linux/drivers/mmc/core/core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/mmc/core/core.c
   4 *
   5 *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
   6 *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
   7 *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
   8 *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
   9 */
  10#include <linux/module.h>
  11#include <linux/init.h>
  12#include <linux/interrupt.h>
  13#include <linux/completion.h>
  14#include <linux/device.h>
  15#include <linux/delay.h>
  16#include <linux/pagemap.h>
  17#include <linux/err.h>
  18#include <linux/leds.h>
  19#include <linux/scatterlist.h>
  20#include <linux/log2.h>
  21#include <linux/pm_runtime.h>
  22#include <linux/pm_wakeup.h>
  23#include <linux/suspend.h>
  24#include <linux/fault-inject.h>
  25#include <linux/random.h>
  26#include <linux/slab.h>
  27#include <linux/of.h>
  28
  29#include <linux/mmc/card.h>
  30#include <linux/mmc/host.h>
  31#include <linux/mmc/mmc.h>
  32#include <linux/mmc/sd.h>
  33#include <linux/mmc/slot-gpio.h>
  34
  35#define CREATE_TRACE_POINTS
  36#include <trace/events/mmc.h>
  37
  38#include "core.h"
  39#include "card.h"
  40#include "bus.h"
  41#include "host.h"
  42#include "sdio_bus.h"
  43#include "pwrseq.h"
  44
  45#include "mmc_ops.h"
  46#include "sd_ops.h"
  47#include "sdio_ops.h"
  48
  49/* The max erase timeout, used when host->max_busy_timeout isn't specified */
  50#define MMC_ERASE_TIMEOUT_MS    (60 * 1000) /* 60 s */
  51#define SD_DISCARD_TIMEOUT_MS   (250)
  52
  53static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
  54
  55/*
  56 * Enabling software CRCs on the data blocks can be a significant (30%)
  57 * performance cost, and for other reasons may not always be desired.
  58 * So we allow it it to be disabled.
  59 */
  60bool use_spi_crc = 1;
  61module_param(use_spi_crc, bool, 0);
  62
  63static int mmc_schedule_delayed_work(struct delayed_work *work,
  64                                     unsigned long delay)
  65{
  66        /*
  67         * We use the system_freezable_wq, because of two reasons.
  68         * First, it allows several works (not the same work item) to be
  69         * executed simultaneously. Second, the queue becomes frozen when
  70         * userspace becomes frozen during system PM.
  71         */
  72        return queue_delayed_work(system_freezable_wq, work, delay);
  73}
  74
  75#ifdef CONFIG_FAIL_MMC_REQUEST
  76
  77/*
  78 * Internal function. Inject random data errors.
  79 * If mmc_data is NULL no errors are injected.
  80 */
  81static void mmc_should_fail_request(struct mmc_host *host,
  82                                    struct mmc_request *mrq)
  83{
  84        struct mmc_command *cmd = mrq->cmd;
  85        struct mmc_data *data = mrq->data;
  86        static const int data_errors[] = {
  87                -ETIMEDOUT,
  88                -EILSEQ,
  89                -EIO,
  90        };
  91
  92        if (!data)
  93                return;
  94
  95        if ((cmd && cmd->error) || data->error ||
  96            !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
  97                return;
  98
  99        data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
 100        data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
 101}
 102
 103#else /* CONFIG_FAIL_MMC_REQUEST */
 104
 105static inline void mmc_should_fail_request(struct mmc_host *host,
 106                                           struct mmc_request *mrq)
 107{
 108}
 109
 110#endif /* CONFIG_FAIL_MMC_REQUEST */
 111
 112static inline void mmc_complete_cmd(struct mmc_request *mrq)
 113{
 114        if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
 115                complete_all(&mrq->cmd_completion);
 116}
 117
 118void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
 119{
 120        if (!mrq->cap_cmd_during_tfr)
 121                return;
 122
 123        mmc_complete_cmd(mrq);
 124
 125        pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
 126                 mmc_hostname(host), mrq->cmd->opcode);
 127}
 128EXPORT_SYMBOL(mmc_command_done);
 129
 130/**
 131 *      mmc_request_done - finish processing an MMC request
 132 *      @host: MMC host which completed request
 133 *      @mrq: MMC request which request
 134 *
 135 *      MMC drivers should call this function when they have completed
 136 *      their processing of a request.
 137 */
 138void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
 139{
 140        struct mmc_command *cmd = mrq->cmd;
 141        int err = cmd->error;
 142
 143        /* Flag re-tuning needed on CRC errors */
 144        if (cmd->opcode != MMC_SEND_TUNING_BLOCK &&
 145            cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200 &&
 146            !host->retune_crc_disable &&
 147            (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
 148            (mrq->data && mrq->data->error == -EILSEQ) ||
 149            (mrq->stop && mrq->stop->error == -EILSEQ)))
 150                mmc_retune_needed(host);
 151
 152        if (err && cmd->retries && mmc_host_is_spi(host)) {
 153                if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
 154                        cmd->retries = 0;
 155        }
 156
 157        if (host->ongoing_mrq == mrq)
 158                host->ongoing_mrq = NULL;
 159
 160        mmc_complete_cmd(mrq);
 161
 162        trace_mmc_request_done(host, mrq);
 163
 164        /*
 165         * We list various conditions for the command to be considered
 166         * properly done:
 167         *
 168         * - There was no error, OK fine then
 169         * - We are not doing some kind of retry
 170         * - The card was removed (...so just complete everything no matter
 171         *   if there are errors or retries)
 172         */
 173        if (!err || !cmd->retries || mmc_card_removed(host->card)) {
 174                mmc_should_fail_request(host, mrq);
 175
 176                if (!host->ongoing_mrq)
 177                        led_trigger_event(host->led, LED_OFF);
 178
 179                if (mrq->sbc) {
 180                        pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
 181                                mmc_hostname(host), mrq->sbc->opcode,
 182                                mrq->sbc->error,
 183                                mrq->sbc->resp[0], mrq->sbc->resp[1],
 184                                mrq->sbc->resp[2], mrq->sbc->resp[3]);
 185                }
 186
 187                pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
 188                        mmc_hostname(host), cmd->opcode, err,
 189                        cmd->resp[0], cmd->resp[1],
 190                        cmd->resp[2], cmd->resp[3]);
 191
 192                if (mrq->data) {
 193                        pr_debug("%s:     %d bytes transferred: %d\n",
 194                                mmc_hostname(host),
 195                                mrq->data->bytes_xfered, mrq->data->error);
 196                }
 197
 198                if (mrq->stop) {
 199                        pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
 200                                mmc_hostname(host), mrq->stop->opcode,
 201                                mrq->stop->error,
 202                                mrq->stop->resp[0], mrq->stop->resp[1],
 203                                mrq->stop->resp[2], mrq->stop->resp[3]);
 204                }
 205        }
 206        /*
 207         * Request starter must handle retries - see
 208         * mmc_wait_for_req_done().
 209         */
 210        if (mrq->done)
 211                mrq->done(mrq);
 212}
 213
 214EXPORT_SYMBOL(mmc_request_done);
 215
 216static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 217{
 218        int err;
 219
 220        /* Assumes host controller has been runtime resumed by mmc_claim_host */
 221        err = mmc_retune(host);
 222        if (err) {
 223                mrq->cmd->error = err;
 224                mmc_request_done(host, mrq);
 225                return;
 226        }
 227
 228        /*
 229         * For sdio rw commands we must wait for card busy otherwise some
 230         * sdio devices won't work properly.
 231         * And bypass I/O abort, reset and bus suspend operations.
 232         */
 233        if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
 234            host->ops->card_busy) {
 235                int tries = 500; /* Wait aprox 500ms at maximum */
 236
 237                while (host->ops->card_busy(host) && --tries)
 238                        mmc_delay(1);
 239
 240                if (tries == 0) {
 241                        mrq->cmd->error = -EBUSY;
 242                        mmc_request_done(host, mrq);
 243                        return;
 244                }
 245        }
 246
 247        if (mrq->cap_cmd_during_tfr) {
 248                host->ongoing_mrq = mrq;
 249                /*
 250                 * Retry path could come through here without having waiting on
 251                 * cmd_completion, so ensure it is reinitialised.
 252                 */
 253                reinit_completion(&mrq->cmd_completion);
 254        }
 255
 256        trace_mmc_request_start(host, mrq);
 257
 258        if (host->cqe_on)
 259                host->cqe_ops->cqe_off(host);
 260
 261        host->ops->request(host, mrq);
 262}
 263
 264static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
 265                             bool cqe)
 266{
 267        if (mrq->sbc) {
 268                pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
 269                         mmc_hostname(host), mrq->sbc->opcode,
 270                         mrq->sbc->arg, mrq->sbc->flags);
 271        }
 272
 273        if (mrq->cmd) {
 274                pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
 275                         mmc_hostname(host), cqe ? "CQE direct " : "",
 276                         mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
 277        } else if (cqe) {
 278                pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
 279                         mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
 280        }
 281
 282        if (mrq->data) {
 283                pr_debug("%s:     blksz %d blocks %d flags %08x "
 284                        "tsac %d ms nsac %d\n",
 285                        mmc_hostname(host), mrq->data->blksz,
 286                        mrq->data->blocks, mrq->data->flags,
 287                        mrq->data->timeout_ns / 1000000,
 288                        mrq->data->timeout_clks);
 289        }
 290
 291        if (mrq->stop) {
 292                pr_debug("%s:     CMD%u arg %08x flags %08x\n",
 293                         mmc_hostname(host), mrq->stop->opcode,
 294                         mrq->stop->arg, mrq->stop->flags);
 295        }
 296}
 297
 298static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
 299{
 300        unsigned int i, sz = 0;
 301        struct scatterlist *sg;
 302
 303        if (mrq->cmd) {
 304                mrq->cmd->error = 0;
 305                mrq->cmd->mrq = mrq;
 306                mrq->cmd->data = mrq->data;
 307        }
 308        if (mrq->sbc) {
 309                mrq->sbc->error = 0;
 310                mrq->sbc->mrq = mrq;
 311        }
 312        if (mrq->data) {
 313                if (mrq->data->blksz > host->max_blk_size ||
 314                    mrq->data->blocks > host->max_blk_count ||
 315                    mrq->data->blocks * mrq->data->blksz > host->max_req_size)
 316                        return -EINVAL;
 317
 318                for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
 319                        sz += sg->length;
 320                if (sz != mrq->data->blocks * mrq->data->blksz)
 321                        return -EINVAL;
 322
 323                mrq->data->error = 0;
 324                mrq->data->mrq = mrq;
 325                if (mrq->stop) {
 326                        mrq->data->stop = mrq->stop;
 327                        mrq->stop->error = 0;
 328                        mrq->stop->mrq = mrq;
 329                }
 330        }
 331
 332        return 0;
 333}
 334
 335int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 336{
 337        int err;
 338
 339        init_completion(&mrq->cmd_completion);
 340
 341        mmc_retune_hold(host);
 342
 343        if (mmc_card_removed(host->card))
 344                return -ENOMEDIUM;
 345
 346        mmc_mrq_pr_debug(host, mrq, false);
 347
 348        WARN_ON(!host->claimed);
 349
 350        err = mmc_mrq_prep(host, mrq);
 351        if (err)
 352                return err;
 353
 354        led_trigger_event(host->led, LED_FULL);
 355        __mmc_start_request(host, mrq);
 356
 357        return 0;
 358}
 359EXPORT_SYMBOL(mmc_start_request);
 360
 361static void mmc_wait_done(struct mmc_request *mrq)
 362{
 363        complete(&mrq->completion);
 364}
 365
 366static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
 367{
 368        struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
 369
 370        /*
 371         * If there is an ongoing transfer, wait for the command line to become
 372         * available.
 373         */
 374        if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
 375                wait_for_completion(&ongoing_mrq->cmd_completion);
 376}
 377
 378static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
 379{
 380        int err;
 381
 382        mmc_wait_ongoing_tfr_cmd(host);
 383
 384        init_completion(&mrq->completion);
 385        mrq->done = mmc_wait_done;
 386
 387        err = mmc_start_request(host, mrq);
 388        if (err) {
 389                mrq->cmd->error = err;
 390                mmc_complete_cmd(mrq);
 391                complete(&mrq->completion);
 392        }
 393
 394        return err;
 395}
 396
 397void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
 398{
 399        struct mmc_command *cmd;
 400
 401        while (1) {
 402                wait_for_completion(&mrq->completion);
 403
 404                cmd = mrq->cmd;
 405
 406                /*
 407                 * If host has timed out waiting for the sanitize
 408                 * to complete, card might be still in programming state
 409                 * so let's try to bring the card out of programming
 410                 * state.
 411                 */
 412                if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
 413                        if (!mmc_interrupt_hpi(host->card)) {
 414                                pr_warn("%s: %s: Interrupted sanitize\n",
 415                                        mmc_hostname(host), __func__);
 416                                cmd->error = 0;
 417                                break;
 418                        } else {
 419                                pr_err("%s: %s: Failed to interrupt sanitize\n",
 420                                       mmc_hostname(host), __func__);
 421                        }
 422                }
 423                if (!cmd->error || !cmd->retries ||
 424                    mmc_card_removed(host->card))
 425                        break;
 426
 427                mmc_retune_recheck(host);
 428
 429                pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
 430                         mmc_hostname(host), cmd->opcode, cmd->error);
 431                cmd->retries--;
 432                cmd->error = 0;
 433                __mmc_start_request(host, mrq);
 434        }
 435
 436        mmc_retune_release(host);
 437}
 438EXPORT_SYMBOL(mmc_wait_for_req_done);
 439
 440/*
 441 * mmc_cqe_start_req - Start a CQE request.
 442 * @host: MMC host to start the request
 443 * @mrq: request to start
 444 *
 445 * Start the request, re-tuning if needed and it is possible. Returns an error
 446 * code if the request fails to start or -EBUSY if CQE is busy.
 447 */
 448int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
 449{
 450        int err;
 451
 452        /*
 453         * CQE cannot process re-tuning commands. Caller must hold retuning
 454         * while CQE is in use.  Re-tuning can happen here only when CQE has no
 455         * active requests i.e. this is the first.  Note, re-tuning will call
 456         * ->cqe_off().
 457         */
 458        err = mmc_retune(host);
 459        if (err)
 460                goto out_err;
 461
 462        mrq->host = host;
 463
 464        mmc_mrq_pr_debug(host, mrq, true);
 465
 466        err = mmc_mrq_prep(host, mrq);
 467        if (err)
 468                goto out_err;
 469
 470        err = host->cqe_ops->cqe_request(host, mrq);
 471        if (err)
 472                goto out_err;
 473
 474        trace_mmc_request_start(host, mrq);
 475
 476        return 0;
 477
 478out_err:
 479        if (mrq->cmd) {
 480                pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
 481                         mmc_hostname(host), mrq->cmd->opcode, err);
 482        } else {
 483                pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
 484                         mmc_hostname(host), mrq->tag, err);
 485        }
 486        return err;
 487}
 488EXPORT_SYMBOL(mmc_cqe_start_req);
 489
 490/**
 491 *      mmc_cqe_request_done - CQE has finished processing an MMC request
 492 *      @host: MMC host which completed request
 493 *      @mrq: MMC request which completed
 494 *
 495 *      CQE drivers should call this function when they have completed
 496 *      their processing of a request.
 497 */
 498void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
 499{
 500        mmc_should_fail_request(host, mrq);
 501
 502        /* Flag re-tuning needed on CRC errors */
 503        if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
 504            (mrq->data && mrq->data->error == -EILSEQ))
 505                mmc_retune_needed(host);
 506
 507        trace_mmc_request_done(host, mrq);
 508
 509        if (mrq->cmd) {
 510                pr_debug("%s: CQE req done (direct CMD%u): %d\n",
 511                         mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
 512        } else {
 513                pr_debug("%s: CQE transfer done tag %d\n",
 514                         mmc_hostname(host), mrq->tag);
 515        }
 516
 517        if (mrq->data) {
 518                pr_debug("%s:     %d bytes transferred: %d\n",
 519                         mmc_hostname(host),
 520                         mrq->data->bytes_xfered, mrq->data->error);
 521        }
 522
 523        mrq->done(mrq);
 524}
 525EXPORT_SYMBOL(mmc_cqe_request_done);
 526
 527/**
 528 *      mmc_cqe_post_req - CQE post process of a completed MMC request
 529 *      @host: MMC host
 530 *      @mrq: MMC request to be processed
 531 */
 532void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
 533{
 534        if (host->cqe_ops->cqe_post_req)
 535                host->cqe_ops->cqe_post_req(host, mrq);
 536}
 537EXPORT_SYMBOL(mmc_cqe_post_req);
 538
 539/* Arbitrary 1 second timeout */
 540#define MMC_CQE_RECOVERY_TIMEOUT        1000
 541
 542/*
 543 * mmc_cqe_recovery - Recover from CQE errors.
 544 * @host: MMC host to recover
 545 *
 546 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in
 547 * in eMMC, and discarding the queue in CQE. CQE must call
 548 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
 549 * fails to discard its queue.
 550 */
 551int mmc_cqe_recovery(struct mmc_host *host)
 552{
 553        struct mmc_command cmd;
 554        int err;
 555
 556        mmc_retune_hold_now(host);
 557
 558        /*
 559         * Recovery is expected seldom, if at all, but it reduces performance,
 560         * so make sure it is not completely silent.
 561         */
 562        pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
 563
 564        host->cqe_ops->cqe_recovery_start(host);
 565
 566        memset(&cmd, 0, sizeof(cmd));
 567        cmd.opcode       = MMC_STOP_TRANSMISSION,
 568        cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC,
 569        cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
 570        cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT,
 571        mmc_wait_for_cmd(host, &cmd, 0);
 572
 573        memset(&cmd, 0, sizeof(cmd));
 574        cmd.opcode       = MMC_CMDQ_TASK_MGMT;
 575        cmd.arg          = 1; /* Discard entire queue */
 576        cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC;
 577        cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
 578        cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT,
 579        err = mmc_wait_for_cmd(host, &cmd, 0);
 580
 581        host->cqe_ops->cqe_recovery_finish(host);
 582
 583        mmc_retune_release(host);
 584
 585        return err;
 586}
 587EXPORT_SYMBOL(mmc_cqe_recovery);
 588
 589/**
 590 *      mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
 591 *      @host: MMC host
 592 *      @mrq: MMC request
 593 *
 594 *      mmc_is_req_done() is used with requests that have
 595 *      mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
 596 *      starting a request and before waiting for it to complete. That is,
 597 *      either in between calls to mmc_start_req(), or after mmc_wait_for_req()
 598 *      and before mmc_wait_for_req_done(). If it is called at other times the
 599 *      result is not meaningful.
 600 */
 601bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
 602{
 603        return completion_done(&mrq->completion);
 604}
 605EXPORT_SYMBOL(mmc_is_req_done);
 606
 607/**
 608 *      mmc_wait_for_req - start a request and wait for completion
 609 *      @host: MMC host to start command
 610 *      @mrq: MMC request to start
 611 *
 612 *      Start a new MMC custom command request for a host, and wait
 613 *      for the command to complete. In the case of 'cap_cmd_during_tfr'
 614 *      requests, the transfer is ongoing and the caller can issue further
 615 *      commands that do not use the data lines, and then wait by calling
 616 *      mmc_wait_for_req_done().
 617 *      Does not attempt to parse the response.
 618 */
 619void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
 620{
 621        __mmc_start_req(host, mrq);
 622
 623        if (!mrq->cap_cmd_during_tfr)
 624                mmc_wait_for_req_done(host, mrq);
 625}
 626EXPORT_SYMBOL(mmc_wait_for_req);
 627
 628/**
 629 *      mmc_wait_for_cmd - start a command and wait for completion
 630 *      @host: MMC host to start command
 631 *      @cmd: MMC command to start
 632 *      @retries: maximum number of retries
 633 *
 634 *      Start a new MMC command for a host, and wait for the command
 635 *      to complete.  Return any error that occurred while the command
 636 *      was executing.  Do not attempt to parse the response.
 637 */
 638int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
 639{
 640        struct mmc_request mrq = {};
 641
 642        WARN_ON(!host->claimed);
 643
 644        memset(cmd->resp, 0, sizeof(cmd->resp));
 645        cmd->retries = retries;
 646
 647        mrq.cmd = cmd;
 648        cmd->data = NULL;
 649
 650        mmc_wait_for_req(host, &mrq);
 651
 652        return cmd->error;
 653}
 654
 655EXPORT_SYMBOL(mmc_wait_for_cmd);
 656
 657/**
 658 *      mmc_set_data_timeout - set the timeout for a data command
 659 *      @data: data phase for command
 660 *      @card: the MMC card associated with the data transfer
 661 *
 662 *      Computes the data timeout parameters according to the
 663 *      correct algorithm given the card type.
 664 */
 665void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
 666{
 667        unsigned int mult;
 668
 669        /*
 670         * SDIO cards only define an upper 1 s limit on access.
 671         */
 672        if (mmc_card_sdio(card)) {
 673                data->timeout_ns = 1000000000;
 674                data->timeout_clks = 0;
 675                return;
 676        }
 677
 678        /*
 679         * SD cards use a 100 multiplier rather than 10
 680         */
 681        mult = mmc_card_sd(card) ? 100 : 10;
 682
 683        /*
 684         * Scale up the multiplier (and therefore the timeout) by
 685         * the r2w factor for writes.
 686         */
 687        if (data->flags & MMC_DATA_WRITE)
 688                mult <<= card->csd.r2w_factor;
 689
 690        data->timeout_ns = card->csd.taac_ns * mult;
 691        data->timeout_clks = card->csd.taac_clks * mult;
 692
 693        /*
 694         * SD cards also have an upper limit on the timeout.
 695         */
 696        if (mmc_card_sd(card)) {
 697                unsigned int timeout_us, limit_us;
 698
 699                timeout_us = data->timeout_ns / 1000;
 700                if (card->host->ios.clock)
 701                        timeout_us += data->timeout_clks * 1000 /
 702                                (card->host->ios.clock / 1000);
 703
 704                if (data->flags & MMC_DATA_WRITE)
 705                        /*
 706                         * The MMC spec "It is strongly recommended
 707                         * for hosts to implement more than 500ms
 708                         * timeout value even if the card indicates
 709                         * the 250ms maximum busy length."  Even the
 710                         * previous value of 300ms is known to be
 711                         * insufficient for some cards.
 712                         */
 713                        limit_us = 3000000;
 714                else
 715                        limit_us = 100000;
 716
 717                /*
 718                 * SDHC cards always use these fixed values.
 719                 */
 720                if (timeout_us > limit_us) {
 721                        data->timeout_ns = limit_us * 1000;
 722                        data->timeout_clks = 0;
 723                }
 724
 725                /* assign limit value if invalid */
 726                if (timeout_us == 0)
 727                        data->timeout_ns = limit_us * 1000;
 728        }
 729
 730        /*
 731         * Some cards require longer data read timeout than indicated in CSD.
 732         * Address this by setting the read timeout to a "reasonably high"
 733         * value. For the cards tested, 600ms has proven enough. If necessary,
 734         * this value can be increased if other problematic cards require this.
 735         */
 736        if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
 737                data->timeout_ns = 600000000;
 738                data->timeout_clks = 0;
 739        }
 740
 741        /*
 742         * Some cards need very high timeouts if driven in SPI mode.
 743         * The worst observed timeout was 900ms after writing a
 744         * continuous stream of data until the internal logic
 745         * overflowed.
 746         */
 747        if (mmc_host_is_spi(card->host)) {
 748                if (data->flags & MMC_DATA_WRITE) {
 749                        if (data->timeout_ns < 1000000000)
 750                                data->timeout_ns = 1000000000;  /* 1s */
 751                } else {
 752                        if (data->timeout_ns < 100000000)
 753                                data->timeout_ns =  100000000;  /* 100ms */
 754                }
 755        }
 756}
 757EXPORT_SYMBOL(mmc_set_data_timeout);
 758
 759/*
 760 * Allow claiming an already claimed host if the context is the same or there is
 761 * no context but the task is the same.
 762 */
 763static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
 764                                   struct task_struct *task)
 765{
 766        return host->claimer == ctx ||
 767               (!ctx && task && host->claimer->task == task);
 768}
 769
 770static inline void mmc_ctx_set_claimer(struct mmc_host *host,
 771                                       struct mmc_ctx *ctx,
 772                                       struct task_struct *task)
 773{
 774        if (!host->claimer) {
 775                if (ctx)
 776                        host->claimer = ctx;
 777                else
 778                        host->claimer = &host->default_ctx;
 779        }
 780        if (task)
 781                host->claimer->task = task;
 782}
 783
 784/**
 785 *      __mmc_claim_host - exclusively claim a host
 786 *      @host: mmc host to claim
 787 *      @ctx: context that claims the host or NULL in which case the default
 788 *      context will be used
 789 *      @abort: whether or not the operation should be aborted
 790 *
 791 *      Claim a host for a set of operations.  If @abort is non null and
 792 *      dereference a non-zero value then this will return prematurely with
 793 *      that non-zero value without acquiring the lock.  Returns zero
 794 *      with the lock held otherwise.
 795 */
 796int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
 797                     atomic_t *abort)
 798{
 799        struct task_struct *task = ctx ? NULL : current;
 800        DECLARE_WAITQUEUE(wait, current);
 801        unsigned long flags;
 802        int stop;
 803        bool pm = false;
 804
 805        might_sleep();
 806
 807        add_wait_queue(&host->wq, &wait);
 808        spin_lock_irqsave(&host->lock, flags);
 809        while (1) {
 810                set_current_state(TASK_UNINTERRUPTIBLE);
 811                stop = abort ? atomic_read(abort) : 0;
 812                if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
 813                        break;
 814                spin_unlock_irqrestore(&host->lock, flags);
 815                schedule();
 816                spin_lock_irqsave(&host->lock, flags);
 817        }
 818        set_current_state(TASK_RUNNING);
 819        if (!stop) {
 820                host->claimed = 1;
 821                mmc_ctx_set_claimer(host, ctx, task);
 822                host->claim_cnt += 1;
 823                if (host->claim_cnt == 1)
 824                        pm = true;
 825        } else
 826                wake_up(&host->wq);
 827        spin_unlock_irqrestore(&host->lock, flags);
 828        remove_wait_queue(&host->wq, &wait);
 829
 830        if (pm)
 831                pm_runtime_get_sync(mmc_dev(host));
 832
 833        return stop;
 834}
 835EXPORT_SYMBOL(__mmc_claim_host);
 836
 837/**
 838 *      mmc_release_host - release a host
 839 *      @host: mmc host to release
 840 *
 841 *      Release a MMC host, allowing others to claim the host
 842 *      for their operations.
 843 */
 844void mmc_release_host(struct mmc_host *host)
 845{
 846        unsigned long flags;
 847
 848        WARN_ON(!host->claimed);
 849
 850        spin_lock_irqsave(&host->lock, flags);
 851        if (--host->claim_cnt) {
 852                /* Release for nested claim */
 853                spin_unlock_irqrestore(&host->lock, flags);
 854        } else {
 855                host->claimed = 0;
 856                host->claimer->task = NULL;
 857                host->claimer = NULL;
 858                spin_unlock_irqrestore(&host->lock, flags);
 859                wake_up(&host->wq);
 860                pm_runtime_mark_last_busy(mmc_dev(host));
 861                if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
 862                        pm_runtime_put_sync_suspend(mmc_dev(host));
 863                else
 864                        pm_runtime_put_autosuspend(mmc_dev(host));
 865        }
 866}
 867EXPORT_SYMBOL(mmc_release_host);
 868
 869/*
 870 * This is a helper function, which fetches a runtime pm reference for the
 871 * card device and also claims the host.
 872 */
 873void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
 874{
 875        pm_runtime_get_sync(&card->dev);
 876        __mmc_claim_host(card->host, ctx, NULL);
 877}
 878EXPORT_SYMBOL(mmc_get_card);
 879
 880/*
 881 * This is a helper function, which releases the host and drops the runtime
 882 * pm reference for the card device.
 883 */
 884void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
 885{
 886        struct mmc_host *host = card->host;
 887
 888        WARN_ON(ctx && host->claimer != ctx);
 889
 890        mmc_release_host(host);
 891        pm_runtime_mark_last_busy(&card->dev);
 892        pm_runtime_put_autosuspend(&card->dev);
 893}
 894EXPORT_SYMBOL(mmc_put_card);
 895
 896/*
 897 * Internal function that does the actual ios call to the host driver,
 898 * optionally printing some debug output.
 899 */
 900static inline void mmc_set_ios(struct mmc_host *host)
 901{
 902        struct mmc_ios *ios = &host->ios;
 903
 904        pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
 905                "width %u timing %u\n",
 906                 mmc_hostname(host), ios->clock, ios->bus_mode,
 907                 ios->power_mode, ios->chip_select, ios->vdd,
 908                 1 << ios->bus_width, ios->timing);
 909
 910        host->ops->set_ios(host, ios);
 911}
 912
 913/*
 914 * Control chip select pin on a host.
 915 */
 916void mmc_set_chip_select(struct mmc_host *host, int mode)
 917{
 918        host->ios.chip_select = mode;
 919        mmc_set_ios(host);
 920}
 921
 922/*
 923 * Sets the host clock to the highest possible frequency that
 924 * is below "hz".
 925 */
 926void mmc_set_clock(struct mmc_host *host, unsigned int hz)
 927{
 928        WARN_ON(hz && hz < host->f_min);
 929
 930        if (hz > host->f_max)
 931                hz = host->f_max;
 932
 933        host->ios.clock = hz;
 934        mmc_set_ios(host);
 935}
 936
 937int mmc_execute_tuning(struct mmc_card *card)
 938{
 939        struct mmc_host *host = card->host;
 940        u32 opcode;
 941        int err;
 942
 943        if (!host->ops->execute_tuning)
 944                return 0;
 945
 946        if (host->cqe_on)
 947                host->cqe_ops->cqe_off(host);
 948
 949        if (mmc_card_mmc(card))
 950                opcode = MMC_SEND_TUNING_BLOCK_HS200;
 951        else
 952                opcode = MMC_SEND_TUNING_BLOCK;
 953
 954        err = host->ops->execute_tuning(host, opcode);
 955
 956        if (err)
 957                pr_err("%s: tuning execution failed: %d\n",
 958                        mmc_hostname(host), err);
 959        else
 960                mmc_retune_enable(host);
 961
 962        return err;
 963}
 964
 965/*
 966 * Change the bus mode (open drain/push-pull) of a host.
 967 */
 968void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
 969{
 970        host->ios.bus_mode = mode;
 971        mmc_set_ios(host);
 972}
 973
 974/*
 975 * Change data bus width of a host.
 976 */
 977void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
 978{
 979        host->ios.bus_width = width;
 980        mmc_set_ios(host);
 981}
 982
 983/*
 984 * Set initial state after a power cycle or a hw_reset.
 985 */
 986void mmc_set_initial_state(struct mmc_host *host)
 987{
 988        if (host->cqe_on)
 989                host->cqe_ops->cqe_off(host);
 990
 991        mmc_retune_disable(host);
 992
 993        if (mmc_host_is_spi(host))
 994                host->ios.chip_select = MMC_CS_HIGH;
 995        else
 996                host->ios.chip_select = MMC_CS_DONTCARE;
 997        host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
 998        host->ios.bus_width = MMC_BUS_WIDTH_1;
 999        host->ios.timing = MMC_TIMING_LEGACY;
1000        host->ios.drv_type = 0;
1001        host->ios.enhanced_strobe = false;
1002
1003        /*
1004         * Make sure we are in non-enhanced strobe mode before we
1005         * actually enable it in ext_csd.
1006         */
1007        if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1008             host->ops->hs400_enhanced_strobe)
1009                host->ops->hs400_enhanced_strobe(host, &host->ios);
1010
1011        mmc_set_ios(host);
1012}
1013
1014/**
1015 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1016 * @vdd:        voltage (mV)
1017 * @low_bits:   prefer low bits in boundary cases
1018 *
1019 * This function returns the OCR bit number according to the provided @vdd
1020 * value. If conversion is not possible a negative errno value returned.
1021 *
1022 * Depending on the @low_bits flag the function prefers low or high OCR bits
1023 * on boundary voltages. For example,
1024 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1025 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1026 *
1027 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1028 */
1029static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1030{
1031        const int max_bit = ilog2(MMC_VDD_35_36);
1032        int bit;
1033
1034        if (vdd < 1650 || vdd > 3600)
1035                return -EINVAL;
1036
1037        if (vdd >= 1650 && vdd <= 1950)
1038                return ilog2(MMC_VDD_165_195);
1039
1040        if (low_bits)
1041                vdd -= 1;
1042
1043        /* Base 2000 mV, step 100 mV, bit's base 8. */
1044        bit = (vdd - 2000) / 100 + 8;
1045        if (bit > max_bit)
1046                return max_bit;
1047        return bit;
1048}
1049
1050/**
1051 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1052 * @vdd_min:    minimum voltage value (mV)
1053 * @vdd_max:    maximum voltage value (mV)
1054 *
1055 * This function returns the OCR mask bits according to the provided @vdd_min
1056 * and @vdd_max values. If conversion is not possible the function returns 0.
1057 *
1058 * Notes wrt boundary cases:
1059 * This function sets the OCR bits for all boundary voltages, for example
1060 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1061 * MMC_VDD_34_35 mask.
1062 */
1063u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1064{
1065        u32 mask = 0;
1066
1067        if (vdd_max < vdd_min)
1068                return 0;
1069
1070        /* Prefer high bits for the boundary vdd_max values. */
1071        vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1072        if (vdd_max < 0)
1073                return 0;
1074
1075        /* Prefer low bits for the boundary vdd_min values. */
1076        vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1077        if (vdd_min < 0)
1078                return 0;
1079
1080        /* Fill the mask, from max bit to min bit. */
1081        while (vdd_max >= vdd_min)
1082                mask |= 1 << vdd_max--;
1083
1084        return mask;
1085}
1086
1087static int mmc_of_get_func_num(struct device_node *node)
1088{
1089        u32 reg;
1090        int ret;
1091
1092        ret = of_property_read_u32(node, "reg", &reg);
1093        if (ret < 0)
1094                return ret;
1095
1096        return reg;
1097}
1098
1099struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1100                unsigned func_num)
1101{
1102        struct device_node *node;
1103
1104        if (!host->parent || !host->parent->of_node)
1105                return NULL;
1106
1107        for_each_child_of_node(host->parent->of_node, node) {
1108                if (mmc_of_get_func_num(node) == func_num)
1109                        return node;
1110        }
1111
1112        return NULL;
1113}
1114
1115/*
1116 * Mask off any voltages we don't support and select
1117 * the lowest voltage
1118 */
1119u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1120{
1121        int bit;
1122
1123        /*
1124         * Sanity check the voltages that the card claims to
1125         * support.
1126         */
1127        if (ocr & 0x7F) {
1128                dev_warn(mmc_dev(host),
1129                "card claims to support voltages below defined range\n");
1130                ocr &= ~0x7F;
1131        }
1132
1133        ocr &= host->ocr_avail;
1134        if (!ocr) {
1135                dev_warn(mmc_dev(host), "no support for card's volts\n");
1136                return 0;
1137        }
1138
1139        if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1140                bit = ffs(ocr) - 1;
1141                ocr &= 3 << bit;
1142                mmc_power_cycle(host, ocr);
1143        } else {
1144                bit = fls(ocr) - 1;
1145                ocr &= 3 << bit;
1146                if (bit != host->ios.vdd)
1147                        dev_warn(mmc_dev(host), "exceeding card's volts\n");
1148        }
1149
1150        return ocr;
1151}
1152
1153int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1154{
1155        int err = 0;
1156        int old_signal_voltage = host->ios.signal_voltage;
1157
1158        host->ios.signal_voltage = signal_voltage;
1159        if (host->ops->start_signal_voltage_switch)
1160                err = host->ops->start_signal_voltage_switch(host, &host->ios);
1161
1162        if (err)
1163                host->ios.signal_voltage = old_signal_voltage;
1164
1165        return err;
1166
1167}
1168
1169void mmc_set_initial_signal_voltage(struct mmc_host *host)
1170{
1171        /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1172        if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1173                dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1174        else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1175                dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1176        else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1177                dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1178}
1179
1180int mmc_host_set_uhs_voltage(struct mmc_host *host)
1181{
1182        u32 clock;
1183
1184        /*
1185         * During a signal voltage level switch, the clock must be gated
1186         * for 5 ms according to the SD spec
1187         */
1188        clock = host->ios.clock;
1189        host->ios.clock = 0;
1190        mmc_set_ios(host);
1191
1192        if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1193                return -EAGAIN;
1194
1195        /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1196        mmc_delay(10);
1197        host->ios.clock = clock;
1198        mmc_set_ios(host);
1199
1200        return 0;
1201}
1202
1203int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1204{
1205        struct mmc_command cmd = {};
1206        int err = 0;
1207
1208        /*
1209         * If we cannot switch voltages, return failure so the caller
1210         * can continue without UHS mode
1211         */
1212        if (!host->ops->start_signal_voltage_switch)
1213                return -EPERM;
1214        if (!host->ops->card_busy)
1215                pr_warn("%s: cannot verify signal voltage switch\n",
1216                        mmc_hostname(host));
1217
1218        cmd.opcode = SD_SWITCH_VOLTAGE;
1219        cmd.arg = 0;
1220        cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1221
1222        err = mmc_wait_for_cmd(host, &cmd, 0);
1223        if (err)
1224                return err;
1225
1226        if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1227                return -EIO;
1228
1229        /*
1230         * The card should drive cmd and dat[0:3] low immediately
1231         * after the response of cmd11, but wait 1 ms to be sure
1232         */
1233        mmc_delay(1);
1234        if (host->ops->card_busy && !host->ops->card_busy(host)) {
1235                err = -EAGAIN;
1236                goto power_cycle;
1237        }
1238
1239        if (mmc_host_set_uhs_voltage(host)) {
1240                /*
1241                 * Voltages may not have been switched, but we've already
1242                 * sent CMD11, so a power cycle is required anyway
1243                 */
1244                err = -EAGAIN;
1245                goto power_cycle;
1246        }
1247
1248        /* Wait for at least 1 ms according to spec */
1249        mmc_delay(1);
1250
1251        /*
1252         * Failure to switch is indicated by the card holding
1253         * dat[0:3] low
1254         */
1255        if (host->ops->card_busy && host->ops->card_busy(host))
1256                err = -EAGAIN;
1257
1258power_cycle:
1259        if (err) {
1260                pr_debug("%s: Signal voltage switch failed, "
1261                        "power cycling card\n", mmc_hostname(host));
1262                mmc_power_cycle(host, ocr);
1263        }
1264
1265        return err;
1266}
1267
1268/*
1269 * Select timing parameters for host.
1270 */
1271void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1272{
1273        host->ios.timing = timing;
1274        mmc_set_ios(host);
1275}
1276
1277/*
1278 * Select appropriate driver type for host.
1279 */
1280void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1281{
1282        host->ios.drv_type = drv_type;
1283        mmc_set_ios(host);
1284}
1285
1286int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1287                              int card_drv_type, int *drv_type)
1288{
1289        struct mmc_host *host = card->host;
1290        int host_drv_type = SD_DRIVER_TYPE_B;
1291
1292        *drv_type = 0;
1293
1294        if (!host->ops->select_drive_strength)
1295                return 0;
1296
1297        /* Use SD definition of driver strength for hosts */
1298        if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1299                host_drv_type |= SD_DRIVER_TYPE_A;
1300
1301        if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1302                host_drv_type |= SD_DRIVER_TYPE_C;
1303
1304        if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1305                host_drv_type |= SD_DRIVER_TYPE_D;
1306
1307        /*
1308         * The drive strength that the hardware can support
1309         * depends on the board design.  Pass the appropriate
1310         * information and let the hardware specific code
1311         * return what is possible given the options
1312         */
1313        return host->ops->select_drive_strength(card, max_dtr,
1314                                                host_drv_type,
1315                                                card_drv_type,
1316                                                drv_type);
1317}
1318
1319/*
1320 * Apply power to the MMC stack.  This is a two-stage process.
1321 * First, we enable power to the card without the clock running.
1322 * We then wait a bit for the power to stabilise.  Finally,
1323 * enable the bus drivers and clock to the card.
1324 *
1325 * We must _NOT_ enable the clock prior to power stablising.
1326 *
1327 * If a host does all the power sequencing itself, ignore the
1328 * initial MMC_POWER_UP stage.
1329 */
1330void mmc_power_up(struct mmc_host *host, u32 ocr)
1331{
1332        if (host->ios.power_mode == MMC_POWER_ON)
1333                return;
1334
1335        mmc_pwrseq_pre_power_on(host);
1336
1337        host->ios.vdd = fls(ocr) - 1;
1338        host->ios.power_mode = MMC_POWER_UP;
1339        /* Set initial state and call mmc_set_ios */
1340        mmc_set_initial_state(host);
1341
1342        mmc_set_initial_signal_voltage(host);
1343
1344        /*
1345         * This delay should be sufficient to allow the power supply
1346         * to reach the minimum voltage.
1347         */
1348        mmc_delay(host->ios.power_delay_ms);
1349
1350        mmc_pwrseq_post_power_on(host);
1351
1352        host->ios.clock = host->f_init;
1353
1354        host->ios.power_mode = MMC_POWER_ON;
1355        mmc_set_ios(host);
1356
1357        /*
1358         * This delay must be at least 74 clock sizes, or 1 ms, or the
1359         * time required to reach a stable voltage.
1360         */
1361        mmc_delay(host->ios.power_delay_ms);
1362}
1363
1364void mmc_power_off(struct mmc_host *host)
1365{
1366        if (host->ios.power_mode == MMC_POWER_OFF)
1367                return;
1368
1369        mmc_pwrseq_power_off(host);
1370
1371        host->ios.clock = 0;
1372        host->ios.vdd = 0;
1373
1374        host->ios.power_mode = MMC_POWER_OFF;
1375        /* Set initial state and call mmc_set_ios */
1376        mmc_set_initial_state(host);
1377
1378        /*
1379         * Some configurations, such as the 802.11 SDIO card in the OLPC
1380         * XO-1.5, require a short delay after poweroff before the card
1381         * can be successfully turned on again.
1382         */
1383        mmc_delay(1);
1384}
1385
1386void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1387{
1388        mmc_power_off(host);
1389        /* Wait at least 1 ms according to SD spec */
1390        mmc_delay(1);
1391        mmc_power_up(host, ocr);
1392}
1393
1394/*
1395 * Cleanup when the last reference to the bus operator is dropped.
1396 */
1397static void __mmc_release_bus(struct mmc_host *host)
1398{
1399        WARN_ON(!host->bus_dead);
1400
1401        host->bus_ops = NULL;
1402}
1403
1404/*
1405 * Increase reference count of bus operator
1406 */
1407static inline void mmc_bus_get(struct mmc_host *host)
1408{
1409        unsigned long flags;
1410
1411        spin_lock_irqsave(&host->lock, flags);
1412        host->bus_refs++;
1413        spin_unlock_irqrestore(&host->lock, flags);
1414}
1415
1416/*
1417 * Decrease reference count of bus operator and free it if
1418 * it is the last reference.
1419 */
1420static inline void mmc_bus_put(struct mmc_host *host)
1421{
1422        unsigned long flags;
1423
1424        spin_lock_irqsave(&host->lock, flags);
1425        host->bus_refs--;
1426        if ((host->bus_refs == 0) && host->bus_ops)
1427                __mmc_release_bus(host);
1428        spin_unlock_irqrestore(&host->lock, flags);
1429}
1430
1431/*
1432 * Assign a mmc bus handler to a host. Only one bus handler may control a
1433 * host at any given time.
1434 */
1435void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1436{
1437        unsigned long flags;
1438
1439        WARN_ON(!host->claimed);
1440
1441        spin_lock_irqsave(&host->lock, flags);
1442
1443        WARN_ON(host->bus_ops);
1444        WARN_ON(host->bus_refs);
1445
1446        host->bus_ops = ops;
1447        host->bus_refs = 1;
1448        host->bus_dead = 0;
1449
1450        spin_unlock_irqrestore(&host->lock, flags);
1451}
1452
1453/*
1454 * Remove the current bus handler from a host.
1455 */
1456void mmc_detach_bus(struct mmc_host *host)
1457{
1458        unsigned long flags;
1459
1460        WARN_ON(!host->claimed);
1461        WARN_ON(!host->bus_ops);
1462
1463        spin_lock_irqsave(&host->lock, flags);
1464
1465        host->bus_dead = 1;
1466
1467        spin_unlock_irqrestore(&host->lock, flags);
1468
1469        mmc_bus_put(host);
1470}
1471
1472static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1473                                bool cd_irq)
1474{
1475        /*
1476         * If the device is configured as wakeup, we prevent a new sleep for
1477         * 5 s to give provision for user space to consume the event.
1478         */
1479        if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1480                device_can_wakeup(mmc_dev(host)))
1481                pm_wakeup_event(mmc_dev(host), 5000);
1482
1483        host->detect_change = 1;
1484        mmc_schedule_delayed_work(&host->detect, delay);
1485}
1486
1487/**
1488 *      mmc_detect_change - process change of state on a MMC socket
1489 *      @host: host which changed state.
1490 *      @delay: optional delay to wait before detection (jiffies)
1491 *
1492 *      MMC drivers should call this when they detect a card has been
1493 *      inserted or removed. The MMC layer will confirm that any
1494 *      present card is still functional, and initialize any newly
1495 *      inserted.
1496 */
1497void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1498{
1499        _mmc_detect_change(host, delay, true);
1500}
1501EXPORT_SYMBOL(mmc_detect_change);
1502
1503void mmc_init_erase(struct mmc_card *card)
1504{
1505        unsigned int sz;
1506
1507        if (is_power_of_2(card->erase_size))
1508                card->erase_shift = ffs(card->erase_size) - 1;
1509        else
1510                card->erase_shift = 0;
1511
1512        /*
1513         * It is possible to erase an arbitrarily large area of an SD or MMC
1514         * card.  That is not desirable because it can take a long time
1515         * (minutes) potentially delaying more important I/O, and also the
1516         * timeout calculations become increasingly hugely over-estimated.
1517         * Consequently, 'pref_erase' is defined as a guide to limit erases
1518         * to that size and alignment.
1519         *
1520         * For SD cards that define Allocation Unit size, limit erases to one
1521         * Allocation Unit at a time.
1522         * For MMC, have a stab at ai good value and for modern cards it will
1523         * end up being 4MiB. Note that if the value is too small, it can end
1524         * up taking longer to erase. Also note, erase_size is already set to
1525         * High Capacity Erase Size if available when this function is called.
1526         */
1527        if (mmc_card_sd(card) && card->ssr.au) {
1528                card->pref_erase = card->ssr.au;
1529                card->erase_shift = ffs(card->ssr.au) - 1;
1530        } else if (card->erase_size) {
1531                sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1532                if (sz < 128)
1533                        card->pref_erase = 512 * 1024 / 512;
1534                else if (sz < 512)
1535                        card->pref_erase = 1024 * 1024 / 512;
1536                else if (sz < 1024)
1537                        card->pref_erase = 2 * 1024 * 1024 / 512;
1538                else
1539                        card->pref_erase = 4 * 1024 * 1024 / 512;
1540                if (card->pref_erase < card->erase_size)
1541                        card->pref_erase = card->erase_size;
1542                else {
1543                        sz = card->pref_erase % card->erase_size;
1544                        if (sz)
1545                                card->pref_erase += card->erase_size - sz;
1546                }
1547        } else
1548                card->pref_erase = 0;
1549}
1550
1551static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1552                                          unsigned int arg, unsigned int qty)
1553{
1554        unsigned int erase_timeout;
1555
1556        if (arg == MMC_DISCARD_ARG ||
1557            (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1558                erase_timeout = card->ext_csd.trim_timeout;
1559        } else if (card->ext_csd.erase_group_def & 1) {
1560                /* High Capacity Erase Group Size uses HC timeouts */
1561                if (arg == MMC_TRIM_ARG)
1562                        erase_timeout = card->ext_csd.trim_timeout;
1563                else
1564                        erase_timeout = card->ext_csd.hc_erase_timeout;
1565        } else {
1566                /* CSD Erase Group Size uses write timeout */
1567                unsigned int mult = (10 << card->csd.r2w_factor);
1568                unsigned int timeout_clks = card->csd.taac_clks * mult;
1569                unsigned int timeout_us;
1570
1571                /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1572                if (card->csd.taac_ns < 1000000)
1573                        timeout_us = (card->csd.taac_ns * mult) / 1000;
1574                else
1575                        timeout_us = (card->csd.taac_ns / 1000) * mult;
1576
1577                /*
1578                 * ios.clock is only a target.  The real clock rate might be
1579                 * less but not that much less, so fudge it by multiplying by 2.
1580                 */
1581                timeout_clks <<= 1;
1582                timeout_us += (timeout_clks * 1000) /
1583                              (card->host->ios.clock / 1000);
1584
1585                erase_timeout = timeout_us / 1000;
1586
1587                /*
1588                 * Theoretically, the calculation could underflow so round up
1589                 * to 1ms in that case.
1590                 */
1591                if (!erase_timeout)
1592                        erase_timeout = 1;
1593        }
1594
1595        /* Multiplier for secure operations */
1596        if (arg & MMC_SECURE_ARGS) {
1597                if (arg == MMC_SECURE_ERASE_ARG)
1598                        erase_timeout *= card->ext_csd.sec_erase_mult;
1599                else
1600                        erase_timeout *= card->ext_csd.sec_trim_mult;
1601        }
1602
1603        erase_timeout *= qty;
1604
1605        /*
1606         * Ensure at least a 1 second timeout for SPI as per
1607         * 'mmc_set_data_timeout()'
1608         */
1609        if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1610                erase_timeout = 1000;
1611
1612        return erase_timeout;
1613}
1614
1615static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1616                                         unsigned int arg,
1617                                         unsigned int qty)
1618{
1619        unsigned int erase_timeout;
1620
1621        /* for DISCARD none of the below calculation applies.
1622         * the busy timeout is 250msec per discard command.
1623         */
1624        if (arg == SD_DISCARD_ARG)
1625                return SD_DISCARD_TIMEOUT_MS;
1626
1627        if (card->ssr.erase_timeout) {
1628                /* Erase timeout specified in SD Status Register (SSR) */
1629                erase_timeout = card->ssr.erase_timeout * qty +
1630                                card->ssr.erase_offset;
1631        } else {
1632                /*
1633                 * Erase timeout not specified in SD Status Register (SSR) so
1634                 * use 250ms per write block.
1635                 */
1636                erase_timeout = 250 * qty;
1637        }
1638
1639        /* Must not be less than 1 second */
1640        if (erase_timeout < 1000)
1641                erase_timeout = 1000;
1642
1643        return erase_timeout;
1644}
1645
1646static unsigned int mmc_erase_timeout(struct mmc_card *card,
1647                                      unsigned int arg,
1648                                      unsigned int qty)
1649{
1650        if (mmc_card_sd(card))
1651                return mmc_sd_erase_timeout(card, arg, qty);
1652        else
1653                return mmc_mmc_erase_timeout(card, arg, qty);
1654}
1655
1656static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1657                        unsigned int to, unsigned int arg)
1658{
1659        struct mmc_command cmd = {};
1660        unsigned int qty = 0, busy_timeout = 0;
1661        bool use_r1b_resp = false;
1662        unsigned long timeout;
1663        int loop_udelay=64, udelay_max=32768;
1664        int err;
1665
1666        mmc_retune_hold(card->host);
1667
1668        /*
1669         * qty is used to calculate the erase timeout which depends on how many
1670         * erase groups (or allocation units in SD terminology) are affected.
1671         * We count erasing part of an erase group as one erase group.
1672         * For SD, the allocation units are always a power of 2.  For MMC, the
1673         * erase group size is almost certainly also power of 2, but it does not
1674         * seem to insist on that in the JEDEC standard, so we fall back to
1675         * division in that case.  SD may not specify an allocation unit size,
1676         * in which case the timeout is based on the number of write blocks.
1677         *
1678         * Note that the timeout for secure trim 2 will only be correct if the
1679         * number of erase groups specified is the same as the total of all
1680         * preceding secure trim 1 commands.  Since the power may have been
1681         * lost since the secure trim 1 commands occurred, it is generally
1682         * impossible to calculate the secure trim 2 timeout correctly.
1683         */
1684        if (card->erase_shift)
1685                qty += ((to >> card->erase_shift) -
1686                        (from >> card->erase_shift)) + 1;
1687        else if (mmc_card_sd(card))
1688                qty += to - from + 1;
1689        else
1690                qty += ((to / card->erase_size) -
1691                        (from / card->erase_size)) + 1;
1692
1693        if (!mmc_card_blockaddr(card)) {
1694                from <<= 9;
1695                to <<= 9;
1696        }
1697
1698        if (mmc_card_sd(card))
1699                cmd.opcode = SD_ERASE_WR_BLK_START;
1700        else
1701                cmd.opcode = MMC_ERASE_GROUP_START;
1702        cmd.arg = from;
1703        cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1704        err = mmc_wait_for_cmd(card->host, &cmd, 0);
1705        if (err) {
1706                pr_err("mmc_erase: group start error %d, "
1707                       "status %#x\n", err, cmd.resp[0]);
1708                err = -EIO;
1709                goto out;
1710        }
1711
1712        memset(&cmd, 0, sizeof(struct mmc_command));
1713        if (mmc_card_sd(card))
1714                cmd.opcode = SD_ERASE_WR_BLK_END;
1715        else
1716                cmd.opcode = MMC_ERASE_GROUP_END;
1717        cmd.arg = to;
1718        cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1719        err = mmc_wait_for_cmd(card->host, &cmd, 0);
1720        if (err) {
1721                pr_err("mmc_erase: group end error %d, status %#x\n",
1722                       err, cmd.resp[0]);
1723                err = -EIO;
1724                goto out;
1725        }
1726
1727        memset(&cmd, 0, sizeof(struct mmc_command));
1728        cmd.opcode = MMC_ERASE;
1729        cmd.arg = arg;
1730        busy_timeout = mmc_erase_timeout(card, arg, qty);
1731        /*
1732         * If the host controller supports busy signalling and the timeout for
1733         * the erase operation does not exceed the max_busy_timeout, we should
1734         * use R1B response. Or we need to prevent the host from doing hw busy
1735         * detection, which is done by converting to a R1 response instead.
1736         */
1737        if (card->host->max_busy_timeout &&
1738            busy_timeout > card->host->max_busy_timeout) {
1739                cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1740        } else {
1741                cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1742                cmd.busy_timeout = busy_timeout;
1743                use_r1b_resp = true;
1744        }
1745
1746        err = mmc_wait_for_cmd(card->host, &cmd, 0);
1747        if (err) {
1748                pr_err("mmc_erase: erase error %d, status %#x\n",
1749                       err, cmd.resp[0]);
1750                err = -EIO;
1751                goto out;
1752        }
1753
1754        if (mmc_host_is_spi(card->host))
1755                goto out;
1756
1757        /*
1758         * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1759         * shall be avoided.
1760         */
1761        if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1762                goto out;
1763
1764        timeout = jiffies + msecs_to_jiffies(busy_timeout);
1765        do {
1766                memset(&cmd, 0, sizeof(struct mmc_command));
1767                cmd.opcode = MMC_SEND_STATUS;
1768                cmd.arg = card->rca << 16;
1769                cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1770                /* Do not retry else we can't see errors */
1771                err = mmc_wait_for_cmd(card->host, &cmd, 0);
1772                if (err || R1_STATUS(cmd.resp[0])) {
1773                        pr_err("error %d requesting status %#x\n",
1774                                err, cmd.resp[0]);
1775                        err = -EIO;
1776                        goto out;
1777                }
1778
1779                /* Timeout if the device never becomes ready for data and
1780                 * never leaves the program state.
1781                 */
1782                if (time_after(jiffies, timeout)) {
1783                        pr_err("%s: Card stuck in programming state! %s\n",
1784                                mmc_hostname(card->host), __func__);
1785                        err =  -EIO;
1786                        goto out;
1787                }
1788                if ((cmd.resp[0] & R1_READY_FOR_DATA) &&
1789                    R1_CURRENT_STATE(cmd.resp[0]) != R1_STATE_PRG)
1790                        break;
1791
1792                usleep_range(loop_udelay, loop_udelay*2);
1793                if (loop_udelay < udelay_max)
1794                        loop_udelay *= 2;
1795        } while (1);
1796
1797out:
1798        mmc_retune_release(card->host);
1799        return err;
1800}
1801
1802static unsigned int mmc_align_erase_size(struct mmc_card *card,
1803                                         unsigned int *from,
1804                                         unsigned int *to,
1805                                         unsigned int nr)
1806{
1807        unsigned int from_new = *from, nr_new = nr, rem;
1808
1809        /*
1810         * When the 'card->erase_size' is power of 2, we can use round_up/down()
1811         * to align the erase size efficiently.
1812         */
1813        if (is_power_of_2(card->erase_size)) {
1814                unsigned int temp = from_new;
1815
1816                from_new = round_up(temp, card->erase_size);
1817                rem = from_new - temp;
1818
1819                if (nr_new > rem)
1820                        nr_new -= rem;
1821                else
1822                        return 0;
1823
1824                nr_new = round_down(nr_new, card->erase_size);
1825        } else {
1826                rem = from_new % card->erase_size;
1827                if (rem) {
1828                        rem = card->erase_size - rem;
1829                        from_new += rem;
1830                        if (nr_new > rem)
1831                                nr_new -= rem;
1832                        else
1833                                return 0;
1834                }
1835
1836                rem = nr_new % card->erase_size;
1837                if (rem)
1838                        nr_new -= rem;
1839        }
1840
1841        if (nr_new == 0)
1842                return 0;
1843
1844        *to = from_new + nr_new;
1845        *from = from_new;
1846
1847        return nr_new;
1848}
1849
1850/**
1851 * mmc_erase - erase sectors.
1852 * @card: card to erase
1853 * @from: first sector to erase
1854 * @nr: number of sectors to erase
1855 * @arg: erase command argument
1856 *
1857 * Caller must claim host before calling this function.
1858 */
1859int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1860              unsigned int arg)
1861{
1862        unsigned int rem, to = from + nr;
1863        int err;
1864
1865        if (!(card->host->caps & MMC_CAP_ERASE) ||
1866            !(card->csd.cmdclass & CCC_ERASE))
1867                return -EOPNOTSUPP;
1868
1869        if (!card->erase_size)
1870                return -EOPNOTSUPP;
1871
1872        if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
1873                return -EOPNOTSUPP;
1874
1875        if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
1876            !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1877                return -EOPNOTSUPP;
1878
1879        if (mmc_card_mmc(card) && (arg & MMC_TRIM_ARGS) &&
1880            !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1881                return -EOPNOTSUPP;
1882
1883        if (arg == MMC_SECURE_ERASE_ARG) {
1884                if (from % card->erase_size || nr % card->erase_size)
1885                        return -EINVAL;
1886        }
1887
1888        if (arg == MMC_ERASE_ARG)
1889                nr = mmc_align_erase_size(card, &from, &to, nr);
1890
1891        if (nr == 0)
1892                return 0;
1893
1894        if (to <= from)
1895                return -EINVAL;
1896
1897        /* 'from' and 'to' are inclusive */
1898        to -= 1;
1899
1900        /*
1901         * Special case where only one erase-group fits in the timeout budget:
1902         * If the region crosses an erase-group boundary on this particular
1903         * case, we will be trimming more than one erase-group which, does not
1904         * fit in the timeout budget of the controller, so we need to split it
1905         * and call mmc_do_erase() twice if necessary. This special case is
1906         * identified by the card->eg_boundary flag.
1907         */
1908        rem = card->erase_size - (from % card->erase_size);
1909        if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
1910                err = mmc_do_erase(card, from, from + rem - 1, arg);
1911                from += rem;
1912                if ((err) || (to <= from))
1913                        return err;
1914        }
1915
1916        return mmc_do_erase(card, from, to, arg);
1917}
1918EXPORT_SYMBOL(mmc_erase);
1919
1920int mmc_can_erase(struct mmc_card *card)
1921{
1922        if ((card->host->caps & MMC_CAP_ERASE) &&
1923            (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
1924                return 1;
1925        return 0;
1926}
1927EXPORT_SYMBOL(mmc_can_erase);
1928
1929int mmc_can_trim(struct mmc_card *card)
1930{
1931        if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1932            (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
1933                return 1;
1934        return 0;
1935}
1936EXPORT_SYMBOL(mmc_can_trim);
1937
1938int mmc_can_discard(struct mmc_card *card)
1939{
1940        /*
1941         * As there's no way to detect the discard support bit at v4.5
1942         * use the s/w feature support filed.
1943         */
1944        if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1945                return 1;
1946        return 0;
1947}
1948EXPORT_SYMBOL(mmc_can_discard);
1949
1950int mmc_can_sanitize(struct mmc_card *card)
1951{
1952        if (!mmc_can_trim(card) && !mmc_can_erase(card))
1953                return 0;
1954        if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1955                return 1;
1956        return 0;
1957}
1958EXPORT_SYMBOL(mmc_can_sanitize);
1959
1960int mmc_can_secure_erase_trim(struct mmc_card *card)
1961{
1962        if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1963            !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
1964                return 1;
1965        return 0;
1966}
1967EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1968
1969int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1970                            unsigned int nr)
1971{
1972        if (!card->erase_size)
1973                return 0;
1974        if (from % card->erase_size || nr % card->erase_size)
1975                return 0;
1976        return 1;
1977}
1978EXPORT_SYMBOL(mmc_erase_group_aligned);
1979
1980static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1981                                            unsigned int arg)
1982{
1983        struct mmc_host *host = card->host;
1984        unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
1985        unsigned int last_timeout = 0;
1986        unsigned int max_busy_timeout = host->max_busy_timeout ?
1987                        host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
1988
1989        if (card->erase_shift) {
1990                max_qty = UINT_MAX >> card->erase_shift;
1991                min_qty = card->pref_erase >> card->erase_shift;
1992        } else if (mmc_card_sd(card)) {
1993                max_qty = UINT_MAX;
1994                min_qty = card->pref_erase;
1995        } else {
1996                max_qty = UINT_MAX / card->erase_size;
1997                min_qty = card->pref_erase / card->erase_size;
1998        }
1999
2000        /*
2001         * We should not only use 'host->max_busy_timeout' as the limitation
2002         * when deciding the max discard sectors. We should set a balance value
2003         * to improve the erase speed, and it can not get too long timeout at
2004         * the same time.
2005         *
2006         * Here we set 'card->pref_erase' as the minimal discard sectors no
2007         * matter what size of 'host->max_busy_timeout', but if the
2008         * 'host->max_busy_timeout' is large enough for more discard sectors,
2009         * then we can continue to increase the max discard sectors until we
2010         * get a balance value. In cases when the 'host->max_busy_timeout'
2011         * isn't specified, use the default max erase timeout.
2012         */
2013        do {
2014                y = 0;
2015                for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2016                        timeout = mmc_erase_timeout(card, arg, qty + x);
2017
2018                        if (qty + x > min_qty && timeout > max_busy_timeout)
2019                                break;
2020
2021                        if (timeout < last_timeout)
2022                                break;
2023                        last_timeout = timeout;
2024                        y = x;
2025                }
2026                qty += y;
2027        } while (y);
2028
2029        if (!qty)
2030                return 0;
2031
2032        /*
2033         * When specifying a sector range to trim, chances are we might cross
2034         * an erase-group boundary even if the amount of sectors is less than
2035         * one erase-group.
2036         * If we can only fit one erase-group in the controller timeout budget,
2037         * we have to care that erase-group boundaries are not crossed by a
2038         * single trim operation. We flag that special case with "eg_boundary".
2039         * In all other cases we can just decrement qty and pretend that we
2040         * always touch (qty + 1) erase-groups as a simple optimization.
2041         */
2042        if (qty == 1)
2043                card->eg_boundary = 1;
2044        else
2045                qty--;
2046
2047        /* Convert qty to sectors */
2048        if (card->erase_shift)
2049                max_discard = qty << card->erase_shift;
2050        else if (mmc_card_sd(card))
2051                max_discard = qty + 1;
2052        else
2053                max_discard = qty * card->erase_size;
2054
2055        return max_discard;
2056}
2057
2058unsigned int mmc_calc_max_discard(struct mmc_card *card)
2059{
2060        struct mmc_host *host = card->host;
2061        unsigned int max_discard, max_trim;
2062
2063        /*
2064         * Without erase_group_def set, MMC erase timeout depends on clock
2065         * frequence which can change.  In that case, the best choice is
2066         * just the preferred erase size.
2067         */
2068        if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2069                return card->pref_erase;
2070
2071        max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2072        if (mmc_can_trim(card)) {
2073                max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2074                if (max_trim < max_discard || max_discard == 0)
2075                        max_discard = max_trim;
2076        } else if (max_discard < card->erase_size) {
2077                max_discard = 0;
2078        }
2079        pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2080                mmc_hostname(host), max_discard, host->max_busy_timeout ?
2081                host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
2082        return max_discard;
2083}
2084EXPORT_SYMBOL(mmc_calc_max_discard);
2085
2086bool mmc_card_is_blockaddr(struct mmc_card *card)
2087{
2088        return card ? mmc_card_blockaddr(card) : false;
2089}
2090EXPORT_SYMBOL(mmc_card_is_blockaddr);
2091
2092int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2093{
2094        struct mmc_command cmd = {};
2095
2096        if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2097            mmc_card_hs400(card) || mmc_card_hs400es(card))
2098                return 0;
2099
2100        cmd.opcode = MMC_SET_BLOCKLEN;
2101        cmd.arg = blocklen;
2102        cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2103        return mmc_wait_for_cmd(card->host, &cmd, 5);
2104}
2105EXPORT_SYMBOL(mmc_set_blocklen);
2106
2107static void mmc_hw_reset_for_init(struct mmc_host *host)
2108{
2109        mmc_pwrseq_reset(host);
2110
2111        if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2112                return;
2113        host->ops->hw_reset(host);
2114}
2115
2116int mmc_hw_reset(struct mmc_host *host)
2117{
2118        int ret;
2119
2120        if (!host->card)
2121                return -EINVAL;
2122
2123        mmc_bus_get(host);
2124        if (!host->bus_ops || host->bus_dead || !host->bus_ops->hw_reset) {
2125                mmc_bus_put(host);
2126                return -EOPNOTSUPP;
2127        }
2128
2129        ret = host->bus_ops->hw_reset(host);
2130        mmc_bus_put(host);
2131
2132        if (ret)
2133                pr_warn("%s: tried to HW reset card, got error %d\n",
2134                        mmc_hostname(host), ret);
2135
2136        return ret;
2137}
2138EXPORT_SYMBOL(mmc_hw_reset);
2139
2140int mmc_sw_reset(struct mmc_host *host)
2141{
2142        int ret;
2143
2144        if (!host->card)
2145                return -EINVAL;
2146
2147        mmc_bus_get(host);
2148        if (!host->bus_ops || host->bus_dead || !host->bus_ops->sw_reset) {
2149                mmc_bus_put(host);
2150                return -EOPNOTSUPP;
2151        }
2152
2153        ret = host->bus_ops->sw_reset(host);
2154        mmc_bus_put(host);
2155
2156        if (ret)
2157                pr_warn("%s: tried to SW reset card, got error %d\n",
2158                        mmc_hostname(host), ret);
2159
2160        return ret;
2161}
2162EXPORT_SYMBOL(mmc_sw_reset);
2163
2164static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2165{
2166        host->f_init = freq;
2167
2168        pr_debug("%s: %s: trying to init card at %u Hz\n",
2169                mmc_hostname(host), __func__, host->f_init);
2170
2171        mmc_power_up(host, host->ocr_avail);
2172
2173        /*
2174         * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2175         * do a hardware reset if possible.
2176         */
2177        mmc_hw_reset_for_init(host);
2178
2179        /*
2180         * sdio_reset sends CMD52 to reset card.  Since we do not know
2181         * if the card is being re-initialized, just send it.  CMD52
2182         * should be ignored by SD/eMMC cards.
2183         * Skip it if we already know that we do not support SDIO commands
2184         */
2185        if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2186                sdio_reset(host);
2187
2188        mmc_go_idle(host);
2189
2190        if (!(host->caps2 & MMC_CAP2_NO_SD))
2191                mmc_send_if_cond(host, host->ocr_avail);
2192
2193        /* Order's important: probe SDIO, then SD, then MMC */
2194        if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2195                if (!mmc_attach_sdio(host))
2196                        return 0;
2197
2198        if (!(host->caps2 & MMC_CAP2_NO_SD))
2199                if (!mmc_attach_sd(host))
2200                        return 0;
2201
2202        if (!(host->caps2 & MMC_CAP2_NO_MMC))
2203                if (!mmc_attach_mmc(host))
2204                        return 0;
2205
2206        mmc_power_off(host);
2207        return -EIO;
2208}
2209
2210int _mmc_detect_card_removed(struct mmc_host *host)
2211{
2212        int ret;
2213
2214        if (!host->card || mmc_card_removed(host->card))
2215                return 1;
2216
2217        ret = host->bus_ops->alive(host);
2218
2219        /*
2220         * Card detect status and alive check may be out of sync if card is
2221         * removed slowly, when card detect switch changes while card/slot
2222         * pads are still contacted in hardware (refer to "SD Card Mechanical
2223         * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2224         * detect work 200ms later for this case.
2225         */
2226        if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2227                mmc_detect_change(host, msecs_to_jiffies(200));
2228                pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2229        }
2230
2231        if (ret) {
2232                mmc_card_set_removed(host->card);
2233                pr_debug("%s: card remove detected\n", mmc_hostname(host));
2234        }
2235
2236        return ret;
2237}
2238
2239int mmc_detect_card_removed(struct mmc_host *host)
2240{
2241        struct mmc_card *card = host->card;
2242        int ret;
2243
2244        WARN_ON(!host->claimed);
2245
2246        if (!card)
2247                return 1;
2248
2249        if (!mmc_card_is_removable(host))
2250                return 0;
2251
2252        ret = mmc_card_removed(card);
2253        /*
2254         * The card will be considered unchanged unless we have been asked to
2255         * detect a change or host requires polling to provide card detection.
2256         */
2257        if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2258                return ret;
2259
2260        host->detect_change = 0;
2261        if (!ret) {
2262                ret = _mmc_detect_card_removed(host);
2263                if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2264                        /*
2265                         * Schedule a detect work as soon as possible to let a
2266                         * rescan handle the card removal.
2267                         */
2268                        cancel_delayed_work(&host->detect);
2269                        _mmc_detect_change(host, 0, false);
2270                }
2271        }
2272
2273        return ret;
2274}
2275EXPORT_SYMBOL(mmc_detect_card_removed);
2276
2277void mmc_rescan(struct work_struct *work)
2278{
2279        struct mmc_host *host =
2280                container_of(work, struct mmc_host, detect.work);
2281        int i;
2282
2283        if (host->rescan_disable)
2284                return;
2285
2286        /* If there is a non-removable card registered, only scan once */
2287        if (!mmc_card_is_removable(host) && host->rescan_entered)
2288                return;
2289        host->rescan_entered = 1;
2290
2291        if (host->trigger_card_event && host->ops->card_event) {
2292                mmc_claim_host(host);
2293                host->ops->card_event(host);
2294                mmc_release_host(host);
2295                host->trigger_card_event = false;
2296        }
2297
2298        mmc_bus_get(host);
2299
2300        /*
2301         * if there is a _removable_ card registered, check whether it is
2302         * still present
2303         */
2304        if (host->bus_ops && !host->bus_dead && mmc_card_is_removable(host))
2305                host->bus_ops->detect(host);
2306
2307        host->detect_change = 0;
2308
2309        /*
2310         * Let mmc_bus_put() free the bus/bus_ops if we've found that
2311         * the card is no longer present.
2312         */
2313        mmc_bus_put(host);
2314        mmc_bus_get(host);
2315
2316        /* if there still is a card present, stop here */
2317        if (host->bus_ops != NULL) {
2318                mmc_bus_put(host);
2319                goto out;
2320        }
2321
2322        /*
2323         * Only we can add a new handler, so it's safe to
2324         * release the lock here.
2325         */
2326        mmc_bus_put(host);
2327
2328        mmc_claim_host(host);
2329        if (mmc_card_is_removable(host) && host->ops->get_cd &&
2330                        host->ops->get_cd(host) == 0) {
2331                mmc_power_off(host);
2332                mmc_release_host(host);
2333                goto out;
2334        }
2335
2336        for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2337                if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2338                        break;
2339                if (freqs[i] <= host->f_min)
2340                        break;
2341        }
2342        mmc_release_host(host);
2343
2344 out:
2345        if (host->caps & MMC_CAP_NEEDS_POLL)
2346                mmc_schedule_delayed_work(&host->detect, HZ);
2347}
2348
2349void mmc_start_host(struct mmc_host *host)
2350{
2351        host->f_init = max(freqs[0], host->f_min);
2352        host->rescan_disable = 0;
2353        host->ios.power_mode = MMC_POWER_UNDEFINED;
2354
2355        if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2356                mmc_claim_host(host);
2357                mmc_power_up(host, host->ocr_avail);
2358                mmc_release_host(host);
2359        }
2360
2361        mmc_gpiod_request_cd_irq(host);
2362        _mmc_detect_change(host, 0, false);
2363}
2364
2365void mmc_stop_host(struct mmc_host *host)
2366{
2367        if (host->slot.cd_irq >= 0) {
2368                mmc_gpio_set_cd_wake(host, false);
2369                disable_irq(host->slot.cd_irq);
2370        }
2371
2372        host->rescan_disable = 1;
2373        cancel_delayed_work_sync(&host->detect);
2374
2375        /* clear pm flags now and let card drivers set them as needed */
2376        host->pm_flags = 0;
2377
2378        mmc_bus_get(host);
2379        if (host->bus_ops && !host->bus_dead) {
2380                /* Calling bus_ops->remove() with a claimed host can deadlock */
2381                host->bus_ops->remove(host);
2382                mmc_claim_host(host);
2383                mmc_detach_bus(host);
2384                mmc_power_off(host);
2385                mmc_release_host(host);
2386                mmc_bus_put(host);
2387                return;
2388        }
2389        mmc_bus_put(host);
2390
2391        mmc_claim_host(host);
2392        mmc_power_off(host);
2393        mmc_release_host(host);
2394}
2395
2396#ifdef CONFIG_PM_SLEEP
2397/* Do the card removal on suspend if card is assumed removeable
2398 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2399   to sync the card.
2400*/
2401static int mmc_pm_notify(struct notifier_block *notify_block,
2402                        unsigned long mode, void *unused)
2403{
2404        struct mmc_host *host = container_of(
2405                notify_block, struct mmc_host, pm_notify);
2406        unsigned long flags;
2407        int err = 0;
2408
2409        switch (mode) {
2410        case PM_HIBERNATION_PREPARE:
2411        case PM_SUSPEND_PREPARE:
2412        case PM_RESTORE_PREPARE:
2413                spin_lock_irqsave(&host->lock, flags);
2414                host->rescan_disable = 1;
2415                spin_unlock_irqrestore(&host->lock, flags);
2416                cancel_delayed_work_sync(&host->detect);
2417
2418                if (!host->bus_ops)
2419                        break;
2420
2421                /* Validate prerequisites for suspend */
2422                if (host->bus_ops->pre_suspend)
2423                        err = host->bus_ops->pre_suspend(host);
2424                if (!err)
2425                        break;
2426
2427                if (!mmc_card_is_removable(host)) {
2428                        dev_warn(mmc_dev(host),
2429                                 "pre_suspend failed for non-removable host: "
2430                                 "%d\n", err);
2431                        /* Avoid removing non-removable hosts */
2432                        break;
2433                }
2434
2435                /* Calling bus_ops->remove() with a claimed host can deadlock */
2436                host->bus_ops->remove(host);
2437                mmc_claim_host(host);
2438                mmc_detach_bus(host);
2439                mmc_power_off(host);
2440                mmc_release_host(host);
2441                host->pm_flags = 0;
2442                break;
2443
2444        case PM_POST_SUSPEND:
2445        case PM_POST_HIBERNATION:
2446        case PM_POST_RESTORE:
2447
2448                spin_lock_irqsave(&host->lock, flags);
2449                host->rescan_disable = 0;
2450                spin_unlock_irqrestore(&host->lock, flags);
2451                _mmc_detect_change(host, 0, false);
2452
2453        }
2454
2455        return 0;
2456}
2457
2458void mmc_register_pm_notifier(struct mmc_host *host)
2459{
2460        host->pm_notify.notifier_call = mmc_pm_notify;
2461        register_pm_notifier(&host->pm_notify);
2462}
2463
2464void mmc_unregister_pm_notifier(struct mmc_host *host)
2465{
2466        unregister_pm_notifier(&host->pm_notify);
2467}
2468#endif
2469
2470static int __init mmc_init(void)
2471{
2472        int ret;
2473
2474        ret = mmc_register_bus();
2475        if (ret)
2476                return ret;
2477
2478        ret = mmc_register_host_class();
2479        if (ret)
2480                goto unregister_bus;
2481
2482        ret = sdio_register_bus();
2483        if (ret)
2484                goto unregister_host_class;
2485
2486        return 0;
2487
2488unregister_host_class:
2489        mmc_unregister_host_class();
2490unregister_bus:
2491        mmc_unregister_bus();
2492        return ret;
2493}
2494
2495static void __exit mmc_exit(void)
2496{
2497        sdio_unregister_bus();
2498        mmc_unregister_host_class();
2499        mmc_unregister_bus();
2500}
2501
2502subsys_initcall(mmc_init);
2503module_exit(mmc_exit);
2504
2505MODULE_LICENSE("GPL");
2506