei_hcsr_set(dev, hcsr);
1143                hcsr = mei_hcsr_read(dev);
1144        }
1145
1146        hcsr |= H_RST | H_IG | H_CSR_IS_MASK;
1147
1148        if (!intr_enable)
1149                hcsr &= ~H_CSR_IE_MASK;
1150
1151        dev->recvd_hw_ready = false;
1152        mei_hcsr_write(dev, hcsr);
1153
1154        /*
1155         * Host reads the H_CSR once to ensure that the
1156         * posted write to H_CSR completes.
1157         */
1158        hcsr = mei_hcsr_read(dev);
1159
1160        if ((hcsr & H_RST) == 0)
1161                dev_warn(dev->dev, "H_RST is not set = 0x%08X", hcsr);
1162
1163        if ((hcsr & H_RDY) == H_RDY)
1164                dev_warn(dev->dev, "H_RDY is not cleared 0x%08X", hcsr);
1165
1166        if (!intr_enable) {
1167                mei_me_hw_reset_release(dev);
1168                if (hw->d0i3_supported) {
1169                        ret = mei_me_d0i3_enter(dev);
1170                        if (ret)
1171                                return ret;
1172                }
1173        }
1174        return 0;
1175}
1176
1177/**
1178 * mei_me_irq_quick_handler - The ISR of the MEI device
1179 *
1180 * @irq: The irq number
1181 * @dev_id: pointer to the device structure
1182 *
1183 * Return: irqreturn_t
1184 */
1185irqreturn_t mei_me_irq_quick_handler(int irq, void *dev_id)
1186{
1187        struct mei_device *dev = (struct mei_device *)dev_id;
1188        u32 hcsr;
1189
1190        hcsr = mei_hcsr_read(dev);
1191        if (!me_intr_src(hcsr))
1192                return IRQ_NONE;
1193
1194        dev_dbg(dev->dev, "interrupt source 0x%08X\n", me_intr_src(hcsr));
1195
1196        /* disable interrupts on device */
1197        me_intr_disable(dev, hcsr);
1198        return IRQ_WAKE_THREAD;
1199}
1200
1201/**
1202 * mei_me_irq_thread_handler - function called after ISR to handle the interrupt
1203 * processing.
1204 *
1205 * @irq: The irq number
1206 * @dev_id: pointer to the device structure
1207 *
1208 * Return: irqreturn_t
1209 *
1210 */
1211irqreturn_t mei_me_irq_thread_handler(int irq, void *dev_id)
1212{
1213        struct mei_device *dev = (struct mei_device *) dev_id;
1214        struct list_head cmpl_list;
1215        s32 slots;
1216        u32 hcsr;
1217        int rets = 0;
1218
1219        dev_dbg(dev->dev, "function called after ISR to handle the interrupt processing.\n");
1220        /* initialize our complete list */
1221        mutex_lock(&dev->device_lock);
1222
1223        hcsr = mei_hcsr_read(dev);
1224        me_intr_clear(dev, hcsr);
1225
1226        INIT_LIST_HEAD(&cmpl_list);
1227
1228        /* check if ME wants a reset */
1229        if (!mei_hw_is_ready(dev) && dev->dev_state != MEI_DEV_RESETTING) {
1230                dev_warn(dev->dev, "FW not ready: resetting.\n");
1231                schedule_work(&dev->reset_work);
1232                goto end;
1233        }
1234
1235        if (mei_me_hw_is_resetting(dev))
1236                mei_hcsr_set_hig(dev);
1237
1238        mei_me_pg_intr(dev, me_intr_src(hcsr));
1239
1240        /*  check if we need to start the dev */
1241        if (!mei_host_is_ready(dev)) {
1242                if (mei_hw_is_ready(dev)) {
1243                        dev_dbg(dev->dev, "we need to start the dev.\n");
1244                        dev->recvd_hw_ready = true;
1245                        wake_up(&dev->wait_hw_ready);
1246                } else {
1247                        dev_dbg(dev->dev, "Spurious Interrupt\n");
1248                }
1249                goto end;
1250        }
1251        /* check slots available for reading */
1252        slots = mei_count_full_read_slots(dev);
1253        while (slots > 0) {
1254                dev_dbg(dev->dev, "slots to read = %08x\n", slots);
1255                rets = mei_irq_read_handler(dev, &cmpl_list, &slots);
1256                /* There is a race between ME write and interrupt delivery:
1257                 * Not all data is always available immediately after the
1258                 * interrupt, so try to read again on the next interrupt.
1259                 */
1260                if (rets == -ENODATA)
1261                        break;
1262
1263                if (rets &&
1264                    (dev->dev_state != MEI_DEV_RESETTING &&
1265                     dev->dev_state != MEI_DEV_POWER_DOWN)) {
1266                        dev_err(dev->dev, "mei_irq_read_handler ret = %d.\n",
1267                                                rets);
1268                        schedule_work(&dev->reset_work);
1269                        goto end;
1270                }
1271        }
1272
1273        dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1274
1275        /*
1276         * During PG handshake only allowed write is the replay to the
1277         * PG exit message, so block calling write function
1278         * if the pg event is in PG handshake
1279         */
1280        if (dev->pg_event != MEI_PG_EVENT_WAIT &&
1281            dev->pg_event != MEI_PG_EVENT_RECEIVED) {
1282                rets = mei_irq_write_handler(dev, &cmpl_list);
1283                dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1284        }
1285
1286        mei_irq_compl_handler(dev, &cmpl_list);
1287
1288end:
1289        dev_dbg(dev->dev, "interrupt thread end ret = %d\n", rets);
1290        mei_me_intr_enable(dev);
1291        mutex_unlock(&dev->device_lock);
1292        return IRQ_HANDLED;
1293}
1294
1295static const struct mei_hw_ops mei_me_hw_ops = {
1296
1297        .fw_status = mei_me_fw_status,
1298        .pg_state  = mei_me_pg_state,
1299
1300        .host_is_ready = mei_me_host_is_ready,
1301
1302        .hw_is_ready = mei_me_hw_is_ready,
1303        .hw_reset = mei_me_hw_reset,
1304        .hw_config = mei_me_hw_config,
1305        .hw_start = mei_me_hw_start,
1306
1307        .pg_in_transition = mei_me_pg_in_transition,
1308        .pg_is_enabled = mei_me_pg_is_enabled,
1309
1310        .intr_clear = mei_me_intr_clear,
1311        .intr_enable = mei_me_intr_enable,
1312        .intr_disable = mei_me_intr_disable,
1313        .synchronize_irq = mei_me_synchronize_irq,
1314
1315        .hbuf_free_slots = mei_me_hbuf_empty_slots,
1316        .hbuf_is_ready = mei_me_hbuf_is_empty,
1317        .hbuf_depth = mei_me_hbuf_depth,
1318
1319        .write = mei_me_hbuf_write,
1320
1321        .rdbuf_full_slots = mei_me_count_full_read_slots,
1322        .read_hdr = mei_me_mecbrw_read,
1323        .read = mei_me_read_slots
1324};
1325
1326static bool mei_me_fw_type_nm(struct pci_dev *pdev)
1327{
1328        u32 reg;
1329
1330        pci_read_config_dword(pdev, PCI_CFG_HFS_2, &reg);
1331        trace_mei_pci_cfg_read(&pdev->dev, "PCI_CFG_HFS_2", PCI_CFG_HFS_2, reg);
1332        /* make sure that bit 9 (NM) is up and bit 10 (DM) is down */
1333        return (reg & 0x600) == 0x200;
1334}
1335
1336#define MEI_CFG_FW_NM                           \
1337        .quirk_probe = mei_me_fw_type_nm
1338
1339static bool mei_me_fw_type_sps(struct pci_dev *pdev)
1340{
1341        u32 reg;
1342        unsigned int devfn;
1343
1344        /*
1345         * Read ME FW Status register to check for SPS Firmware
1346         * The SPS FW is only signaled in pci function 0
1347         */
1348        devfn = PCI_DEVFN(PCI_SLOT(pdev->devfn), 0);
1349        pci_bus_read_config_dword(pdev->bus, devfn, PCI_CFG_HFS_1, &reg);
1350        trace_mei_pci_cfg_read(&pdev->dev, "PCI_CFG_HFS_1", PCI_CFG_HFS_1, reg);
1351        /* if bits [19:16] = 15, running SPS Firmware */
1352        return (reg & 0xf0000) == 0xf0000;
1353}
1354
1355#define MEI_CFG_FW_SPS                           \
1356        .quirk_probe = mei_me_fw_type_sps
1357
1358
1359#define MEI_CFG_ICH_HFS                      \
1360        .fw_status.count = 0
1361
1362#define MEI_CFG_ICH10_HFS                        \
1363        .fw_status.count = 1,                   \
1364        .fw_status.status[0] = PCI_CFG_HFS_1
1365
1366#define MEI_CFG_PCH_HFS                         \
1367        .fw_status.count = 2,                   \
1368        .fw_status.status[0] = PCI_CFG_HFS_1,   \
1369        .fw_status.status[1] = PCI_CFG_HFS_2
1370
1371#define MEI_CFG_PCH8_HFS                        \
1372        .fw_status.count = 6,                   \
1373        .fw_status.status[0] = PCI_CFG_HFS_1,   \
1374        .fw_status.status[1] = PCI_CFG_HFS_2,   \
1375        .fw_status.status[2] = PCI_CFG_HFS_3,   \
1376        .fw_status.status[3] = PCI_CFG_HFS_4,   \
1377        .fw_status.status[4] = PCI_CFG_HFS_5,   \
1378        .fw_status.status[5] = PCI_CFG_HFS_6
1379
1380#define MEI_CFG_DMA_128 \
1381        .dma_size[DMA_DSCR_HOST] = SZ_128K, \
1382        .dma_size[DMA_DSCR_DEVICE] = SZ_128K, \
1383        .dma_size[DMA_DSCR_CTRL] = PAGE_SIZE
1384
1385/* ICH Legacy devices */
1386static const struct mei_cfg mei_me_ich_cfg = {
1387        MEI_CFG_ICH_HFS,
1388};
1389
1390/* ICH devices */
1391static const struct mei_cfg mei_me_ich10_cfg = {
1392        MEI_CFG_ICH10_HFS,
1393};
1394
1395/* PCH devices */
1396static const struct mei_cfg mei_me_pch_cfg = {
1397        MEI_CFG_PCH_HFS,
1398};
1399
1400/* PCH Cougar Point and Patsburg with quirk for Node Manager exclusion */
1401static const struct mei_cfg mei_me_pch_cpt_pbg_cfg = {
1402        MEI_CFG_PCH_HFS,
1403        MEI_CFG_FW_NM,
1404};
1405
1406/* PCH8 Lynx Point and newer devices */
1407static const struct mei_cfg mei_me_pch8_cfg = {
1408        MEI_CFG_PCH8_HFS,
1409};
1410
1411/* PCH8 Lynx Point with quirk for SPS Firmware exclusion */
1412static const struct mei_cfg mei_me_pch8_sps_cfg = {
1413        MEI_CFG_PCH8_HFS,
1414        MEI_CFG_FW_SPS,
1415};
1416
1417/* Cannon Lake and newer devices */
1418static const struct mei_cfg mei_me_pch12_cfg = {
1419        MEI_CFG_PCH8_HFS,
1420        MEI_CFG_DMA_128,
1421};
1422
1423/*
1424 * mei_cfg_list - A list of platform platform specific configurations.
1425 * Note: has to be synchronized with  enum mei_cfg_idx.
1426 */
1427static const struct mei_cfg *const mei_cfg_list[] = {
1428        [MEI_ME_UNDEF_CFG] = NULL,
1429        [MEI_ME_ICH_CFG] = &mei_me_ich_cfg,
1430        [MEI_ME_ICH10_CFG] = &mei_me_ich10_cfg,
1431        [MEI_ME_PCH_CFG] = &mei_me_pch_cfg,
1432        [MEI_ME_PCH_CPT_PBG_CFG] = &mei_me_pch_cpt_pbg_cfg,
1433        [MEI_ME_PCH8_CFG] = &mei_me_pch8_cfg,
1434        [MEI_ME_PCH8_SPS_CFG] = &mei_me_pch8_sps_cfg,
1435        [MEI_ME_PCH12_CFG] = &mei_me_pch12_cfg,
1436};
1437
1438const struct mei_cfg *mei_me_get_cfg(kernel_ulong_t idx)
1439{
1440        BUILD_BUG_ON(ARRAY_SIZE(mei_cfg_list) != MEI_ME_NUM_CFG);
1441
1442        if (idx >= MEI_ME_NUM_CFG)
1443                return NULL;
1444
1445        return mei_cfg_list[idx];
1446};
1447
1448/**
1449 * mei_me_dev_init - allocates and initializes the mei device structure
1450 *
1451 * @pdev: The pci device structure
1452 * @cfg: per device generation config
1453 *
1454 * Return: The mei_device pointer on success, NULL on failure.
1455 */
1456struct mei_device *mei_me_dev_init(struct pci_dev *pdev,
1457                                   const struct mei_cfg *cfg)
1458{
1459        struct mei_device *dev;
1460        struct mei_me_hw *hw;
1461        int i;
1462
1463        dev = devm_kzalloc(&pdev->dev, sizeof(struct mei_device) +
1464                           sizeof(struct mei_me_hw), GFP_KERNEL);
1465        if (!dev)
1466                return NULL;
1467
1468        hw = to_me_hw(dev);
1469
1470        for (i = 0; i < DMA_DSCR_NUM; i++)
1471                dev->dr_dscr[i].size = cfg->dma_size[i];
1472
1473        mei_device_init(dev, &pdev->dev, &mei_me_hw_ops);
1474        hw->cfg = cfg;
1475
1476        return dev;
1477}
1478
1479