linux/drivers/misc/mei/hw-txe.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2013-2014, Intel Corporation. All rights reserved.
   4 * Intel Management Engine Interface (Intel MEI) Linux driver
   5 */
   6
   7#include <linux/pci.h>
   8#include <linux/jiffies.h>
   9#include <linux/ktime.h>
  10#include <linux/delay.h>
  11#include <linux/kthread.h>
  12#include <linux/interrupt.h>
  13#include <linux/pm_runtime.h>
  14
  15#include <linux/mei.h>
  16
  17#include "mei_dev.h"
  18#include "hw-txe.h"
  19#include "client.h"
  20#include "hbm.h"
  21
  22#include "mei-trace.h"
  23
  24#define TXE_HBUF_DEPTH (PAYLOAD_SIZE / MEI_SLOT_SIZE)
  25
  26/**
  27 * mei_txe_reg_read - Reads 32bit data from the txe device
  28 *
  29 * @base_addr: registers base address
  30 * @offset: register offset
  31 *
  32 * Return: register value
  33 */
  34static inline u32 mei_txe_reg_read(void __iomem *base_addr,
  35                                        unsigned long offset)
  36{
  37        return ioread32(base_addr + offset);
  38}
  39
  40/**
  41 * mei_txe_reg_write - Writes 32bit data to the txe device
  42 *
  43 * @base_addr: registers base address
  44 * @offset: register offset
  45 * @value: the value to write
  46 */
  47static inline void mei_txe_reg_write(void __iomem *base_addr,
  48                                unsigned long offset, u32 value)
  49{
  50        iowrite32(value, base_addr + offset);
  51}
  52
  53/**
  54 * mei_txe_sec_reg_read_silent - Reads 32bit data from the SeC BAR
  55 *
  56 * @hw: the txe hardware structure
  57 * @offset: register offset
  58 *
  59 * Doesn't check for aliveness while Reads 32bit data from the SeC BAR
  60 *
  61 * Return: register value
  62 */
  63static inline u32 mei_txe_sec_reg_read_silent(struct mei_txe_hw *hw,
  64                                unsigned long offset)
  65{
  66        return mei_txe_reg_read(hw->mem_addr[SEC_BAR], offset);
  67}
  68
  69/**
  70 * mei_txe_sec_reg_read - Reads 32bit data from the SeC BAR
  71 *
  72 * @hw: the txe hardware structure
  73 * @offset: register offset
  74 *
  75 * Reads 32bit data from the SeC BAR and shout loud if aliveness is not set
  76 *
  77 * Return: register value
  78 */
  79static inline u32 mei_txe_sec_reg_read(struct mei_txe_hw *hw,
  80                                unsigned long offset)
  81{
  82        WARN(!hw->aliveness, "sec read: aliveness not asserted\n");
  83        return mei_txe_sec_reg_read_silent(hw, offset);
  84}
  85/**
  86 * mei_txe_sec_reg_write_silent - Writes 32bit data to the SeC BAR
  87 *   doesn't check for aliveness
  88 *
  89 * @hw: the txe hardware structure
  90 * @offset: register offset
  91 * @value: value to write
  92 *
  93 * Doesn't check for aliveness while writes 32bit data from to the SeC BAR
  94 */
  95static inline void mei_txe_sec_reg_write_silent(struct mei_txe_hw *hw,
  96                                unsigned long offset, u32 value)
  97{
  98        mei_txe_reg_write(hw->mem_addr[SEC_BAR], offset, value);
  99}
 100
 101/**
 102 * mei_txe_sec_reg_write - Writes 32bit data to the SeC BAR
 103 *
 104 * @hw: the txe hardware structure
 105 * @offset: register offset
 106 * @value: value to write
 107 *
 108 * Writes 32bit data from the SeC BAR and shout loud if aliveness is not set
 109 */
 110static inline void mei_txe_sec_reg_write(struct mei_txe_hw *hw,
 111                                unsigned long offset, u32 value)
 112{
 113        WARN(!hw->aliveness, "sec write: aliveness not asserted\n");
 114        mei_txe_sec_reg_write_silent(hw, offset, value);
 115}
 116/**
 117 * mei_txe_br_reg_read - Reads 32bit data from the Bridge BAR
 118 *
 119 * @hw: the txe hardware structure
 120 * @offset: offset from which to read the data
 121 *
 122 * Return: the byte read.
 123 */
 124static inline u32 mei_txe_br_reg_read(struct mei_txe_hw *hw,
 125                                unsigned long offset)
 126{
 127        return mei_txe_reg_read(hw->mem_addr[BRIDGE_BAR], offset);
 128}
 129
 130/**
 131 * mei_txe_br_reg_write - Writes 32bit data to the Bridge BAR
 132 *
 133 * @hw: the txe hardware structure
 134 * @offset: offset from which to write the data
 135 * @value: the byte to write
 136 */
 137static inline void mei_txe_br_reg_write(struct mei_txe_hw *hw,
 138                                unsigned long offset, u32 value)
 139{
 140        mei_txe_reg_write(hw->mem_addr[BRIDGE_BAR], offset, value);
 141}
 142
 143/**
 144 * mei_txe_aliveness_set - request for aliveness change
 145 *
 146 * @dev: the device structure
 147 * @req: requested aliveness value
 148 *
 149 * Request for aliveness change and returns true if the change is
 150 *   really needed and false if aliveness is already
 151 *   in the requested state
 152 *
 153 * Locking: called under "dev->device_lock" lock
 154 *
 155 * Return: true if request was send
 156 */
 157static bool mei_txe_aliveness_set(struct mei_device *dev, u32 req)
 158{
 159
 160        struct mei_txe_hw *hw = to_txe_hw(dev);
 161        bool do_req = hw->aliveness != req;
 162
 163        dev_dbg(dev->dev, "Aliveness current=%d request=%d\n",
 164                                hw->aliveness, req);
 165        if (do_req) {
 166                dev->pg_event = MEI_PG_EVENT_WAIT;
 167                mei_txe_br_reg_write(hw, SICR_HOST_ALIVENESS_REQ_REG, req);
 168        }
 169        return do_req;
 170}
 171
 172
 173/**
 174 * mei_txe_aliveness_req_get - get aliveness requested register value
 175 *
 176 * @dev: the device structure
 177 *
 178 * Extract HICR_HOST_ALIVENESS_RESP_ACK bit from
 179 * from HICR_HOST_ALIVENESS_REQ register value
 180 *
 181 * Return: SICR_HOST_ALIVENESS_REQ_REQUESTED bit value
 182 */
 183static u32 mei_txe_aliveness_req_get(struct mei_device *dev)
 184{
 185        struct mei_txe_hw *hw = to_txe_hw(dev);
 186        u32 reg;
 187
 188        reg = mei_txe_br_reg_read(hw, SICR_HOST_ALIVENESS_REQ_REG);
 189        return reg & SICR_HOST_ALIVENESS_REQ_REQUESTED;
 190}
 191
 192/**
 193 * mei_txe_aliveness_get - get aliveness response register value
 194 *
 195 * @dev: the device structure
 196 *
 197 * Return: HICR_HOST_ALIVENESS_RESP_ACK bit from HICR_HOST_ALIVENESS_RESP
 198 *         register
 199 */
 200static u32 mei_txe_aliveness_get(struct mei_device *dev)
 201{
 202        struct mei_txe_hw *hw = to_txe_hw(dev);
 203        u32 reg;
 204
 205        reg = mei_txe_br_reg_read(hw, HICR_HOST_ALIVENESS_RESP_REG);
 206        return reg & HICR_HOST_ALIVENESS_RESP_ACK;
 207}
 208
 209/**
 210 * mei_txe_aliveness_poll - waits for aliveness to settle
 211 *
 212 * @dev: the device structure
 213 * @expected: expected aliveness value
 214 *
 215 * Polls for HICR_HOST_ALIVENESS_RESP.ALIVENESS_RESP to be set
 216 *
 217 * Return: 0 if the expected value was received, -ETIME otherwise
 218 */
 219static int mei_txe_aliveness_poll(struct mei_device *dev, u32 expected)
 220{
 221        struct mei_txe_hw *hw = to_txe_hw(dev);
 222        ktime_t stop, start;
 223
 224        start = ktime_get();
 225        stop = ktime_add(start, ms_to_ktime(SEC_ALIVENESS_WAIT_TIMEOUT));
 226        do {
 227                hw->aliveness = mei_txe_aliveness_get(dev);
 228                if (hw->aliveness == expected) {
 229                        dev->pg_event = MEI_PG_EVENT_IDLE;
 230                        dev_dbg(dev->dev, "aliveness settled after %lld usecs\n",
 231                                ktime_to_us(ktime_sub(ktime_get(), start)));
 232                        return 0;
 233                }
 234                usleep_range(20, 50);
 235        } while (ktime_before(ktime_get(), stop));
 236
 237        dev->pg_event = MEI_PG_EVENT_IDLE;
 238        dev_err(dev->dev, "aliveness timed out\n");
 239        return -ETIME;
 240}
 241
 242/**
 243 * mei_txe_aliveness_wait - waits for aliveness to settle
 244 *
 245 * @dev: the device structure
 246 * @expected: expected aliveness value
 247 *
 248 * Waits for HICR_HOST_ALIVENESS_RESP.ALIVENESS_RESP to be set
 249 *
 250 * Return: 0 on success and < 0 otherwise
 251 */
 252static int mei_txe_aliveness_wait(struct mei_device *dev, u32 expected)
 253{
 254        struct mei_txe_hw *hw = to_txe_hw(dev);
 255        const unsigned long timeout =
 256                        msecs_to_jiffies(SEC_ALIVENESS_WAIT_TIMEOUT);
 257        long err;
 258        int ret;
 259
 260        hw->aliveness = mei_txe_aliveness_get(dev);
 261        if (hw->aliveness == expected)
 262                return 0;
 263
 264        mutex_unlock(&dev->device_lock);
 265        err = wait_event_timeout(hw->wait_aliveness_resp,
 266                        dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
 267        mutex_lock(&dev->device_lock);
 268
 269        hw->aliveness = mei_txe_aliveness_get(dev);
 270        ret = hw->aliveness == expected ? 0 : -ETIME;
 271
 272        if (ret)
 273                dev_warn(dev->dev, "aliveness timed out = %ld aliveness = %d event = %d\n",
 274                        err, hw->aliveness, dev->pg_event);
 275        else
 276                dev_dbg(dev->dev, "aliveness settled after = %d msec aliveness = %d event = %d\n",
 277                        jiffies_to_msecs(timeout - err),
 278                        hw->aliveness, dev->pg_event);
 279
 280        dev->pg_event = MEI_PG_EVENT_IDLE;
 281        return ret;
 282}
 283
 284/**
 285 * mei_txe_aliveness_set_sync - sets an wait for aliveness to complete
 286 *
 287 * @dev: the device structure
 288 * @req: requested aliveness value
 289 *
 290 * Return: 0 on success and < 0 otherwise
 291 */
 292int mei_txe_aliveness_set_sync(struct mei_device *dev, u32 req)
 293{
 294        if (mei_txe_aliveness_set(dev, req))
 295                return mei_txe_aliveness_wait(dev, req);
 296        return 0;
 297}
 298
 299/**
 300 * mei_txe_pg_in_transition - is device now in pg transition
 301 *
 302 * @dev: the device structure
 303 *
 304 * Return: true if in pg transition, false otherwise
 305 */
 306static bool mei_txe_pg_in_transition(struct mei_device *dev)
 307{
 308        return dev->pg_event == MEI_PG_EVENT_WAIT;
 309}
 310
 311/**
 312 * mei_txe_pg_is_enabled - detect if PG is supported by HW
 313 *
 314 * @dev: the device structure
 315 *
 316 * Return: true is pg supported, false otherwise
 317 */
 318static bool mei_txe_pg_is_enabled(struct mei_device *dev)
 319{
 320        return true;
 321}
 322
 323/**
 324 * mei_txe_pg_state  - translate aliveness register value
 325 *   to the mei power gating state
 326 *
 327 * @dev: the device structure
 328 *
 329 * Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
 330 */
 331static inline enum mei_pg_state mei_txe_pg_state(struct mei_device *dev)
 332{
 333        struct mei_txe_hw *hw = to_txe_hw(dev);
 334
 335        return hw->aliveness ? MEI_PG_OFF : MEI_PG_ON;
 336}
 337
 338/**
 339 * mei_txe_input_ready_interrupt_enable - sets the Input Ready Interrupt
 340 *
 341 * @dev: the device structure
 342 */
 343static void mei_txe_input_ready_interrupt_enable(struct mei_device *dev)
 344{
 345        struct mei_txe_hw *hw = to_txe_hw(dev);
 346        u32 hintmsk;
 347        /* Enable the SEC_IPC_HOST_INT_MASK_IN_RDY interrupt */
 348        hintmsk = mei_txe_sec_reg_read(hw, SEC_IPC_HOST_INT_MASK_REG);
 349        hintmsk |= SEC_IPC_HOST_INT_MASK_IN_RDY;
 350        mei_txe_sec_reg_write(hw, SEC_IPC_HOST_INT_MASK_REG, hintmsk);
 351}
 352
 353/**
 354 * mei_txe_input_doorbell_set - sets bit 0 in
 355 *    SEC_IPC_INPUT_DOORBELL.IPC_INPUT_DOORBELL.
 356 *
 357 * @hw: the txe hardware structure
 358 */
 359static void mei_txe_input_doorbell_set(struct mei_txe_hw *hw)
 360{
 361        /* Clear the interrupt cause */
 362        clear_bit(TXE_INTR_IN_READY_BIT, &hw->intr_cause);
 363        mei_txe_sec_reg_write(hw, SEC_IPC_INPUT_DOORBELL_REG, 1);
 364}
 365
 366/**
 367 * mei_txe_output_ready_set - Sets the SICR_SEC_IPC_OUTPUT_STATUS bit to 1
 368 *
 369 * @hw: the txe hardware structure
 370 */
 371static void mei_txe_output_ready_set(struct mei_txe_hw *hw)
 372{
 373        mei_txe_br_reg_write(hw,
 374                        SICR_SEC_IPC_OUTPUT_STATUS_REG,
 375                        SEC_IPC_OUTPUT_STATUS_RDY);
 376}
 377
 378/**
 379 * mei_txe_is_input_ready - check if TXE is ready for receiving data
 380 *
 381 * @dev: the device structure
 382 *
 383 * Return: true if INPUT STATUS READY bit is set
 384 */
 385static bool mei_txe_is_input_ready(struct mei_device *dev)
 386{
 387        struct mei_txe_hw *hw = to_txe_hw(dev);
 388        u32 status;
 389
 390        status = mei_txe_sec_reg_read(hw, SEC_IPC_INPUT_STATUS_REG);
 391        return !!(SEC_IPC_INPUT_STATUS_RDY & status);
 392}
 393
 394/**
 395 * mei_txe_intr_clear - clear all interrupts
 396 *
 397 * @dev: the device structure
 398 */
 399static inline void mei_txe_intr_clear(struct mei_device *dev)
 400{
 401        struct mei_txe_hw *hw = to_txe_hw(dev);
 402
 403        mei_txe_sec_reg_write_silent(hw, SEC_IPC_HOST_INT_STATUS_REG,
 404                SEC_IPC_HOST_INT_STATUS_PENDING);
 405        mei_txe_br_reg_write(hw, HISR_REG, HISR_INT_STS_MSK);
 406        mei_txe_br_reg_write(hw, HHISR_REG, IPC_HHIER_MSK);
 407}
 408
 409/**
 410 * mei_txe_intr_disable - disable all interrupts
 411 *
 412 * @dev: the device structure
 413 */
 414static void mei_txe_intr_disable(struct mei_device *dev)
 415{
 416        struct mei_txe_hw *hw = to_txe_hw(dev);
 417
 418        mei_txe_br_reg_write(hw, HHIER_REG, 0);
 419        mei_txe_br_reg_write(hw, HIER_REG, 0);
 420}
 421/**
 422 * mei_txe_intr_enable - enable all interrupts
 423 *
 424 * @dev: the device structure
 425 */
 426static void mei_txe_intr_enable(struct mei_device *dev)
 427{
 428        struct mei_txe_hw *hw = to_txe_hw(dev);
 429
 430        mei_txe_br_reg_write(hw, HHIER_REG, IPC_HHIER_MSK);
 431        mei_txe_br_reg_write(hw, HIER_REG, HIER_INT_EN_MSK);
 432}
 433
 434/**
 435 * mei_txe_synchronize_irq - wait for pending IRQ handlers
 436 *
 437 * @dev: the device structure
 438 */
 439static void mei_txe_synchronize_irq(struct mei_device *dev)
 440{
 441        struct pci_dev *pdev = to_pci_dev(dev->dev);
 442
 443        synchronize_irq(pdev->irq);
 444}
 445
 446/**
 447 * mei_txe_pending_interrupts - check if there are pending interrupts
 448 *      only Aliveness, Input ready, and output doorbell are of relevance
 449 *
 450 * @dev: the device structure
 451 *
 452 * Checks if there are pending interrupts
 453 * only Aliveness, Readiness, Input ready, and Output doorbell are relevant
 454 *
 455 * Return: true if there are pending interrupts
 456 */
 457static bool mei_txe_pending_interrupts(struct mei_device *dev)
 458{
 459
 460        struct mei_txe_hw *hw = to_txe_hw(dev);
 461        bool ret = (hw->intr_cause & (TXE_INTR_READINESS |
 462                                      TXE_INTR_ALIVENESS |
 463                                      TXE_INTR_IN_READY  |
 464                                      TXE_INTR_OUT_DB));
 465
 466        if (ret) {
 467                dev_dbg(dev->dev,
 468                        "Pending Interrupts InReady=%01d Readiness=%01d, Aliveness=%01d, OutDoor=%01d\n",
 469                        !!(hw->intr_cause & TXE_INTR_IN_READY),
 470                        !!(hw->intr_cause & TXE_INTR_READINESS),
 471                        !!(hw->intr_cause & TXE_INTR_ALIVENESS),
 472                        !!(hw->intr_cause & TXE_INTR_OUT_DB));
 473        }
 474        return ret;
 475}
 476
 477/**
 478 * mei_txe_input_payload_write - write a dword to the host buffer
 479 *      at offset idx
 480 *
 481 * @dev: the device structure
 482 * @idx: index in the host buffer
 483 * @value: value
 484 */
 485static void mei_txe_input_payload_write(struct mei_device *dev,
 486                        unsigned long idx, u32 value)
 487{
 488        struct mei_txe_hw *hw = to_txe_hw(dev);
 489
 490        mei_txe_sec_reg_write(hw, SEC_IPC_INPUT_PAYLOAD_REG +
 491                        (idx * sizeof(u32)), value);
 492}
 493
 494/**
 495 * mei_txe_out_data_read - read dword from the device buffer
 496 *      at offset idx
 497 *
 498 * @dev: the device structure
 499 * @idx: index in the device buffer
 500 *
 501 * Return: register value at index
 502 */
 503static u32 mei_txe_out_data_read(const struct mei_device *dev,
 504                                        unsigned long idx)
 505{
 506        struct mei_txe_hw *hw = to_txe_hw(dev);
 507
 508        return mei_txe_br_reg_read(hw,
 509                BRIDGE_IPC_OUTPUT_PAYLOAD_REG + (idx * sizeof(u32)));
 510}
 511
 512/* Readiness */
 513
 514/**
 515 * mei_txe_readiness_set_host_rdy - set host readiness bit
 516 *
 517 * @dev: the device structure
 518 */
 519static void mei_txe_readiness_set_host_rdy(struct mei_device *dev)
 520{
 521        struct mei_txe_hw *hw = to_txe_hw(dev);
 522
 523        mei_txe_br_reg_write(hw,
 524                SICR_HOST_IPC_READINESS_REQ_REG,
 525                SICR_HOST_IPC_READINESS_HOST_RDY);
 526}
 527
 528/**
 529 * mei_txe_readiness_clear - clear host readiness bit
 530 *
 531 * @dev: the device structure
 532 */
 533static void mei_txe_readiness_clear(struct mei_device *dev)
 534{
 535        struct mei_txe_hw *hw = to_txe_hw(dev);
 536
 537        mei_txe_br_reg_write(hw, SICR_HOST_IPC_READINESS_REQ_REG,
 538                                SICR_HOST_IPC_READINESS_RDY_CLR);
 539}
 540/**
 541 * mei_txe_readiness_get - Reads and returns
 542 *      the HICR_SEC_IPC_READINESS register value
 543 *
 544 * @dev: the device structure
 545 *
 546 * Return: the HICR_SEC_IPC_READINESS register value
 547 */
 548static u32 mei_txe_readiness_get(struct mei_device *dev)
 549{
 550        struct mei_txe_hw *hw = to_txe_hw(dev);
 551
 552        return mei_txe_br_reg_read(hw, HICR_SEC_IPC_READINESS_REG);
 553}
 554
 555
 556/**
 557 * mei_txe_readiness_is_sec_rdy - check readiness
 558 *  for HICR_SEC_IPC_READINESS_SEC_RDY
 559 *
 560 * @readiness: cached readiness state
 561 *
 562 * Return: true if readiness bit is set
 563 */
 564static inline bool mei_txe_readiness_is_sec_rdy(u32 readiness)
 565{
 566        return !!(readiness & HICR_SEC_IPC_READINESS_SEC_RDY);
 567}
 568
 569/**
 570 * mei_txe_hw_is_ready - check if the hw is ready
 571 *
 572 * @dev: the device structure
 573 *
 574 * Return: true if sec is ready
 575 */
 576static bool mei_txe_hw_is_ready(struct mei_device *dev)
 577{
 578        u32 readiness =  mei_txe_readiness_get(dev);
 579
 580        return mei_txe_readiness_is_sec_rdy(readiness);
 581}
 582
 583/**
 584 * mei_txe_host_is_ready - check if the host is ready
 585 *
 586 * @dev: the device structure
 587 *
 588 * Return: true if host is ready
 589 */
 590static inline bool mei_txe_host_is_ready(struct mei_device *dev)
 591{
 592        struct mei_txe_hw *hw = to_txe_hw(dev);
 593        u32 reg = mei_txe_br_reg_read(hw, HICR_SEC_IPC_READINESS_REG);
 594
 595        return !!(reg & HICR_SEC_IPC_READINESS_HOST_RDY);
 596}
 597
 598/**
 599 * mei_txe_readiness_wait - wait till readiness settles
 600 *
 601 * @dev: the device structure
 602 *
 603 * Return: 0 on success and -ETIME on timeout
 604 */
 605static int mei_txe_readiness_wait(struct mei_device *dev)
 606{
 607        if (mei_txe_hw_is_ready(dev))
 608                return 0;
 609
 610        mutex_unlock(&dev->device_lock);
 611        wait_event_timeout(dev->wait_hw_ready, dev->recvd_hw_ready,
 612                        msecs_to_jiffies(SEC_RESET_WAIT_TIMEOUT));
 613        mutex_lock(&dev->device_lock);
 614        if (!dev->recvd_hw_ready) {
 615                dev_err(dev->dev, "wait for readiness failed\n");
 616                return -ETIME;
 617        }
 618
 619        dev->recvd_hw_ready = false;
 620        return 0;
 621}
 622
 623static const struct mei_fw_status mei_txe_fw_sts = {
 624        .count = 2,
 625        .status[0] = PCI_CFG_TXE_FW_STS0,
 626        .status[1] = PCI_CFG_TXE_FW_STS1
 627};
 628
 629/**
 630 * mei_txe_fw_status - read fw status register from pci config space
 631 *
 632 * @dev: mei device
 633 * @fw_status: fw status register values
 634 *
 635 * Return: 0 on success, error otherwise
 636 */
 637static int mei_txe_fw_status(struct mei_device *dev,
 638                             struct mei_fw_status *fw_status)
 639{
 640        const struct mei_fw_status *fw_src = &mei_txe_fw_sts;
 641        struct pci_dev *pdev = to_pci_dev(dev->dev);
 642        int ret;
 643        int i;
 644
 645        if (!fw_status)
 646                return -EINVAL;
 647
 648        fw_status->count = fw_src->count;
 649        for (i = 0; i < fw_src->count && i < MEI_FW_STATUS_MAX; i++) {
 650                ret = pci_read_config_dword(pdev, fw_src->status[i],
 651                                            &fw_status->status[i]);
 652                trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HSF_X",
 653                                       fw_src->status[i],
 654                                       fw_status->status[i]);
 655                if (ret)
 656                        return ret;
 657        }
 658
 659        return 0;
 660}
 661
 662/**
 663 *  mei_txe_hw_config - configure hardware at the start of the devices
 664 *
 665 * @dev: the device structure
 666 *
 667 * Configure hardware at the start of the device should be done only
 668 *   once at the device probe time
 669 */
 670static void mei_txe_hw_config(struct mei_device *dev)
 671{
 672
 673        struct mei_txe_hw *hw = to_txe_hw(dev);
 674
 675        hw->aliveness = mei_txe_aliveness_get(dev);
 676        hw->readiness = mei_txe_readiness_get(dev);
 677
 678        dev_dbg(dev->dev, "aliveness_resp = 0x%08x, readiness = 0x%08x.\n",
 679                hw->aliveness, hw->readiness);
 680}
 681
 682/**
 683 * mei_txe_write - writes a message to device.
 684 *
 685 * @dev: the device structure
 686 * @hdr: header of message
 687 * @hdr_len: header length in bytes - must multiplication of a slot (4bytes)
 688 * @data: payload
 689 * @data_len: paylead length in bytes
 690 *
 691 * Return: 0 if success, < 0 - otherwise.
 692 */
 693static int mei_txe_write(struct mei_device *dev,
 694                         const void *hdr, size_t hdr_len,
 695                         const void *data, size_t data_len)
 696{
 697        struct mei_txe_hw *hw = to_txe_hw(dev);
 698        unsigned long rem;
 699        const u32 *reg_buf;
 700        u32 slots = TXE_HBUF_DEPTH;
 701        u32 dw_cnt;
 702        unsigned long i, j;
 703
 704        if (WARN_ON(!hdr || !data || hdr_len & 0x3))
 705                return -EINVAL;
 706
 707        dev_dbg(dev->dev, MEI_HDR_FMT, MEI_HDR_PRM((struct mei_msg_hdr *)hdr));
 708
 709        dw_cnt = mei_data2slots(hdr_len + data_len);
 710        if (dw_cnt > slots)
 711                return -EMSGSIZE;
 712
 713        if (WARN(!hw->aliveness, "txe write: aliveness not asserted\n"))
 714                return -EAGAIN;
 715
 716        /* Enable Input Ready Interrupt. */
 717        mei_txe_input_ready_interrupt_enable(dev);
 718
 719        if (!mei_txe_is_input_ready(dev)) {
 720                char fw_sts_str[MEI_FW_STATUS_STR_SZ];
 721
 722                mei_fw_status_str(dev, fw_sts_str, MEI_FW_STATUS_STR_SZ);
 723                dev_err(dev->dev, "Input is not ready %s\n", fw_sts_str);
 724                return -EAGAIN;
 725        }
 726
 727        reg_buf = hdr;
 728        for (i = 0; i < hdr_len / MEI_SLOT_SIZE; i++)
 729                mei_txe_input_payload_write(dev, i, reg_buf[i]);
 730
 731        reg_buf = data;
 732        for (j = 0; j < data_len / MEI_SLOT_SIZE; j++)
 733                mei_txe_input_payload_write(dev, i + j, reg_buf[j]);
 734
 735        rem = data_len & 0x3;
 736        if (rem > 0) {
 737                u32 reg = 0;
 738
 739                memcpy(&reg, (const u8 *)data + data_len - rem, rem);
 740                mei_txe_input_payload_write(dev, i + j, reg);
 741        }
 742
 743        /* after each write the whole buffer is consumed */
 744        hw->slots = 0;
 745
 746        /* Set Input-Doorbell */
 747        mei_txe_input_doorbell_set(hw);
 748
 749        return 0;
 750}
 751
 752/**
 753 * mei_txe_hbuf_depth - mimics the me hbuf circular buffer
 754 *
 755 * @dev: the device structure
 756 *
 757 * Return: the TXE_HBUF_DEPTH
 758 */
 759static u32 mei_txe_hbuf_depth(const struct mei_device *dev)
 760{
 761        return TXE_HBUF_DEPTH;
 762}
 763
 764/**
 765 * mei_txe_hbuf_empty_slots - mimics the me hbuf circular buffer
 766 *
 767 * @dev: the device structure
 768 *
 769 * Return: always TXE_HBUF_DEPTH
 770 */
 771static int mei_txe_hbuf_empty_slots(struct mei_device *dev)
 772{
 773        struct mei_txe_hw *hw = to_txe_hw(dev);
 774
 775        return hw->slots;
 776}
 777
 778/**
 779 * mei_txe_count_full_read_slots - mimics the me device circular buffer
 780 *
 781 * @dev: the device structure
 782 *
 783 * Return: always buffer size in dwords count
 784 */
 785static int mei_txe_count_full_read_slots(struct mei_device *dev)
 786{
 787        /* read buffers has static size */
 788        return TXE_HBUF_DEPTH;
 789}
 790
 791/**
 792 * mei_txe_read_hdr - read message header which is always in 4 first bytes
 793 *
 794 * @dev: the device structure
 795 *
 796 * Return: mei message header
 797 */
 798
 799static u32 mei_txe_read_hdr(const struct mei_device *dev)
 800{
 801        return mei_txe_out_data_read(dev, 0);
 802}
 803/**
 804 * mei_txe_read - reads a message from the txe device.
 805 *
 806 * @dev: the device structure
 807 * @buf: message buffer will be written
 808 * @len: message size will be read
 809 *
 810 * Return: -EINVAL on error wrong argument and 0 on success
 811 */
 812static int mei_txe_read(struct mei_device *dev,
 813                unsigned char *buf, unsigned long len)
 814{
 815
 816        struct mei_txe_hw *hw = to_txe_hw(dev);
 817        u32 *reg_buf, reg;
 818        u32 rem;
 819        u32 i;
 820
 821        if (WARN_ON(!buf || !len))
 822                return -EINVAL;
 823
 824        reg_buf = (u32 *)buf;
 825        rem = len & 0x3;
 826
 827        dev_dbg(dev->dev, "buffer-length = %lu buf[0]0x%08X\n",
 828                len, mei_txe_out_data_read(dev, 0));
 829
 830        for (i = 0; i < len / MEI_SLOT_SIZE; i++) {
 831                /* skip header: index starts from 1 */
 832                reg = mei_txe_out_data_read(dev, i + 1);
 833                dev_dbg(dev->dev, "buf[%d] = 0x%08X\n", i, reg);
 834                *reg_buf++ = reg;
 835        }
 836
 837        if (rem) {
 838                reg = mei_txe_out_data_read(dev, i + 1);
 839                memcpy(reg_buf, &reg, rem);
 840        }
 841
 842        mei_txe_output_ready_set(hw);
 843        return 0;
 844}
 845
 846/**
 847 * mei_txe_hw_reset - resets host and fw.
 848 *
 849 * @dev: the device structure
 850 * @intr_enable: if interrupt should be enabled after reset.
 851 *
 852 * Return: 0 on success and < 0 in case of error
 853 */
 854static int mei_txe_hw_reset(struct mei_device *dev, bool intr_enable)
 855{
 856        struct mei_txe_hw *hw = to_txe_hw(dev);
 857
 858        u32 aliveness_req;
 859        /*
 860         * read input doorbell to ensure consistency between  Bridge and SeC
 861         * return value might be garbage return
 862         */
 863        (void)mei_txe_sec_reg_read_silent(hw, SEC_IPC_INPUT_DOORBELL_REG);
 864
 865        aliveness_req = mei_txe_aliveness_req_get(dev);
 866        hw->aliveness = mei_txe_aliveness_get(dev);
 867
 868        /* Disable interrupts in this stage we will poll */
 869        mei_txe_intr_disable(dev);
 870
 871        /*
 872         * If Aliveness Request and Aliveness Response are not equal then
 873         * wait for them to be equal
 874         * Since we might have interrupts disabled - poll for it
 875         */
 876        if (aliveness_req != hw->aliveness)
 877                if (mei_txe_aliveness_poll(dev, aliveness_req) < 0) {
 878                        dev_err(dev->dev, "wait for aliveness settle failed ... bailing out\n");
 879                        return -EIO;
 880                }
 881
 882        /*
 883         * If Aliveness Request and Aliveness Response are set then clear them
 884         */
 885        if (aliveness_req) {
 886                mei_txe_aliveness_set(dev, 0);
 887                if (mei_txe_aliveness_poll(dev, 0) < 0) {
 888                        dev_err(dev->dev, "wait for aliveness failed ... bailing out\n");
 889                        return -EIO;
 890                }
 891        }
 892
 893        /*
 894         * Set readiness RDY_CLR bit
 895         */
 896        mei_txe_readiness_clear(dev);
 897
 898        return 0;
 899}
 900
 901/**
 902 * mei_txe_hw_start - start the hardware after reset
 903 *
 904 * @dev: the device structure
 905 *
 906 * Return: 0 on success an error code otherwise
 907 */
 908static int mei_txe_hw_start(struct mei_device *dev)
 909{
 910        struct mei_txe_hw *hw = to_txe_hw(dev);
 911        int ret;
 912
 913        u32 hisr;
 914
 915        /* bring back interrupts */
 916        mei_txe_intr_enable(dev);
 917
 918        ret = mei_txe_readiness_wait(dev);
 919        if (ret < 0) {
 920                dev_err(dev->dev, "waiting for readiness failed\n");
 921                return ret;
 922        }
 923
 924        /*
 925         * If HISR.INT2_STS interrupt status bit is set then clear it.
 926         */
 927        hisr = mei_txe_br_reg_read(hw, HISR_REG);
 928        if (hisr & HISR_INT_2_STS)
 929                mei_txe_br_reg_write(hw, HISR_REG, HISR_INT_2_STS);
 930
 931        /* Clear the interrupt cause of OutputDoorbell */
 932        clear_bit(TXE_INTR_OUT_DB_BIT, &hw->intr_cause);
 933
 934        ret = mei_txe_aliveness_set_sync(dev, 1);
 935        if (ret < 0) {
 936                dev_err(dev->dev, "wait for aliveness failed ... bailing out\n");
 937                return ret;
 938        }
 939
 940        pm_runtime_set_active(dev->dev);
 941
 942        /* enable input ready interrupts:
 943         * SEC_IPC_HOST_INT_MASK.IPC_INPUT_READY_INT_MASK
 944         */
 945        mei_txe_input_ready_interrupt_enable(dev);
 946
 947
 948        /*  Set the SICR_SEC_IPC_OUTPUT_STATUS.IPC_OUTPUT_READY bit */
 949        mei_txe_output_ready_set(hw);
 950
 951        /* Set bit SICR_HOST_IPC_READINESS.HOST_RDY
 952         */
 953        mei_txe_readiness_set_host_rdy(dev);
 954
 955        return 0;
 956}
 957
 958/**
 959 * mei_txe_check_and_ack_intrs - translate multi BAR interrupt into
 960 *  single bit mask and acknowledge the interrupts
 961 *
 962 * @dev: the device structure
 963 * @do_ack: acknowledge interrupts
 964 *
 965 * Return: true if found interrupts to process.
 966 */
 967static bool mei_txe_check_and_ack_intrs(struct mei_device *dev, bool do_ack)
 968{
 969        struct mei_txe_hw *hw = to_txe_hw(dev);
 970        u32 hisr;
 971        u32 hhisr;
 972        u32 ipc_isr;
 973        u32 aliveness;
 974        bool generated;
 975
 976        /* read interrupt registers */
 977        hhisr = mei_txe_br_reg_read(hw, HHISR_REG);
 978        generated = (hhisr & IPC_HHIER_MSK);
 979        if (!generated)
 980                goto out;
 981
 982        hisr = mei_txe_br_reg_read(hw, HISR_REG);
 983
 984        aliveness = mei_txe_aliveness_get(dev);
 985        if (hhisr & IPC_HHIER_SEC && aliveness) {
 986                ipc_isr = mei_txe_sec_reg_read_silent(hw,
 987                                SEC_IPC_HOST_INT_STATUS_REG);
 988        } else {
 989                ipc_isr = 0;
 990                hhisr &= ~IPC_HHIER_SEC;
 991        }
 992
 993        generated = generated ||
 994                (hisr & HISR_INT_STS_MSK) ||
 995                (ipc_isr & SEC_IPC_HOST_INT_STATUS_PENDING);
 996
 997        if (generated && do_ack) {
 998                /* Save the interrupt causes */
 999                hw->intr_cause |= hisr & HISR_INT_STS_MSK;
1000                if (ipc_isr & SEC_IPC_HOST_INT_STATUS_IN_RDY)
1001                        hw->intr_cause |= TXE_INTR_IN_READY;
1002
1003
1004                mei_txe_intr_disable(dev);
1005                /* Clear the interrupts in hierarchy:
1006                 * IPC and Bridge, than the High Level */
1007                mei_txe_sec_reg_write_silent(hw,
1008                        SEC_IPC_HOST_INT_STATUS_REG, ipc_isr);
1009                mei_txe_br_reg_write(hw, HISR_REG, hisr);
1010                mei_txe_br_reg_write(hw, HHISR_REG, hhisr);
1011        }
1012
1013out:
1014        return generated;
1015}
1016
1017/**
1018 * mei_txe_irq_quick_handler - The ISR of the MEI device
1019 *
1020 * @irq: The irq number
1021 * @dev_id: pointer to the device structure
1022 *
1023 * Return: IRQ_WAKE_THREAD if interrupt is designed for the device
1024 *         IRQ_NONE otherwise
1025 */
1026irqreturn_t mei_txe_irq_quick_handler(int irq, void *dev_id)
1027{
1028        struct mei_device *dev = dev_id;
1029
1030        if (mei_txe_check_and_ack_intrs(dev, true))
1031                return IRQ_WAKE_THREAD;
1032        return IRQ_NONE;
1033}
1034
1035
1036/**
1037 * mei_txe_irq_thread_handler - txe interrupt thread
1038 *
1039 * @irq: The irq number
1040 * @dev_id: pointer to the device structure
1041 *
1042 * Return: IRQ_HANDLED
1043 */
1044irqreturn_t mei_txe_irq_thread_handler(int irq, void *dev_id)
1045{
1046        struct mei_device *dev = (struct mei_device *) dev_id;
1047        struct mei_txe_hw *hw = to_txe_hw(dev);
1048        struct list_head cmpl_list;
1049        s32 slots;
1050        int rets = 0;
1051
1052        dev_dbg(dev->dev, "irq thread: Interrupt Registers HHISR|HISR|SEC=%02X|%04X|%02X\n",
1053                mei_txe_br_reg_read(hw, HHISR_REG),
1054                mei_txe_br_reg_read(hw, HISR_REG),
1055                mei_txe_sec_reg_read_silent(hw, SEC_IPC_HOST_INT_STATUS_REG));
1056
1057
1058        /* initialize our complete list */
1059        mutex_lock(&dev->device_lock);
1060        INIT_LIST_HEAD(&cmpl_list);
1061
1062        if (pci_dev_msi_enabled(to_pci_dev(dev->dev)))
1063                mei_txe_check_and_ack_intrs(dev, true);
1064
1065        /* show irq events */
1066        mei_txe_pending_interrupts(dev);
1067
1068        hw->aliveness = mei_txe_aliveness_get(dev);
1069        hw->readiness = mei_txe_readiness_get(dev);
1070
1071        /* Readiness:
1072         * Detection of TXE driver going through reset
1073         * or TXE driver resetting the HECI interface.
1074         */
1075        if (test_and_clear_bit(TXE_INTR_READINESS_BIT, &hw->intr_cause)) {
1076                dev_dbg(dev->dev, "Readiness Interrupt was received...\n");
1077
1078                /* Check if SeC is going through reset */
1079                if (mei_txe_readiness_is_sec_rdy(hw->readiness)) {
1080                        dev_dbg(dev->dev, "we need to start the dev.\n");
1081                        dev->recvd_hw_ready = true;
1082                } else {
1083                        dev->recvd_hw_ready = false;
1084                        if (dev->dev_state != MEI_DEV_RESETTING) {
1085
1086                                dev_warn(dev->dev, "FW not ready: resetting.\n");
1087                                schedule_work(&dev->reset_work);
1088                                goto end;
1089
1090                        }
1091                }
1092                wake_up(&dev->wait_hw_ready);
1093        }
1094
1095        /************************************************************/
1096        /* Check interrupt cause:
1097         * Aliveness: Detection of SeC acknowledge of host request that
1098         * it remain alive or host cancellation of that request.
1099         */
1100
1101        if (test_and_clear_bit(TXE_INTR_ALIVENESS_BIT, &hw->intr_cause)) {
1102                /* Clear the interrupt cause */
1103                dev_dbg(dev->dev,
1104                        "Aliveness Interrupt: Status: %d\n", hw->aliveness);
1105                dev->pg_event = MEI_PG_EVENT_RECEIVED;
1106                if (waitqueue_active(&hw->wait_aliveness_resp))
1107                        wake_up(&hw->wait_aliveness_resp);
1108        }
1109
1110
1111        /* Output Doorbell:
1112         * Detection of SeC having sent output to host
1113         */
1114        slots = mei_count_full_read_slots(dev);
1115        if (test_and_clear_bit(TXE_INTR_OUT_DB_BIT, &hw->intr_cause)) {
1116                /* Read from TXE */
1117                rets = mei_irq_read_handler(dev, &cmpl_list, &slots);
1118                if (rets &&
1119                    (dev->dev_state != MEI_DEV_RESETTING &&
1120                     dev->dev_state != MEI_DEV_POWER_DOWN)) {
1121                        dev_err(dev->dev,
1122                                "mei_irq_read_handler ret = %d.\n", rets);
1123
1124                        schedule_work(&dev->reset_work);
1125                        goto end;
1126                }
1127        }
1128        /* Input Ready: Detection if host can write to SeC */
1129        if (test_and_clear_bit(TXE_INTR_IN_READY_BIT, &hw->intr_cause)) {
1130                dev->hbuf_is_ready = true;
1131                hw->slots = TXE_HBUF_DEPTH;
1132        }
1133
1134        if (hw->aliveness && dev->hbuf_is_ready) {
1135                /* get the real register value */
1136                dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1137                rets = mei_irq_write_handler(dev, &cmpl_list);
1138                if (rets && rets != -EMSGSIZE)
1139                        dev_err(dev->dev, "mei_irq_write_handler ret = %d.\n",
1140                                rets);
1141                dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1142        }
1143
1144        mei_irq_compl_handler(dev, &cmpl_list);
1145
1146end:
1147        dev_dbg(dev->dev, "interrupt thread end ret = %d\n", rets);
1148
1149        mutex_unlock(&dev->device_lock);
1150
1151        mei_enable_interrupts(dev);
1152        return IRQ_HANDLED;
1153}
1154
1155static const struct mei_hw_ops mei_txe_hw_ops = {
1156
1157        .host_is_ready = mei_txe_host_is_ready,
1158
1159        .fw_status = mei_txe_fw_status,
1160        .pg_state = mei_txe_pg_state,
1161
1162        .hw_is_ready = mei_txe_hw_is_ready,
1163        .hw_reset = mei_txe_hw_reset,
1164        .hw_config = mei_txe_hw_config,
1165        .hw_start = mei_txe_hw_start,
1166
1167        .pg_in_transition = mei_txe_pg_in_transition,
1168        .pg_is_enabled = mei_txe_pg_is_enabled,
1169
1170        .intr_clear = mei_txe_intr_clear,
1171        .intr_enable = mei_txe_intr_enable,
1172        .intr_disable = mei_txe_intr_disable,
1173        .synchronize_irq = mei_txe_synchronize_irq,
1174
1175        .hbuf_free_slots = mei_txe_hbuf_empty_slots,
1176        .hbuf_is_ready = mei_txe_is_input_ready,
1177        .hbuf_depth = mei_txe_hbuf_depth,
1178
1179        .write = mei_txe_write,
1180
1181        .rdbuf_full_slots = mei_txe_count_full_read_slots,
1182        .read_hdr = mei_txe_read_hdr,
1183
1184        .read = mei_txe_read,
1185
1186};
1187
1188/**
1189 * mei_txe_dev_init - allocates and initializes txe hardware specific structure
1190 *
1191 * @pdev: pci device
1192 *
1193 * Return: struct mei_device * on success or NULL
1194 */
1195struct mei_device *mei_txe_dev_init(struct pci_dev *pdev)
1196{
1197        struct mei_device *dev;
1198        struct mei_txe_hw *hw;
1199
1200        dev = devm_kzalloc(&pdev->dev, sizeof(struct mei_device) +
1201                           sizeof(struct mei_txe_hw), GFP_KERNEL);
1202        if (!dev)
1203                return NULL;
1204
1205        mei_device_init(dev, &pdev->dev, &mei_txe_hw_ops);
1206
1207        hw = to_txe_hw(dev);
1208
1209        init_waitqueue_head(&hw->wait_aliveness_resp);
1210
1211        return dev;
1212}
1213
1214/**
1215 * mei_txe_setup_satt2 - SATT2 configuration for DMA support.
1216 *
1217 * @dev:   the device structure
1218 * @addr:  physical address start of the range
1219 * @range: physical range size
1220 *
1221 * Return: 0 on success an error code otherwise
1222 */
1223int mei_txe_setup_satt2(struct mei_device *dev, phys_addr_t addr, u32 range)
1224{
1225        struct mei_txe_hw *hw = to_txe_hw(dev);
1226
1227        u32 lo32 = lower_32_bits(addr);
1228        u32 hi32 = upper_32_bits(addr);
1229        u32 ctrl;
1230
1231        /* SATT is limited to 36 Bits */
1232        if (hi32 & ~0xF)
1233                return -EINVAL;
1234
1235        /* SATT has to be 16Byte aligned */
1236        if (lo32 & 0xF)
1237                return -EINVAL;
1238
1239        /* SATT range has to be 4Bytes aligned */
1240        if (range & 0x4)
1241                return -EINVAL;
1242
1243        /* SATT is limited to 32 MB range*/
1244        if (range > SATT_RANGE_MAX)
1245                return -EINVAL;
1246
1247        ctrl = SATT2_CTRL_VALID_MSK;
1248        ctrl |= hi32  << SATT2_CTRL_BR_BASE_ADDR_REG_SHIFT;
1249
1250        mei_txe_br_reg_write(hw, SATT2_SAP_SIZE_REG, range);
1251        mei_txe_br_reg_write(hw, SATT2_BRG_BA_LSB_REG, lo32);
1252        mei_txe_br_reg_write(hw, SATT2_CTRL_REG, ctrl);
1253        dev_dbg(dev->dev, "SATT2: SAP_SIZE_OFFSET=0x%08X, BRG_BA_LSB_OFFSET=0x%08X, CTRL_OFFSET=0x%08X\n",
1254                range, lo32, ctrl);
1255
1256        return 0;
1257}
1258